CN101159270A - 对快闪记忆单元元件执行操作的方法 - Google Patents

对快闪记忆单元元件执行操作的方法 Download PDF

Info

Publication number
CN101159270A
CN101159270A CNA2007100903361A CN200710090336A CN101159270A CN 101159270 A CN101159270 A CN 101159270A CN A2007100903361 A CNA2007100903361 A CN A2007100903361A CN 200710090336 A CN200710090336 A CN 200710090336A CN 101159270 A CN101159270 A CN 101159270A
Authority
CN
China
Prior art keywords
floating gate
flash memory
control sluice
memory cell
electronics
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2007100903361A
Other languages
English (en)
Other versions
CN101159270B (zh
Inventor
吕函庭
徐子轩
赖二琨
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Macronix International Co Ltd
Original Assignee
Macronix International Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Macronix International Co Ltd filed Critical Macronix International Co Ltd
Publication of CN101159270A publication Critical patent/CN101159270A/zh
Application granted granted Critical
Publication of CN101159270B publication Critical patent/CN101159270B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/06Auxiliary circuits, e.g. for writing into memory
    • G11C16/10Programming or data input circuits
    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C16/00Erasable programmable read-only memories
    • G11C16/02Erasable programmable read-only memories electrically programmable
    • G11C16/04Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS
    • G11C16/0408Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors
    • G11C16/0416Erasable programmable read-only memories electrically programmable using variable threshold transistors, e.g. FAMOS comprising cells containing floating gate transistors comprising cells containing a single floating gate transistor and no select transistor, e.g. UV EPROM
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/401Multistep manufacturing processes
    • H01L29/4011Multistep manufacturing processes for data storage electrodes
    • H01L29/40114Multistep manufacturing processes for data storage electrodes the electrodes comprising a conductor-insulator-conductor-insulator-semiconductor structure
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66825Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a floating gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/788Field effect transistors with field effect produced by an insulated gate with floating gate
    • H01L29/7881Programmable transistors with only two possible levels of programmation
    • H01L29/7883Programmable transistors with only two possible levels of programmation charging by tunnelling of carriers, e.g. Fowler-Nordheim tunnelling
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B41/00Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates
    • H10B41/30Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region
    • H10B41/35Electrically erasable-and-programmable ROM [EEPROM] devices comprising floating gates characterised by the memory core region with a cell select transistor, e.g. NAND
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B69/00Erasable-and-programmable ROM [EPROM] devices not provided for in groups H10B41/00 - H10B63/00, e.g. ultraviolet erasable-and-programmable ROM [UVEPROM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66787Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel
    • H01L29/66795Unipolar field-effect transistors with an insulated gate, i.e. MISFET with a gate at the side of the channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/785Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET
    • H01L29/7851Field effect transistors with field effect produced by an insulated gate having a channel with a horizontal current flow in a vertical sidewall of a semiconductor body, e.g. FinFET, MuGFET with the body tied to the substrate

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Non-Volatile Memory (AREA)
  • Semiconductor Memories (AREA)
  • Read Only Memory (AREA)

Abstract

本发明提供一种当浮置闸与控制闸之间的栅极耦合比小于0.4时使用的对快闪记忆单元元件执行操作的方法。需要越过控制闸施加电位。自控制闸注入电子至浮置闸或自浮置闸射出电子至控制闸。由提供于元件中的硅通道的性质决定与注入或射出相关联的操作。使用块体连接式FinFET状结构的元件特别适合于此方法。此方法亦特别适合用于NAND阵列中的记忆单元上。

Description

对快闪记忆单元元件执行操作的方法
技术领域
本发明是有关于一种记忆单元操作方法,且特别是有关于一种对快闪记忆单元元件执行操作的方法。
背景技术
快闪记忆体元件中浮置闸技术的使用是熟知的。通常,提供n或p型半导体的硅通道。浮置闸晶体管由氧化物环绕,以使储存于栅极上的电荷能够保留于彼处。借由通道注入步骤产生程序化(program)以及抹除(erase)操作。在操作期间,电子经受福勒-诺德翰姆隧穿(Fowler-Nordheimtunneling,FN tunneling)且自通道转移至浮置闸,反之亦然。
为提供有效通道注入,须减小栅极注入(电子经由FN隧穿在控制闸与浮置闸之间的转移)的可能性。此借由最大化栅极耦合比(gate coupling ratio,GCR)来实现。栅极耦合比经定义为浮置闸电位与控制闸电位之比。等于1的GCR是最佳的,但大于0.6的GCR对于大多数快闪记忆体元件已足够。
此结果对于较大记忆体元件是良好的,但当此等元件缩小尺寸时,高GCR变得难于维持。详言之,对于NAND快闪记忆体,当节点(node)低于45纳米时,预测GCR会小于0.3。底部隧穿氧化物(bottom tunnel oxide)将不会具有足够大的电场,从而不能允许FN隧穿。此外,未来快闪记忆体元件将需要鳍式场效晶体管(FinFET)状结构来改良元件短通道特性。这些结构具有自然大的通道闸至浮置闸耦合电容,以及因此具有自然低的GCR。
此外,传统快闪记忆体元件阵列中存在浮置闸间耦合(inter-floating gatecoupling)的问题。由于阵列中的记忆单元的密度变大,浮置闸间耦合电容与通道与浮置闸的栅极耦合电容相当。此引起记忆单元之间的干扰,此干扰会劣化快闪记忆体元件的功能性。此外,对栅极氧化物的电场应力影响单元的可靠性以及耐久性。
因此,特别在使用FinFET状结构时,需要以此方式操作浮置闸装置以便使有效FN隧穿至浮置闸。亦需要以此方式操作浮置闸装置以便增加可靠性以及耐久性,且当元件缩小尺寸时减小记忆单元间干扰。
发明内容
当浮置闸与控制闸之间的栅极耦合比小于0.4时,提供一种对快闪记忆单元元件执行操作的方法。需要越过控制闸施加电位。自控制闸注入电子至浮置闸,或自浮置闸射出电子至控制闸。由提供于元件中的硅通道的性质决定与注入或射出相关联的操作。
对于n通道记忆单元,借由自浮置闸射出电子至控制闸来实现写入(writing)。借由自控制闸注入电子至浮置闸来实现抹除。对于p通道记忆单元,借由自控制闸注入电子至浮置闸来实现写入。借由自浮置闸射出电子至控制闸来实现抹除。
具有块体连接式(bulk-tied)FinFET状结构的元件特别适合于此方法,因为此结构产生自然低的栅极耦合比。此方法亦特别适合用于NAND快闪记忆体阵列中的记忆单元上,因为其允许记忆单元的尺寸缩小(scalability)低至20纳米以下。
附图说明
图1展示在供本发明的一较佳实施例中使用的快闪记忆单元的通道长度方向中的典型剖面示意图。
图2A、2B、3A以及3B展示在根据本发明的一较佳实施例的n通道记忆单元与p通道记忆单元中借由-/+FN隧穿的电子注入以及电子射出。
图4展示在供本发明的一较佳实施例中使用的较佳快闪记忆单元的通道宽度方向中的剖面示意图。
图5至图6展示在供根据本发明的一较佳实施例使用的NAND阵列中的两个快闪记忆单元的通道长度以及宽度方向中的剖面示意图。
图7A至图7C以及图8A至图8C展示对供根据本发明的一较佳实施例使用的n通道以及p通道NAND阵列中的记忆单元的操作。
图9A以及9B展示临限电压(以伏为单位)对时间(以秒为单位、对数刻度)的曲线图。
图10展示用于具有不同大小的技术节点的资料,其指示尺寸缩小低至小于20纳米。
10:控制闸                    10′:控制闸
12:多晶硅间顶部隧穿介电质    14:电荷储存浮置闸
16:底部栅极氧化物            18:硅通道
18′:硅通道                  20a:n型掺杂源极
20b:p型掺杂源极              22a:n型掺杂漏极
22b:p型掺杂漏极              24:井
24a:p型井                    24b:n型井
26:接面                      28:高密度等离子体氧化物
A:记忆单元                   B:记忆单元
C:记忆单元              D:记忆单元
F:记忆单元的宽度        GCR:栅极耦合比
αB:浮置闸与通道之间的耦合比
αBL-BL;同一位线上的记忆单元之间的干扰耦合比
αG:栅极耦合比
αWL-WL:同一字线上的记忆单元之间的干扰耦合比
具体实施方式
图1展示在供本发明的实施例中使用的快闪记忆单元的通道长度方向中的典型剖面示意图。图1的左图展示n通道元件。此结构含有硅通道18,硅通道18具有p型井24a以及n型掺杂源极20a及漏极22a。在较佳实施例中,使用块体连接式FinFET结构。此结构亦含有底部栅极氧化物16、电荷储存浮置闸14、多晶硅间(inter-poly)顶部隧穿介电质12,以及控制闸10。图1的右侧展示p通道元件,除了硅通道18含有n型井24b以及p型掺杂源极20b及漏极22b之外,其与n通道元件相同。
底部栅极氧化物16在程序化以及抹除操作期间受到通常小于约7百万伏/厘米(MV/cm)的相对小的电场应力。此避免任何FN隧穿(其防止在现有习知快闪记忆体元件中发生的大量损坏),且允许更佳的直流(DC)效能。此外,底部栅极氧化物16以及隧穿氧化物(多晶硅间顶部隧穿介电质12)是分离的。此增强了可靠性以及耐久性。
参看图2A以及2B,说明借由-FN隧穿而来自控制闸10的电子注入。参看图2A,借由施加高临限电压(threshold voltage)(例如,-16伏)至控制闸10而在n通道元件上实现抹除。对于等于0.3的GCR,电荷储存浮置闸14的电位为-4.8伏。底部栅极氧化物16中的电场小于8百万伏/厘米,但顶部氧化物(多晶硅间顶部隧穿介电质12)中的电场大于10百万伏/厘米,且因此自控制闸10至电荷储存浮置闸14发生隧穿。展示p通道元件的图2B是类似的。然而,由于硅通道18的性质,元件执行写入操作而非抹除。小于约0.4的GCR对于n通道元件与p通道元件中的电子注入均为较佳。
参看图3A以及3B,说明借由+FN隧穿的来自电荷储存浮置闸14的电子射出。参看图3A,借由施加低临限电压(例如,+16伏)至控制闸10而在n通道元件上实现写入操作。对于等于0.3的GCR,电荷储存浮置闸14的电位将为+4.8伏。底部栅极氧化物16中的电场小于8百万伏/厘米,但顶部氧化物(多晶硅间顶部隧穿介电质12)中的电场大于10百万伏/厘米,且因此自电荷储存浮置闸14至控制闸10发生隧穿。展示p通道元件的图3B是类似的。然而,由于硅通道18的性质,元件执行抹除操作而非写入操作。小于约0.4的GCR对于n通道元件与p通道元件中的电子射出均为较佳。
图4展示在供本发明的一较佳实施例中使用的快闪记忆单元的通道宽度方向中的剖面示意图。高密度等离子体(high density plasma,HDP)氧化物28环绕硅通道18、底部栅极氧化物16以及电荷储存浮置闸14。此高密度等离子体氧化物28使记忆单元与周围记忆单元隔离。硅通道18为FinFET结构。一种获得小GCR的方法为增加硅通道18与电荷储存浮置闸14之间的区域,借此增加两者之间的耦合电容。典型FinFET结构自然地产生硅通道18与电荷储存浮置闸14之间的较大耦合区域,此使其特别适合供根据本发明的一较佳实施例使用。
图5展示在供根据本发明的一较佳实施例使用的NAND阵列中的两个快闪记忆单元的通道长度方向中的剖面示意图。井24沿阵列中的位线(未展示于图5中)延伸。记忆单元共用接面(junction)26。控制闸10的第一角与控制闸10′的对应角之间的距离是2F,其中F是记忆单元的宽度,亦被称为技术节点(technology node)。
图6展示在供根据本发明的一较佳实施例使用的NAND阵列中的两个快闪记忆单元的通道宽度方向中的剖面示意图。HDP氧化物28使通道鳍(硅通道18与18′)彼此隔离。控制闸10沿阵列中的字线(未展示于图6中)延伸。记忆单元共用此控制闸10。硅通道18的第一边缘与硅通道18′的对应边缘之间的距离是2F,其中F如为图5所定义般。
图7A、7B以及7C展示根据本发明的一较佳实施例的n通道NAND阵列中的操作。在图7A中,借由沿邻接字线施加(例如)15伏且将对应位线接地(grounding)来降低记忆单元A的临限电压。发生+FN隧穿且程序化记忆单元A。相邻记忆单元B、C以及D在可接受的程度上具有程序化扰乱(program disturbance)。在图7B中,所有字线上的临限电压增加至(例如)-18伏。发生-FN隧穿且抹除经程序化记忆单元。在图7C中,借由施加适当的电位至对应字线且施加通过电压(pass voltage)至其他字线,以允许读通过电流(read through current)来读出记忆单元A。
图8A、8B以及8C展示根据本发明的一较佳实施例的p通道NAND阵列中的操作。在图8A中,借由沿邻接字线施加(例如)-18伏且将对应位线接地来增加记忆单元A的临限电压。发生-FN隧穿且程序化记忆单元A。相邻记忆单元B、C以及D在可接受的程度上具有程序化扰乱。在图8B中,所有字线上的临限电压降低至(例如)+15伏。发生+FN隧穿且抹除经程序化记忆单元。在图8C中,借由施加适当的电位至对应字线且施加通过电压至其他字线,以允许读通过电流来读出记忆单元A。
图9A以及9B为临限电压(以伏为单位)对时间(以秒为单位、对数刻度)的曲线图。图9A中的曲线展示与来自浮置闸的+FN隧穿相关联的临限电压下降。GCR固定于0.3处,底部栅极氧化物厚度经设定为7纳米,且隧穿氧化物厚度经设定为10纳米。施加三个不同电位至控制闸。结果证明:使用中等范围电压可获得较大记忆窗口(memory window)。图9B中的曲线展示与来自控制闸的-FN隧穿相关联的临限电压增加。模拟设定与图9A中相同的GCR、底部栅极氧化物厚度以及隧穿氧化物厚度参数,且越过控制闸施加相同电位。
图10展示耦合比对技术节点大小(以纳米为单位)的表格以及曲线图。以低至约20纳米的递减节点大小进行模拟。αG为GCR。αB为浮置闸与通道之间的耦合比。αWL-WL为同一字线上的记忆单元之间的干扰耦合比(interference coupling ratio)。αBL-BL为同一位线上的记忆单元之间的干扰耦合比。表格的左侧行中的剩余制程参数定义且标记于图5以及图6中。
来自图10的资料展示利用如以上所述的栅极注入方法的浮置闸元件具有的尺寸缩小低至小于约20纳米的技术节点大小。栅极耦合比可维持于约0.3处。此外,来自邻近记忆单元的干扰耦合比可经限制至0.1以下,以消除记忆单元功能上的大量劣化(deterioration)。
熟习此项技术者应了解:在不脱离以上所述的实施例的广泛发明性概念的情况下,可对其作出改变。因此,当然,本发明并不限于所揭露的特定实施例,而其意欲涵盖在本发明的精神以及范畴内的修改。

Claims (7)

1.一种对快闪记忆单元元件执行操作的方法,其特征在于所述快闪记忆单元元件具有浮置闸与控制闸之间的小于0.4的栅极耦合比,所述对快闪记忆单元元件执行操作的方法包括:
(a)越过所述控制闸提供电位;以及
(b)自所述控制闸注入电子至所述浮置闸,或自所述浮置闸射出电子至所述控制闸。
2.一种对快闪记忆单元元件执行操作的方法,其特征在于所述快闪记忆单元元件具有块体连接式鳍式场效晶体管状结构的硅通道,且具有浮置闸与控制闸之间的小于0.4的栅极耦合比,所述对快闪记忆单元元件执行操作的方法包括以下步骤:
(a)越过所述控制闸提供电位;以及
(b)自所述控制闸注入电子至所述浮置闸,或自所述浮置闸射出电子至所述控制闸。
3.根据权利要求2所述的对快闪记忆单元元件执行操作的方法,其特征在于其中所述硅通道为n通道类型,且步骤(b)更包括:
(i)借由自所述浮置闸射出电子至所述控制闸来程序化记忆单元;以及
(ii)借由自所述控制闸注入电子至所述浮置闸来抹除所述记忆单元。
4.根据权利要求2所述的对快闪记忆单元元件执行操作的方法,其特征在于其中所述硅通道为p通道类型,且步骤(b)更包括:
(i)借由自所述控制闸注入电子至所述浮置闸来程序化记忆单元;以及
(ii)借由自所述浮置闸射出电子至所述控制闸来抹除所述记忆单元。
5.一种对提供于NAND快闪记忆体阵列中的快闪记忆单元元件执行操作的方法,其特征在于所述快闪记忆单元元件具有块体连接式鳍式场效晶体管状结构的硅通道,且具有浮置闸与控制闸之间的小于约0.4的栅极耦合比,所述对提供于NAND快闪记忆体阵列中的快闪记忆单元元件执行操作的方法包括以下步骤:
(a)越过所述控制闸提供电位;以及
(b)自所述控制闸注入电子至所述浮置闸,或自所述浮置闸射出电子至所述控制闸。
6.根据权利要求5所述的对提供于NAND快闪记忆体阵列中的快闪记忆单元元件执行操作的方法,其特征在于其中所述硅通道为n通道类型,且步骤(b)更包括:
(i)借由自所述浮置闸射出电子至所述控制闸来程序化记忆单元;以及
(ii)借由自所述控制闸注入电子至所述浮置闸来抹除所述记忆单元。
7.根据权利要求5所述的对提供于NAND快闪记忆体阵列中的快闪记忆单元元件执行操作的方法,其特征在于其中所述硅通道为p通道类型,且步骤(b)更包括:
(i)借由自所述控制闸注入电子至所述浮置闸来程序化记忆单元;以及
(ii)借由自所述浮置闸射出电子至所述控制闸来抹除所述记忆单元。
CN2007100903361A 2006-10-03 2007-04-04 对快闪记忆单元元件执行操作的方法 Active CN101159270B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US11/542,749 US8325530B2 (en) 2006-10-03 2006-10-03 Cell operation methods using gate-injection for floating gate NAND flash memory
US11/542,749 2006-10-03

Publications (2)

Publication Number Publication Date
CN101159270A true CN101159270A (zh) 2008-04-09
CN101159270B CN101159270B (zh) 2010-10-27

Family

ID=38283068

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2007100903361A Active CN101159270B (zh) 2006-10-03 2007-04-04 对快闪记忆单元元件执行操作的方法

Country Status (4)

Country Link
US (1) US8325530B2 (zh)
EP (1) EP1909288B1 (zh)
JP (1) JP2008091850A (zh)
CN (1) CN101159270B (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681800A (zh) * 2012-09-05 2014-03-26 中国科学院微电子研究所 多次可编程半导体器件及其制造方法

Families Citing this family (50)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7391652B2 (en) * 2006-05-05 2008-06-24 Macronix International Co., Ltd. Method of programming and erasing a p-channel BE-SONOS NAND flash memory
US7760548B2 (en) 2006-11-29 2010-07-20 Yuniarto Widjaja Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8159868B2 (en) * 2008-08-22 2012-04-17 Zeno Semiconductor, Inc. Semiconductor memory having both volatile and non-volatile functionality including resistance change material and method of operating
US9391079B2 (en) 2007-11-29 2016-07-12 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US9601493B2 (en) 2006-11-29 2017-03-21 Zeno Semiconductor, Inc Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US8077536B2 (en) 2008-08-05 2011-12-13 Zeno Semiconductor, Inc. Method of operating semiconductor memory device with floating body transistor using silicon controlled rectifier principle
US8547756B2 (en) 2010-10-04 2013-10-01 Zeno Semiconductor, Inc. Semiconductor memory device having an electrically floating body transistor
US8514622B2 (en) 2007-11-29 2013-08-20 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US8194451B2 (en) 2007-11-29 2012-06-05 Zeno Semiconductor, Inc. Memory cells, memory cell arrays, methods of using and methods of making
US9230651B2 (en) 2012-04-08 2016-01-05 Zeno Semiconductor, Inc. Memory device having electrically floating body transitor
US7811889B2 (en) * 2007-08-08 2010-10-12 Freescale Semiconductor, Inc. FinFET memory cell having a floating gate and method therefor
KR20090017041A (ko) * 2007-08-13 2009-02-18 삼성전자주식회사 비휘발성 메모리 소자 및 그 제조 방법
US7847338B2 (en) 2007-10-24 2010-12-07 Yuniarto Widjaja Semiconductor memory having both volatile and non-volatile functionality and method of operating
US8130548B2 (en) 2007-11-29 2012-03-06 Zeno Semiconductor, Inc. Semiconductor memory having electrically floating body transistor
US8174886B2 (en) 2007-11-29 2012-05-08 Zeno Semiconductor, Inc. Semiconductor memory having electrically floating body transistor
US8130547B2 (en) 2007-11-29 2012-03-06 Zeno Semiconductor, Inc. Method of maintaining the state of semiconductor memory having electrically floating body transistor
US10403361B2 (en) 2007-11-29 2019-09-03 Zeno Semiconductor, Inc. Memory cells, memory cell arrays, methods of using and methods of making
US8264875B2 (en) 2010-10-04 2012-09-11 Zeno Semiconducor, Inc. Semiconductor memory device having an electrically floating body transistor
US8014200B2 (en) 2008-04-08 2011-09-06 Zeno Semiconductor, Inc. Semiconductor memory having volatile and multi-bit, non-volatile functionality and methods of operating
JP4518180B2 (ja) * 2008-04-16 2010-08-04 ソニー株式会社 半導体装置、および、その製造方法
USRE47381E1 (en) 2008-09-03 2019-05-07 Zeno Semiconductor, Inc. Forming semiconductor cells with regions of varying conductivity
US11908899B2 (en) 2009-02-20 2024-02-20 Zeno Semiconductor, Inc. MOSFET and memory cell having improved drain current through back bias application
US8648932B2 (en) * 2009-08-13 2014-02-11 Olive Medical Corporation System, apparatus and methods for providing a single use imaging device for sterile environments
US9153309B2 (en) 2010-02-07 2015-10-06 Zeno Semiconductor Inc. Semiconductor memory device having electrically floating body transistor, semiconductor memory device having both volatile and non-volatile functionality and method or operating
US9922981B2 (en) 2010-03-02 2018-03-20 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
US10340276B2 (en) 2010-03-02 2019-07-02 Zeno Semiconductor, Inc. Method of maintaining the state of semiconductor memory having electrically floating body transistor
US10461084B2 (en) 2010-03-02 2019-10-29 Zeno Semiconductor, Inc. Compact semiconductor memory device having reduced number of contacts, methods of operating and methods of making
CN102315224B (zh) * 2010-07-07 2014-01-15 中国科学院微电子研究所 使用FinFET的非易失性存储器件及其制造方法
US8582359B2 (en) 2010-11-16 2013-11-12 Zeno Semiconductor, Inc. Dual-port semiconductor memory and first-in first-out (FIFO) memory having electrically floating body transistor
US8957458B2 (en) 2011-03-24 2015-02-17 Zeno Semiconductor, Inc. Asymmetric semiconductor memory device having electrically floating body transistor
US9025358B2 (en) 2011-10-13 2015-05-05 Zeno Semiconductor Inc Semiconductor memory having both volatile and non-volatile functionality comprising resistive change material and method of operating
JP6362542B2 (ja) 2012-02-16 2018-07-25 ジーノ セミコンダクター, インコーポレイテッド 第1および第2のトランジスタを備えるメモリセルおよび動作の方法
CN103811343B (zh) * 2012-11-09 2016-12-21 中国科学院微电子研究所 FinFET及其制造方法
US9208880B2 (en) 2013-01-14 2015-12-08 Zeno Semiconductor, Inc. Content addressable memory device having electrically floating body transistor
US9029922B2 (en) 2013-03-09 2015-05-12 Zeno Semiconductor, Inc. Memory device comprising electrically floating body transistor
US9275723B2 (en) 2013-04-10 2016-03-01 Zeno Semiconductor, Inc. Scalable floating body memory cell for memory compilers and method of using floating body memories with memory compilers
CN104124210B (zh) * 2013-04-28 2016-12-28 中芯国际集成电路制造(上海)有限公司 半导体结构的形成方法
US9368625B2 (en) 2013-05-01 2016-06-14 Zeno Semiconductor, Inc. NAND string utilizing floating body memory cell
US9236126B2 (en) * 2013-06-17 2016-01-12 Seoul National University R&Db Foundation Simplified nonvolatile memory cell string and NAND flash memory array using the same
US9281022B2 (en) 2013-07-10 2016-03-08 Zeno Semiconductor, Inc. Systems and methods for reducing standby power in floating body memory devices
US9406689B2 (en) * 2013-07-31 2016-08-02 Qualcomm Incorporated Logic finFET high-K/conductive gate embedded multiple time programmable flash memory
US9548119B2 (en) 2014-01-15 2017-01-17 Zeno Semiconductor, Inc Memory device comprising an electrically floating body transistor
JP6286292B2 (ja) * 2014-06-20 2018-02-28 株式会社フローディア 不揮発性半導体記憶装置
US9496053B2 (en) 2014-08-15 2016-11-15 Zeno Semiconductor, Inc. Memory device comprising electrically floating body transistor
US10553683B2 (en) 2015-04-29 2020-02-04 Zeno Semiconductor, Inc. MOSFET and memory cell having improved drain current through back bias application
KR102529073B1 (ko) 2015-04-29 2023-05-08 제노 세미컨덕터, 인크. 백바이어스를 이용한 드레인 전류가 향상된 트랜지스터 및 메모리 셀
CN105097821B (zh) * 2015-08-20 2018-08-10 上海华力微电子有限公司 一种n沟道非易失性闪存器件及其编译、擦除和读取方法
US10079301B2 (en) 2016-11-01 2018-09-18 Zeno Semiconductor, Inc. Memory device comprising an electrically floating body transistor and methods of using
TWI787498B (zh) 2018-04-18 2022-12-21 美商季諾半導體股份有限公司 包括電性浮體電晶體的記憶裝置
US11600663B2 (en) 2019-01-11 2023-03-07 Zeno Semiconductor, Inc. Memory cell and memory array select transistor

Family Cites Families (24)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0762429B1 (en) 1995-08-11 2002-02-20 Interuniversitair Microelektronica Centrum Vzw Method of programming a flash EEPROM memory cell optimized for low power consumption and a method for erasing said cell
US5780341A (en) * 1996-12-06 1998-07-14 Halo Lsi Design & Device Technology, Inc. Low voltage EEPROM/NVRAM transistors and making method
US5889303A (en) * 1997-04-07 1999-03-30 Motorola, Inc. Split-Control gate electrically erasable programmable read only memory (EEPROM) cell
US6040216A (en) * 1997-08-11 2000-03-21 Mosel Vitelic, Inc. Method (and device) for producing tunnel silicon oxynitride layer
JP3378879B2 (ja) * 1997-12-10 2003-02-17 松下電器産業株式会社 不揮発性半導体記憶装置及びその駆動方法
US6171927B1 (en) 1998-06-08 2001-01-09 Kuo-Tung Sung Device with differential field isolation thicknesses and related methods
US6180461B1 (en) * 1998-08-03 2001-01-30 Halo Lsi Design & Device Technology, Inc. Double sidewall short channel split gate flash memory
TW466710B (en) * 2000-09-08 2001-12-01 United Microelectronics Corp Manufacturing method of Flash memory
US6563167B2 (en) 2001-01-05 2003-05-13 Silicon Storage Technology, Inc. Semiconductor memory array of floating gate memory cells with floating gates having multiple sharp edges
US6556481B1 (en) * 2001-02-21 2003-04-29 Aplus Flash Technology, Inc. 3-step write operation nonvolatile semiconductor one-transistor, nor-type flash EEPROM memory cell
KR100393229B1 (ko) * 2001-08-11 2003-07-31 삼성전자주식회사 자기 정렬된 게이트 구조를 포함하는 불휘발성 메모리장치 제조 방법 및 이에 의한 불휘발성 메모리 장치
JP2003124360A (ja) 2001-10-18 2003-04-25 Sanyo Electric Co Ltd 半導体メモリ
AU2003216649A1 (en) * 2002-05-08 2003-11-11 Koninklijke Philips Electronics N.V. Floating gate memory cells with increased coupling ratio
US6680508B1 (en) * 2002-08-28 2004-01-20 Micron Technology, Inc. Vertical floating gate transistor
US6765260B1 (en) * 2003-03-11 2004-07-20 Powerchip Semiconductor Corp. Flash memory with self-aligned split gate and methods for fabricating and for operating the same
US6635533B1 (en) * 2003-03-27 2003-10-21 Powerchip Semiconductor Corp. Method of fabricating flash memory
TWI239077B (en) * 2003-10-23 2005-09-01 Powerchip Semiconductor Corp NAND flash memory cell row and method of forming the same
US7154779B2 (en) 2004-01-21 2006-12-26 Sandisk Corporation Non-volatile memory cell using high-k material inter-gate programming
TWI226683B (en) * 2004-02-10 2005-01-11 Powerchip Semiconductor Corp Method of fabricating a flash memory
TWI233665B (en) * 2004-02-12 2005-06-01 Powerchip Semiconductor Corp Method of fabricating a flash memory
KR100528486B1 (ko) 2004-04-12 2005-11-15 삼성전자주식회사 불휘발성 메모리 소자 및 그 형성 방법
KR100833427B1 (ko) * 2005-06-30 2008-05-29 주식회사 하이닉스반도체 데이터 보존 특성을 향상시킬 수 있는 플래시 메모리 소자
JP2008047729A (ja) 2006-08-17 2008-02-28 Toshiba Corp 半導体記憶装置
US7915603B2 (en) * 2006-10-27 2011-03-29 Qimonda Ag Modifiable gate stack memory element

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103681800A (zh) * 2012-09-05 2014-03-26 中国科学院微电子研究所 多次可编程半导体器件及其制造方法
CN103681800B (zh) * 2012-09-05 2016-12-28 中国科学院微电子研究所 多次可编程半导体器件及其制造方法

Also Published As

Publication number Publication date
US20080080248A1 (en) 2008-04-03
US8325530B2 (en) 2012-12-04
CN101159270B (zh) 2010-10-27
JP2008091850A (ja) 2008-04-17
EP1909288B1 (en) 2012-04-18
EP1909288A1 (en) 2008-04-09

Similar Documents

Publication Publication Date Title
CN101159270B (zh) 对快闪记忆单元元件执行操作的方法
CN100538897C (zh) 动态参考编程的算法
KR100475119B1 (ko) Sonos 셀이 채용된 nor 형 플래시 메모리 소자의동작 방법
JP5132877B2 (ja) フラッシュメモリ素子及びその動作方法
CN101093841B (zh) 具有放大的第二位操作区间的多阶存储单元结构
CN101794788B (zh) 非易失性存储器衬底瞬时热载流子注入编程和擦除方法
US20080273387A1 (en) Nonvolatile Semiconductor Storage Device and Method for Writing Therein
TW473989B (en) 2-bit/cell type nonvolatile semiconductor memory
JP5059437B2 (ja) 不揮発性半導体記憶装置
CN100452406C (zh) 一种陷阱电荷俘获型的快闪存储器阵列的操作方法
EP2639825A2 (en) Nonvolatile semiconductor memory and method of driving the same
US7957190B2 (en) Memory having P-type split gate memory cells and method of operation
JP4522879B2 (ja) 不揮発性半導体記憶装置
US6442075B2 (en) Erasing method for nonvolatile semiconductor memory device capable of improving a threshold voltage distribution
US5999453A (en) Nonvolatile semiconductor memory
JPH06196714A (ja) 半導体記憶装置およびその駆動方式
US7242621B2 (en) Floating-gate MOS transistor with double control gate
CN107910033B (zh) 一种eeprom及其擦除、编程和读方法
US7672159B2 (en) Method of operating multi-level cell
JPH11238814A (ja) 半導体記憶装置およびその制御方法
US6507521B2 (en) Semiconductor memory system
JP2005057106A (ja) 不揮発性半導体メモリ装置およびその電荷注入方法
JP2877641B2 (ja) 半導体記憶装置およびその駆動方式
US6621736B1 (en) Method of programming a splity-gate flash memory cell with a positive inhibiting word line voltage
US8824210B2 (en) Hot electron injection nanocrystals MOS transistor

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant