CN101111925A - 用于产生结晶方向受控的多晶硅膜的系统和方法 - Google Patents

用于产生结晶方向受控的多晶硅膜的系统和方法 Download PDF

Info

Publication number
CN101111925A
CN101111925A CN 200480044730 CN200480044730A CN101111925A CN 101111925 A CN101111925 A CN 101111925A CN 200480044730 CN200480044730 CN 200480044730 CN 200480044730 A CN200480044730 A CN 200480044730A CN 101111925 A CN101111925 A CN 101111925A
Authority
CN
China
Prior art keywords
film
crystallization
mask
pulse
crystal grain
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN 200480044730
Other languages
English (en)
Inventor
詹姆斯·S·艾姆
保罗·C·范·德·维尔特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Columbia University in the City of New York
Original Assignee
Columbia University in the City of New York
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Columbia University in the City of New York filed Critical Columbia University in the City of New York
Priority to CN 200480044730 priority Critical patent/CN101111925A/zh
Publication of CN101111925A publication Critical patent/CN101111925A/zh
Pending legal-status Critical Current

Links

Images

Landscapes

  • Thin Film Transistor (AREA)
  • Recrystallisation Techniques (AREA)

Abstract

根据本发明的一个方面,提供一种用于提供具有受控的微结构和结晶纹理的多晶膜的方法。该方法提供具有特定结晶方向的伸长的晶粒或单晶岛。具体地,对衬底上的膜进行加工的方法包括:提供具有主要在一个方向上的结晶方向的晶粒的纹理结构膜;然后使用用于提供在上述结晶方向上取向的所述晶粒的位置受控生长的顺序横向固化来产生微结构。

Description

用于产生结晶方向受控的多晶硅膜的系统和方法
技术领域
本发明涉及一种产生多晶硅膜的系统和方法。
背景技术
近年来,已经对非晶或多晶半导体膜的结晶化或促进结晶化的各种技术进行了研究。该技术用于各种器件的制造,如图像传感器和例如有源矩阵液晶显示(AMLCD)装置的显示器。在后者中,在适当的透明衬底上制造了薄膜晶体管(TFT)的规则阵列,而每个晶体管用作像素控制器。
使用受激准分子激光器退火(ELA)处理半导体膜,该ELA也称为线束(line beam)ELA,其中,膜的区域用受激准分子激光器照射以部分地熔化该膜,然后进行结晶化。图1A表示能够由利用激光致熔和固化而获得的低温多晶硅(poly-si)(LTPS)的微结构。该工序典型地使用在衬底表面上连续前进的长而窄的光束形状,以使光束能够以单遍扫描过表面的方式照射整个半导体薄膜。ELA产生小颗粒的多晶膜,但是该方法经常遭受由脉冲与脉冲之间的能量密度波动和/或非均匀的光束密度分布所导致的微结构的非一致性。图2是由ELA产生的随机微结构的图像。多次照射Si膜,以产生具有均匀的晶粒尺寸的随机多晶膜。
使用受激准分子激光器的顺序横向固化(SLS)是一种已经用于形成具有大的和均匀晶粒的高质量的多晶膜的方法。SLS是在膜的预定位置上提供结晶材料的伸长晶粒的结晶工艺。图1B~1D表示能够由SLS获得的微结构。由于在电子流动方向上的晶界数量的减少提供了更高的电子迁移率,因此,大晶粒的多晶膜能够展示增强的开关特性。SLS工艺控制晶界的位置。由Dr.James Im提出并转让给本申请的普通受让人的美国专利6,322,625、6,368,945、6,555,449和6,573,531记载了这种SLS系统和工艺,此处引用其全部内容。
图3A-3F示意地表示了SLS工艺。在SLS工艺中,用非常窄的激光小束(beamlet)照射最初的非晶或多晶膜(例如,经连续波(CW)加工的Si膜,沉积态(as-deposited)膜,或固相结晶膜)。该小束(beamlet)是通过例如使激光光束脉冲穿过开槽的掩模形成的,它投射在硅膜的表面上。小束熔化非晶硅;并通过冷却,非晶硅膜再结晶以形成一个或多个晶体。晶体生长首先从照射区域的边缘向着中心向内生长。在最初的小束(beamlet)已经结晶了膜的一部分之后,第二小束(beamlet)在距上述小束小于“横向生长长度”的位置上照射膜。在新的被照射的膜的位置上,晶粒从在上述步骤中形成的多晶材料的籽晶横向生长。作为横向生长的结果,晶体在沿上述小束前进方向上是高质量的。伸长的晶粒与窄的小束的长度相垂直,并由近似与长晶轴平行的晶界所分开。
当多晶材料用于制造电子器件时,载流子传输的总电阻受势垒的组合所影响,当载流子在特定电势的影响下传输时它必须越过该势垒。由于当载流子在与多晶材料的长晶轴垂直的方向上传播时、或当载流子越过大量小的晶粒时所越过的晶界的额外数量,载流子将受到与平行于长晶轴的载流子传播方向相比更高的阻力。因此,在使用SLS形成的多晶膜上制造的器件、如TFT等的性能,将取决于结晶质量和与对应于主生长方向的长晶轴相关的TFT沟道的微结构。
为了获得利用多晶薄膜的器件的可接受的系统性能,仍旧有对于提供明确的晶粒结晶方向的制造工艺进行优化的需求。
发明内容
本发明的一个方面提供一种用于提供具有受控的微结构和结晶纹理(texture)的多晶膜的方法。该方法提供特定结晶方向的伸长晶粒或单晶岛。具体地,提供一种对在衬底上的膜进行加工的方法,包括:提供具有主要在一个优选结晶方向上取向的晶粒的纹理结构膜(textured film);然后使用可以提供在优选的结晶方向上取向的晶粒的位置受控生长的顺序横向固化来产生微结构。结晶方向的一个优选方向是正交于膜表面的方向。
顺序横向固化(SLS)工艺通常包括:产生多个激光光束脉冲;引导多个激光光束脉冲通过掩模(mask)以产生多个图案化激光光束;以多个图案化光束中的一个照射膜被选中的区域部分,该光束具有足以将膜的照射部分的全部厚度熔化强度,其中,膜的被照射部分通过冷却而横向结晶。该工艺包括重新定位膜,以用图案化光束照射所选择区域的后续部分;据此,后续部分与先前所照射的部分交迭以使晶粒进一步横向生长。在一个实施方式中,对所选择的区域的后续部分进行照射,从而在图案化光束在膜的被选中的区域上的一次遍历中使膜基本完全结晶。对于“完全结晶”,其意味着膜的被选中的区域具有期望的微结构和晶向,因此无需对区域进行进一步的激光扫描。掩模包括点图案掩模,并具有至少包括点状的区域、六边形区域和矩形区域之一的不透明阵列图案。
根据本发明的一个方面,纹理结构膜是通过区域熔化再结晶、固相再结晶、直接淀积法、表面能驱动二次晶粒生长法之一产生的,或通过脉冲激光结晶法生成。直接淀积法包括化学汽相淀积、溅射和蒸镀中的一种。脉冲激光结晶法包括SLS或多脉冲ELA法。膜可以是金属膜或半导体膜。
本发明的另一个方面提供一种用于加工衬底上的膜的系统,包括:至少一个激光器,用于产生多个激光光束脉冲;膜支撑体,至少能在一个方向上移动的,用于定位膜;掩模支撑体;用于引导第一激光光束脉冲组通过第一掩模以产生纹理结构膜的光学系统;用于引导第二激光光束脉冲组投射在纹理结构膜上的光学系统;和控制器,用于在控制激光光束脉冲的频率的同时控制膜支撑体和掩模支撑体的移动。
本发明的另一个方面提供一种器件,包括多晶薄膜,该多晶薄膜具有周期性设置的晶粒,其中每个晶粒主要定向于一个结晶方向。主要结晶方向为<111>方向或在另一个实施方式中为<100>方向。周期性设置的晶粒构成伸长的晶粒的列。
本发明的上述和其他特征与优点,将从本发明下述结合了附图的更具体的描述中明了。
附图说明
图1A表示利用激光致熔和固化而获得的低温多晶硅(LTPS)微结构。
图1B~1D表示利用顺序横向固化(SLS)而获得的微结构。
图2是由受激准分子激光器(ELA)产生的微结构的随机方向的图。
图3A~3F是顺序横向固化(SLS)中的工序的示意图。
图4是根据本发明的实施方式的混合顺序横向固化(SLS)法的流程图。
图5A是用于根据本发明的实施方式的SLS的双轴投射照射系统的示意图。
图5B是表示具有圆点花样图案的掩模的图。
图5C是使用图5B掩模的掩模平移(mask translation)的图。
图6A和6B分别表示根据本发明的实施方式,使用用于对由产生纹理结构前体之后和SLS工序之后的对<111>岛进行混合SLS加工所获得的结晶方向进行绘制的电子反向散射衍射所得到的结晶膜的图像,图6A-1和图6B-1分别表示反极图。
图7A~7C表示根据本发明的实施方式,通过使用ELA的(111)纹理结构前体的多脉冲晶粒增大而加工了结晶膜。
图8A和8B分别表示根据本发明的实施方式,使用用于对由产生纹理结构前体之后和SLS工序之后的对<100>岛进行混合SLS加工所获得的结晶方向进行绘制的电子反向散射衍射所得到的结晶膜的图像,图8A-1和图8B-1分别表示反极图。
图9表示根据本发明的实施方式,使用利用连续波(CW)激光的快速区域熔化再结晶(ZMR)法的(100)纹理结构前体的结晶膜的图。
图10A~10C分别表示主要是<110>、<111>和<100>定向的岛的透射电子显微镜方法(TEM)的图。
图11A~11C表示对应于图10A所示的图像的主要是<110>定向的岛的扫描电子显微镜(SEM)图像和电子反向散射衍射(EBSD)数据。
图12A~12C表示对应于图10B所示的图像的主要是<111>定向的岛的扫描电子显微镜(SEM)图像和电子反向散射衍射(EBSD)数据。
图13A~13C表示对应于图10C所示的图像的主要是<100>定向的岛的扫描电子显微镜(SEM)图像和电子反向散射衍射(EBSD)数据
具体实施方式
这里所描述的被定义为混合顺序横向固化(SLS)的工序和系统,提供特定结晶方向的伸长的晶粒或单晶岛。本发明的实施方式基于以下认识,即连续晶体生长的晶体方向取决于在被照射区域边界处的材料的方向。从由纹理结构晶体所限定的固相线边界生长的横向晶体生长促进了这种结晶方向的生长。
最基本地,混合SLS为如图4所示的2步工序。在第一步骤42中,产生或提供纹理结构前体。纹理结构膜包含在至少单一方向上、主要具有相同结晶方向的晶粒;但是,它们随机地位于表面上而且没有特定的尺寸(微结构)。更具体地,如果在薄的多晶膜中的多数微晶的一个结晶轴优选地指向给定的方向,该微结构被认为具有单轴纹理。对这里所述的实施方式,单轴纹理结构的优选方向是正交于结晶表面的方向。因此,此处使用的“纹理结构”指晶粒的单轴表面纹理结构。纹理程度根据具体的应用而不同。例如,对于用于驱动器电路的薄膜晶体管(TFT)优选较高程度的纹理结构,而用于开关电路的TFT则相反。
在混合SLS工艺的第二步骤44中,进行SLS。横向结晶导致晶界的“位置受控生长”和期望的结晶方向的伸长结晶。位置受控生长,此处指使用特定光束图案和诸如点图案掩模等的掩模的受控的晶粒和晶界位置。
如上简要叙述,顺序横向固化(“SLS”)是在膜的预定位置上提供结晶材料的伸长的晶粒或单晶岛的结晶工艺。但是,SLS不能完全限定这些晶粒的结晶方向。在SLS工艺中,如果从现有的晶粒开始生长,则外延生长和该工艺不能用于优选方向上的生长。外延生长指一种材料的晶体在另一种材料的晶体表面上的生长,从而使两种材料的晶粒具有相同的结构方向。顺序横向固化,通过薄膜在由脉冲激光发射的连续脉冲之间的小尺度平移而产生大晶度结构。由于膜吸收每个脉冲的能量,因此,膜的小区域完全熔化,并从固相线/熔化界面横向再结晶以形成结晶区域。如同这里所使用的方式,“连续晶体生长”或“连续结晶化”是指这样一种生长技术,其中膜的区域熔化到膜/表面界面而且再结晶发生在跨过衬底表面横向移动的结晶化锋面。
该薄膜可以是金属或半导体膜。典型的金属包括:铝、铜、镍、钛、金和钼。典型的半导体膜包括通常的半导体材料,如硅、锗、硅锗。可以在金属或半导体膜之上或之下设置其它的层。其它的层可以由氧化硅、氮化硅、和/或氧化物、氮化物的混合物或其他适合的材料,如用作热绝缘体以保护衬底免于过热、或作为扩散壁垒以防止杂质从衬底扩散到膜中的材料。PCT公报No.2003/084688记载了使用脉冲激光致熔和晶核初始结晶化以提供具有受控晶体方向的铝薄膜的方法和系统,在此引用其全部技术。
利用SLS将薄膜加工为位置受控的伸长晶粒多晶薄膜。典型的SLS工艺包括:产生规定能流(fluence)的多个受激准分子激光脉冲;可控地调制受激准分子激光器脉冲的能流;使激光脉冲平面的强度轮廓均匀化;掩蔽每个均匀化了的激光脉冲以限定的图案化激光光束;利用激光光束照射薄膜,以使其部分熔化;以及可控并连续地平移样品,以使图案化光束跨衬底表面移动。可以调整激光脉冲的频率和样品的移动(速度和方向)以使得从一个照射/结晶化周期到下一个周期对样品进行顺序照射的区域是交迭的,从而提供引起大晶粒的横向晶体生长。脉冲频率和台架以及掩模位置可以由计算机调整并控制。用于提供连续运动顺序横向固化的系统和方法公开于美国专利No.6,368,945中,在此引用其全部内容。典型的SLS工序公开于美国专利No.6,555,449和使用点图案掩模的美国专利申请No.10/944350中,在此引用其全部技术内容。
图5A表示典型的双轴投射SLS系统。光源,例如受激准分子激光器52,产生光束;然后该光束在穿过诸如反射镜58、62、70、望远镜60、均化器64、分束器66和透镜72之类的光学元件的之前穿过脉冲持续时间扩展器54和衰减器板56。激光光束脉冲然后穿过掩模74和投射光学系统82。投射光学系统减小激光光束的尺寸,并同时增加在期望位置照射衬底88的光学能量的强度。衬底88设置在能够准确地将衬底88定位在光束下、并帮助将激光光束产生的掩模74的图像在衬底的期望位置上聚焦或散焦的精密x-y-z台架上。
可替代的SLS方法用于不同的实施方式,在此被称为点图案SLS工序。图5B表示了具有圆点花纹图案92的掩模90。圆点花纹掩模90为反掩模,其中圆点花纹92对应被遮蔽的区域而掩模的剩余部分94是透明的。为了制造大型硅晶体,圆点花纹图案可以在样品的要形成这种晶体的点周围连续平移。例如,如图5C所示,在第一激光脉冲之后、圆点花纹掩模可以在正Y方向上的平移短距离96,在第二激光脉冲之后、在负X方向上平移短距离98,而在第三激光脉冲之后、在负Y方向上平移短距离99,以形成大型晶体。如果圆点花纹之间的分隔距离大于横向生长距离的两倍,则产生晶体由小颗粒的多晶硅区域分离的结晶结构。如果分隔距离小于或等于横向生长距离的两倍以避免晶核形成,则产生形成了晶体的结晶结构。有关该SLS方法的细节记载在美国专利No.6,555,449中,在此引用其全部技术内容。
本发明的实施方式通过在纹理结构前体上执行SLS以在外延中提供一致定向的材料。横向生长晶粒适用于籽晶的方向。在现有技术中,多晶膜随晶粒的不同而有很大的不同。通过选择相似结晶方向(纹理)的籽晶,能够产生大型的相似结晶方向的位置受控(微结构)晶粒。本发明的实施方式关注于纹理产生技术和SLS工艺的具体组合。
在第一步骤中使用用于获得前体纹理结构膜的常规方法,包括:区域熔化再结晶化(ZMR)、固相再结晶化、直接淀积技术(化学汽相淀积(CVD)、溅射、蒸镀)、表面能驱动二次晶粒生长(SEDSGG)以及脉冲激光再结晶化(SLS、多脉冲ELA)法。也可以以类似的方式使用其他的产生纹理结构的方法,以产生纹理结构前体。虽然获得前体纹理结构膜的方法可用于多种的金属和/或半导体膜,但是因为硅在半导体产业上的重要性以及在产业中由目前的使用硅进行的所有研究而获得的对于硅的认知水平,以下的方法是关于硅进行说明的。
下述的方法用于不同的实施方式,以提供纹理结构的多晶膜,该多晶膜随后可以用于混合SLS工艺中以制造微结构受控和结晶方向受控的多晶Si膜。这些方法描述了非图案化的平面样品的使用。使用图案化的方法,例如制图外延法(graphoepitaxy),通常作为也能够获得微结构的一定的控制的方法。但是,SLS不一定允许非平面或图案化的膜,此外,它在控制微结构方面更加出色。
可以使用沉积态CVD多晶硅膜以在结晶膜中提供(110)或(100)纹理结构。根据淀积工序的细节、如压力和温度等,沉积态多晶硅膜有时显示纹理结构。典型地,在这些膜中的纹理结构在整个淀积工序中发展,即在SiO2表面的初始生长是随机定向的。当SLS中的横向生长恰好从位于SiO2表面的非熔化部分的边缘开始时,晶向可以仍然是随机的(已经在<110>定向的多晶硅膜中观察到)。但是,产生遍及膜的厚度的纹理结构、或进行后处理以通过晶粒生长(如以其它晶粒为代价的优选的晶粒生长)以达到相同的目标的制造方法是可能的。
通过离子沟道的籽晶选择(SSIC,Seed Select through IonChanneling)可以用于在结晶膜中提供(110)纹理。非纹理结构(或略微(110)纹理结构)的沉积态多晶硅(Si)膜可以通过在固态结晶化后接着以接近完全非晶化阈值的特定剂量进行的硅“自注入”来在转换为强(110)纹理结构膜。由于沿在Si晶粒中的<110>方向的离子沟道效应,只有具有平行于注入方向的这种方向的那些晶粒保留下来。当注入正交于Si膜的表面时,意味着沿<110>表面定向的晶粒保留下来。在后续的再结晶期间,获得了大颗粒的<110>定向的多晶硅膜。
表面能驱动晶粒生长(SEDGG)能够用于在结晶膜中产生(111)纹理。SEDGG是一种特定的二次晶粒生长机制,并通常也被称为表面能驱动二次晶粒生长(SEDSGG)。首先,或通常,晶粒生长在材料加热(>1000℃)时被观察到,并由晶界区域的简并而被推进。在薄膜的情况下,当晶粒直径达到相当于膜厚度时该过程中断。除此之外,也能够发生二次晶粒生长或反常晶粒生长。该过程由在二次晶粒的界面和表面的自由能各向异性所推进。由于表面自由能的量级当然比Si-SiO2界面的自由能大,因此,认为其最小化支配该过程。硅的自由表面的能量由(111)纹理结构最小化,并且确实能够观察到二次晶粒主要地是<111>。
对SEDGG的分析主要讨论了以硼(P)或砷(As)掺杂了的硅膜所获得的结果。已知这些掺杂物可以通过增加晶界迁移率来提高二次晶粒生长率。本征膜也显示了二次晶粒生长;在其它方法中提高了获得适当的生长率、驱动力和/或增加生长边界迁移率的状态(order)。其各自的例子有减小膜的厚度或增加退火温度。
金属诱导横向结晶化(MILC)能够用于提供具有(110)纹理的结晶膜。在金属诱导结晶化中,使金属、最常用的是镍(Ni)、接触Si膜,然后加热使得膜快速结晶化。当Ni-Si接触只局部地进行时(例如、通过在硅和金属膜之间设置具有窗口的缓冲层),获得具有更低的Ni残留和高(110)纹理结构度的横向结晶多晶Si膜。
在该工序中,利用Ni通过硅膜的扩散而形成NiSi2沉淀物。NiSi2具有立方体晶格而且该晶格与c-Si的失配仅为0.4%。由于这种小的晶格失配,所以生长几nm的c-Si然后Ni迁移/扩散到其表面并重复该过程。随着该过程的持续,形成了长的针状晶体,并且如果允许从该长针形晶体的一旁产生一些附加的固相结晶化的话,则能够获得高度的结晶化。在NiSi2沉淀物上的生长仅发生在单个{111}平面上,而且其是一维的。有时,选择不同的{111}平面而针形晶体发生109°或71°的旋转。该过程能够在针保持在膜的平面中(即它们不会触及界面的表面)时持续,而且能够在晶粒的表面方向为<110>时获得。
局部熔化ZMR能够用于提供具有(100)纹理的结晶膜。Si膜的区域熔化再结晶化(ZMR)导致具有晶体的优选<100>表面方向的大晶粒的多晶硅膜的形成。本发明的实施方式使用这些定向多晶硅膜作为用于使用SLS的结晶化的前体。本实施方式包括定向籽晶晶粒的使用,以促进大的定向生长的定向晶体的形成。因此,多晶膜的ZMR用于获得(100)纹理结构的大颗粒的多晶Si膜。长的(100)纹理结构晶粒的生长是从形成于膜的未熔化区与完全熔化区之间的“过渡区”的晶粒上开始的。这是部分熔化的状态(即固体与液体共存),它仅作为熔化(半导体-金属转换)的硅的反射性显著增加的结果而存在于被辐射加热的Si膜中。在部分熔化状态下,已经观测到<100>晶粒占主要地位,这是与在SiO2-Si界面能的结晶各向异性相关的现象。
上述结果典型地在几mm/s到小于1mm/s的扫描速度下获得。对于更高的速度(即对于“快速ZMR”),(100)纹理结构生长不再稳定,而得到随机定向。可知,横向生长晶粒的结晶方向向随机方向“复制(roll off)”。然而,“过渡区”显示强的(100)纹理,即使其程度随速度的增加而减小。在部分熔化快速ZMR中使纹理程度最大化的一个途径产生具有最大数量的用于<100>生长的籽晶的前体。这样作的一个途径包括淀积(100)纹理结构的多晶Si膜。也可以将Si膜预结晶为非常小颗粒的材料;如果方向是随机的,该非常小粒度的材料保证纹理结构(100)的高密度,例如,通过完全熔化结晶化(CMC)以创建有核的晶粒。
如M.W.Geis等在“Zone-Melting recrystallization of Si filmswith a moveable-strip-heater oven”,J.Electro-Chem.Soc.129,2812(1982)所述的那样,使用连续激光的区域熔化照射产生产生具有<100>方向的硅膜;在此引用其全部技术内容。图9A表示在利用如前所述的CW-激光使用快速ZMR部分熔化之后,(100)纹理结构前体的结晶膜的图像。(100)纹理结构,由于在界面态方面可以提供最高质量的Si/SiO2界面,因此对电子装置是优选的。
近似完全熔化ELA可以用于产生具有(111)纹理的结晶膜。在部分熔化状态下的多脉冲受激准分子激光结晶化用于产生一致的、具有主要是<111>表面定向的晶粒的多晶Si膜。由于在粗糙化的多晶硅表面的干涉效应,故能够最大化地获得晶粒尺寸均匀化。这导致具有大致等于波长的晶粒尺寸的多晶硅膜,例如,使用~300nm的XeCl激光。在稍高的、但仍然低于完全熔化阈值的能量密度下,由于干涉影响而使晶粒直径不再稳定,而得到非常大的主要是<111>表面定向的晶粒。
即使在这些所进行的工序中的能量密度是在部分熔化状态下的,但是为了使晶粒的累积生长大于膜厚度,某些完全熔化必须局部地发生。由于局部增强的吸收和/或减小的熔化温度,故优选的熔化能够在晶界发生。在熔化和晶界区的再次生长期间,显然地,无论在其抵抗熔化的方面还是在其横向生长速率方面,<111>定向的晶粒都是优选的。其结果,牺牲了不同定向的晶粒而生长<111>定向的晶粒。
关于Si前体膜,在近似熔化状态下,来自受激准分子激光器的多脉冲照射使Si膜具有<111>方向,如H.J.Kim和James S.Im在Mat.Soc.Sym.Proc.321,655-670(1994)中描述那样,在此引用其全部技术内容。图7A~7C表示利用ELA由(111)纹理结构前体的多脉冲晶粒增大处理了结晶膜。
SLS能够用于产生具有(110)纹理的结晶膜。在某个实施方式中的混合SLS工艺能够在产生纹理结构前体的第一步骤中使用SLS工艺。在第一步骤中使用的SLS工艺是诱发纹理的SLS工艺。对基于受激准分子激光器的SLS(见图5A)所获得的定向的多晶硅的分析表明,根据工艺的细节(膜厚度、步进尺寸、脉冲持续时间),在扫描的方向上获得(100)或(110)纹理。对于晶粒的表面方向,这导致了其方向被限制在与面内(in-plane)方向相容的特定范围内(例如,当存在(100)面内纹理结构时,(111)表面纹理结构在物理上是不可能的)。由从用于2-发射(2-shot)SLS的轻度纹理观察到的那样,面内纹理结构发展得很快。然而,由于方向的“复制(roll off)”,当晶粒延伸时其纹理不能变得更强,即使对长扫描定向SLS也是如此。
一种获得特定的(100)纹理结构的方法包括特定的SLS工艺以创建两次相互正交的特定面内纹理结构。该工艺的细节在J.S.Im提出的题为“Method and system for producing crystalline thin filmswith a uniform crystalline orientation”的美国专利申请No.60/503,419中进行了描述,在此引用其全部技术内容。这可以导致表面定向材料的形成:如果既在X方向也在Y方向上控制方向,在根据定义在Z方向上的方向也受到控制。
SLS可以用于产生具有(111)纹理的结晶膜。在由M.Nerding等著的“Tailoring texture in laser crystallization of silicon thin-films onglass,”Solid State Phenom.93,173(2003)中记载了使用脉冲的固态激光(倍频的Nd:YVO4)的SLS的分析,在此引用其全部内容。虽然其基本工序与使用受激准分子激光器的工序相同,但也存在一些能够影响晶粒方向的差异。最显著的差异是波长(532nm),但是,空间轮廓(高斯分布)和脉冲持续时间(20ns)也能够在该工序中起作用。然而,当使用SiNx缓冲层时,对于具有至少近似于150nm的厚度的膜获得了强(111)表面方向。
在实施例中,在硅(Si)载体上的III-V半导体、如砷化镓(GaAs)的外延生长,可以获得其结合了两种材料的优点的产品:例如,与由Si构成的电路组合的由GaAs构成的发光二极管(LED)。此外,如果Si是在如玻璃等的非半导体衬底上的淀积膜,则可以以低成本在大面积和/或透明衬底上获得这些优点。
然而,正确的外延,既要求高质量(即无缺陷)又要求均匀定向的材料。高质量能够使用顺序横向固化(SLS)法获得,最主要的,使用能够创建位置受控的单晶岛的工艺。具体地,这里所述的混合SLS工艺的实施例,由于其改善了外延生长,并通过既通过迁移率又通过界面的缺陷密度的性能水平的各向异性而规定了TFT均匀性,并由材料的质量规定了TFT均匀性,所以在薄膜晶体管(TFT)产业中是有用的。TFT的均匀性的效果的细节,作为场效应器件,由T.Sato,Y.Takeishi,H.Hara和Y.Okamoto所著的“Mobility anisotropy ofelectrons in inversion layers on oxidized silicon surfaces,”in PhysicalReview B(Solid State)4,1950(1971)、和由M.H.White和J.R.Cricchi所著的“Characterization of thin-oxide MNOS memory transistors,”inIEEE Trans.Electron Devices ED-19,1280(1972)中所述,在此引用其全部技术内容。
在本实施方式中,使用如上所述的高能量密度ELA工艺,其结果是得到大平均晶粒尺寸的膜。根据所选择的ELA工艺的条件,这些膜可以具有强(111)或(100)纹理;工艺大致与不同方向的晶粒在熔化和固化中的各向异性有关。使用商业可用的线束ELA系统可以获得非常高度的纹理结构。由于微结构的随机性,该前体膜并不用于TFT的生产或外延工艺。
图6A和6B分别表示根据本发明的实施方式,在纹理结构的前体(图6A)产生之后,使用上述高能量的ELA工序接着进行SLS工序(图6B)的用于<111>岛的混合SLS工艺所产生的结晶膜的图像。图6A和6B的数据是使用电子背后散射衍射(EBSD)法采集的,这是一种用于绘制结晶方向的基于扫描电子显微法(SEM)的方法。图6A示出了进行了在稍高于通常用于TFT制造(如图6B所示)的能量密度下使用多脉冲ELA的工艺的第一步骤之后的膜的图及其相应的反极图(IPF)(图6A-1)。图100表示随机高角晶界,而IPF表示在(111)晶粒中的强纹理结构。图6B及其相应的IPF(图6B-1)表示了如美国专利申请No.10/944,350所述的在执行了具有点图案掩模(这里也称为点-SLS)的SLS工艺之后的膜的图,在此引用其全部技术内容。微结构受到了很好的控制(即位置受控的单晶区域),并且保持了纹理。
对于[(111)纹理,SLS(150nm Si)]的实施方式的实验条件,包括利用图5A所示的SLS系统,以4μm脉冲间平移间隔扫描500×500μm2,使得每单位区域为125脉冲。商业可用的ELA系统能够用于其它的实施方式,而且每单元区域更少的脉冲足以获得期望的结晶程度。对于SLS工艺的第二步骤,使用了4-发射的点-SLS系统,该系统使用放置于8μm方形格子中的~1.8μm大阴影区域。
如美国专利申请No.10/944,350所述,将ELA预处理与SLS工艺组合,导致具有<111>方向的位置受控的单晶岛,可以用于III-V半导体的外延生长甚或用于在低成本大面积的透明衬底上的均匀TFT;在此引用该美国专利申请No.10/944,350的全部内容。
图8A和8B分别表示根据本发明的实施方式,在纹理结构的前体(图8A)产生之后,使用上述ELA工序接着进行SLS工序(图8B)的用于<100>岛的混合SLS工艺所产生的结晶膜的图像。图8A和8B图中的数据是通过用于绘制结晶方向的电子背后衍射法收集的。图8A示出了进行了在稍高于通常用于TFT制造的能量密度下使用多脉冲ELA的工艺的第一步骤之后的膜的图及其相应的反极图(IPF)(图6A-1)。图8B及其相应的IPF(图8B-1)示出在点-SLS工序进行之后的图。用于本实施方式的实验条件包括在1cm/s下扫描的成形为窄光束(100sμm长、~10或几十μm宽)的倍频(532nm)Nd:YVO4连续波激光的使用。图8B使用3.3cm/s扫描,紧接着使用图5A中描述的系统的4-发射的点-SLS工序。
图10A~10C分别表示主要<110>、<111>和<100>定向的岛的透射电子显微镜(TEM)图像。图11A~11C分别表示对应于图10A所表示的图的主要<110>定向的岛的扫描电子显微镜图像(SEM)和电子反射衍射(EBSD)数据。图12A~12C分别表示对应于图10B所表示的图的主要<111>定向的岛的扫描电子显微镜图像(SEM)和电子反射衍射(EBSD)数据。图13A~13C分别表示对应于图10C所表示的图的主要<100>定向的岛的扫描电子显微镜图像(SEM)和电子反射衍射(EBSD)数据。
在图10A~10C中,发现主要的平面缺陷为sigma3边界。Sigma3边界是利用重位晶格(CSL,coincident-site lattice)描述的、与关于图6A、6B、8A和8B的上述EBSD的结果所示的、随机高角晶界相反的一系列特殊高角晶界中的一个。在更具体的形式下,这些边界为双边界(twin boundaries),意味着它们可能不具有电学活性。通常,CSL边界倾向于具有更低的缺陷密度并因此对电学特性的损害较小。还发现这些边界在结晶化中形成,而不出现在前体中。图10A表示表面方向根据sigma3平面缺陷的形成而改变,而岛包含许多缺陷。在图10B中,<111>表面方向具有更少的缺陷,而且在表面方向上没有改变(这对于表面方向起关键作用的应用是重要的,如外延与TFT)。在图10C中,<100>表面方向基本无表面缺陷。
在使用点-SLS工序(点图案掩模)具体的实施方式中,可以获得<111>和<100>岛,<100>方向的岛具有最小的缺陷密度,其次是<111>。这两种情况表明,特别优选<100>,其次是<111>方向。这些情况在典型条件(即:50~250nm的Si膜,30~300ns脉冲持续期间,室温等)下是有效的。其它的实施方式包括在不同条件下工作,能够抑制sigma3边界的形成,意味着能够获得任意方向的无缺陷的岛。
考虑到能够应用本发明的原理的广大不同的实施方式,可知所说明的实施方式仅为示例,并不能认为是对本发明的限制。例如,除了所描述的情况,图中的步骤可以以不同于所述的顺序进行,也可以在该图中使用更多或更少的要素。即使实施方式的各种要素已经作为软件实现进行了描述,但也可以使用以硬件或固件实现的其他的实施方式,反之亦然。
显然,对于本领域的普通技术人员来说,涉及形成结晶方向受控的多晶硅膜的方法可以以包括计算机可用的媒介的计算机程序产品来实施。例如,这种计算机可用媒介可以包括其中存储有计算机可读程序代码段的可读存储器件,如硬盘驱动器、CD-ROM、DVD-ROM或计算机软盘。计算机可读媒介还能够包括通信或传输媒介,如其中载有作为数字或模拟数字信号的程序代码段的总线或通信链路,无论是光学的、有线或无线的。
本发明的其他方面、及其变更和实施方式在下述权利要求的范围内。

Claims (26)

1.一种对衬底上的膜进行加工的方法,该方法包括以下步骤:
提供具有主要在一个方向上的结晶方向的晶粒的纹理结构膜;和
使用用于提供在上述结晶方向上取向的所述晶粒的位置受控生长的顺序横向固化结晶化来产生微结构。
2.根据权利要求1所述的方法,其中,顺序横向固化结晶化包括以下步骤:
产生多个激光光束脉冲;
引导所述多个激光光束脉冲通过掩模以产生多个图案化激光光束;
以所述多个图案化光束中的一个照射膜的一部分,该光束具有足以将所述膜的被照射部分的全部厚度熔化的强度,其中,所述膜的被照射部分在冷却时横向结晶;以及
重新定位所述膜,以用所述图案化光束照射后续的部分,据此,所述膜的后续部分与先前所照射的部分交迭以使所述晶粒进一步横向生长。
3.根据权利要求1所述的方法,其中,顺序横向固化结晶包括:
产生多个激光光束脉冲;
引导所述多个激光光束脉冲通过掩模以产生多个图案化激光光束;
以多个图案化光束中的一个照射膜的被选中的区域的一部分,该光束具有足以将所述膜的被照射部分的全部厚度熔化的强度,其中,所述膜的被照射部分在冷却时横向结晶;以及
沿第一平移路径移动所述膜,并沿第二平移路径移动所述掩模,同时所述被选中的区域的后续部分被所述图案化光束所照射,从而通过所述图案化光束在所述膜的所述被选中的区域上的一次遍历来使所述膜的所述被选中的区域大致地完全结晶。
4.根据权利要求2所述的方法,其中,所述掩模包括点图案掩模。
5.根据权利要求4所述的方法,其中,所述掩模包括至少包含点状区域、六边形区域和矩形区域之一的不透明阵列图案。
6.根据权利要求1所述的方法,其中,所述纹理结构膜由区域熔化再结晶、固相再结晶、直接淀积法、表面能驱动二次晶粒生长法和脉冲激光结晶法之一所产生。
7.根据权利要求6所述的方法,其中,所述直接淀积法包括化学汽相淀积、溅射和蒸镀之一。
8.根据权利要求6所述的方法,其中,所述脉冲激光再结晶法包括顺序横向固化法和多脉冲ELA工艺之一。
9.根据权利要求1所述的方法,其中,所述膜为半导体膜。
10.根据权利要求1所述的方法,其中,所述膜为金属膜。
11.根据权利要求1所述的方法,其中,所述一个方向优选地是正交于所述膜的表面的方向。
12.根据权利要求1所述的方法,其中,所述主要的结晶方向为<111>方向。
13.根据权利要求1所述的方法,其中,所述主要的结晶方向为<100>方向。
14.一种对衬底上的膜进行加工的系统,包括:
至少一个激光器,用于产生多个激光光束脉冲;
膜支撑体,至少能在一个方向上移动,用于定位所述膜;
掩模支撑体;
用于引导第一激光光束脉冲组通过第一掩模以产生纹理结构膜的光学系统;
用于引导第二激光光束脉冲组通过第二掩模投射在所述纹理结构膜上的光学系统;和
控制器,用于在控制所述第一和第二激光光束脉冲组的频率的同时控制所述膜支撑体和所述掩模支撑体的移动。
15.根据权利要求14所述的系统,其中,所述纹理结构膜由区域熔化再结晶、固相再结晶、直接淀积法、表面能驱动二次晶粒生长法和脉冲激光再结晶法之一产生。
16.根据权利要求14所述的系统,其中,所述直接淀积法包括化学汽相淀积、溅射和蒸镀之一。
17.根据权利要求14所述的系统,其中,所述脉冲激光结晶化法包括顺序横向固化和多脉冲ELA工序之一。
18.根据权利要求14所述的系统,其中,所述膜为半导体膜。
19.根据权利要求14所述的系统,其中,所述膜为金属膜。
20.一种包含多晶薄膜的器件,包括:
多晶薄膜,该多晶薄膜具有周期性设置的晶粒,其中每个晶粒主要定向于一个结晶方向。
21.根据权利要求20所述的器件,其中,所述膜为半导体膜。
22.根据权利要求20所述的器件,其中,所述膜为金属膜。
23.根据权利要求20所述的器件,其中,所述主要的结晶方向为<111>方向。
24.根据权利要求20所述的器件,其中,所述主要的结晶方向为<100>方向。
25.根据权利要求20所述的器件,其中,所述周期性设置的晶粒的微结构为六边形图案、圆形图案、矩形图案或方形图案。
26.根据权利要求20所述的器件,其中,所述周期性设置的晶粒构成伸长的晶粒的列。
CN 200480044730 2004-11-18 2004-11-18 用于产生结晶方向受控的多晶硅膜的系统和方法 Pending CN101111925A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN 200480044730 CN101111925A (zh) 2004-11-18 2004-11-18 用于产生结晶方向受控的多晶硅膜的系统和方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN 200480044730 CN101111925A (zh) 2004-11-18 2004-11-18 用于产生结晶方向受控的多晶硅膜的系统和方法

Publications (1)

Publication Number Publication Date
CN101111925A true CN101111925A (zh) 2008-01-23

Family

ID=39043125

Family Applications (1)

Application Number Title Priority Date Filing Date
CN 200480044730 Pending CN101111925A (zh) 2004-11-18 2004-11-18 用于产生结晶方向受控的多晶硅膜的系统和方法

Country Status (1)

Country Link
CN (1) CN101111925A (zh)

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101184871B (zh) * 2005-04-06 2011-03-30 纽约市哥伦比亚大学理事会 薄膜的线扫描顺序横向固化
US8426296B2 (en) 2007-11-21 2013-04-23 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8440581B2 (en) 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification
US8445365B2 (en) 2003-09-19 2013-05-21 The Trustees Of Columbia University In The City Of New York Single scan irradiation for crystallization of thin films
US8569155B2 (en) 2008-02-29 2013-10-29 The Trustees Of Columbia University In The City Of New York Flash lamp annealing crystallization for large area thin films
US8598588B2 (en) 2005-12-05 2013-12-03 The Trustees Of Columbia University In The City Of New York Systems and methods for processing a film, and thin films
US8614471B2 (en) 2007-09-21 2013-12-24 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
CN101971293B (zh) * 2008-02-29 2014-04-16 纽约市哥伦比亚大学理事会 用于薄膜的闪光灯退火
US8715412B2 (en) 2003-09-16 2014-05-06 The Trustees Of Columbia University In The City Of New York Laser-irradiated thin films having variable thickness
US8734584B2 (en) 2004-11-18 2014-05-27 The Trustees Of Columbia University In The City Of New York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
US8802580B2 (en) 2008-11-14 2014-08-12 The Trustees Of Columbia University In The City Of New York Systems and methods for the crystallization of thin films
US8871022B2 (en) 2007-11-21 2014-10-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
CN104362115A (zh) * 2014-10-14 2015-02-18 深圳市华星光电技术有限公司 一种准分子激光退火装置及该装置的使用方法
CN104551405A (zh) * 2013-10-18 2015-04-29 西门子公司 用于在堆焊期间定向加固焊缝的方法
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
CN108701808A (zh) * 2016-02-15 2018-10-23 赫姆霍兹-森德拉姆德雷斯顿-罗森多夫研究中心 用于制备蓄电池的硅基阳极的方法
CN110087816A (zh) * 2016-11-09 2019-08-02 艾克斯特朗欧洲公司 使用激光束制备结构化的晶核层的方法和相应的设备

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8715412B2 (en) 2003-09-16 2014-05-06 The Trustees Of Columbia University In The City Of New York Laser-irradiated thin films having variable thickness
US8445365B2 (en) 2003-09-19 2013-05-21 The Trustees Of Columbia University In The City Of New York Single scan irradiation for crystallization of thin films
US8734584B2 (en) 2004-11-18 2014-05-27 The Trustees Of Columbia University In The City Of New York Systems and methods for creating crystallographic-orientation controlled poly-silicon films
CN101184871B (zh) * 2005-04-06 2011-03-30 纽约市哥伦比亚大学理事会 薄膜的线扫描顺序横向固化
US8617313B2 (en) 2005-04-06 2013-12-31 The Trustees Of Columbia University In The City Of New York Line scan sequential lateral solidification of thin films
US8598588B2 (en) 2005-12-05 2013-12-03 The Trustees Of Columbia University In The City Of New York Systems and methods for processing a film, and thin films
US9012309B2 (en) 2007-09-21 2015-04-21 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US8614471B2 (en) 2007-09-21 2013-12-24 The Trustees Of Columbia University In The City Of New York Collections of laterally crystallized semiconductor islands for use in thin film transistors
US8871022B2 (en) 2007-11-21 2014-10-28 The Trustees Of Columbia University In The City Of New York Systems and methods for preparation of epitaxially textured thick films
US8426296B2 (en) 2007-11-21 2013-04-23 The Trustees Of Columbia University In The City Of New York Systems and methods for preparing epitaxially textured polycrystalline films
US8569155B2 (en) 2008-02-29 2013-10-29 The Trustees Of Columbia University In The City Of New York Flash lamp annealing crystallization for large area thin films
CN101971293B (zh) * 2008-02-29 2014-04-16 纽约市哥伦比亚大学理事会 用于薄膜的闪光灯退火
US8802580B2 (en) 2008-11-14 2014-08-12 The Trustees Of Columbia University In The City Of New York Systems and methods for the crystallization of thin films
US9646831B2 (en) 2009-11-03 2017-05-09 The Trustees Of Columbia University In The City Of New York Advanced excimer laser annealing for thin films
US9087696B2 (en) 2009-11-03 2015-07-21 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse partial melt film processing
US8889569B2 (en) 2009-11-24 2014-11-18 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral soldification
US8440581B2 (en) 2009-11-24 2013-05-14 The Trustees Of Columbia University In The City Of New York Systems and methods for non-periodic pulse sequential lateral solidification
CN104551405A (zh) * 2013-10-18 2015-04-29 西门子公司 用于在堆焊期间定向加固焊缝的方法
CN104362115A (zh) * 2014-10-14 2015-02-18 深圳市华星光电技术有限公司 一种准分子激光退火装置及该装置的使用方法
CN104362115B (zh) * 2014-10-14 2016-04-13 深圳市华星光电技术有限公司 一种准分子激光退火装置及该装置的使用方法
WO2016058151A1 (zh) * 2014-10-14 2016-04-21 深圳市华星光电技术有限公司 一种准分子激光退火装置及该装置的使用方法
CN108701808A (zh) * 2016-02-15 2018-10-23 赫姆霍兹-森德拉姆德雷斯顿-罗森多夫研究中心 用于制备蓄电池的硅基阳极的方法
CN108701808B (zh) * 2016-02-15 2022-04-26 罗瓦克有限公司 用于制备蓄电池的硅基阳极的方法
US11355749B2 (en) 2016-02-15 2022-06-07 ROV AK GmbH Method for producing silicon-based anodes for secondary batteries
CN110087816A (zh) * 2016-11-09 2019-08-02 艾克斯特朗欧洲公司 使用激光束制备结构化的晶核层的方法和相应的设备

Similar Documents

Publication Publication Date Title
US7645337B2 (en) Systems and methods for creating crystallographic-orientation controlled poly-silicon films
JP5068171B2 (ja) 結晶方位制御ポリシリコン膜を生成するためのシステム及び方法
CN101111925A (zh) 用于产生结晶方向受控的多晶硅膜的系统和方法
US6495405B2 (en) Method of optimizing channel characteristics using laterally-crystallized ELA poly-Si films
US6573163B2 (en) Method of optimizing channel characteristics using multiple masks to form laterally crystallized ELA poly-Si films
US8598588B2 (en) Systems and methods for processing a film, and thin films
CN100377294C (zh) 单晶硅膜的制造方法
CN100483609C (zh) 有源矩阵衬底的制造方法及使用所述衬底的图象显示设备
JP2004087535A (ja) 結晶質半導体材料の製造方法および半導体装置の製造方法
JP2001035806A (ja) 半導体薄膜の製造方法
US20030061984A1 (en) Crystalline semiconductor film and production method thereof, and semiconductor device and production method thereof
JP2003124230A (ja) 薄膜トランジスタ装置、その製造方法及びこの装置を用いた画像表示装置
CN100356509C (zh) 多晶硅膜的形成方法
US20020102821A1 (en) Mask pattern design to improve quality uniformity in lateral laser crystallized poly-Si films
CN101038867B (zh) 结晶半导体薄膜的方法
US7682950B2 (en) Method of manufacturing laterally crystallized semiconductor layer and method of manufacturing thin film transistor using the same method
US20090134394A1 (en) Crystal silicon array, and manufacturing method of thin film transistor
Van Der Wilt et al. A hybrid approach for obtaining orientation-controlled single-crystal Si regions on glass substrates
JP4365757B2 (ja) 多結晶シリコン薄膜トランジスタの多結晶シリコン膜の形成方法
US20060065186A1 (en) Process for producing crystalline thin film
JP4147492B2 (ja) 結晶質半導体材料の製造方法および半導体装置の製造方法
JP2004193263A (ja) 結晶性薄膜の製造方法
Fiebig TFT annealing
JP2004186559A (ja) 結晶質半導体膜およびその製造方法
JP2000114175A (ja) 半導体膜結晶化方法及び製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C02 Deemed withdrawal of patent application after publication (patent law 2001)
WD01 Invention patent application deemed withdrawn after publication

Open date: 20080123