CN101065623A - 空调装置 - Google Patents

空调装置 Download PDF

Info

Publication number
CN101065623A
CN101065623A CNA2005800404945A CN200580040494A CN101065623A CN 101065623 A CN101065623 A CN 101065623A CN A2005800404945 A CNA2005800404945 A CN A2005800404945A CN 200580040494 A CN200580040494 A CN 200580040494A CN 101065623 A CN101065623 A CN 101065623A
Authority
CN
China
Prior art keywords
cold
producing medium
pipe arrangement
switching part
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2005800404945A
Other languages
English (en)
Other versions
CN101065623B (zh
Inventor
若本慎一
河西智彦
冈岛次郎
中村利之
藤条邦雄
冈崎多佳志
榎本寿彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN101065623A publication Critical patent/CN101065623A/zh
Application granted granted Critical
Publication of CN101065623B publication Critical patent/CN101065623B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B9/00Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point
    • F25B9/002Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant
    • F25B9/008Compression machines, plants or systems, in which the refrigerant is air or other gas of low boiling point characterised by the refrigerant the refrigerant being carbon dioxide
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/006Compression machines, plants or systems with reversible cycle not otherwise provided for two pipes connecting the outdoor side to the indoor side with multiple indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0231Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units with simultaneous cooling and heating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/0272Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using bridge circuits of one-way valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/23Separators

Abstract

本发明的空调装置包括:具有配置成对第1和第2连接端部间进行流体连通的室外热交换器、对二氧化碳或以二氧化碳为主成分的制冷剂进行压缩后将其排出的压缩机、及对流到室外热交换器的制冷剂的方向进行切换的第1切换部分的室外机;具有配置成对第1和第2配管连接部分间进行流体连通的多个室内热交换器和用于对流到室内热交换器的制冷剂量进行控制的第1流量控制部分的多个室内机;以及具有将室内机各个的第1配管连接部分有选择地连接于室外机的第1和第2连接端部的任一方的多个第2切换部分、连接室内机的各个第2配管连接部分和室外机的第2连接端部间的第1旁通配管、及处于第1旁通配管中的第2流量控制部分的中继部分。

Description

空调装置
技术领域
本发明一般地涉及一种利用冷冻环路的空调装置。本发明特别是涉及一种多室型空调装置,该多室型空调装置具有1台的室外机和多台室内机,并且具有使多个室全部同时制冷或制热的模式和对某室制冷而在同时对别的室制热的模式。
背景技术
在专利文献1公开了一种多室型空调装置,该多室型空调装置具有室外机、多台室内机、及中继部分;该室外机具有压缩机和室外热交换器;该多台室内机分别具有室内热交换器;该中继部分连接室外机和室内机;并且具有使多个室全部同时制冷或制热的模式(制冷运行模式和制热运行模式)和对某室制冷而在同时对别的室制热的模式(制冷运行容量比制热运行容量大的制冷主体运行模式和制热运行容量比制冷运行容量大的制热主体运行模式)。
该已有形式的装置在制冷主体运行模式下需要气液分离装置,该气液分离装置用于将通过室外机的室外热交换器而形成为气液二相状态的制冷剂分离成制冷剂蒸气和制冷剂液体。一端连接于气液分离装置的液相侧端部的第1旁通配管在另一端侧分支,连接到各室内机的流量控制装置。进行制冷的室的流量控制装置对高压的制冷剂液体进行减压,使其变化成低温低压的气液二相的制冷剂,供给到室内热交换器。另外,制冷剂蒸气供给到制热的室的室内机。
专利文献1:日本特开平9-42804号公报
由于从气液分离装置流出的制冷剂液体为饱和液体,当不进行过冷却时,在到达室内机的流量控制装置之前,稍被减压,变化成气液二相状态,在该流量控制装置中发生声音、压力脉动。为了抑制和防止这一问题,即为了对饱和制冷剂液体进行过冷却,并列设置与上述第1旁通配管连接的第2旁通配管,使从气液分离装置流出的制冷剂液体的一部分从上述第1旁通配管流入到第2旁通配管,由处于第2旁通配管的流量控制装置减压,获得低温低压的气液二相的制冷剂,由第2旁通配管内的该制冷剂对从气液分离装置流出的第1旁通配管内的制冷剂液体进行过冷却。另外,在气液分离装置中,为了控制从气液分离装置流出的制冷剂液体的流量以防止制冷剂液体中混入制冷剂蒸气,在连接于该装置的上述配管上设有流量控制装置。
这样,在上述已有的空调装置中,中继部件数量非常多。另外,由于流量控制装置多,所以,难以控制室内热交换器的制热制冷能力。另外,在上述那样的空调装置中,使用温室效应系数(为测量对温室效应的影响的大小,当以二氧化碳为基准(=1)时,为表示温室效应气体导致温室效应的程度的数值)高的氟里昂系作为制冷剂。
发明内容
因此,本发明的1个形式是提供多室型空调装置,该多室型空调装置使用二氧化碳或二氧化碳为主成分的制冷剂,大幅度减少中继部分的部件数量,同时,容易控制室内热交换器的制热制冷能力。
为了达到上述目的,本发明的1个形式的空调装置具有室外机、多个室内机、及中继部分,该中继部分连接室外机与各室内机。室外机具有室外热交换器、压缩机、及第1切换部分;该室外热交换器配置成对第1和第2连接端部间进行流体连通;该压缩机对二氧化碳或以二氧化碳为主成分的制冷剂进行压缩后将其排出;该第1切换部分对流到室外热交换器的制冷剂的方向进行切换。各室内机具有室内热交换器和第1流量控制部分;该室内热交换器配置成对第1和第2配管连接部分间进行流体连通;该第1流量控制部分用于对流到室内热交换器的制冷剂量进行控制。中继部分具有多个第2切换部分、第1旁通配管、及第2流量控制部分;该多个第2切换部分用于将室内机各个的第1配管连接部分有选择地连接于室外机的第1和第2连接端部的任一方;该第1旁通配管连接室内机各个的第2配管连接部分和室外机的第2连接端部间;该第2流量控制部分处于第1旁通配管中。
按照本发明,在制冷主体运行模式中,制冷剂通过压缩机的制冷剂排出口、第1切换部分、室外热交换器、及第2连接端部,流入到进行制热运行的室内机,由该室内机的室内热交换器对空气等进行加热。此后,制冷剂流入到进行制冷的室内机,流过该室内机的第1流量控制部分而受到减压,之后,在室内热交换器冷却空气等,流到第1连接端部。二氧化碳或以二氧化碳为主成分的制冷剂在从压缩机的制冷剂排出口到达进行制冷的室内机的第1流量控制部分之前,超临界状态得到维持,所以,可抑制和防止可能由第1流量控制部分产生的声音和压力脉动的发生。这样,按照本发明,为了维持制冷剂的超临界状态,不需要如已有技术的空调那样设置气液分离装置和其附带的构成部件,可大幅度减少中继部分的部件数量。另外,与已有技术的构成相比,由于流量控制部分的数量少,所以,容易进行室内热交换器的制冷制热能力的控制。
附图说明
图1为示出本发明空调装置的实施形式1的制冷剂回路图。
图2为与图1同样的图,示出制冷运行模式中的制冷剂循环。
图3为与图1同样的图,示出制热运行模式中的制冷剂循环。
图4为与图1同样的图,示出制冷主体运行模式中的制冷剂循环。
图5为与图1同样的图,示出制热主体运行模式中的制冷剂循环。
图6为示出图2的制冷剂循环的变迁的p-h线图(压力焓线图)。
图7为示出图3的制冷剂循环的变迁的p-h线图。
图8为示出图4的制冷剂循环的变迁的p-h线图。
图9为示出图5的制冷剂循环的变迁的p-h线图。
图10为作为比较例示出的空调装置的制冷剂回路图。
图11为示出本发明空调装置的实施形式2的制冷剂回路图。
图12为与图11同样的图,示出实施形式2的变形例。
符号说明
2空调装置
4室外机
6P~6R室内机
8中继部分
10压缩机
10a制冷剂排出口
10b制冷剂吸入口
12热交换器(室外机热交换器)
16第1切换部分(四通换向阀)
18a、18b第1和第2配管(机间配管)
20a、20b第1和第2连接端部
22P~22R第2切换部分
26a、26b第1和第2配管连接部分
28热交换器(室内热交换器)
32P~32R流量控制阀(第1流量控制部分)
34第1旁通配管
36流量控制阀(第2流量控制部分)
52流路切换部分
66第2旁通配管
68流量控制阀(第3流量控制部分)
具体实施方式
下面参照附图说明本发明的实施形式。
实施形式1
图1示出本发明的空调装置的实施形式。该空调装置2使用二氧化碳作为制冷剂,具有室外机4、多台室内机6、及连接室外机与室内机的中继部分8。在本实施形式中,室内机6的台数虽然为3台(室内机6P、6Q、6R),但台数只要为2以上,则不限定本发明。
空调装置2具有对配置了室内机6P~6R的所有室进行制冷的制冷运行模式、对所有室进行制热的制热运行模式、以及在对某室进行制冷而同时对别的室进行制热的2个模式(制冷主体运行模式和制热主体运行模式)。
室外机4具有用于对制冷剂进行压缩的压缩机10、热交换器(室外热交换器)12、及第1切换部分(例如四通阀)16,它们配置成对第1和第2连接端部20a、20b间进行流体连通。压缩机10的制冷剂排出口10a和制冷剂吸入口10b分别通过配管14a、14b连接于第1切换部分16。热交换器12的一端12a通过配管14c连接于第1切换部分16。在切换部分16还连接配管14d。配管14d延伸到连接了中继部分8的配管18a一端的室外机4的配管连接部分(第1连接端部)20a。热交换器12的另一端12b连接到配管14e。配管14e延伸到连接了中继部分8的配管18b一端的室外机4的配管连接部分20b。即,配管18a、18b为用于连接室外机4与室内机6P~6R的机间配管。
切换部分16构成为相应于运行模式在第1和第2流动状态间切换流到热交换器12的制冷剂的方向。在第1状态下,如图2所示那样,通过配管14d、14b将配管连接部分20a连接到压缩机10的制冷剂吸入口10b,通过配管14a、14c将压缩机10的制冷剂排出口10a连接到热交换器12的一端12a,此时制冷剂从热交换器12的一端12a流到另一端12b,即从配管连接部分20a流到20b。另一方面,在第2状态下,如图3所示那样,将热交换器12的一端12a通过配管14c、14b连接到压缩机10的制冷剂吸入口10b,通过配管14a、14d将压缩机10的制冷剂排出口10a连接到配管连接部分20a,此时,制冷剂从热交换器12的另一端12b流到一端12a,即从配管连接部分20b流到20a。
中继部分8具有与室内机6相同数量(在本实施形式中为22P、22Q、22R这样3个)的三通换向阀22,该三通换向阀22具有3个连接口24a、24b、24c。配管18a的与连接到配管连接部分20a的一侧相反侧分支成3个,连接到各三通换向阀22的连接口24a。同样,配管18b的与连接到配管连接部分20b的一侧相反侧分支成3个,连接到三通换向阀22的连接口24b。连接口24c通过配管连接到对应的室内机6的第1配管连接部分26a。
各室内机6具有热交换器(室内热交换器)28和流量控制阀(第1流量控制部分)32(32P、32Q、32R),它们配置成对第1和第2配管连接部分26a、26b间进行流体连通。特别是热交换器28的一端28a通过配管连接到第1配管连接部分26a,其另一端28b通过配管30连接到第2配管连接部分26b,第2配管连接部分26b与中继部分8的旁通配管34连接。在各室内机6P、6Q、6R的配管30的途中,设有用于对流过配管30的制冷剂流量进行控制的第1流量控制部分32(32P、32Q、32R)。
中继部分8还具有旁通配管34,该旁通配管34的一端连接到配管18b的途中,同时,在其另一端侧分支,连接到各室内机6的第2配管连接部分26b(固定连接到流量控制阀32)。在旁通配管34的途中,设有用于控制在该配管中流动的制冷剂流量的第2流量控制部分36。
下面,使用示出制冷剂流动方向的图2~图5和作为p-h线图(示出制冷剂压力与焓的关系的线图)的图6~图9说明具有该构成的空调装置2的各运行模式的动作。在图2~图5中,粗线示出在运行时产生制冷剂移动的配管,括弧内的数字[i](i=1,2,…)示出与图6~图9的线图上的i点(制冷剂的各状态)对应的配管部分。
制冷运行模式(图2和图6)
在所有室内机6P~6R都进行制冷运行的场合,将切换部分16切换到第1流动状态(压缩机10的制冷剂排出口10a连接到热交换器12的一端12a,制冷剂吸入口10b连接到配管连接部分20a),使流量控制阀36的开度全开,减小流量控制阀32P~32R的开度。另外,关闭各三通换向阀22的连接口24b,开放连接口24a、24c。在该状态下,开始压缩机10的运行。
首先,低温低压的制冷剂蒸气由压缩机10压缩,成为高温高压的制冷剂后排出。压缩机10的制冷剂的压缩作为没有与周围的热交换的情形,在图6的p-h线图中用等熵线(点[1]-点[2])表示。
从压缩机10排出的高温高压的制冷剂通过切换部分16,在热交换器12中对空气等进行加热,同时温度下降。热交换器12中的制冷剂的变化在压力大体一定的条件下进行,但考虑到热交换器12的压力损失,在p-h线图中用稍倾斜的接近水平线的线(点[2]-点[3])表示。二氧化碳与氟里昂系制冷剂不同,在高压下为超临界状态,所以,不会冷凝,一边温度下降一边对空气进行加热。
从热交换器12流出的高压的制冷剂通过配管连接部分20b、旁通配管34(流量控制阀36全开),分支后流入到各室内机6P~6R,由流量控制阀32P~32R进行节流膨胀(减压),成为低温低压的气液二相状态。流量控制阀32中的制冷剂的变化在焓一定的条件下进行,在p-h线图中用垂直线(点[3]-点[4])表示。
气液二相状态的制冷剂一边在室内机6的热交换器28冷却空气等,一边变化成低温低压的制冷剂蒸气。热交换器28中的制冷剂的变化在压力大体一定的条件下进行,但考虑到热交换器28的压力损失,在p-h线图中用稍倾斜的接近水平线的线(用点[4]-点[1])表示。
从各室内机6P~6R的热交换器28流出的低温低压的制冷剂蒸气通过各三通换向阀22后汇合,通过第1配管连接部分20a、第1切换部分16返回到压缩机10。
与刚从热交换器28出来后的制冷剂蒸气相比,流入到压缩机10的制冷剂蒸气通过配管,所以,压力稍下降,但在p-h线图上用相同点[1]表示。同样,与从热交换器12流出的高压的制冷剂相比,流入到流量控制阀32的制冷剂通过配管,所以,压力稍下降一些,但在p-h线图上用相同点[3]表示。在这样的配管中流过而导致的制冷剂压力的一定程度的下降和在上述热交换器12、28中的压力损失对以下的制热运行模式、制冷主体运行模式、制热主体运行模式也同样,除了必要的场合外,省略说明。
制热运行模式(图3和图7)
在所有室内机6P~6R进行制热运行的场合,将切换部分16切换到第2流动状态(将压缩机10的制冷剂排出口10a连接到配管连接部分20a,将制冷剂吸入口10b连接到热交换器12的一端12a),使流量控制阀36的开度全开,使流量控制阀32P~32R的开度减小。另外,关闭各三通换向阀22的连接口24b,开放连接口24a、24c。在该状态下,开始压缩机10的运行。
首先,低温低压的制冷剂蒸气(点[1])由压缩机10压缩,成为高温高压的制冷剂后排出。从压缩机10排出的高温高压的制冷剂(点[2])通过切换部分16、配管连接部分20a后分支,通过各三通换向阀22,流入到各室内机6P~6R的热交换器28。制冷剂在热交换器28对空气等进行加热,温度下降(点[3]),接着,由流量控制阀32减压,变化成低温低压的气液二相状态(点[4])。此后,从各室内机6P~6R流出的制冷剂在旁通配管34汇合,通过配管连接部分20b,流入到热交换器12的另一端12b。气液二相状态的制冷剂在热交换器12对空气等进行冷却,变化成低温低压的制冷剂蒸气(点[1])。此后,制冷剂通过切换部分16返回到压缩机10。
制冷主体运行模式(图4和图8)
在室内机6P、6Q进行制冷运行、室内机6R进行制热运行的场合,将切换部分16切换到第1状态(将压缩机10的制冷剂排出口10a连接于热交换器12的一端12a,将制冷剂吸入口10b连接于配管连接部分20a),关闭流量控制阀36,减小流量控制阀32P、32Q的开度,使流量控制阀32R全开。另外,关于三通换向阀22P、22Q,关闭连接口24b,开放连接口24a、24c。关于三通换向阀22R,关闭连接口24a,开放连接口24b、24c。在该状态下,开始压缩机10的运行。
首先,低温低压的制冷剂蒸气(点[1])由压缩机10压缩,成为高温高压的制冷剂后排出。从压缩机10排出的高温高压的制冷剂(点[2])通过切换部分16,在热交换器12加热空气等,同时温度下降(点[3])。
从热交换器12流出的高压的制冷剂通过配管连接部分20b、三通换向阀22R,流入到室内机6R,在热交换器28对空气等进行加热,温度进一步下降(点[4])。制冷剂接着流入到室内机6P、6Q,由流量控制阀32P、32Q进行节流膨胀(减压),成为低温低压的气液二相状态(点[5])。该制冷剂进一步在热交换器28对空气等冷却,变化成低温低压的制冷剂蒸气(点[1])。
从室内机6P、6Q流出的制冷剂通过三通换向阀22P、22Q后汇合,通过配管连接部分20a、切换部分16,返回到压缩机10。
作为制冷剂的二氧化碳在从压缩机10的制冷剂排出口10a到切换部分16、热交换器12、室内机6R、室内机6P的流量控制阀32P或室内机6Q的流量控制阀32Q为止的流路中为超临界状态(虽然流过配管而使压力稍降低,但维持超临界状态),所以,可抑制和防止室内机6P、6Q的流量控制阀32P、32Q的声音、压力脉动的发生。
图10作为比较例示出使用氟里昂系制冷剂的具有已有技术的构成的空调装置。该装置2′在中继部分8′的配管18b的途中具有气液分离装置40,在气液分离装置的液相侧连接旁通配管34。
在已有方式的空调机进行制冷主体运行的场合,即室内机6P、6Q进行制冷运行、室内机6R进行制热运行的场合,将切换部分16切换到第1流动状态(压缩机10的制冷剂排出口10a连接于热交换器12的一端12a,将制冷剂吸入口10b连接于配管连接部分20a),减小流量控制阀36、32P、32Q的开度,使流量控制阀32R全开。另外,与三通换向阀22P、22Q相关,关闭连接口24b,开放连接口24a、24c。与三通换向阀22R相关,关闭连接口24a,开放连接口24b、24c。在该状态下,开始压缩机10的运行。
首先,低温低压的氟里昂系的制冷剂蒸气由压缩机10压缩,成为高温高压的制冷剂后排出。从压缩机10排出的高温高压的制冷剂通过切换部分16,(由于流入到热交换器的制冷剂的压力比临界点小)在热交换器12加热空气等,同时一部分冷凝,变化成高压的气液二相状态。从热交换器12流出的气液二相状态的制冷剂流入到气液分离装置40。流入到气液分离装置40的高压的制冷剂蒸气通过三通换向阀22R后,在室内机6R的热交换器对空气等进行加热而冷凝,变化成高压的制冷剂液体。此后,制冷剂液体通过全开的流量控制阀32R。另一方面,流入到气液分离装置40的高压的制冷剂液体通过流量控制阀36后,与来自室内机6R的制冷剂液体汇合,流入到室内机6P、6Q。制冷剂液体在各室内机6P、6Q由流量控制阀32P、32Q进行节流膨胀(减压),变化成低温低压的气液二相状态,然后,在热交换器28对空气等进行冷却,成为低温低压的制冷剂蒸气。此后,从室内机6P、6Q流出的低温低压的制冷剂蒸气从三通换向阀22P、22Q流出后汇合,通过切换部分16返回到压缩机10。
虽然流量控制阀36控制从气液分离装置流出的制冷剂液体的流量,以防止制冷剂液体混入到从气液分离装置40流入到室内机6R的制冷剂蒸气中,但当通过流量控制阀36时,制冷剂液体受到减压。另外,在通过旁通配管34期间,制冷剂液体被减压。从气液分离装置40流出的制冷剂液体为饱和液,所以,如通过减压成为气液二相的状态,则当流入到室内机6P、6Q的流量控制阀32P、32Q时发生声音、压力脉动。
因此,在空调装置2′中,需要设置对从气液分离装置40流出的制冷剂液体进行过冷却的构成。具体地说,设置第2旁通配管42,该第2旁通配管42的一端连接到流量控制阀36的(在制冷主体运行模式下关于流过旁通配管34的制冷剂的流动方向)下游侧,另一端连接于机配管18a。另外,在上述一端的近旁设置流量控制阀44,从而对从旁通配管34流到旁通配管42的制冷剂进行节流膨胀(减压),获得低温低压的气液二相状态的制冷剂。旁通配管42通过流过内部的低温低压的气液二相状态的制冷剂而对通过旁通配管34的气液分离装置40与流量控制阀36间的部分和流量控制阀36与上述一端间的部分的制冷剂进行过冷却。
如这样使用氟里昂系制冷剂,则为了进行制冷主体运行模式,中继部分8′的构成部件非常多。
与此相对,在本实施形式中,由于使用二氧化碳作为制冷剂,所以,无需利用气液分离装置,可大幅度减少中继部分8的部件数量。另外,由于流量控制阀的数量少,所以,容易控制室内热交换器32P~32R中的制冷制热能力。
在上述本实施形式的制冷主体运行模式中,说明了关闭流量控制阀36、使所有制冷剂在进行制热的室内机6R流动的动作,但流量增加导致制冷剂声音的发生、配管腐蚀的发生,所以,也可控制流量控制阀36,使制冷剂的一部分通过旁通配管34,绕过室内机6R地使制冷剂流动。
制热主体运行模式(图5和图9)
在室内机6P、6Q进行制热运行、室内机6R进行制冷运行的场合,将切换部分16切换到第2流动状态(压缩机10的制冷剂排出口10a连接到配管连接部分20a,制冷剂吸入口10b连接到热交换器12的一端12a),减小流量控制阀36的开度,使流量控制阀32P、32Q全开,减小流量控制阀32R的开度。另外,关于三通换向阀22P、22Q,关闭连接口24b,开放连接口24a、24c。关于三通换向阀22R,关闭连接口24a,开放连接口24b、24c。在该状态下,开始压缩机10的运行。
首先,低温低压的制冷剂蒸气(点[1])由压缩机10压缩,成为高温高压的制冷剂后排出。从压缩机10排出的高温高压的制冷剂(点[2])通过切换部分16、配管连接部分20a后分支,通过三通换向阀22P、22Q,流入到室内机6P、6Q的热交换器28。制冷剂在热交换器28对空气等加热,温度下降(点[3])。通过室内机6P、6Q的热交换器28的制冷剂通过全开的流量控制阀32P、32Q后,一部分通过室内机6R,余下部分通过旁通配管34。
流入到室内机6R的制冷剂由流量控制阀32R进行节流膨胀(减压),变化成低温低压的气液二相的状态(点[4])。该制冷剂接着在室内机6R的热交换器28对空气等进行冷却,一部分或全部蒸发(点[5]),流入到三通换向阀22R。但是,不限于此,在图9的例中,流出热交换器28的制冷剂(点5))为干度接近1.0的气液二相的状态。
另一方面,未流入到室内机6R的残留的制冷剂(点[3])通过旁通配管34,由流量控制阀36进行节流膨胀(减压),成为低温低压的气液二相的状态(点[6])。不限于此,在图9的例中,从流量控制阀36流出的制冷剂(点[6])的压力比从热交换器28流出的制冷剂(点[5])小一些。
从流量控制阀36流出的制冷剂(在旁通配管34的与配管18b的连接端部)与从三通换向阀22R流出的制冷剂汇合,成为气液二相的制冷剂(点[7])。该制冷剂通过室外机4的配管连接部分20b,流入到热交换器12。气液二相状态的制冷剂在热交换器12对空气等进行冷却,变化到低温低压的制冷剂蒸气(点[1])。此后,制冷剂通过切换部分16,返回到压缩机10。
这样,本实施形式的空调机在制热主体运行模式下,通过控制流量控制阀36,从而可控制流入到进行制冷运行的室内机6R的制冷剂流量,因此,可提高运行效率。
实施形式2
图11示出本发明空调装置的实施形式2。该空调装置2A除了实施形式1的空调装置2的构成外,在室外机4A还具有流路切换部分52。流路切换部分52用于与运行模式无关地时常使作为制冷剂的二氧化碳通过配管连接部分20b从室外机4A流到中继部分8A,通过配管连接部分20a从中继部分流到室外机。
具体地说,流路切换部分52在连接切换部分16与配管连接部分20a的配管14d的途中和连接热交换器12与配管连接部分20b的配管14e的途中,分别具有单向阀54、56。单向阀54仅容许制冷剂从配管连接部分20a向切换部分16的流动。另一方面,单向阀56仅容许从热交换器12到配管连接部分20b的制冷剂的流动。
流路切换部分52还具有旁通配管58,该旁通配管58的一端连接于切换部分16与单向阀54间的配管14d部分,另一端连接于单向阀56与配管连接部分20b间的配管14e的中间点。在旁通配管58的途中设有单向阀60,该单向阀60仅容许制冷剂从切换部分16到配管连接部分20b的流动。流路切换部分52还具有旁通配管62,该旁通配管62的一端连接于配管连接部分20a与单向阀54间的配管14d的中间点,另一端连接于单向阀56与热交换器12间的配管14e部分。在旁通配管62的途中设有仅容许制冷剂从配管连接部分20a朝热交换器12的流动。
中继部分8A还具有连接第1旁通配管34(的流量控制阀36与分支部分间)与配管18a间的第2旁通配管66。在第2旁通配管66的途中设有用于控制在该配管中流动的制冷剂流量的第3流量控制部分68。
下面,说明具有该构成的空调装置2A的各运行模式的动作。
制冷运行模式
在所有室内机6P~6R进行制冷运行的场合,将切换部分16切换到第1流动状态(将压缩机10的制冷剂排出口10a连接到热交换器12的一端12a,将制冷剂吸入口10b连接到配管连接部分20a),使流量控制阀36的开度全开,缩小流量控制阀32P~32R的开度,关闭流量控制阀68。另外,关闭各三通换向阀22的连接口24b,开放连接口24a、24c。在该状态下,开始压缩机10的运行。
首先,低温低压的制冷剂蒸气由压缩机10压缩,成为高温高压的制冷剂后排出。从压缩机10排出的高温高压的制冷剂通过切换部分16,在热交换器12对空气等加热,同时温度下降(不冷凝)。从热交换器12流出的高压的制冷剂通过单向阀56、配管连接部分20b、旁通配管34(流量控制阀36全开),分支后流入到各室内机6P~6R,由流量控制阀32P~32R进行节流膨胀(减压),成为低温低压的气液二相状态。气液二相状态的制冷剂在室内机6的热交换器28对空气等冷却,同时,变化成低温低压的制冷剂蒸气。从各室内机6P~6R的热交换器28流出的低温低压的制冷剂蒸气通过各三通换向阀22后汇合,通过配管连接部分20a。处于配管连接部分20a中的制冷剂由于压力比处于热交换器12与单向阀64间的制冷剂低,所以,自动地通过单向阀54,此后,通过切换部分16,返回到压缩机10。
制热运行模式
在所有室内机6P~6R进行制热运行的场合,将切换部分16切换到第2流动状态(将压缩机10的制冷剂排出口10a连接到配管连接部分20a,将制冷剂吸入口10b连接到热交换器12的一端12a),关闭流量控制阀36,减小流量控制阀32P~32R的开度,使流量控制阀68全开。另外,关闭各三通换向阀22的连接口24a,开放连接口24b、24c。在该状态下,开始压缩机10的运行。
首先,低温低压的制冷剂蒸气由压缩机10压缩,成为高温高压的制冷剂后排出。从压缩机10排出的高温高压的制冷剂通过切换部分16、单向阀60、配管连接部分20b后分支,通过各三通换向阀22,流入到热交换器28。制冷剂在热交换器28对空气等进行加热,温度下降,接着,由流量控制阀32减压,变化成低温低压的气液二相状态。此后,从各室内机6P~6R流出的制冷剂在第1旁通配管34汇合,通过流量控制阀68、第2旁通配管66、及配管连接部分20a。处于配管连接部分20a中的制冷剂由于压力比处于切换部分16与单向阀54间的制冷剂低,所以,自动地通过单向阀64,从另一端12b流入到热交换器12。气液二相状态的制冷剂在热交换器12对空气等进行冷却,变化成低温低压的制冷剂蒸气。此后,制冷剂通过切换部分16返回到压缩机10。
制冷主体运行模式
在室内机6P、6Q进行制冷运行、室内机6R进行制热运行的场合,将切换部分16切换到第1流动状态(将压缩机10的制冷剂排出口10a连接到热交换器12的一端12a,将制冷剂吸入口10b连接到配管连接部分20a),关闭流量控制阀36、68,减小流量控制阀32P、32Q的开度,将流量控制阀32R全开。另外,关于三通换向阀22P、22Q,关闭连接口24b,开放连接口24a、24c。关于三通换向阀22R,关闭连接口24a,开放连接口24b、24c。在该状态下,开始压缩机10的运行。
首先,低温低压的制冷剂蒸气由压缩机10压缩,成为高温高压的制冷剂后排出。从压缩机10排出的高温高压的制冷剂通过切换部分16在热交换器12对空气等进行加热,同时温度下降。从热交换器12流出的高压的制冷剂通过单向阀56、配管连接部分20b、三通换向阀22R,流入到室内机6R,在热交换器28对空气等进行加热,温度进一步下降。制冷剂接着流入到室内机6P、6Q,由流量控制阀32P、32Q节流膨胀(减压),成为低温低压的气液二相状态。该制冷剂进一步在热交换器28对空气等进行冷却,变化成低温低压的制冷剂蒸气。从室内机6P、6Q流出的制冷剂通过三通换向阀22P、22Q后汇合,通过配管连接部分20a。处于配管连接部分20a的制冷剂的压力变得比处于切换部分16与单向阀54间的制冷剂低,所以,自动地通过单向阀54,通过切换部分16,返回到压缩机10。
另外,在实施形式2的制冷主体运行模式中,说明了关闭流量控制阀36、所有制冷剂在流过进行制热的室内机6R的动作,但流量的增加导致制冷剂声音的发生、配管腐蚀的发生,所以,也可控制流量控制阀36,使制冷剂的一部分通过第1旁通配管34,绕过室内机6R地流动。
制热主体运行模式
在室内机6P、6Q进行制热运行、室内机6R进行制冷运行的场合,将切换部分16切换到第2流动状态(压缩机10的制冷剂排出口10a连接到配管连接部分20a,制冷剂吸入口10b连接到热交换器12的一端12a),关闭流量控制阀36,使流量控制阀32P、32Q全开,减小流量控制阀32R、68的开度。另外,关于三通换向阀22P、22Q,关闭连接口24a,开放连接口24b、24c。关于三通换向阀22R,关闭连接口24b,开放连接口24a、24c。在该状态下,开始压缩机10的运行。
首先,低温低压的制冷剂蒸气由压缩机10压缩,成为高温高压的制冷剂后排出。从压缩机10排出的高温高压的制冷剂流过切换部分16、单向阀60、配管连接部分20b后分支,流过三通换向阀22P、22Q,流入到室内机6P、6Q的热交换器28。制冷剂在热交换器28对空气等加热,同时温度下降。流过室内机6P、6Q的热交换器28的制冷剂流过全开的流量控制阀32P、32Q后,一部分流过室内机6R,余下部分流过旁通配管34。
流入到室内机6R的制冷剂由流量控制阀32R进行节流膨胀(减压),变化成低温低压的气液二相的状态。该制冷剂接着在室内机6R的热交换器28对空气等进行冷却,一部分或全部蒸发,流入到三通换向阀22R。
另一方面,未流入到室内机6R的残留的制冷剂从旁通配管34流入到旁通配管66,由流量控制阀68进行节流膨胀(减压),成为低温低压的气液二相的状态。从流量控制阀68流出的制冷剂(在旁通配管66的与配管18a的连接端部)与从三通换向阀22R流出的制冷剂汇合,成为气液二相的制冷剂,流过室外机4的连接端部20a。处于配管连接部分20a中的制冷剂由于压力比处于切换部分16与单向阀54间的制冷剂低,所以,自动地流过单向阀64,从另一端12b流入到热交换器12。气液二相状态的制冷剂在热交换器12对空气等进行冷却,变化成低温低压的制冷剂蒸气。此后,制冷剂流过切换部分16,返回到压缩机10。
按照本实施形式,除了实施形式1的效果外,由于仅高压的制冷剂流到连接室外机4A与室内机6P~6R的中继部分8A的2个机间配管中的一方的配管18b,仅低压的制冷剂流入到另一方的配管18a,所以,可减小配管18a的壁厚。
在本实施形式2中,说明了使用三通换向阀的形式,但也可如图12所示那样设置一对(2台)的二通换向阀22、23。即,一方的二通换向阀22的一端连接于配管18a和第2旁通配管66,另一端连接于各室内机6P~6R。另一方的二通换向阀23的一端连接于配管18b,另一端连接于各室内机6P~6R。这样,与实施形式2同样,可与运行模式无关地时常使流到配管18a、18b(和二通换向阀22、23)的制冷剂的方向为一定。
以上说明了本发明的具体实施形式,但不限于此,可在不脱离本发明范围和精神的状态下可进行各种各样的变形或变更。例如,相应于各室内机6P~6R设置的、将热交换器28的端部28a有选择地连接到配管18a或配管18b的切换部分也可为三通换向阀22P~22R以外的构成。
另外,在实施形式2中,流路切换部分52用于使制冷剂与运行模式无关地通过配管连接部分20b从室外机4A流到中继部分8A,通过配管连接部分20a从中继部分8A流到室外机4A,但该流路切换部分52不限于图中的构成。即,作为流路切换部分,在由切换部分16将压缩机10的制冷剂排出口10a连接到热交换器12的一端12a,而且,将制冷剂吸入口10b连接到配管连接部分20a的场合(第1流动状态),关于从热交换器12的另一端12b流出的制冷剂,禁止向配管连接部分20a的流动,而且进行向配管连接部分20b的流动,同时,关于从配管连接部分20a流入到室外机4A的制冷剂,禁止向热交换器12的另一端12b的流动,而且,进行向压缩机的制冷剂吸入口的流动。另外,这样的构成也包含于本发明的范围内,即,流路切换部分进一步在由切换部分16将压缩机10的的制冷剂排出口10a连接于配管连接部分20a而且将制冷剂吸入口10b连接到热交换器12的一端12a的场合(第2流动状态),关于从压缩机10排出的制冷剂,禁止向配管连接部分20a的流动,并进行向配管连接部分20b的流动,同时,关于从配管连接部分20a流入到室外机4A的制冷剂,禁止向压缩机的制冷剂排出口的流动,而且进行向热交换器12的另一端12b的流动。
另外,在上述实施形式中,虽然制冷剂使用二氧化碳单体,但也可使用以二氧化碳为主成分的制冷剂。
在本发明中,室内机和室外机的“机”并不意味着所有构成部分设于同一壳体内或壳体外壁。例如,即使将室外机4的流量控制阀32配置到与收容热交换器28的壳体不同的部位,该构成也包含于本发明的范围内。另外,也可在室外机中设置多个由室外热交换器、压缩机构成的机组,使从各机组流出的制冷剂汇合,流到一方的机间配管,同时,使来自另一方的机间配管的制冷剂分支,流入到各机组。

Claims (10)

1.一种空调装置,具有室外机、多个室内机、及中继部分;
该室外机具有室外热交换器、压缩机、及第1切换部分;该室外热交换器配置成对第1和第2连接端部间进行流体连通;该压缩机对二氧化碳或以二氧化碳为主成分的制冷剂进行压缩后将其排出;该第1切换部分对流到室外热交换器的制冷剂的方向进行切换;
该多个室内机具有室内热交换器和第1流量控制部分;该室内热交换器配置成对第1和第2配管连接部分间进行流体连通;该第1流量控制部分用于对流到室内热交换器的制冷剂量进行控制;
该中继部分具有多个第2切换部分、第1旁通配管、及第2流量控制部分;该多个第2切换部分用于将室内机各个的第1配管连接部分有选择地连接于室外机的第1和第2连接端部的任一方;该第1旁通配管连接室内机各个的第2配管连接部分和室外机的第2连接端部间;该第2流量控制部分处于第1旁通配管中。
2.根据权利要求1所述的空调装置,其特征在于:
压缩机具有制冷剂吸入口和制冷剂排出口,
第1切换部分相应于空调装置的运行模式在第1状态与第2状态间切换;在该第1状态下,将制冷剂排出口连接到室外热交换器的一端,而且将制冷剂吸入口连接于第1连接端部,在第2状态下,将制冷剂排出口连接于第1连接端部,而且将制冷剂吸入口连接于室外热交换器的上述一端。
3.根据权利要求2所述的空调装置,其特征在于:
当第1切换部分处于第1和第2状态时,制冷剂为超临界状态,不冷凝而分别对室外热交换器和室内热交换器内的空气进行加热。
4.根据权利要求1所述的空调装置,其特征在于:还具有流路切换部分、第2旁通配管、及第3流量控制部分;
该流路切换部分当第1切换部分处于第1状态时,将来自室外热交换器的制冷剂引导至第2连接端部,将来自第1连接端部的制冷剂引导至压缩机的制冷剂吸入口,当第1切换部分处于第2状态时,将来自压缩机的制冷剂排出口的制冷剂引导至第2连接端部,将来自第1连接端部的制冷剂引导至室外热交换器;
该第2旁通配管配置成对室外机的第1连接端部和第1旁通配管间进行流体连通;
该第3流量控制部分处于第2旁通配管中。
5.根据权利要求4所述的空调装置,其特征在于:
流路切换部分具有处于第1连接端部和压缩机间的第1流路的第1单向阀、处于第2连接端部和室外热交换器间的第2流路的第2单向阀、处于第1连接端部和室外热交换器间的第3流路的第3单向阀、以及处于第2连接端部和压缩机间的第4流路的第4单向阀。
6.根据权利要求4所述的空调装置,其特征在于:
第2切换部分通过第1和第2机间配管分别连接到室外机的第1和第2连接端部,
第1机间配管由具有比第2机间配管薄的壁厚的配管构成。
7.根据权利要求1所述的空调装置,其特征在于:
第1切换部分和第2切换部分可分别相互独立地动作。
8.根据权利要求1所述的空调装置,其特征在于:
第1切换部分由四通阀构成。
9.根据权利要求1所述的空调装置,其特征在于:
第2切换部分分别由连接到室外机的第1和第2连接端部和室内机的第1配管连接部分的三通换向阀构成。
10.根据权利要求1所述的空调装置,其特征在于:
第2切换部分分别由第1二通换向阀和第2二通换向阀构成;该第1二通换向阀连接于室外机的第1连接端部和室内机的第1配管连接部分;该第2二通换向阀连接于室外机的第2连接端部和室内机的第1配管连接部分。
CN2005800404945A 2004-11-25 2005-11-01 空调装置 Active CN101065623B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004340889 2004-11-25
JP340889/2004 2004-11-25
PCT/JP2005/020109 WO2006057141A1 (ja) 2004-11-25 2005-11-01 空気調和装置

Publications (2)

Publication Number Publication Date
CN101065623A true CN101065623A (zh) 2007-10-31
CN101065623B CN101065623B (zh) 2013-05-22

Family

ID=36497883

Family Applications (1)

Application Number Title Priority Date Filing Date
CN2005800404945A Active CN101065623B (zh) 2004-11-25 2005-11-01 空调装置

Country Status (5)

Country Link
US (1) US20090145151A1 (zh)
EP (1) EP1816416B1 (zh)
JP (1) JP4752765B2 (zh)
CN (1) CN101065623B (zh)
WO (1) WO2006057141A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112816A (zh) * 2008-10-29 2011-06-29 三菱电机株式会社 空气调节装置
CN103080668A (zh) * 2010-09-10 2013-05-01 三菱电机株式会社 空气调节装置
CN103328909A (zh) * 2011-01-31 2013-09-25 三菱电机株式会社 空气调节装置
CN104344594A (zh) * 2013-07-25 2015-02-11 三星电子株式会社 热泵和流动路径切换装置
CN102575880B (zh) * 2009-10-19 2015-03-25 三菱电机株式会社 热介质转换器及空气调节装置
CN104713264A (zh) * 2013-12-11 2015-06-17 重庆美的通用制冷设备有限公司 空气源热泵机组
CN105737333A (zh) * 2016-02-22 2016-07-06 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009103470A1 (en) * 2008-02-21 2009-08-27 Carrier Corporation Refrigerating system
JP4924535B2 (ja) * 2008-05-15 2012-04-25 富士電機リテイルシステムズ株式会社 自動販売機
JP5098987B2 (ja) * 2008-12-11 2012-12-12 ダイキン工業株式会社 空気調和装置
US9476618B2 (en) 2009-10-23 2016-10-25 Mitsubishi Electric Corporation Air conditioning apparatus
WO2011052049A1 (ja) * 2009-10-28 2011-05-05 三菱電機株式会社 空気調和装置
EP2472202B1 (en) * 2009-10-28 2019-03-20 Mitsubishi Electric Corporation Air conditioning device
JP5323202B2 (ja) * 2009-10-29 2013-10-23 三菱電機株式会社 空気調和装置
JP5537122B2 (ja) 2009-11-02 2014-07-02 株式会社マキタ 電動工具
WO2011064827A1 (ja) * 2009-11-30 2011-06-03 三菱電機株式会社 空気調和装置
EP2535651B1 (en) * 2010-02-10 2021-04-28 Mitsubishi Electric Corporation Building comprising an air conditioner
JP5602243B2 (ja) * 2010-11-19 2014-10-08 三菱電機株式会社 空気調和機
GB2504036B (en) * 2011-05-23 2018-02-21 Mitsubishi Electric Corp Air-conditioning apparatus
WO2013144994A1 (ja) * 2012-03-27 2013-10-03 三菱電機株式会社 空気調和装置
JP6003635B2 (ja) * 2012-12-28 2016-10-05 ダイキン工業株式会社 空気調和装置及び空気調和装置の施工方法
AU2018329314B2 (en) * 2017-09-05 2021-07-01 Daikin Industries, Ltd. Air-Conditioning System or Refrigerant Branch Unit
KR20200114031A (ko) * 2019-03-27 2020-10-07 엘지전자 주식회사 공기조화 장치

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2522371B2 (ja) * 1988-06-07 1996-08-07 三菱電機株式会社 空気調和装置
KR920008504B1 (ko) * 1988-10-17 1992-09-30 미쓰비시전기주식회사 공기조화장치
JPH0743187B2 (ja) * 1988-10-28 1995-05-15 三菱電機株式会社 空気調和装置
JPH0754217B2 (ja) * 1989-10-06 1995-06-07 三菱電機株式会社 空気調和装置
AU636215B2 (en) * 1990-04-23 1993-04-22 Mitsubishi Denki Kabushiki Kaisha Air conditioning apparatus
JPH04217759A (ja) * 1990-12-18 1992-08-07 Matsushita Refrig Co Ltd 多室型空気調和機
US5237833A (en) * 1991-01-10 1993-08-24 Mitsubishi Denki Kabushiki Kaisha Air-conditioning system
JPH05302765A (ja) * 1992-04-27 1993-11-16 Matsushita Refrig Co Ltd 多室型空気調和機
JP2002048421A (ja) * 2000-08-01 2002-02-15 Matsushita Electric Ind Co Ltd 冷凍サイクル装置
NO20014258D0 (no) * 2001-09-03 2001-09-03 Sinvent As System for kjöle- og oppvarmingsformål
KR100437804B1 (ko) * 2002-06-12 2004-06-30 엘지전자 주식회사 2배관식 냉난방 동시형 멀티공기조화기 및 그 운전방법
JP2004218964A (ja) * 2003-01-16 2004-08-05 Matsushita Electric Ind Co Ltd 冷凍装置
JP2004226018A (ja) * 2003-01-24 2004-08-12 Sanyo Electric Co Ltd 冷凍装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102112816A (zh) * 2008-10-29 2011-06-29 三菱电机株式会社 空气调节装置
CN102575880B (zh) * 2009-10-19 2015-03-25 三菱电机株式会社 热介质转换器及空气调节装置
CN103080668B (zh) * 2010-09-10 2015-05-06 三菱电机株式会社 空气调节装置
CN103080668A (zh) * 2010-09-10 2013-05-01 三菱电机株式会社 空气调节装置
CN103328909A (zh) * 2011-01-31 2013-09-25 三菱电机株式会社 空气调节装置
CN103328909B (zh) * 2011-01-31 2015-04-01 三菱电机株式会社 空气调节装置
CN104344594A (zh) * 2013-07-25 2015-02-11 三星电子株式会社 热泵和流动路径切换装置
CN104344594B (zh) * 2013-07-25 2018-08-24 三星电子株式会社 热泵和流动路径切换装置
US10401064B2 (en) 2013-07-25 2019-09-03 Samsung Electronics Co., Ltd. Heat pump and flow path switching apparatus
CN104713264A (zh) * 2013-12-11 2015-06-17 重庆美的通用制冷设备有限公司 空气源热泵机组
CN104713264B (zh) * 2013-12-11 2017-05-03 重庆美的通用制冷设备有限公司 空气源热泵机组
CN105737333A (zh) * 2016-02-22 2016-07-06 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法
CN105737333B (zh) * 2016-02-22 2018-09-07 广东美的暖通设备有限公司 多联机系统及其模式切换控制方法

Also Published As

Publication number Publication date
JPWO2006057141A1 (ja) 2008-06-05
EP1816416A4 (en) 2011-08-03
EP1816416A1 (en) 2007-08-08
JP4752765B2 (ja) 2011-08-17
WO2006057141A1 (ja) 2006-06-01
US20090145151A1 (en) 2009-06-11
EP1816416B1 (en) 2019-06-19
CN101065623B (zh) 2013-05-22

Similar Documents

Publication Publication Date Title
CN101065623A (zh) 空调装置
CN101443609B (zh) 带低压蒸汽喷射的经济制冷系统
CN100340827C (zh) 冷冻装置
CN1246655C (zh) 一种多路空调器及其操作方法
WO2015158174A1 (zh) 制冷装置
EP2006615A3 (en) Multi air-conditioner for simultaneously cooling/heating room air and method for controlling the same
US9175890B2 (en) Outdoor unit for air-conditioning apparatus, and air-conditioning apparatus
CN1779391A (zh) 空调系统及其控制方法
CN1757990A (zh) 多室型空调系统及用于控制该系统的方法
CN1769804A (zh) 空调
CN1469084A (zh) 多型空调器及其操作方法
CN1724952A (zh) 空调器
CN1957211A (zh) 发动机热泵
RU2016141616A (ru) Холодильный аппарат
CN1842683A (zh) 冷冻装置
CN1793744A (zh) 空调器
CN1624399A (zh) 冷冻循环装置
EP1793179A4 (en) MULTI-AIR CONDITIONING
JP2012154616A (ja) 空気調和機
WO2008072575A1 (ja) 冷凍装置及び膨張機
JP2006071174A (ja) 冷凍装置
EP1589299A3 (en) Heat pump and compressor discharge pressure controlling apparatus for the same
CN106705473A (zh) 换热系统
CN1302239C (zh) 制冷循环装置
CN1786477A (zh) 冷冻循环装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant