CN101199068A - 燃料和燃料电池的集成装置 - Google Patents

燃料和燃料电池的集成装置 Download PDF

Info

Publication number
CN101199068A
CN101199068A CNA2006800211256A CN200680021125A CN101199068A CN 101199068 A CN101199068 A CN 101199068A CN A2006800211256 A CNA2006800211256 A CN A2006800211256A CN 200680021125 A CN200680021125 A CN 200680021125A CN 101199068 A CN101199068 A CN 101199068A
Authority
CN
China
Prior art keywords
water
fuel cell
fuel
solid fuel
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CNA2006800211256A
Other languages
English (en)
Inventor
周煜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
H2 VOLT Inc
H2VOLT Inc
Original Assignee
H2 VOLT Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by H2 VOLT Inc filed Critical H2 VOLT Inc
Publication of CN101199068A publication Critical patent/CN101199068A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0606Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants
    • H01M8/065Combination of fuel cells with means for production of reactants or for treatment of residues with means for production of gaseous reactants by dissolution of metals or alloys; by dehydriding metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04156Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal
    • H01M8/04171Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying with product water removal using adsorbents, wicks or hydrophilic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04201Reactant storage and supply, e.g. means for feeding, pipes
    • H01M8/04208Cartridges, cryogenic media or cryogenic reservoirs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04291Arrangements for managing water in solid electrolyte fuel cell systems
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/24Grouping of fuel cells, e.g. stacking of fuel cells
    • H01M8/2465Details of groupings of fuel cells
    • H01M8/247Arrangements for tightening a stack, for accommodation of a stack in a tank or for assembling different tanks
    • H01M8/2475Enclosures, casings or containers of fuel cell stacks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M2008/1095Fuel cells with polymeric electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/12Fuel cells with solid electrolytes operating at high temperature, e.g. with stabilised ZrO2 electrolyte
    • H01M2008/1293Fuel cells with solid oxide electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/10Fuel cells in stationary systems, e.g. emergency power source in plant
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2250/00Fuel cells for particular applications; Specific features of fuel cell system
    • H01M2250/30Fuel cells in portable systems, e.g. mobile phone, laptop
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/08Fuel cells with aqueous electrolytes
    • H01M8/083Alkaline fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02B90/10Applications of fuel cells in buildings
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

这里所描述的是一种通过消耗氢的电化学燃料电池来产生电流的燃料和燃料电池的集成装置以及产生电的方法。所述装置可以是全部或部分地自足的,也可以是由一起工作的部件构成的。所述装置至少含有一个燃料和燃料电池部件,这些部件可以是集成的。所述燃料用来产生氢,适合于用在多种燃料电池设计中,这些燃料电池利用氢来产生电流。在一些变型中,所述燃料电池产生水,并且这些水可以返回所选择的燃料源中,以便为带有负载的燃料电池持续不断地提供氢。所述燃料电池也可以包含一个系统,用来控制由所述燃料电池产生的可以返回所述固体燃料的水的量。

Description

燃料和燃料电池的集成装置
相关申请的交叉引用
本申请要求获得美国临时专利申请No.60/671,773的权益,该申请通过引用结合在这里如同在下面阐述了其全文一样。
技术领域
这里所描述的是一种通过消耗氢的电化学燃料电池来产生电流的装置。所述装置可以是全部或部分地自足的,也可以是由一起工作的多个部件构成的。所述装置含有燃料源和燃料电池部件,这些部件可以集成在一起。选择所述燃料来产生氢,以便用在多种燃料电池设计中,这些燃料电池利用氢来产生电流。在一些变型中,所述燃料电池产生水,并且这些水可以返回所选择的燃料源中,以便为带有负载的燃料电池提供由该装置自身产生的氢。
背景技术
在存储并提供电能的装置的技术领域中,许多常规的化学电池具有三个不利之处:1)它们就能量密度而言容量有限,无论所述密度是按装置的每单位体积所产生的瓦小时数还是按每单位质量所产生的瓦小时数来测量。所述容量限制影响了当前的化学电池在持续负载下进行工作的能力。即使是可充电电池通常也限制在4-5小时的连续使用。2)它们的保存期限相对较短,通常少于3到5年。3)许多现代的电池含有有害或有毒的化学物质,它们会对环境造成长期的危害。
能提供电能但没有常规电池的一些缺点的装置是燃料电池装置。然而,许多燃料电池的配置具有其自身的缺点。例如,一些设计中所使用的燃料源在装置的外部。质子交换膜燃料电池(PEMFC)使用氧和氢。氧气通常从空气中获取,但氢气作为一种干净气体通常由外部的氢气源(诸如存储罐或其它能产生氢气的外部源)来提供。尽管这种燃料电池在为静止负载提供电能上是可以接受的,但对于可移动或可携带的负载(在消费者的电子装置中可以找到)来说,这些配置目前认为是不合适的,另外,正是需要外部燃料源使得它们在涉及远程装置(诸如置于楼宇建筑中的安全装置或警报传感器)的应用中变得不实用(或许,甚至是不安全的)。
(本发明)所述装置用来为多种负载提供电能。所述装置通过一种通常十分稳定并且具有高的能量密度的燃料来提供动力。所述装置的设计也可以使它们适合于用在便携或远程装置的应用中。
发明内容
1.一种用来产生电能的装置,所述装置包括:至少一个燃料电池,当提供氢和氧时能够产生电和水,以及至少一个含有固体燃料的固体燃料源,其中,所述固体燃料源用来在与水反应时产生氢,供所述至少一个燃料电池使用,以及其中,所述固体燃料源和所述燃料电池的配置使得所述燃料电池所产生的一些水被导回所述固体燃料源中与所述固体燃料进行反应以产生供所述燃料电池使用的氢。
2.根据发明内容部分的段落1所述的装置,其中,所述固体燃料源包括从金属;碱金属;碱土金属;金属、碱金属和碱土金属的氢化物盐以及它们的复盐;碱金属、碱土金属、铵、和烷基铵(alkyl ammonium)的硼氢化物盐中选出来的至少一种成分。
3.根据发明内容部分的段落1所述的装置,其中,所述固体燃料源包括从中选出来的至少一种成分。
4.根据发明内容部分的段落1所述的装置,其中,所述固体燃料源包括从钠、锂、钾、铷中选出来的至少一种成分。
5.根据发明内容部分的段落1所述的装置,其中,所述固体燃料源包括从MgH4、NaAlH4、LiAlH4、KAlH4、NaGaH4、LiGaH4、KGaH4、Mg(AlH4)2、2Li3AlH6、Na3AlH6、以及Mg2NiH4中选出来的至少一种成分。
6.根据发明内容部分的段落1所述的装置,其中,所述固体燃料源包括从NaBH4、LiBH4、KBH4、Mg(BH4)2、Ca(BH4)2、NH4BH4、(CH3)4NH4BH4中选出来的至少一种成分。
7.根据发明内容部分的段落6所述的装置,其中,所述固体燃料包括NaBH4
8.根据发明内容部分的段落1所述的装置,其中,所述固体燃料源包括从发明内容部分的段落2-6所述的部件中选出来的至少两种部件。
9.根据发明内容部分的段落2-8所述的装置,还包括催化剂,用来催化所述固体燃料产生氢的反应。
10.根据发明内容部分的段落9所述的装置,其中,所述催化剂所占的比例为0.1wt%到10wt%。
11.根据发明内容部分的段落3-10所述的装置,还包括稳定剂,用来稳定所述固体燃料产生氢的反应。
12.根据上述发明内容部分的各段落中的任何一个段落所述的装置,还包括与至少一个所述燃料电池相邻的隔水部件,其中,所述隔水部件能够透过氧,但实质上不能透过水。
13.根据发明内容部分的段落12所述的装置,其中,所述隔水部件包含PTFE。
14.根据上述发明内容部分的各段落中的任何一个所述的装置,包含单个燃料电池。
15.根据上述发明内容部分的各段落中的任何一个所述的装置,包含多个燃料电池。
16.根据上述发明内容部分的各段落中的任何一个所述的装置,还包括含有活化剂的活化剂部件,其中,所述活化剂部件用来将所述活化剂释放到所述装置中以启动生成电的过程。
17.根据发明内容部分的段落16所述的装置,其中,所述活化剂为水。
18.根据发明内容部分的段落16所述的装置,其中,所述活化剂为氢。
19.根据发明内容部分的段落16、17或18所述的装置,其中,所述装置还包括活化剂隔离部件,其中,所述活化剂隔离部件用来防止所述活化剂被释放进所述装置中,以及其中,所述活化剂隔离部件用来在被调节后允许所述活化剂部件释放所述活化剂到所述装置中。
20.根据发明内容部分的段落19所述的装置,其中,所述活化剂隔离部件由一种不能透过所述活化剂的材料构成。
21.根据上述发明内容部分的各段落中的任何一个所述的装置,其中,所述燃料源是可被去除的。
22.根据上述发明内容部分的各段落中的任何一个所述的装置,还包括控水系统,其中,所述控水系统用来控制所述燃料电池产生的水返回到所述燃料源中。
23.根据发明内容部分的段落22所述的装置,其中,所述控水系统包括压敏开关,所述压敏开关用来在所述系统的压强超过临界值时防止所述燃料电池所产生的水到达所述燃料源中。
24.根据发明内容部分的段落22所述的装置,其中,所述控水系统包括压敏调节器,所述压敏调节器用来在所述系统的压强超过临界值时防止所述燃料电池所产生的水到达所述燃料源中,以及用来在所述临界压强以下根据系统的压强调节通过所述控水系统到达所述燃料源的水的量。
25.根据发明内容部分的段落23所述的装置,其中,所述压敏开关是机械的。
26.根据发明内容部分的段落23所述的装置,其中,所述压敏开关是具有开口的化学材料,所述开口的大小随所述系统的压强而变化。
27.根据发明内容部分的段落24所述的装置,其中,所述压敏调节器是机械的。
28.根据发明内容部分的段落24所述的装置,其中,所述压敏调节器是具有开口的化学材料,所述开口的大小随所述系统的压强而变化。
29.根据发明内容部分的段落24、25、26、27或28所述的装置,还包括与所述燃料电池和所述燃料源有沟通的储水容器,用来存储由所述燃料电池所产生的被阻止进入所述燃料源中的水。
30.根据上述发明内容部分的各段落中的任何一个所述的装置,其中,所述固体燃料源含有单个的包囊,这些单个的包囊含有所述固体燃料和反应产物,其中,所述包囊可以透过水和氢。
31.根据发明内容部分的段落29所述的装置,其中,所述储水容器包含用来吸水的泡沫材料。
32.根据发明内容部分的段落31所述的装置,其中,所述泡沫材料是一种水凝胶。
33.根据发明内容部分的段落26、28所述的装置,其中,所述化学材料从由金属、PTFE、尼龙、碳、以及诸如聚氨酯(polyurethane)、聚2-丙烯酰胺基-2-甲基丙磺酸(poly 2-acrylamindo-2-methylpropanesulfonicacid,PAMPS)等聚合物构成的组中选出。
34.根据发明内容部分的段落30所述的装置,其中,所述包囊由压敏材料制成,这种材料用来在系统的压强等于或大于临界压强时防止水流到所述包囊所包含的固体燃料中。
35.根据发明内容部分的段落34所述的装置,其中,所述化学材料从由金属、PTFE、尼龙、碳、以及诸如聚氨酯、聚2-丙烯酰胺基-2-甲基丙磺酸等聚合物构成的组中选出。
36.一种产生电的方法,所述方法包括:使固体燃料与水反应生成氢;在燃料电池中将所述氢转换成电和水;使所述氢燃料电池所产生的一些水返回所述固体燃料中以产生氢。
37.根据发明内容部分的段落36所述的方法,还包括:控制返回到所述固体燃料源的水的量,其中,返回所述固体燃料源的水的量由对电的需求来确定。
38.根据发明内容部分的段落37所述的方法,其中,对电的需求的减少由压强的增加来表明,以及其中,所述压强用来控制返回所述固体燃料源的水的量。
39.根据发明内容部分的段落36、37或38所述的方法,还包括:通过从活化剂部件引入活化剂来激活所述固体燃料。
40.根据发明内容部分的段落39所述的方法,其中,所述活化剂从H2和H2O所构成的组中选出。
41.根据发明内容部分的段落36-40中的任何一个所述的方法,其中,当与所述固体燃料进行反应的水是所述燃料电池所产生的水时,所使用的固体燃料和水的总质量中每单位质量所产生的氢的摩尔数会增加。
42.根据发明内容部分的段落36-41中的任何一个所述的方法,其中,所述固体燃料源包含从钠、锂、钾和铷中所选出来的至少一种成分。
43.根据发明内容部分的段落36-41中的任何一个所述的方法,其中,所述固体燃料源包含从MgH4、NaAlH4、LiAlH4、KAlH4、NaGaH4、LiGaH4、KGaH4、Mg(AlH4)2、2Li3AlH6、Na3AlH6、以及Mg2NiH4中选出来的至少一种成分。
44.根据发明内容部分的段落36-41中的任何一个所述的方法,其中,所述固体燃料源包含从NaBH4、LiBH4、KBH4、Mg(BH4)2、Ca(BH4)2、NH4BH4、(CH3)4NH4BH4中选出来的至少一种成分。
附图说明
图1显示了构成所述装置的各部件的示意图;
图2是燃料电池所产生的水的再循环过程的示意图;
图3是包含压控开关的控水系统的示意图;
图4是包含压控开关和储水容器的控水系统的示意图;
图5是一种所述装置的示意图;
图6A显示了燃料源中含有燃料的包囊;
图6B显示了燃料源中的多个包囊;
图7显示了含有四个燃料电池的一种所述装置;
图8显示了具有可去除燃料盒的一种所述装置;
图9显示了含有六个燃料电池的一种所述装置;
图10显示了含有四个燃料电池并具有空心的一种所述装置;
图11显示了一种所述装置;
图12A-12F显示了所述装置的不同形式;
图13A-13D显示了所述装置的示意变型,描绘了适合于使燃料活化的结构;
图14显示了一种含有固体燃料源的示范性装置,所述装置具有若干包囊、控水系统、燃料电池和隔水部件。
具体实施方式
一般地,所述装置包括能产生氢的燃料和至少一个通过消耗所述氢来产生电流的燃料电池。在所述装置中,燃料源可以与燃料电池装置集成在一起,并通过一种设计来产生电能,在所述设计中能产生氢的固体燃料用来为燃料电池提供氢。所述燃料源和燃料电池之间的相互作用可以是交互式的,即允许将来自固体燃料的氢提供给燃料电池以便生成电,并(在燃料电池产生水的情形中)允许燃料电池所产生的水能与固体燃料发生反应。这种相互作用可以看作是能为燃料电池持续地提供氢燃料,至少直到燃料被耗尽。所述装置的其它变型在燃料电池带有负载时实质上是自持(self-sustaining)的系统。
所述装置的一些变型包含一个或多个可替换的燃料盒。这种特性可以便于为燃料和燃料电池的集成装置重新提供固体燃料。所述装置的其它变型涉及“可扩展性(scaling)”,即利用一个或多个装置部件(例如,燃料电池部件或燃料部件)来在功能上为多个其它部件进行服务,例如,利用单个燃料源为多个燃料电池部件提供氢,或者利用多个燃料源部件为一个或多个燃料电池部件提供服务。在这种“可扩展性”变型中也包括多个燃料源-燃料电池组合按并联或串联的电连接方式来配置,同时,可选择地,联合使用各个燃料源所产生的氢或各个燃料电池所产生的水。这种可扩展性可以例如用来满足特殊的电压或功率要求。
所述装置的另一种变型包含活化剂部件,用来激活固体燃料以便启动装置的运行,如前面所提及的,这种运行在带有负载时在另外的情况下可以是自持的。
图1提供了全部装置100的一般示意图。所述装置包括燃料电池101、燃料源102、以及可选择使用的隔水部件103、控水系统104、活化剂部件105、以及活化剂隔离部件106。应该注意到,这些部件的配置不限于图1所示的配置,可以按任何适合于制造所述装置的方式来配置这些部件。燃料电池101可以是使用氧和氢来产生电流这种类型的燃料电池。如下面将要说明的,有很多种使用氧和氢燃料来产生电能的燃料电池设计。因此,燃料电池结构的细节只是在它们以其它方式与燃料源102结合来产生电流的情况下才是重要的。
燃料源102包括这样的材料,当该材料以某种方式(比如通过与水或其它合适的羟基源进行化学反应)被活化时,能够产生氢。尽管下面所描述的许多变型涉及了内藏燃料的物理形态,该形态为或者可以理解为实质上是固体的形态,但燃料源的物理形态只需在功能上允许活化剂部件进入和产物氢逸出即可。该燃料可以是粉末、细粒、凝胶的形式,或者可以由诸如球、块之类的形式构成。燃料材料可以与诸如下面要说明的稳定剂或催化剂相混合。该燃料可以是若干材料的混合物,其中每种材料自身可以产生氢,或者可以基本上由掺有或不掺有上述辅助剂的能产生氢的化合物或材料组成。
另外的一个可选择的部件是隔水部件103。隔水部件103的作用是,防止燃料电池中的反应产物(主要是水)从所述装置中流走,在更狭隘的意义上,其作用是引导水流回固体燃料源102。当隔水部件103被用来改变水的方向时,它最好是由一种能透过氧气但不能透过水的材料或结构构成。具有这种特性的材料包括聚四氟乙烯(Polytetrafiuoroethylene,PTFE)、聚二甲基硅氧烷(polydimethylsiloxane,PDMS)、聚烯烃(polyolefin)、多孔金属膜、以及大量其它的透氧疏水材料。在一些情形中,隔水部件103可以具有完全的或部分的疏水性。在一些情形中,阴极也可以作为隔水部件。在一些情形中,不希望有隔水部件103,比如当该装置的一个单元正被用作所述装置的另一个单元的活化部件时。这种“菊花链形式”可以用来在功能上使多个所述装置互联起来,以便实现指定应用所需的电子体系结构。
在所述装置的一些变型中,产生氢的燃料源102与含有活化剂的活化部件105相隔离。活化部件能对电化学反应开始的时间进行控制。这就允许所述装置的某些变型在相当长时间没有使用之后仍可被使用。活化剂可以是一个单独的源,可以根据用户的控制来被释放,或者在警报器探测到警报状态之后根据该警报器的动作被自动释放。在燃料中发生的一些化学反应中,包括活化剂(例如水)的材料可以是燃料电池101中发生的电化学反应的产物。在这种情形中,在燃料中就不需要连续地提供反应物活化剂。因此,在这种情形中,活化剂可以被认为是在所述装置的全面运转中引发反应的引发剂。活化部件105和活化剂隔离部件106相对于燃料源102的位置可以具有若干配置,例如,位于燃料源102的下面或侧面。
在所述装置的所有变型中,活化剂不需要有单独的源。活化剂可以是周围空气(例如,室内空气)、联动的化学或机械过程流(例如,蒸汽管道或水管道)、或其它源中存在的附带水蒸汽,可以选择为该活化剂能够由具体装置的设计人利用这里所述概念来控制。
用来控制活化部件105中的活化剂进入燃料源102的一般结构可以由活化剂隔离部件106来实现。如下面所说明的,活化剂隔离部件106在功能上可以具有许多种结构。在使用时,活化剂隔离部件的功能只是充分防止活化剂进入燃料源中,不管活化剂是在活化部件中还是以某种方式存在于环境中。例如,活化剂隔离部件106可以是由聚合物膜所构成的部件。在所述装置的一些变型中,这样来配置这种活化剂部件隔膜,使其可以被移走或撕掉,以便允许活化剂进入燃料中。
在所述装置的一些变型中,可以使用包括能透过活化剂的薄膜的活化剂隔离部件106。在一些变型中,例如,当所述装置所使用的环境中另外含有不应该进入固体燃料源102的气体成份时,所述薄膜的类型应该允许活化剂通过而不允许其它附带的稀释气体通过。就是说,当所述装置的某个变型用来置于含有水汽、氮气、和氧气的露天中时,所述薄膜的类型应该允许作为活化剂的水通过,而不允许构成空气的其它气体通过,这是由于那些气体或者会与燃料包中产生的氢发生反应,或者会进入燃料电池自身中,但在任何一种情形中,都会妨碍燃料电池的有效运转。
燃料电池101由这样的部件构成,例如第一(或阳极)电流收集极108、第二(或阴极)电流收集极107、和燃料电池膜109,其中燃料电池膜109可以透过质子或氧离子,但不能导电,可以是一种聚全氟磺酸聚合物膜(polyperfluorosulfonic acid polymer membrane)。商用燃料电池膜可以是由例如E.I.du Pont de Nemours and Co.提供的Nafion系列聚合物。在阳极电流收集极108和膜109之间是第一(或阳极)催化剂层110,另外,还设有第二(或阴极)催化剂层111。在阳极108和阴极107之间显示了一个使功能电路完整的示意负载113。催化剂层通常是涂有诸如Pt和Pd等催化剂的碳纸。来自固体燃料并扩散到燃料电池阳极的氢与通常是从周围空气提供给燃料电池阴极的氧在燃料电池中进行反应,以产生电流和水。这样形成的水反过来再扩散回到固体燃料中,在固体燃料中,这些水产生反应并形成氢,使电流的产生过程得以继续。
通过隔水部件103、催化剂层111以及阴极电流收集极107的组合使水改道回到燃料源的过程由闭合控制回线114描述。图2描述了这个示范性过程。在步骤201中,由燃料电池101产生水和电。在步骤202中,所述水改道回到燃料源,隔水部件103防止所述水逸出该装置,剩余的水将通过燃料电池101扩散并进入燃料源102中。在步骤203中,所述水与燃料源102发生反应并生成氢。然后,所述氢扩散到燃料电池101中,被燃料电池101所使用以产生水和电,这个循环自身重复,直到燃料被耗尽。改道回到燃料源102的水可以另外穿过控水系统104,而控水系统104在某种条件下可以允许或不允许水穿过它回到燃料源中。
在一个实施例中,控水系统104具有压敏开关,从而当装置100没有负载或者要求低的功率输出时,能防止水进入燃料源102中,以中断氢的产生。所述控水系统通常位于燃料电池101和燃料源102之间。当该装置带有负载时,燃料电池101就消耗氢,系统中的压强Psys就保持在临界压强Pc之下。当负载断开或者减小时,或者当燃料电池101不消耗氢时,由于系统中过剩的水与燃料源102发生反应产生额外的氢,于是Psys就增加。当Psys达到Pc以上时,压敏开关就阻止额外的水流向燃料源,从而中断氢的产生。当负载增加时,由于燃料电池101对氢的消耗,Psys下降。当Psys降到Pc以下时,压敏开关就允许水流向燃料源102,从而继续氢的产生。
控水系统104可以控制由燃料电池101产生的要流向燃料源102的水的量。在一些情形中,可以不将燃料电池所产生的水导向燃料源102。例如,如果隔水部件103使燃料电池所产生的100%的水都改道,那么,燃料源102中水会饱和。于是,控水系统104可以将一部分水导离燃料源。控水系统可以用来将燃料电池101产生的任何比例的水导离燃料源102。另外,控水系统可以用来将燃料电池101产生的任何比例的水导向燃料源102。另外,控水系统的配置可以使被导向燃料源102的水的量根据氢的产生速率来变化。这可以使装置的响应性更好,提高了装置的安全性。例如,开始时可以将燃料电池所产生的100%的水导向燃料源102以加速H2的产生,并在装置的安全工作范围内优化H2的压强。优化氢气压强能使该装置能够对能量需求的尖峰进行响应。当H2的压强被优化后,可以将水导离燃料源102。可以使用若干不同的方法来优化氢气的产生。
图3A-3B描绘了控水系统300。在这个例子中,控水系统300包含压敏机械开关301/302,当系统压强Psys增加时所述压敏机械开关可以改变其配置。控水系统300位于燃料电池101和燃料源102之间。控水系统被装在一个外壳(未显示)中,该外壳除了让水穿过控水系统300所产生的通道外,不让水穿过后到达燃料电池。所述机械开关由两层材料301和302构成,其中,每层材料都包含有H2O能够通过和不能通过的区域。这些区域可以是材料中的空隙,当这些空隙正确地对齐时可以让H2O通过。在恒定的负载条件下(Psys<Pc),可以让H2O通过的区域如图3A所示那样对齐。在没有负载的条件下(Psys>Pc),迫使一个层301改变位置,并与另一个层302对齐,使得H2O不再能够通过这些层,从而中断氢的产生。然后将水导向存储容器(未显示)中或者让水蒸发到空气中。压敏机械开关301/302可以由本质上类似的压敏机械调节器来替换,使得系统中的压强能够控制通过控水系统300的水的量。
图4是另一个含有机械开关401的机械控水系统400的示意图。控水系统400另外包含:不可透水层402(诸如PTFE),该层允许燃料源102中产生的氢通到燃料电池101;外壳403(部分显示),它将控水系统装入其中,并且除了让水通过由压敏机械开关401控制的通道开口406外,不让水穿过并到达燃料源102;以及可选择的凝水器404,用来将燃料电池所产生的水凝聚到储水区405中。储水区405可以是用来存储水的容器,可以含有一种诸如水凝胶的吸水泡沫材料。控水系统400可以包含管道或通道(未显示),以将燃料电池产生的水导向储水区405。如上面所说明的,当该装置带有负载时,Psys小于Pc,于是控水系统400允许水通过并到达燃料源102。当装置不再带有负载时,Psys就增加。当Psys变得大于Pc时,控水系统400就不让水进入燃料源102中,从而中断氢的产生。压敏机械开关401可以由本质上类似的压敏机械调节器来替换,使得系统中的压强能够控制通过控水系统400的水的量。
就图3和图4而言,可以用一种诸如聚合物的材料(未显示)替换所述压敏机械开关/调节器并用作压敏化学开关/调节器,其中,该材料具有在不同压强下能改变气体流动的特性。当Psys小于Pc时,该材料允许水通过,而当Psys大于Pc时,该材料的允许流体流过的特性发生改变,不允许水通过。具有这种特性的材料包括含有微通道或微孔的软材料,这些材料的设计要使得所述微通道的大小随压强变化,诸如尼龙、聚2-丙烯酰胺基-2-甲基丙磺酸(poly 2-(acrylamindo)-2-methylpropanesulfonic acid,PAMPS)等聚合物。可选择地将这些材料与电控系统连接,该电控系统根据配置或根据系统中的压强在所述材料上施加电压,使所述材料发生收缩或扩张,从而防止水的通过或允许水的通过。
另外,上述机械/化学开关或调节器可以对第三压强PL敏感,所述第三压强是在水的通行被切断后所述开关或调节器允许水通过并流到燃料源的压强。例如,当系统没有负载或负载很小时以及当Psys>Pc时,开关和调节器切断水到燃料源的流通。当有负载时,所述开关或调节器仍然继续阻止水的通过,直到Psys等于或小于PL为止,其中PL小于Pc。引入对PL的敏感性可以更加平滑地控制水通过控水系统。
图5显示了上述装置的一个变型,在这种情形中,是一种燃料和燃料电池的集成装置500。所述装置被装入适合容纳燃料电池550的外壳510中。外壳510形成一个腔室520,该腔室520则含有固体燃料530。下面将说明适合于用作燃料530的各种一般或特殊类型的固体燃料。位于腔室520中从而构成燃料源的燃料自身可以具有任何合适的物理形态,能够允许所产生的氢通到燃料电池550中,并希望允许在燃料电池工作期间所产生的水返回燃料源中。在存在外壳510的时候,外壳510可以用来协助燃料电池和燃料源之间的相互作用,使得固体燃料所产生的氢可以容易地到达燃料电池,而燃料电池所产生的水可以容易地到达固体燃料中。
正如在本说明书的许多描述中那样,希望具备的某些部件或者对于所述装置在特殊环境中的实际运行来说甚至是必需的某些部件并没有显示在各个图中,这样做的具体目的是为了使所显示的部件能够得到清晰的描述。任何这样被省略了的部件都属于这样一种类型或具有这样一种功能,使得在本领域中普通技术人员会认识到对这种部件的需要,并在普通的装置设计过程中将之包括进来。例如,图5没有显示用来将氧导向燃料电池550的合适端的外壳或导管的存在。当设计者使用这里所述的内容提出一种设计,采用一种具体的氧源(例如,化学源),并希望将该增强型氧源导入燃料电池550时,设计者会将这样的外壳或导管包括进来。
用作所述装置的部件的燃料电池可以是在其它地方所描述的那些燃料电池,其中的一些燃料电池可以通过商业途径获得。该系统可以设计为能够包含这些将H2和O2结合起来生成H2O的燃料电池。这种燃料电池设计的例子包括质子交换膜燃料电池(PEMFC)、碱性燃料电池(AFC)和固体氧化物燃料电池(SOFC)。对于PEMFC和SOFC来说,方程1给出了其工作的半反应式:
方程1:
阳极:2H2→4H++4e-
阴极:4e-+O2+4H+→2H2O
总反应:2H2+O2→2H2O+热量
而方程2给出了AFC的工作的半反应式:
方程2:
阳极:2H2+4OH-→4H2O+4e-
阴极:4e+O2+2H2O→4OH-
总反应:2H2+O2→2H2O+热量
如方程1中所看到的,PEMFC和SOFC中的化学反应物包括氢和氧;而对于AFC,如方程2所示,反应物为氢、氢氧根离子、氧和水。应该注意到,对于两种类型的电池来说,总反应式是相同的,因此除了产生电之外,另外还产生水和热。许多使用常规PEMFC、SOFC和AFC燃料电池的商用燃料电池装置利用空气中的氧作为反应物。那些装置通常也使用来自外源(诸如储氢罐或氢发生器)的氢。
如前面所提到的,几种类型的固体燃料适合于作为所述装置中的至少一部分的燃料源。例如,门捷列夫周期表中碱金属族中的元素(诸如钠)和各种其它金属(诸如铝和镁)容易在碱性溶液中与水发生反应产生氢气。使用铝产生氢气的平衡方程式的例子由下式给出:
Al+NaOH+H2O→NaAlO2+1.5H2↑+热量
另外,金属、碱金属、碱土金属的氢化物盐(hydride salt)和金属、碱金属、碱土金属的复盐可以与水反应产生氢。下面是金属氢化物与水反应产生氢的平衡方程式的例子:
MgH4+2H2O=Mg(OH)2+3H2↑+热量
另一类固体燃料包括碱金属、碱土金属、铵、和烷基铵的硼氢化物盐(borohydride salt)以及它们的复盐。硼氢化钠是其中的一个。由硼氢化钠产生氢的平衡方程式如下:
NaBH4+2H2O→NaBO2+4H2↑+热量
在上述化学反应中,将燃料电池产生的H2O导回固体燃料源会增加NaBH4和H2O的总质量所产生的H2的量。当用于上述反应的水是从外源获得的时,固体燃料和外源水的总质量大于固体燃料加上导回的水的总质量,因为导回的水是在循环的。当燃料电池所产生的水不被导回到固体燃料源时,上述反应从固体燃料所产生的H2的量为1、2和2,剩余的H2来自外源水分子。如果与固体燃料源进行反应的水是燃料电池所产生的水,那么上述反应中的固体燃料所产生的H2的表观数量为1.5、3和4,因为从燃料电池产生的水是使用固体燃料所产生的氢来合成的。因此,固体燃料所产生的氢以燃料电池所产生的水的形式进行再循环可以增加固体燃料相对于固体燃料和水的总质量而言所产生的H2的量。因此,对于NaBH4的情形,将燃料电池所产生的水导回可以使每NaBH4分子所产生的氢的表观量加倍。
除了钠之外,适合于作为生成氢的燃料的其它碱金属还包括锂、钾、铷。除了铝之外,适合于用在生成氢的燃料中的其它金属还包括镁和锌。示范性候选例子有金属、碱金属、碱土金属的氢化物盐以及它们的复盐。其它的燃料包括NaAlH4、LiAlH4、KAlH4、NaGaH4、LiGaH4、KGaH4、Mg(AlH4)2、2Li3AlH6、Na3AlH6、Mg2NiH4以及它们的混合物。最后,除了硼氢化钠之外,其它合适的碱金属、碱土金属、铵、和烷基铵的硼氢化物盐以及它们的复盐包括LiBH4、KBH4、Mg(BH4)2、Ca(BH4)2、NH4BH4、(CH3)4NH4BH4以及它们的混合物。
另外,在所述装置中,根据需要,生成氢的固体燃料可以进一步包括催化剂或催化剂前体。可以作为这些可选的催化剂的材料包括过渡金属、过渡金属硼化物、和合金,以及这些材料的混合物。在授予Amendola的美国专利No.5,804,329中列出了合适的过渡金属催化剂,其全部内容通过引用被纳入这里。含有IB族到VIIIB族金属(诸如铜族、锌族、钪族、钛族、钒族、铬族、锰族、铁族、钴族、镍族的过渡金属)的催化剂在各种配置中都适合。这些催化剂可以降低硼氢化物与水反应产生氢的反应活化能。合适的过渡金属元素的具体例子包括钌、铁、钴、镍、铜、锰、铑、铼、铂、钯、铬、银、锇、铱、它们的化合物、合金、以及它们的混合物。在一些实施例中,该催化剂可以占燃料混合物的约1wt%到10wt%。该催化剂用来增强固体燃料与水反应生成氢的反应活化性。
根据反应式NaBH4+2H2O→NaBO2+4H2,生成物NaBO2为碱性。能增加NaBH4和生成物NaBO2的碱性的稳定剂可以使NaBH4稳定。这些稳定剂包括金属氢氧化物,诸如NaOH、KOH等。
一般地,选择具体燃料成分时所考虑的燃料的属性包括这样的参数,例如能量密度(通常用单位质量产生的瓦小时来测量)、活化性、稳定性、是否容易得到以及成本。“理想的”燃料在所述装置的各种状态中应该具有高的能量密度和好的存储与使用稳定性。“理想的”燃料成分应该能在大气条件下容易地活化,并且能以合理的价格得到。上面所指定的许多纯化合物和成分的这些属性具有合适的值,并且适合在本人的装置中使用。
另外,如在本文的其它地方所提到的,各种固体燃料成分可以以各种形式存在于燃料源102中,这些形式包括块状(或许是多孔的)、粉末状、糊状、凝胶状、小球状、颗粒状、根据具体目的(例如,增强向最大体积的燃料的扩散)而制成的有型形状、球状等等。如果希望的话,也可以使用固体燃料的某种浆体、分散体,以及含液体的固体燃料成分(其中,所述液体不是水或固体燃料的其它活化剂)。所述后一种成分中的液体可以是高度亲油的,从而不与固体燃料成分发生反应。这些液体可以使流到固体燃料颗粒的水形成球形凝聚。
燃料源的成分不仅可以包含单一种类化合物(例如,硼氢化物或氢化物)中的一种或多种成员的混合物,还可以包含不同种类化合物(例如,硼氢化物、氢化物和金属种类中的两种或多种成员)中若干成员的混合物。有若干原因使用这种混合物作为燃料成分。使用混合物可以减小成本、增加或减缓反应“熄火”率(rate of reaction“light-off”)、提高或确定总的具体的燃料能量密度、满足具体设计中重量方面的考虑、以及满足其它的设计标准。
作为例子,使用混合物燃料来满足能量密度标准。用瓦小时/燃料的单位质量来表示的能量密度对于不同的固体燃料源是不同的,正如材料的分子量那样。作为比较,1mol铝(27克)、1mol氢氧化钠(40克)和1mol水的混合物将产生33.6升的氢气。如果让产生0.6V电压的燃料电池消耗这些氢气,那么会产生64瓦小时的电。1mol氢化镁(28.3克)燃料与2mol水反应会产生67.2升的氢气。如果让产生0.6V电压的燃料电池消耗这些氢气,那么该氢化镁燃料会产生128瓦小时的电。另一个例子:1mol硼氢化钠(37.8克)和2mol水会产生89.6升的氢气,如果让0.6V的燃料电池消耗这些氢气,那么该燃料电池会产生170瓦小时的电。基于燃料的重量,铝的能量密度为2.4瓦小时/克,氢化镁的能量密度为4.5瓦小时/克,硼氢化钠的能量密度为4.5瓦小时/克。
包含1mol铝(27克)、1mol硼氢化钠(37.8克)和1mol氢氧化钠(40克)的燃料成分可产生123升的氢气。让0.6V的燃料电池消耗这些数量的氢气可产生233瓦小时的电。该燃料成分的总能量密度为3.6瓦小时/克。尽管铝的能量密度不如硼氢化钠的能量密度高,但铝容易获得,并且含有氢氧化钠的成分可以增强硼氢化物盐的稳定性。这种燃料成分具有很大的能量密度,并且其成本比只由相对较贵的硼氢化物盐构成的燃料成分的成本要低。
在一个实施例中,燃料源102(图1)中的燃料可以装在独立的各个包囊中,如图6A-6B所示。图6A显示了一个含有固体燃料的单个包囊600A。所述包囊具有多孔结构601,并在该包囊的内部602中装有燃料。制成包囊的材料允许包囊外的水进入包囊的内部602并与燃料发生反应,并且允许反应中所产生的氢气离开包囊。诸如微孔不锈钢网等材料或者某种聚合物或塑料材料,诸如聚苯乙烯(polystyrene,EPS)、PTFE、碳、金属或合金粉末、聚氨酯(polyurethane)等可以用来制造包囊。然后,将单个的包囊600A装入外壳600B中,该外壳600B囊括了各个独立的包囊。该包囊的成形要考虑到燃料中反应产物比燃料的体积更大的问题,例如,NaBH4→NaBO2中,NaBO2的体积比NaBH4的体积更大。例如,在含有燃料的包囊中可以包含空隙,以便解决反应的副产物具有更大体积的问题。另外,包囊可以由这样的材料构成,当包囊内材料的体积增大时,该材料可以扩展。将燃料装入包囊的好处是,可以增加燃料的接触水的表面面积。也可以设计包囊使之具有控水特性,类似于上述的控水系统,其中,包囊的表面或该包囊由一种对系统中的压强敏感的材料构成,从而可以防止在Psys大于Pc时水与材料发生反应,诸如,聚2-丙烯酰胺基-2-甲基丙磺酸(poly 2-(acrylamindo)-2-methylpropanesulfonic acid,PAMPS)、PTFE粉末加PAMPS或金属加PAMPS。
另外,其中的一个包囊可以作为活化包囊,以便作为活化剂来启动燃料中氢的生成。在这种情形中,所述这个包囊可以含有水或H2。这个包囊中所含有的水或H2可以在开始的时候与燃料发生反应或在燃料电池中发生反应,从而分别为燃料电池产生氢,为燃料产生水。
图7、8和9显示了所述装置的其它变型700、800和900的三维表示。在图7中,所述装置的前视图显示了可以安置四个燃料电池750的外壳710,在外壳710的每个面上装有一个燃料电池。大致位于外壳710中心的是燃料源720(从图8中可以更清楚地看到),该燃料源为集成为一体的各燃料电池750的每一个提供氢。
图9显示了上述装置的一个变型的透视图,在这种情形中,燃料源和燃料电池的集成装置900具有外壳910和六个燃料电池950(显示了三个)。一个单个的燃料源920位于所述六个燃料电池950的中间,用来为每个燃料电池提供氢。图中也显示了水源960、970。
图10显示了所述装置1000的一个变型,该装置具有单个燃料电池部件1010,该部件具有到阴极和阳极的电连接1020。燃料电池部件的中心区域1040是空的,以便允许反应物氧气进入燃料电池。多个燃料源1030环绕在燃料电池1010的周围,显示了装置的可扩展性(scalability)。
图11显示了所述装置的一个变型1100,其中,一系列的燃料电池1110燃料源1120的组合由聚合物膜1130隔开,该聚合物膜选择性地允许水通过但不允许气体通过。燃料电池中产生的水可以穿过一个燃料电池到另一个燃料电池,从而激活一系列的燃料电池。可选地,可以有一层允许氧进入该装置中但不允许水逸出该装置的膜层1140(图1中的103)。
作为例子,使用工作在0.6V电位的燃料电池部件,并使用可看作是图1、7和9中的(100)、(700)和(900)的燃料和燃料电池的集成装置的这些变型,所描述装置将分别提供0.6V、2.4V(四个燃料电池部件)以及3.6V(六个燃料电池部件)的电压。至于一般的可扩展性,尽管已经显示了具有一个、四个和六个燃料电池组件的燃料和燃料电池集成装置的例子,但在理论上对所述燃料源和燃料电池的集成装置的可扩展性变化没有限制。
图8显示了所述集成装置的透视图,该集成装置具有内藏的燃料盒820,该燃料盒可以从外壳810中它所嵌入的空心820中伸出。一旦所展示的固定件840被移走,燃料盒820就可以被去除。当然,这里所描述的任何燃料和燃料电池的集成装置的变型,诸如100(图1)、和700、900(图7和图9),都可以具有一个固定腔室,其中包含燃料或适合包含固体燃料或带有包含固体燃料的可去除或可替换燃料盒。在任何情况中,可去除燃料盒,诸如图7和图9所示的燃料盒720、920,都可以用来为这里所述的装置的任何变型重新提供燃料。或者,所述装置的变型也可以制成是一次性的,具有有限的用途,就像常规的一次性化学电池那样。
尽管装置100(图1)、以及700、800、900(图7、8和9)显示出通常具有平直的侧面,或者具有立方形或砖形形状,但这些形状的纵横比的变化可以相当大,从而产生出例如卡片形装置1200(图12A)。其它合适的装置外形设置包括:柱形1201(图12B),其中燃料电池的阳极和阴极是柱形的;盘形1202(图12C),其中燃料电池的阳极和阴极非常平;椭圆形1203(图12D),其中燃料电池的阳极和阴极非常平;棒形1204(图12E),其中燃料电池的阳极和阴极是柱形的,并且燃料源在燃料电池组件的外部;以及其它特殊设计的形状。图12F显示了一种装置设置1205,其中使用了螺旋形燃料电池和燃料源,适合于在相当短的时间内流过比较大的电流。非常大的燃料电池膜表面积和相对小的燃料体积与燃料电池表面积之比为这种选择确定了工作参数。
如前面所提及的,所述装置的一些变型在有负载时是自持的。燃料源和燃料电池的集成装置的动力学可以通过下面使用硼氢化钠、与燃料电池集成的装置的例子来给出:
燃料:NaBH4+2H2O-NaBO2+4H2↑+热量
燃料电池(总反应):4H2+2O2→4H2O+热量
在这种情形中,1mol NaBH4产生4mol的氢气,其中的2mol氢气来自燃料电池所产生的水。在计算能量密度时,通常不考虑燃料电池所产生的水,而能量密度是用该装置的每单位体积的瓦小时数或每单位质量的瓦小时数来测量的。因此,水的反馈可以使从NaBH4和水的总质量所能产生的能量增加。
应该注意到,一旦固体燃料中的反应通过水的引入而启动,同时燃料电池带有负载,那么总的反应是自持的,只要燃料电池反应所产生的水返回燃料源中。同样,当固体燃料产生的氢能到达燃料电池以产生电,并且燃料电池所产生的水能与固体燃料反应从而为燃料电池连续地提供氢燃料时,装置中的总反应就能自持。下面说明燃料和燃料电池的集成装置引入初始剂量的反应物活化剂(在这种情形中即为反应水)的具体设计。所述引入初始剂量可以认为是“启动”所述反应或“激活”该反应或装置。实际上,在所述装置的一些变型中,该装置可以包含这种活化剂材料的单独的源。该活化源可以是液体或汽。实际上,对于水来说,水汽源可以是环境中的组分。当然,可以用燃料电池之外的源中的水或水汽来进行活化,既可以在初始的时候,也可以在装置带有间歇负载的时候。
图13A-13D显示了几种在燃料源中能激活反应的结构设计,其中,来自燃料电池之外的源中的水或水汽可以接触固体燃料1330。一般地,所述装置可以包括这样的结构和材料,其中,水可以通过开口(诸如孔、进出口、或通道)到达固体燃料,并且流量可以由下列因素控制:1)材料的厚度,它决定有效的流程长度,其中较长的流程长度会导致流量的下降;2)孔、进出口或通道的形状,形状越不规则,流程就越曲折,这会使流量下降;3)孔、进出口或通道的大小,较大的横截面会增加流量;4)孔、进出口或通道的数目,较多的开口会增加流量。除了在物理上控制流量外,开口的控制还可以受机械控制(诸如阀门、断流阀之类)的影响。
图13A-13B,在该装置的一些变型中,整个外壳1310(图13A)或部分外壳(图13B)可以包括一种膜材料,这种膜材料允许外部提供的液态水或水汽(例如,来自大气或来自人的呼吸)通过或扩散进燃料腔1320中,但同时禁止气体的通过。这种膜的例子包括离子交换聚合物(ionomer)类型的膜材料中的成员。这种膜在其聚合物结构内有固定不动的吸湿功能团,在吸水方面非常有效。这些膜还在所述功能团之间具有互联,导致水可以非常快地转移通过所述膜材料。用于离子交换聚合物基体的聚合物类型的例子包括各种碳氟化合物(fluorocarbon)、乙烯-苯乙烯互聚物(ethylene-styrene interpolymer)、聚苯并咪唑(polybenzimidazole)、以及各种聚芳醚酮(polyaryletherketone)。在图13A-13B所示的燃料和燃料电池的集成装置的其它变型中,外壳1310可以具有出入口或通道,其大小或许可以机械地受到控制,这些出入口或通道位于外壳壁上或者用来替代外壳壁。在所述装置的其它变型中,外壳材料中的出入口或通道与膜材料一起使用。
如图13C-13D所示,在所述燃料和燃料电池的集成装置的其它变型中,所述装置可以包括水源,例如,能够盛水的一个或多个隔间或水池1340。图13C显示了在外壳1310内具有水池或隔间1340的装置。图13D显示了一种装置,其中水源由隔间或水池构成,该隔间或水池可以在外壳1310的外部,但仍然允许水流到固体燃料1330,如后面将要更详细地说明的。所述水池或隔间1340允许水流到装置内的固体燃料1330中,其中水流量可以由水池的大小和其中的水的量以及所述水池或隔间对水的渗透性来控制。这种水池或隔间可以通过具有开口(诸如允许水或水汽流到固体燃料340的出入口或通道)来控制水的流量。或者,所述隔间或水池1340可以包含可透性隔板,它或许是一种如前面所述的半透性膜材料,该可透性隔板位于水源和燃料之间,允许水或水汽流到内含固体燃料1330的腔室1320中(图15D)。
具有水源1340的装置1300的其它变型可以包括图13C和13D所示装置的可控开口特性的组合。所述开口在大小上和在控制进入腔室1320的水的流量速率上可以机械地受到控制,并且可以和膜材料(参见例如图1中的106)一道使用来控制水或水汽进入固体燃料1330的总的速度。
燃料源和燃料电池的组合装置的另一种变型含有位于该装置外部的氢源,其配置为可以使氢通到所述燃料电池或若干燃料电池中以产生电并随后产生水。这样所产生的水通到燃料源中,启动或激活燃料中产生氢的反应。
图14是包含燃料源1410、控水系统1430、燃料电池1440和隔水部件1450的装置1400的示意图。燃料源1410所含的固体燃料在各个包囊1420中。控水系统1430由两层材料(1490/1491)组成,其中每层材料都有控水间隙1490,当这些控水间隙正确地对齐时可以允许水通过控水系统,还有储水间隙1470,当控水间隙1490关闭时,储水间隙就打开。储水间隙允许水在控水间隙1490关闭时流到储水容器1480中。各个间隙的对齐可以受系统中的压强的控制。另外,该装置可以具有用来控制该装置的电输出的电子部件1480,例如电压转换器。
在下面的例子中介绍各种燃料源和燃料电池装置。
例1
制造并测试了具有单个燃料电池的集成的燃料和燃料电池原型装置。将Heliocentris Energie System GmbH制造的设定在0.6V的燃料电池(65×65×25mm)安装在由可加工的丙烯酸板(acrylic sheet)所制成的外壳上。该集成的燃料和燃料电池原型装置的尺寸为65×65×85mm。燃料电池腔装有5克的NaBH4粉末和0.01克的钴金属粉末。这两种材料均由AlfaChemical Corporation出品。该装置包含一个20ml的水池,该水池通过由Sybron Chemicals出品的阴离子膜(anionic membrane)与固体燃料隔开。对于本例,该水池装有10ml的水。理论上说,数量约为500微升以上的水就足够启动运转。测得的燃料电池开路电位为0.85V。将一个小电动风扇与燃料电池连接。在这个负载下,测得的电压为0.6V。在所述装置的第一次测量中,让风扇在断开前连续转动3个小时。
例2
在例2中,制造例1所述的装置变型,其中膜厚加倍,使得水的渗透性不同于例1,水的流量速率比例1减小50%。在本例中,采用Nafion膜盖层强化例1中所用的阴离子膜材料。测得的燃料电池开路电位为0.83V。将例1中所用的电动风扇与燃料电池连接,在这个负载下,测得的燃料电池的电压为0.6V。让风扇在断开前连续转动4个小时,然后将燃料和燃料电池的集成装置搁置2个月。2个月之后,将风扇再次与该燃料和燃料电池的集成装置相连接,并在断开前让风扇连续转动25小时。
例3
在例3中,制造并测试类似于图7所示的装置。将四个HeliocentrisEnergie System GmbH制造的每个都设定在0.6V的电池(65×65×25mm)安装在由可加工的丙烯酸板所制成的外壳上。该原型装置的尺寸为105×105×80mm。制造一个可移除的燃料盒,该燃料盒有一个燃料室,该燃料室在燃料盒的中心围起一个空腔。将含有100克NaBH4粉末和0.2克钴粉末催化剂的燃料放置在燃料盒内的周边上。将容量约为30ml的水池置于外壳的顶部之内,放置在燃料盒的上面。该水池设计为有5个圆柱形空心棒,里面装满PermaPure LLC出品的Nafion管,其与水池中的开口相连接,并伸进燃料盒的空腔中。水从5个充满Nafion管的圆柱形空心棒渗透到燃料室中。测得的该原型装置的开路电压为3.0V。将风扇与该原型装置相连接,并使之在断开之前连续转动一天多。在负载下测得的电位为2.4V。
例4
在例4中,制造并测试了类似于图7所示的装置。将四个China Sunrisefuel cell Company制造的每个都设定在0.6V的燃料电池(40×70×2mm)安装在快速成型的壳上。燃料电池的阴极端上涂有的PTFE的量(20wt%)是阳极端上涂有的PTFE的量(10wt%)的两倍,以便使水返回燃料中。该原型装置的尺寸为44×44×80mm。制造一个可移除的燃料盒,燃料盒有一个燃料室,燃料室在燃料盒的中心围起一个空腔。将含有5克NaBH4粉末和0.5克钴粉末催化剂的燃料放置在燃料盒内的周边上。将容量约为10ml的水池置于快速成型壳的顶部之内,放置在燃料盒的上面。该水池设计为装满PermaPure LLC出品的24英寸Nafion管,这些Nafion管与水池中的开口相连接,并从燃料盒空腔四周伸出。水从这些Nafion管渗透到燃料室中。测得的该原型装置的开路电压为3.4V。原型装置的负载电流为20mA,在这个电流下连续工作,直到燃料用尽为止。获得了约9瓦小时的电。
例5
除了在阴极电流收集极的表面设置有从Electric-fuel公司获得的多孔PTFE膜之外,例5中的装置与例4中的装置相同。测得的该原型装置的开路电压为3.4V。
例6
除了在阴极电流收集极的表面设有从GE Osmonics Labstore获得的多孔尼龙疏水膜之外,例6中的装置与例4中的装置相同。测得的该原型装置的开路电压为3.4V。
尽管已经描述了燃料和燃料电池集成装置的若干例子,但可以对所述装置进行各种修正而不偏离本内容的范围和精神。这些例子不应被理解为是对上述装置的范围进行限制。

Claims (44)

1.一种产生电能的装置,所述装置包括:
至少一个燃料电池,当对该燃料电池提供氢和氧时,该燃料电池能够产生电和水,以及
至少一个含有固体燃料的固体燃料源,其中,所述固体燃料源用来在与水反应时产生氢,供所述至少一个燃料电池使用,以及其中,所述固体燃料源和所述燃料电池的配置使得所述燃料电池所产生的一些水被导回所述固体燃料源中以与所述固体燃料进行反应以产生供所述燃料电池使用的氢。
2.根据权利要求1所述的装置,其中,所述固体燃料源包括从金属;碱金属;碱土金属;金属、碱金属和碱土金属的氢化物盐以及它们的复盐;碱金属、碱土金属、铵、和烷基铵的硼氢化物盐中选出来的至少一种成分。
3.根据权利要求1所述的装置,其中,所述固体燃料源包括从中选出来的至少一种成分。
4.根据权利要求1所述的装置,其中,所述固体燃料源包括从钠、锂、钾、铷中选出来的至少一种成分。
5.根据权利要求1所述的装置,其中,所述固体燃料源包括从MgH4、NaAlH4、LiAlH4、KAlH4、NaGaH4、LiGaH4、KGaH4、Mg(AlH4)2、2Li3AlH6、Na3AlH6、以及Mg2NiH4中选出来的至少一种成分。
6.根据权利要求1所述的装置,其中,所述固体燃料源包括从NaBH4、LiBH4、KBH4、Mg(BH4)2、Ca(BH4)2、NH4BH4、(CH3)4NH4BH4中选出来的至少一种成分。
7.根据权利要求6所述的装置,其中,所述固体燃料包括NaBH4
8.根据权利要求1所述的装置,其中,所述固体燃料源包括从权利要求2-6所述的成分中选出来的至少两种成分。
9.根据权利要求2-8所述的装置,还包括催化剂,用来催化所述固体燃料产生氢的反应。
10.根据权利要求9所述的装置,其中,所述催化剂的所占的比例为0.1wt%到10wt%。
11.根据权利要求3-10所述的装置,还包括稳定剂,用来稳定所述固体燃料产生氢的反应。
12.根据上述权利要求中的任何一项权利要求所述的装置,还包括与至少一个所述燃料电池相邻的隔水部件,其中,所述隔水部件被设置为能够透过氧,但实质上不能透过水。
13.根据权利要求12所述的装置,其中,所述隔水部件含有PTFE。
14.根据上述权利要求中的任何一项权利要求所述的装置,包含单个燃料电池。
15.根据上述权利要求中的任何一项权利要求所述的装置,包含多个燃料电池。
16.根据上述权利要求中的任何一项权利要求所述的装置,还包括含有活化剂的活化剂部件,其中,所述活化剂部件用来将所述活化剂释放到所述装置中以启动生成电的过程。
17.根据权利要求16所述的装置,其中,所述活化剂为水。
18.根据权利要求16所述的装置,其中,所述活化剂为氢。
19.根据权利要求16、17或18所述的装置,其中,所述装置还包括活化剂隔离部件,其中,所述活化剂隔离部件用来防止所述活化剂被释放进所述装置中,以及其中,所述活化剂隔离部件被配置为在受到调节后允许所述活化剂部件释放所述活化剂到所述装置中。
20.根据权利要求19所述的装置,其中,所述活化剂隔离部件由一种不能透过所述活化剂的材料构成。
21.根据上述权利要求中的任何一项权利要求所述的装置,其中,所述燃料源是可移除的。
22.根据上述权利要求中的任何一项权利要求所述的装置,还包括控水系统,其中,所述控水系统用来控制所述燃料电池产生的水返回到所述燃料源中。
23.根据权利要求22所述的装置,其中,所述控水系统包括压敏开关,所述压敏开关用来在所述系统的压强超过临界值时防止所述燃料电池所产生的水到达所述燃料源。
24.根据权利要求22所述的装置,其中,所述控水系统包括压敏调节器,所述压敏调节器用来在所述系统的压强超过临界值时防止所述燃料电池所产生的水到达所述燃料源中,以及用来在所述临界压强以下根据系统的压强调节通过所述控水系统到达所述燃料源的水的量。
25.根据权利要求23所述的装置,其中,所述压敏开关是机械的。
26.根据权利要求23所述的装置,其中,所述压敏开关是具有开口的化学材料,所述开口的大小随所述系统的压强而变化。
27.根据权利要求24所述的装置,其中,所述压敏调节器是机械的。
28.根据权利要求24所述的装置,其中,所述压敏调节器是具有开口的化学材料,所述开口的大小随所述系统的压强而变化。
29.根据权利要求24、25、26、27或28所述的装置,还包括与所述燃料电池和所述燃料源有沟通的储水容器,用来存储由所述燃料电池所产生的水,防止这些水进入所述燃料源中。
30.根据上述权利要求中的任何一项权利要求所述的装置,其中,所述固体燃料源含有多个独立的包囊,这些独立的包囊内含有所述固体燃料和反应产物,其中,所述包囊可以透过水和氢。
31.根据权利要求29所述的装置,其中,所述储水容器包含泡沫材料,该泡沫材料被配置为能够吸水。
32.根据权利要求31所述的装置,其中,所述泡沫材料是一种水凝胶。
33.根据权利要求26、28所述的装置,其中,所述化学材料选自金属、PTFE、尼龙、碳、以及诸如聚氨酯、聚2-丙烯酰胺基-2-甲基丙磺酸(PAMP)的聚合物。
34.根据权利要求30所述的装置,其中,所述包囊由压敏材料制成,这种材料配置为在系统的压强等于或大于临界压强时防止水流到所述包囊所包含的固体燃料中。
35.根据权利要求34所述的装置,其中,所述化学材料选自金属、PTFE、尼龙、碳、以及诸如聚氨酯、聚2-丙烯酰胺基-2-甲基丙磺酸(PAMP)的聚合物。
36.一种产生电的方法,所述方法包括:
使固体燃料与水反应生成氢;
在燃料电池中将所述氢转换成电和水;
使所述氢燃料电池所产生的一些水返回所述固体燃料中以产生氢。
37.根据权利要求36所述的方法,还包括:
控制返回到所述固体燃料源的水的量,其中,返回所述固体燃料源的水的量根据所需求的电来确定。
38.根据权利要求37所述的方法,其中,对电的需求的减少由压强的增加来表明,以及其中,所述压强用来控制返回所述固体燃料源的水的量。
39.根据权利要求36、37或38所述的方法,还包括:
通过从活化剂部件引入活化剂来激活所述固体燃料。
40.根据权利要求39所述的方法,其中,所述活化剂选自H2和H2O。
41.根据权利要求36-40中的任何一项权利要求所述的方法,其中,当与所述固体燃料进行反应的水是所述燃料电池所产生的水时,所使用的固体燃料和水的总质量中每单位质量所产生的氢的摩尔数增加。
42.根据权利要求36-41中的任何一项权利要求所述的方法,其中,所述固体燃料源包含从钠、锂、钾和铷中所选出来的至少一种成分。
43.根据权利要求36-41中的任何一项权利要求所述的方法,其中,所述固体燃料源包含从MgH4、NaAlH4、LiAlH4、KAlH4、NaGaH4、LiGaH4、KGaH4、Mg(AlH4)2、2Li3AlH6、Na3AlH6、以及Mg2NiH4中选出来的至少一种成分。
44.根据权利要求36-41中的任何一项权利要求所述的方法,其中,所述固体燃料源包含从NaBH4、LiBH4、KBH4、Mg(BH4)2、Ca(BH4)2、NH4BH4、(CH3)4NH4BH4中选出来的至少一种成分。
CNA2006800211256A 2005-04-14 2006-04-14 燃料和燃料电池的集成装置 Pending CN101199068A (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US67177305P 2005-04-14 2005-04-14
US60/671,773 2005-04-14

Publications (1)

Publication Number Publication Date
CN101199068A true CN101199068A (zh) 2008-06-11

Family

ID=37115472

Family Applications (1)

Application Number Title Priority Date Filing Date
CNA2006800211256A Pending CN101199068A (zh) 2005-04-14 2006-04-14 燃料和燃料电池的集成装置

Country Status (6)

Country Link
US (1) US20090214904A1 (zh)
EP (1) EP1880439A1 (zh)
JP (1) JP2008537296A (zh)
CN (1) CN101199068A (zh)
TW (1) TW200640072A (zh)
WO (1) WO2006113469A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485024B (zh) * 2006-05-11 2012-10-10 霍尼韦尔国际公司 带有用以对用于燃料电池的内部氢气生成进行调节的气动滑阀的能量发生器
CN103594720A (zh) * 2012-08-17 2014-02-19 Utc电力公司 包括蒸汽可渗透层的燃料电池部件

Families Citing this family (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102005018291A1 (de) * 2005-04-18 2006-10-19 Varta Microbattery Gmbh Brennstoffzellensystem
US8048576B2 (en) 2005-07-12 2011-11-01 Honeywell International Inc. Power generator shut-off valve
US7811690B2 (en) * 2005-10-25 2010-10-12 Honeywell International Inc. Proton exchange membrane fuel cell
US7901816B2 (en) * 2005-11-09 2011-03-08 Honeywell International Inc. Water reclamation in a micropower generator
US8283079B2 (en) * 2006-11-03 2012-10-09 Honeywell International Inc. Fuel cell power generator with water reservoir
US8822097B2 (en) 2006-11-30 2014-09-02 Honeywell International Inc. Slide valve for fuel cell power generator
CN101953006B (zh) * 2008-03-31 2014-07-23 罗姆股份有限公司 燃料电池及其制造方法
JP5376605B2 (ja) * 2008-07-15 2013-12-25 国立大学法人北海道大学 燃料電池及びこれを用いた発電方法
US8272397B2 (en) 2008-08-19 2012-09-25 Honeywell International Inc. Valve for fuel cell based power generator
US8142949B2 (en) 2008-08-19 2012-03-27 Honeywell International Inc. Method of manufacturing fuel cell based power generator
US8142948B2 (en) 2008-08-19 2012-03-27 Honeywell International Inc. Fuel cell based power generator
JP2010103033A (ja) * 2008-10-27 2010-05-06 Fujitsu Ltd 燃料電池
US9276285B2 (en) 2008-12-15 2016-03-01 Honeywell International Inc. Shaped fuel source and fuel cell
US8962211B2 (en) 2008-12-15 2015-02-24 Honeywell International Inc. Rechargeable fuel cell
US8932780B2 (en) 2008-12-15 2015-01-13 Honeywell International Inc. Fuel cell
FR2941330B1 (fr) * 2009-01-19 2011-04-29 St Microelectronics Tours Sas Gestion de l'eau dans une pile a combustible.
US20100233077A1 (en) * 2009-03-13 2010-09-16 Industrial Technology Research Institute Solid Hydrogen Fuel and Method of Manufacturing and Using the Same
TWI413549B (zh) * 2009-03-13 2013-11-01 Ind Tech Res Inst 用於催化放氫反應之觸媒之製造方法
US20100304238A1 (en) * 2009-05-27 2010-12-02 Industrial Technology Research Institute Solid Hydrogen Fuel and Methods of Manufacturing and Using the Same
US20110000864A1 (en) 2009-07-06 2011-01-06 Moore Lela K Cookware Holder and Method
JP4816816B2 (ja) * 2009-09-09 2011-11-16 コニカミノルタホールディングス株式会社 燃料電池
DE102009057720A1 (de) 2009-12-10 2011-06-16 Siemens Aktiengesellschaft Batterie und Verfahren zum Betreiben einer Batterie
EP2528150A4 (en) * 2010-01-22 2013-10-23 Konica Minolta Holdings Inc FUEL CELL SYSTEM
CN102195057A (zh) * 2010-03-05 2011-09-21 扬光绿能股份有限公司 氢气产生装置及燃料电池
US9640810B2 (en) 2011-06-23 2017-05-02 Honeywell International Inc. Power generator having fuel cell and membrane conduits
KR101290712B1 (ko) * 2011-07-18 2013-07-29 인제대학교 산학협력단 전기 자동차의 주행거리 연장을 위한 하이브리드 동력 시스템
CN103219534A (zh) 2012-01-19 2013-07-24 扬光绿能股份有限公司 燃料电池系统及其控制方法
JP5210450B1 (ja) * 2012-11-07 2013-06-12 直芳 可知 燃料電池および燃料電池システム
US9979034B2 (en) * 2013-10-23 2018-05-22 Honeywell International Inc. Fuel cell based power generator and fuel cartridge
US10367210B2 (en) * 2013-11-14 2019-07-30 Honeywell International Inc. Power generator having integrated membrane valve
GB2566472B (en) * 2017-09-14 2020-03-04 Dyson Technology Ltd Magnesium salts
CN111525169B (zh) * 2020-04-30 2023-01-24 深圳市众通新能源汽车科技有限公司 一种高温质子交换膜的制备方法

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1630748A (en) * 1924-05-23 1927-05-31 George M Kirkpatrick Fluid separator
US1534833A (en) * 1924-11-10 1925-04-21 Binks Spray Equipment Co Liquid and air separator
US4730601A (en) * 1984-12-13 1988-03-15 The Garrett Corporation Steam engine reaction chamber, fuel composition therefore, and method of making and operating same
US5634341A (en) * 1994-01-31 1997-06-03 The Penn State Research Foundation System for generating hydrogen
US5867978A (en) * 1995-12-04 1999-02-09 The Penn State Research Foundation System for generating hydrogen
US5804329A (en) * 1995-12-28 1998-09-08 National Patent Development Corporation Electroconversion cell
US6054228A (en) * 1996-06-06 2000-04-25 Lynntech, Inc. Fuel cell system for low pressure operation
US5968325A (en) * 1997-01-07 1999-10-19 A.T.S. Electro-Lube Holdings Ltd. Auto-electrolytic hydrogen generator
US6534033B1 (en) * 2000-01-07 2003-03-18 Millennium Cell, Inc. System for hydrogen generation
US6544400B2 (en) * 2000-03-30 2003-04-08 Manhattan Scientifics, Inc. Portable chemical hydrogen hydride system
US6544679B1 (en) * 2000-04-19 2003-04-08 Millennium Cell, Inc. Electrochemical cell and assembly for same
US6376115B1 (en) * 2000-06-15 2002-04-23 Reveo, Inc. Metal fuel cell with movable cathode
US6800258B2 (en) * 2000-07-20 2004-10-05 Erling Reidar Andersen Apparatus for producing hydrogen
US6440385B1 (en) * 2000-08-14 2002-08-27 The University Of British Columbia Hydrogen generation from water split reaction
TW582124B (en) * 2001-06-01 2004-04-01 Polyfuel Inc Fuel cell assembly for portable electronic device and interface, control, and regulator circuit for fuel cell powered electronic device
US20030003341A1 (en) * 2001-06-29 2003-01-02 Kinkelaar Mark R. Liquid fuel cell reservoir for water and/or fuel management
US7316718B2 (en) * 2001-07-11 2008-01-08 Millennium Cell, Inc. Differential pressure-driven borohydride based generator
EP1409409B1 (en) * 2001-07-20 2004-12-22 Altair Nanomaterials Inc. Process for making lithium titanate
US6864002B1 (en) * 2001-10-19 2005-03-08 Christopher K. Dyer Fuel cell system and method for producing electrical energy
US6746496B1 (en) * 2002-01-15 2004-06-08 Sandia Corporation Compact solid source of hydrogen gas
US7108777B2 (en) * 2002-03-15 2006-09-19 Millennium Cell, Inc. Hydrogen-assisted electrolysis processes
US20040086756A1 (en) * 2002-11-01 2004-05-06 Yu Zhou System for transferring metal to electronic energy
US20040175598A1 (en) * 2002-12-02 2004-09-09 Bliven David C. Fuel cell power supply for portable computing device and method for fuel cell power control
US6706909B1 (en) * 2003-05-12 2004-03-16 Millennium Cell, Inc. Recycle of discharged sodium borate fuel
JP5044881B2 (ja) * 2003-05-14 2012-10-10 トヨタ自動車株式会社 燃料電池システム
US20050058882A1 (en) * 2003-08-06 2005-03-17 Vladimir Meiklyar Anode for liquid fuel cell
WO2006009927A1 (en) * 2004-06-18 2006-01-26 H2Volt, Inc. Combination metal-based and hydride-based hydrogen sources and processes for producing hydrogen

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101485024B (zh) * 2006-05-11 2012-10-10 霍尼韦尔国际公司 带有用以对用于燃料电池的内部氢气生成进行调节的气动滑阀的能量发生器
CN103594720A (zh) * 2012-08-17 2014-02-19 Utc电力公司 包括蒸汽可渗透层的燃料电池部件
US9570762B2 (en) 2012-08-17 2017-02-14 Audi Ag Fuel cell component including a vapor permeable layer

Also Published As

Publication number Publication date
JP2008537296A (ja) 2008-09-11
WO2006113469A1 (en) 2006-10-26
US20090214904A1 (en) 2009-08-27
EP1880439A1 (en) 2008-01-23
TW200640072A (en) 2006-11-16

Similar Documents

Publication Publication Date Title
CN101199068A (zh) 燃料和燃料电池的集成装置
US9985306B2 (en) Hydrogen-generating fuel cell cartridges
US6645651B2 (en) Fuel generator with diffusion ampoules for fuel cells
CN101632197B (zh) 制氢燃料电池盒
CN100396596C (zh) 氢气发生器
TWI253778B (en) Apparatus and method for in situ production of fuel for a fuel cell
EP1845572B1 (en) Silicide fueled power generators and methods related thereto
US7896934B2 (en) Hydrogen generating fuel cell cartridges
EP3006803B1 (en) Hydrogen generating fuel cell cartridges
EP2673828B1 (en) Fuel cell system
JP6239593B2 (ja) 自動制御式のガス発生器およびガス発生方法
EP1355372B1 (en) Apparatus and method for gas generation in a fuel cell
US10014540B2 (en) Hydrogen generator having reactant pellet with concentration gradient
GB2453665A (en) Solid Oxide Fuel Cell
JP4149728B2 (ja) 燃料電池の燃料供給用カートリッジおよびそのカートリッジを備えてなる燃料電池
US20140014205A1 (en) Valve Having Concentric Fluid Paths
US20090110974A1 (en) Flow channel and fuel cell system
CA2435107A1 (en) Hydrogen generating apparatus
JP2007317496A (ja) 燃料電池発電システム
JP2007012319A (ja) 燃料電池システム
CN210778821U (zh) 可充电的钠-水气燃料电池单元
WO2014045510A1 (ja) 直接酸化型燃料電池システムおよびこれに用いる回収タンク
KR20110002119A (ko) 지능형촉매수소발생시스템.
Hahn Development of Portable Systems

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication