CN100566110C - 电力转换装置 - Google Patents

电力转换装置 Download PDF

Info

Publication number
CN100566110C
CN100566110C CNB2006800060769A CN200680006076A CN100566110C CN 100566110 C CN100566110 C CN 100566110C CN B2006800060769 A CNB2006800060769 A CN B2006800060769A CN 200680006076 A CN200680006076 A CN 200680006076A CN 100566110 C CN100566110 C CN 100566110C
Authority
CN
China
Prior art keywords
inverter
mentioned
voltage
power
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006800060769A
Other languages
English (en)
Other versions
CN101128974A (zh
Inventor
岩田明彦
濑户诚
山田正树
原田茂树
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Publication of CN101128974A publication Critical patent/CN101128974A/zh
Application granted granted Critical
Publication of CN100566110C publication Critical patent/CN100566110C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/53Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal
    • H02M7/537Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters
    • H02M7/5387Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration
    • H02M7/53871Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode using devices of a triode or transistor type requiring continuous application of a control signal using semiconductor devices only, e.g. single switched pulse inverters in a bridge configuration with automatic control of output voltage or current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode
    • H02M7/483Converters with outputs that each can have more than two voltages levels
    • H02M7/49Combination of the output voltage waveforms of a plurality of converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0067Converter structures employing plural converter units, other than for parallel operation of the units on a single load
    • H02M1/0077Plural converter units whose outputs are connected in series

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Inverter Devices (AREA)

Abstract

在将太阳能电压升压后,进行交流转换,将交流电力提供给负载或系统的电力转换装置中,将太阳能电压(VO)通过斩波器电路(3)进行升压形成的直流电压(V3B)作为直流源的第1逆变器(3B-INV)的交流侧两个端子的一个上串联连接第2逆变器(1B-INV),在另一个上串联连接第3逆变器(2B-INV)。并且,控制为使第2、第3逆变器(1B-INV、2B-INV)的输出电压相等,并通过第1、第2、第3逆变器的产生电压的总和获得输出电压,直流电源(V3B)的中间点电位与电力转换装置的输出电压的中间电位,即系统(5)的中点电位(接地电位)相等。

Description

电力转换装置
技术领域
本发明涉及一种将直流电力转换为交流电力的电力转换装置,特别是涉及一种用于将分散电源连接到系统的功率调节器等的电力转换装置。
背景技术
以往的功率调节器中,例如在太阳能功率调节器中所示,使用斩波器(chopper)从作为太阳能电池的分散电源进行升压,在其后级插入PWM控制的逆变器(inverter),产生输出的交流电压。
这种以往的功率调节器的基本动作如下所示。从太阳能电池输出的直流电力,驱动功率调节器内部控制电源,使内部电路能够动作。内部电路具有斩波器电路和逆变器部,斩波器电路将太阳能电池的电压升压至连接到系统所必需的电压。逆变器部由四个开关构成,为了形成与系统电压相位同步的输出电流,进行PWM切换。这样,通过输出时输出长条形的波形,改变输出的时间比率来控制输出的平均电压,通过在输出侧设置的平滑滤波器使输出的电压平均化,将交流电力向系统输出(例如,参照非专利文献1)。
非专利文献1:《太阳能功率调节器型KP40F的开发》OMRONTECHNICS Vol.42No.2(通卷142号)2002年
在将太阳能电压连接于系统的功率调节器中,产生太阳能的太阳能板,对于接地有很大的浮游电容,在太阳能板的电位发生变动时,在该浮游电容中流动较大的充电电流。因此,以往的功率调节器中,为抑制太阳能板电位的变动,使逆变器一定是在两极两个电平动作,通过改变正负电压的时间比率来控制输出的平均电压,进行输出。因此,就出现切换损失增加、功率调节器整体效率降低的问题。
发明内容
本发明是为解决以上问题而完成的,其目的在于在将来自太阳能等直流电源的电力转换为交流而向系统或负载输出的电力转换装置中,能够抑制直流电源侧的电位变动,并且提高转换效率。
根据本发明的电力转换装置,串联连接将直流电源的直流电力转换为交流电力的多个单相逆变器的交流侧,通过从上述多个单相逆变器中选择出的规定组合产生的各发生电压的总和来控制输出电压。上述多个单相逆变器具备:输入上述直流电源中电压最大的第1直流电源的第1逆变器;连接在该第1逆变器的交流侧第1端于上的一个以上的相互串联的第2逆变器;连接在该第1逆变器的交流侧第2端子上的一个以上的相互串联的第3逆变器。而且,上述第2逆变器的总输出电压与上述第3逆变器的总输出电压相等。
根据本发明的电力转换装置,由于连接在以电压最大的第1直流电源为输入的第1逆变器的交流侧第1端子侧的逆变器、连接在交流侧第2端子侧的逆变器的总输出电压大致相等,因此能够使第1直流电源的中间点电位与电力转换装置输出电压的中间电位大致相等。因此能够获得一种电力转换装置,该电力转换装置能够抑制第1逆变器的直流母线的电位变动而不增加损失,且其可靠性与效率高。
附图说明
图1是表示根据本发明实施方式1的功率调节器的示意构成图。
图2是表示根据本发明实施方式1的各单相逆变器的输出电压波形的图。
图3是表示根据本发明实施方式4的功率调节器的示意构成图。
图4是根据本发明实施方式4的旁路电路的构成图。
图5是根据本发明实施方式4的旁路电路的别例的构成图。
图6是根据本发明实施方式4的旁路电路的第2别例的构成图。
(符号说明)
2第2直流电源(太阳能)
3作为升压电路的斩波器电路
4DC/DC变换器
5系统
7旁路电路
7a继电器
3B-INV第1逆变器
1B-INV第2逆变器
2B-INV第3逆变器
V3B第1直流电源
V1B,V2B直流电源
Qx,Qy短路用开关(半导体开关)
具体实施方式
实施方式1
下面结合附图说明根据本发明实施方式1的电力转换装置(以下称为功率调节器)。
图1是表示根据本发明实施方式1的功率调节器的示意构成图。如图1所示,串联连接多个(此时为三个)单相逆变器2B-INV、3B-INV、1B-INV的交流侧,构成作为单相多重转换器的逆变器单元1。各单相逆变器2B-INV、3B-INV、1B-INV是由反向并联连接二极管的多个IGBT等的自消弧型半导体切换元件所构成,在以第1直流电源V3B为输入的单相逆变器(第1逆变器)3B-INV的交流侧两个端子的一个上连接单相逆变器(第2逆变器)1B-INV,在另一个上连接单相逆变器(第3逆变器)2B-INV。此外,作为使第1逆变器3B-INV的交流侧两个端子间短路的短路用开关,反向并联连接二极管的两个IGBT等自消弧型半导体切换元件Qx、Qy并联连接在第1逆变器3B-INV上。
此外,在作为第2直流电源的根据太阳能的直流电源2的后级,设置了由IGBT等的切换元件(以下称之为开关)3a、电抗器3b以及二极管3c构成的作为升压电路的斩波器电路3。斩波器电路3将利用直流电源2获得的直流电压VO升压,获得成为第1直流电源V3B的充电到平滑电容器的电压(电位VC)。
各单相逆变器2B-INV、3B-INV、1B-INV将各直流电源V2B、V3B、V1B的直流电力转换为交流电力而输出,各自的输入的直流电源部分利用双向DC/DC变换器4连接。方便起见,各直流电源V2B、V3B、V1B的电压,记做V2B、V3B、V1B
构成第1逆变器3B-INV的输入的直流电源V3B的电压,比构成其他单相逆变器2B-INV、1B-INV的输入的直流电源V2B、V1B的电压大,为了成为规定的电压比,V2B、V3B、V1B用DC/DC变换器4来控制。在此假设,V1B=V2B≥(2/9)·V3B。也就是说,第2、第3逆变器1B-INV、2B-INV的直流电源V1B、V2B的电压相等,且两者共计大于或等于(4/9)·V3B
这些单相逆变器2B-INV、3B-INV、1B-INV作为输出可产生正负以及零电压,逆变器单元1通过等级控制来输出作为组合了这些产生电压的总和的电压VA。该输出电压VA通过由电抗器6a及电容器6b形成的平滑滤波器6进行平滑处理,将交流电压Vout提供给系统5。另外,系统5通过柱状变压器使中点R接地。
各单相逆变器2B-INV、3B-INV、1B-INV的输出电压波形如图2所示。如图所示,第2逆变器1B-INV的输出和第3逆变器2B-INV的输出相等,第2、第3逆变器1B-INV、2B-INV,为了补足目标输出电压与第1逆变器3B-INV输出电压之间的差分,通过PWM控制进行输出。实际上,控制为使电流流入系统5,在输出的电抗器6a较小的情况下,使逆变器单元1的输出电压VA平均化的电压与系统电压之间的差变小,也可认为两者大致相等。
通过各单相逆变器2B-INV、3B-INV、1B-INV的上述动作,在第1逆变器3B-INV的切换元件Q31、Q32接通的期间以及切换元件Q33、Q34接通的期间,即第1逆变器3B-INV输出正负任何一个电压的期间,第1逆变器3B-INV的直流电源V3B的中间点X与功率调节器的输出电压Vout的中间电位相等。由于输出电压Vout与系统电压大致相等,因此上述期间内,直流电源V3B的中间点X与系统5的中间电位(中点R的电位)即接地电位相等。
第1逆变器3B-INV的输出电压为0的期间内,使第1逆变器3B-INV的交流侧两个端子之间短路的半导体开关Qx、Qy接通,形成导通状态,并且使第1逆变器3B-INV内的所有半导体开关Q31~Q34处于关断状态。假设使半导体开关Q31~Q34的某一个接通而处于导通时,直流电源V3B的电位随着系统电压的变动而变动,但是如上所述通过使所有的半导体开关Q31~Q34处于关断状态,切断直流电源V3B与系统5(交流输出用电力线),直流电源V3B的电位不受系统电压变动引起的影响。由此,直流电源V3B的中间点X的电位能够保持到此为止的电位,即接地电位。
这样,直流电源V3B的中间点X的电位总是为接地电位,直流电源V3B的正极、负极侧各相对于接地电位能够维持一定的直流电位。
如上所述,产生太阳能的太阳能板(直流电源2)相对于接地具有大的浮游电容,当太阳能板2的电位变动时,在该浮游电容中流动大的充电电流,由于将太阳能电压VO升压而生成的直流电源V3B的中间点电位能够固定在接地电位上,因此能够抑制太阳能板2的电位变动,也能抑制在浮游电容中流动的电流。
如上所述,在本实施方式中,由于将功率调节器构成为串联连接利用斩波器电路3将太阳能电压VO升压的直流电压V3B作为直流源的单相逆变器(第1逆变器)3B-INV、其他单相逆变器2B-INV、1B-INV的交流侧,通过各逆变器的产生电压的总和获得输出电压,因此可以输出比斩波器电路3中升压后的直流电压V3B更高的电压,提高了功率调节器的效率。并且,由于第1逆变器3B-INV的交流侧两个端子的一个上连接了第2逆变器1B-INV,另一个上连接了第3逆变器2B-INV,控制为使第2、第3逆变器1B-INV、2B-INV的输出相等,因此能够使直流电源V3B的中间点电位与功率调节器的输出电压Vout的中间电位相等。也就是说,提供给使中点接地的系统5时,能够将直流电源V3B的中间点电位作为接地电位,能够抑制太阳能板2的电位变动。
由于利用DC/DC变换器4连接各直流电源V2B、V3B、V1B并控制各电压,因此各单相逆变器能产生预期的输出电压,高效切实地实现上述效果。
此外,由于具备使第1逆变器3B-INV的交流侧两个端子之间短路的半导体开关Qx、Qy,在第1逆变器3B-INV的输出电压为0的期间内,使半导体开关Qx、Qy接通,对第1逆变器3B-INV进行旁路,因此能够抑制第1逆变器3B-INV的直流电源V3B的电位变动。并且,在该期间内,通过使第1逆变器3B-INV内的所有半导体开关Q31~Q34处于关断状态,切断直流电源V3B与系统5,能够将直流电源V3B的中间点电位总是为接地电位,能够可靠抑制太阳能板2的电位变动。
另外,该情况下示出了功率调节器将输出电力提供给系统5的情况,当提供给负载时,也能够使直流电源V3B的中间点电位与功率调节器的输出电压Vout的中间电位相等,也可抑制第1逆变器3B-INV的逆变器的直流母线的电位变动。
并且,在本实施方式中,示出了夹着第1逆变器3B-INV连接在两侧的第2、第3逆变器1B-INV、2B-INV通过PWM控制而高精度控制电压波形的情况,但也可以是例如使V1B=V2B=(2/9)·V3B而不进行PWM控制。
此外,假定了各直流电源V1B、V2B的电压相等,但如果第2、第3逆变器1B-INV、2B-INV的输出相等,则也可以使直流电源V1B、V2B的电压不同。并且,夹着第1逆变器3B-INV连接在两侧的第2、第3逆变器分别可以是多个,只要各输出电压的总和在两侧相等即可。
实施方式2
上述实施方式1中,设置了使第1逆变器3B-INV的交流侧两个端子之间短路的半导体开关Qx、Qy,但也可以不具备该半导体开关Qx、Qy。
在该情况下,各单相逆变器2B-INV、3B-INV、1B-INV的输出电压波形与图2所示相同,第2逆变器1B-INV的输出与第3逆变器2B-INV的输出相等,第2、第3逆变器1B-INV、2B-INV为补足目标输出电压与第1逆变器3B-INV输出电压之间的差分而进行输出。因此,第1逆变器3B-INV输出正负任何一个电压的期间内,第1逆变器3B-INV的直流电源V3B的中间点X与功率调节器的输出电压Vout的中间电位相等。
并且,第1逆变器3B-INV的输出电压为0的期间内,进行切换,以便交替进行第1逆变器3B-INV内的半导体开关Q31、Q33的同时导通与半导体开关Q32、Q34的同时导通。由此,第1逆变器3B-INV的直流电源V3B的中间点X,平均来讲与功率调节器的输出电压Vout的中间电位相等。
因此,第1逆变器3B-INV的输出电压在正负、0的任何一个期间内,直流电源V3B的中间点X都与功率调节器的输出电压Vout的中间电位相等,与系统5的中间电位(中点R的电位)即接地电位相等。因此,与上述实施方式1相同,可抑制太阳能板2的电位变动,抑制在浮游电容中流动的电流。
实施方式3
下面,以下示出在电路结构与上述实施方式1的图1中所示相同的功率调节器中,提高了斩波器电路3效率的实施方式。
200V的交流输出所需要的最大输出电压为约282V,逆变器单元1的输出电压VA最大可输出至V1B+V2B+V3B。因此,如果V1B+V2B+V3B为约282V以上,则功率调节器可进行200V的交流输出。V1B+V2B+V3B比利用斩波器电路3升压后的电压V3B要大,例如V1B、V2B、V3B的关系为2∶2∶9时,成为V3B的13/9倍。也就是说,当V3B为约195V以上时,V1B+V2B+V3B为282V以上,这成为交流输出的条件。
在太阳能电压VO为195V以上时,即使不进行利用斩波器电路3的升压动作,V3B也成为约195V以上,能够得到规定的交流输出。因此,在本实施方式中,对于利用直流电源2获得的直流电压(太阳能电压)VO,一直到规定的电压Vm1(195V)为止,接通和关断IGBT开关3a,升压为该电压Vm1,如果超出规定的电压Vm1,就会停止IGBT开关3a并停止斩波器电路3a的升压动作。
太阳能电压VO的增加的同时,升压率降低,斩波器电路3的效率提高,若停止IGBT开关3a则大幅降低损失,仅有二极管3c的导通损失。并且,伴随着太阳能电压VO的增加,电流也会降低,二极管3c中的导通损失也会降低。
在本实施方式中,太阳能电压VO超出规定的电压Vm1(195V)时,停止IGBT开关3a并停止升压动作,因此如上所述,得到能大幅度地减少升压带来的损失,且转换效率高的功率调节器。
实施方式4
图3是表示根据本发明实施方式4的功率调节器的示意构成图。根据本实施方式的功率调节器,在上述实施方式1的图1所示的功率调节器上,配备对斩波器电路3进行旁路的旁路电路7。
如图3所示,斩波器电路3将从直流电源2获得的直流电压VO升压,获得向成为第1直流电源的平滑电容器4充电的电压VC。此外,由于升压停止时对斩波器电路3进行旁路,因此例如由继电器7a构成的旁路电路7并联连接在斩波器电路3上。
在斩波器电路3中,与上述实施方式3同样,对于在成为输入的直流电源2中获得的直流电压(太阳能电压)VO,一直到规定的电压Vm1(195V)为止,接通和关断IGBT开关3a,升压为该电压Vm1。此期间,旁路电路7的继电器7a是开放着的。并且超出规定的电压Vm1时,就会停止IGBT开关3a。此时,旁路电路7的继电器7a关闭,电流流向旁路电路7一侧,对斩波器电路3的电抗器3b及二极管3c进行旁路。
太阳能电压VO在规定的电压Vm1以下的范围时,斩波器电路3为了使输出电压V3B成为一定电压Vm1,而进行升压,因此太阳能电压VO增加的同时,升压率降低,斩波器电路3的效率提高。太阳能电压VO超出规定的电压Vm1时,停止升压动作,关闭旁路电路7的继电器7a,电流流向旁路电路7一侧,所以几乎没有损失。因此,太阳能电压VO以电压Vm1为界,斩波器电路的效率急剧提高。
另外,停止升压动作的规定电压Vm1在约195V以上即可,在电压更低的情况下,更能够降低斩波器电路3的损失。并且,停止升压动作后,不但会大幅降低因IGBT开关3a的停止所带来的损失,而且由于对斩波器电路3内的电抗器3b及二极管3c进行了旁路,因此也能消除电抗器3b及二极管3c的导通损失,斩波器电路3中几乎没有损失。这样便能获得转换效率高的功率调节器。
以下对于上述实施方式4中的旁路电路7,根据图4~图6进行详细说明。
旁路电路7由继电器7a构成,对斩波器电路3内串联连接的电抗器3b及二极管3c的任何一个、或者两个进行旁路。
图4表示如上述实施方式4的图3所示,利用继电器7a将电抗器3b及二极管3c进行旁路的旁路电路7。图5表示根据别例的旁路电路7,利用继电器7a只对二极管3c进行旁路。图6表示根据第2别例的旁路电路7,利用继电器7a只对电抗器3b进行旁路。
此外,继电器7a上并联连接自消弧型的半导体开关7b。继电器7a一般在零电流时开放或低电压时开放,因此难以切断直流电流,通过这样并联具备半导体开关7b就能容易地切断。这时,开放继电器7a的同时使半导体开关7b接通,暂时将电流移到半导体开关7b。这样,切断流过继电器7a的电流,之后再关断半导体开关7b。
在任何一个情况下,如果太阳能电压VO超出规定的电压Vm1,就会停止IGBT开关3a,停止升压动作,关闭旁路电路7的继电器7a,电流流过旁路电路7一侧。
图4的情况下,由于对斩波器电路3内的电抗器3b及二极管3c进行了旁路,因此能够消除电抗器3b及二极管3c的导通损失,提高了功率调节器整体的效率。
图5的情况下,由于仅对斩波器电路3内的二极管3c进行了旁路,因此能够消除二极管3c的导通损失,提高了功率调节器整体的效率。这时,由于没有对电抗器3b进行旁路,因此可将电抗器3b作为滤波器使用。
图4、图5中,由于对二极管3c进行了旁路,因此当直流电源V3B大于太阳能电压VO时,有可能会导致电流的逆流,或者甚至对直流电源2即太阳能板施加逆电压,从而导致太阳能板的损伤。因此构成为,检测出流过继电器7a的电流,当该电流成为一定值以下时,开放继电器7a,切换到经由电抗器3b及二极管3c的电流路径。这样,通过开放继电器7a而使二极管3c的功能有效,具备逆流防止及太阳能板的逆电压保护功能。
另外,开放继电器7a时,即使因检测迟缓等而导致逆电流已产生,也能通过暂时将电流移到半导体开关7a来进行可靠切断。
图6的情况下,由于仅对斩波器电路3内的电抗器3b进行了旁路,因此能够消除电抗器3b的导通损失,提高了功率调节器整体的效率。并且由于没有对二极管3c进行旁路,因此利用二极管3c可防止逆流并能进行太阳能板的逆电压保护,容易提高其可靠性。这时,即使不设置半导体开关7b,继电器7a也可进行切断,但是通过设置半导体开关7b,在二极管3c的异常等的情况下也能进行切断。
可广泛应用于将太阳能等分散电源的直流电压升压到必要的电压后,转换为交流并连接到系统中的无停电电源装置,或将转换后的交流电力提供给负载的逆变器装置。

Claims (9)

1.一种电力转换装置,串联连接将直流电源的直流电力转换为交流电力的多个单相逆变器的交流侧,利用根据从上述多个单相逆变器中选择的规定组合产生的各发生电压的总和来控制输出电压,
所述电力转换装置的特征在于:
上述多个单相逆变器包括:将上述直流电源中电压最大的第1直流电源作为输入的第1逆变器;连接在该第1逆变器的交流侧第1端子上的一个以上的相互串联的第2逆变器;连接在该第1逆变器的交流侧第2端子上的一个以上的相互串联的第3逆变器,
上述第2逆变器的总输出电压与上述第3逆变器的总输出电压相等。
2.根据权利要求1所述的电力转换装置,其特征在于:
将使上述第1逆变器的交流侧两个端子之间短路的短路开关并联连接在该第1逆变器上,当上述第1逆变器的产生电压为0时,导通上述短路开关,对上述第1逆变器进行旁路。
3.根据权利要求2所述的电力转换装置,其特征在于:
当上述第1逆变器的产生电压为0时,导通上述短路开关,并且控制上述第1逆变器的切换状态,以便切断上述第1直流电源与该电力转换装置的交流输出用电力线。
4.根据权利要求1所述的电力转换装置,其特征在于:
成为上述第2、第3各逆变器的输入的各直流电源和上述第1直流电源,经由DC/DC变换器进行连接。
5.根据权利要求1所述的电力转换装置,其特征在于:
上述第1直流电源经由升压电路从第2直流电源生成。
6.根据权利要求5所述的电力转换装置,其特征在于:
当上述第2直流电源的电压超出规定的电压时,停止上述升压电路内开关的接通和关断动作,从而停止升压动作。
7.根据权利要求6所述的电力转换装置,其特征在于:
具备对上述升压电路进行旁路的旁路电路,
当上述第2直流电源的电压超出规定的电压时,停止上述升压电路内开关的接通和关断动作,从而停止升压动作,并且利用上述旁路电路对该升压电路进行旁路。
8.根据权利要求7所述的电力转换装置,其特征在于:
上述旁路电路由继电器构成。
9.根据权利要求5所述的电力转换装置,其特征在于:
输出规定的交流电压、交流电流并提供给负载,或者将该规定的交流输出并联连接到交流系统,且将上述第2直流电源连接到该交流系统。
CNB2006800060769A 2005-02-25 2006-02-21 电力转换装置 Expired - Fee Related CN100566110C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP050697/2005 2005-02-25
JP2005050697 2005-02-25

Publications (2)

Publication Number Publication Date
CN101128974A CN101128974A (zh) 2008-02-20
CN100566110C true CN100566110C (zh) 2009-12-02

Family

ID=36927314

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006800060769A Expired - Fee Related CN100566110C (zh) 2005-02-25 2006-02-21 电力转换装置

Country Status (5)

Country Link
US (1) US7602626B2 (zh)
EP (1) EP1852963B1 (zh)
JP (1) JP4527767B2 (zh)
CN (1) CN100566110C (zh)
WO (1) WO2006090674A1 (zh)

Families Citing this family (87)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1852962A4 (en) * 2005-02-25 2011-07-27 Mitsubishi Electric Corp CURRENT IMPLEMENTATION DEVICE
US10693415B2 (en) 2007-12-05 2020-06-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11881814B2 (en) 2005-12-05 2024-01-23 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US11569659B2 (en) 2006-12-06 2023-01-31 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11888387B2 (en) 2006-12-06 2024-01-30 Solaredge Technologies Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US8319471B2 (en) 2006-12-06 2012-11-27 Solaredge, Ltd. Battery power delivery module
US11296650B2 (en) 2006-12-06 2022-04-05 Solaredge Technologies Ltd. System and method for protection during inverter shutdown in distributed power installations
US8473250B2 (en) 2006-12-06 2013-06-25 Solaredge, Ltd. Monitoring of distributed power harvesting systems using DC power sources
US8531055B2 (en) 2006-12-06 2013-09-10 Solaredge Ltd. Safety mechanisms, wake up and shutdown methods in distributed power installations
US9112379B2 (en) 2006-12-06 2015-08-18 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US8618692B2 (en) 2007-12-04 2013-12-31 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US11735910B2 (en) 2006-12-06 2023-08-22 Solaredge Technologies Ltd. Distributed power system using direct current power sources
US8963369B2 (en) 2007-12-04 2015-02-24 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8384243B2 (en) 2007-12-04 2013-02-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8816535B2 (en) 2007-10-10 2014-08-26 Solaredge Technologies, Ltd. System and method for protection during inverter shutdown in distributed power installations
US8319483B2 (en) 2007-08-06 2012-11-27 Solaredge Technologies Ltd. Digital average input current control in power converter
US8013472B2 (en) 2006-12-06 2011-09-06 Solaredge, Ltd. Method for distributed power harvesting using DC power sources
US11309832B2 (en) 2006-12-06 2022-04-19 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US9130401B2 (en) 2006-12-06 2015-09-08 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US8947194B2 (en) 2009-05-26 2015-02-03 Solaredge Technologies Ltd. Theft detection and prevention in a power generation system
US11687112B2 (en) 2006-12-06 2023-06-27 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11855231B2 (en) 2006-12-06 2023-12-26 Solaredge Technologies Ltd. Distributed power harvesting systems using DC power sources
US11728768B2 (en) 2006-12-06 2023-08-15 Solaredge Technologies Ltd. Pairing of components in a direct current distributed power generation system
US9088178B2 (en) 2006-12-06 2015-07-21 Solaredge Technologies Ltd Distributed power harvesting systems using DC power sources
JP2008228398A (ja) * 2007-03-09 2008-09-25 Toyota Motor Corp 電力変換装置
US9407093B2 (en) 2007-08-22 2016-08-02 Maxout Renewables, Inc. Method for balancing circuit voltage
US11264947B2 (en) 2007-12-05 2022-03-01 Solaredge Technologies Ltd. Testing of a photovoltaic panel
US8289742B2 (en) 2007-12-05 2012-10-16 Solaredge Ltd. Parallel connected inverters
US8049523B2 (en) 2007-12-05 2011-11-01 Solaredge Technologies Ltd. Current sensing on a MOSFET
EP2722979B1 (en) 2008-03-24 2022-11-30 Solaredge Technologies Ltd. Switch mode converter including auxiliary commutation circuit for achieving zero current switching
EP3121922B1 (en) 2008-05-05 2020-03-04 Solaredge Technologies Ltd. Direct current power combiner
US7929325B2 (en) * 2008-05-27 2011-04-19 General Electric Company High efficiency, multi-source photovoltaic inverter
EP2187510B1 (de) 2008-11-15 2016-08-03 SMA Solar Technology AG Stromrichteranlaufschaltung
US8649196B2 (en) 2009-01-29 2014-02-11 Mitsubishi Electric Corporation Power converting apparatus with an output voltage that is the sum of voltages generated by individual inverters
KR101136404B1 (ko) * 2009-02-20 2012-04-18 도시바 미쓰비시덴키 산교시스템 가부시키가이샤 전력 변환 장치
CN104135217B (zh) 2009-05-19 2016-08-24 最大输出可再生能源公司 包括发电装置的集群的电站的构造
US8184460B2 (en) * 2009-05-28 2012-05-22 General Electric Company Solar inverter and control method
CN102460932B (zh) 2009-06-19 2014-12-10 三菱电机株式会社 电力变换装置
JP5493532B2 (ja) * 2009-07-17 2014-05-14 富士電機株式会社 負荷駆動装置及びこれを使用した電気自動車
US8614903B2 (en) 2009-08-24 2013-12-24 Mitsubishi Electric Corporation Power conditioner for photovoltaic power generation
WO2011033698A1 (ja) * 2009-09-16 2011-03-24 三菱電機株式会社 電力変換装置
EP2541749A4 (en) * 2010-02-26 2017-12-13 Panasonic Intellectual Property Management Co., Ltd. Power conversion apparatus, grid connection apparatus, and grid connection system
JP5362657B2 (ja) * 2010-06-28 2013-12-11 三菱電機株式会社 電力変換装置
KR101776984B1 (ko) * 2010-09-09 2017-09-08 벤쇼, 인코포레이티드 모듈러 멀티레벨 컨버터 시스템을 제어하는 시스템 및 방법
US10673229B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
US10230310B2 (en) 2016-04-05 2019-03-12 Solaredge Technologies Ltd Safety switch for photovoltaic systems
GB2485527B (en) 2010-11-09 2012-12-19 Solaredge Technologies Ltd Arc detection and prevention in a power generation system
US10673222B2 (en) 2010-11-09 2020-06-02 Solaredge Technologies Ltd. Arc detection and prevention in a power generation system
CN102468755B (zh) * 2010-11-16 2016-01-20 中兴通讯股份有限公司 一种新能源供电系统控制器装置和控制方法
US9118213B2 (en) 2010-11-24 2015-08-25 Kohler Co. Portal for harvesting energy from distributed electrical power sources
GB2486408A (en) 2010-12-09 2012-06-20 Solaredge Technologies Ltd Disconnection of a string carrying direct current
GB2483317B (en) * 2011-01-12 2012-08-22 Solaredge Technologies Ltd Serially connected inverters
CN102638045B (zh) * 2011-02-12 2014-11-19 中国人民解放军总后勤部建筑工程研究所 具有负载自适应功能的模块式并联逆变系统及控制方法
US11901810B2 (en) 2011-05-08 2024-02-13 Koolbridge Solar, Inc. Adaptive electrical power distribution panel
EP2732527A4 (en) 2011-07-11 2015-10-07 Sinewatts Inc SYSTEMS AND METHOD FOR PHOTOVOLTAIC COLLECTION AND CONVERSION OF SOLAR ENERGY
US8570005B2 (en) 2011-09-12 2013-10-29 Solaredge Technologies Ltd. Direct current link circuit
GB2498365A (en) 2012-01-11 2013-07-17 Solaredge Technologies Ltd Photovoltaic module
GB2498790A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Maximising power in a photovoltaic distributed power system
US9853565B2 (en) 2012-01-30 2017-12-26 Solaredge Technologies Ltd. Maximized power in a photovoltaic distributed power system
GB2498791A (en) 2012-01-30 2013-07-31 Solaredge Technologies Ltd Photovoltaic panel circuitry
GB2499991A (en) 2012-03-05 2013-09-11 Solaredge Technologies Ltd DC link circuit for photovoltaic array
JP2013192382A (ja) 2012-03-14 2013-09-26 Denso Corp ソーラーパワーコンディショナ
US10115841B2 (en) 2012-06-04 2018-10-30 Solaredge Technologies Ltd. Integrated photovoltaic panel circuitry
CN202978746U (zh) * 2012-12-21 2013-06-05 京东方科技集团股份有限公司 一种逆变器及一种并网发电系统
US9413271B2 (en) * 2013-03-14 2016-08-09 Combined Energies, Llc Power conversion system with a DC to DC boost converter
US9906039B2 (en) 2013-03-14 2018-02-27 Combind Energies, LLC Power system for multiple power sources
US20140278709A1 (en) 2013-03-14 2014-09-18 Combined Energies LLC Intelligent CCHP System
US9548619B2 (en) 2013-03-14 2017-01-17 Solaredge Technologies Ltd. Method and apparatus for storing and depleting energy
EP4318001A3 (en) 2013-03-15 2024-05-01 Solaredge Technologies Ltd. Bypass mechanism
US9634560B2 (en) 2013-03-26 2017-04-25 Telefonaktiebolaget Lm Ericsson (Publ) Voltage modulator
JP6154265B2 (ja) * 2013-09-13 2017-06-28 シャープ株式会社 太陽光発電システム
EP3061174B1 (en) * 2013-10-21 2018-04-25 ABB Schweiz AG Double-stage inverter apparatus for energy conversion systems and control method thereof
US9209679B2 (en) * 2013-12-18 2015-12-08 Abb Technology Ag Method and apparatus for transferring power between AC and DC power systems
CN106664023B (zh) * 2014-10-20 2019-04-30 三菱电机株式会社 电力变换装置
CN105337520A (zh) * 2015-12-11 2016-02-17 珠海格力电器股份有限公司 光伏并网变换器、光伏供电系统和电器
US10599113B2 (en) 2016-03-03 2020-03-24 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
CN117130027A (zh) 2016-03-03 2023-11-28 太阳能安吉科技有限公司 用于映射发电设施的方法
US11081608B2 (en) 2016-03-03 2021-08-03 Solaredge Technologies Ltd. Apparatus and method for determining an order of power devices in power generation systems
US11018623B2 (en) 2016-04-05 2021-05-25 Solaredge Technologies Ltd. Safety switch for photovoltaic systems
US11177663B2 (en) 2016-04-05 2021-11-16 Solaredge Technologies Ltd. Chain of power devices
US11196272B2 (en) * 2016-06-29 2021-12-07 Koolbridge Solar, Inc. Rapid de-energization of DC conductors with a power source at both ends
DE102017201657A1 (de) 2017-02-02 2018-08-02 Volkswagen Aktiengesellschaft Schaltungsanordnung, Bordnetz und Fortbewegungsmittel mit verbesserter Zwischenkreisaufladung
CN112166548A (zh) 2018-05-29 2021-01-01 三菱电机株式会社 电力变换装置
CN110212628B (zh) * 2019-04-24 2021-12-10 广东工业大学 一种太阳能光伏发电逆变控制切换系统的切换方法
CN112117920B (zh) * 2019-06-20 2022-02-22 台达电子工业股份有限公司 电源供应器及其控制方法及电源供应系统
US11545931B2 (en) 2019-11-10 2023-01-03 Maxout Renewables, Inc. Optimizing hybrid inverter system
US20240178741A1 (en) * 2022-11-30 2024-05-30 Infineon Technologies Austria Ag Power converter having a solid-state transformer and a half bridge converter stage for each isolated dc output of the solid-state transformer

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138922A (zh) * 1994-11-15 1996-12-25 瑞典通用电器勃朗勃威力公司 在串联补偿换流站中用于补偿不平衡的方法和装置
CN1449642A (zh) * 2000-10-06 2003-10-15 皇家菲利浦电子有限公司 用于液晶显示背面照明的电压馈电推挽式谐振逆变器

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5179508A (en) * 1991-10-15 1993-01-12 International Business Machines Corp. Standby boost converter
DE19635606A1 (de) * 1996-09-02 1998-03-05 Werner Prof Dr Ing Kleinkauf Vorrichtung zur Erzeugung einer höheren Wechselspannung aus mehreren niedrigeren Gleichspannungen und dafür geeigneter Bausatz
AU2765599A (en) * 1998-02-13 1999-08-30 Wisconsin Alumni Research Foundation Hybrid topology for multilevel power conversion
US6320767B1 (en) * 1998-12-18 2001-11-20 Kabushiki Kaisha Toshiba Inverter apparatus
JP2000228883A (ja) * 1999-02-04 2000-08-15 Fuji Electric Co Ltd 電力変換装置
US6556461B1 (en) 2001-11-19 2003-04-29 Power Paragon, Inc. Step switched PWM sine generator
JP3823833B2 (ja) * 2002-01-17 2006-09-20 松下電器産業株式会社 電力変換装置
JP4364528B2 (ja) * 2002-03-01 2009-11-18 コダック グラフィック コミュニケーションズ カナダ カンパニー 処理パラメータの自動制御のための設備を有する処理ユニット
JP2005039931A (ja) * 2003-07-14 2005-02-10 Toshiba Consumer Marketing Corp 系統連系インバータ装置
US7274116B2 (en) * 2003-08-05 2007-09-25 Matsushita Electric Industrial Co., Ltd. direct-current power supply and battery-powered electronic apparatus equipped with the power supply
EP1852962A4 (en) * 2005-02-25 2011-07-27 Mitsubishi Electric Corp CURRENT IMPLEMENTATION DEVICE
JP4811917B2 (ja) * 2005-12-27 2011-11-09 三菱電機株式会社 電力変換装置
US7485987B2 (en) * 2006-02-23 2009-02-03 Mitsubishi Denki Kabushiki Kaisha Power converting device

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1138922A (zh) * 1994-11-15 1996-12-25 瑞典通用电器勃朗勃威力公司 在串联补偿换流站中用于补偿不平衡的方法和装置
CN1449642A (zh) * 2000-10-06 2003-10-15 皇家菲利浦电子有限公司 用于液晶显示背面照明的电压馈电推挽式谐振逆变器

Also Published As

Publication number Publication date
JPWO2006090674A1 (ja) 2008-07-24
US20090015071A1 (en) 2009-01-15
EP1852963B1 (en) 2016-04-06
US7602626B2 (en) 2009-10-13
CN101128974A (zh) 2008-02-20
EP1852963A4 (en) 2011-03-09
EP1852963A1 (en) 2007-11-07
WO2006090674A1 (ja) 2006-08-31
JP4527767B2 (ja) 2010-08-18

Similar Documents

Publication Publication Date Title
CN100566110C (zh) 电力转换装置
Sahoo et al. Review and comparative study of single-stage inverters for a PV system
CN100541999C (zh) 电力转换装置
CN101128973B (zh) 电力转换装置
KR101050308B1 (ko) 인버터
JP5851024B2 (ja) ステップアップコンバータ
US8681522B2 (en) Method for operating an electronically controlled inverter with switches that alternate between being elements of a boost-buck converter and an inverting Cuk converter
EP2166638A2 (en) Quasi-ac, photovoltaic module for unfolder photovoltaic inverter
CN102420458A (zh) 电力系统
EP2410648A1 (en) DC/DC converter circuit and method for controlling a DC/DC converter circuit
Dhara et al. An integrated semi-double stage-based multilevel inverter with voltage boosting scheme for photovoltaic systems
US8493760B2 (en) Electric circuit for converting direct current into alternating current
Aharon et al. Analysis of bi-directional buck-boost converter for energy storage applications
KR20160013176A (ko) 병렬로 접속된 다단 컨버터들을 가지는 컨버터 어셈블리 및 상기 다단 컨버터들을 제어하기 위한 방법
KR20150140966A (ko) 바이패스 운전 기능을 갖는 직렬형 h-브릿지 인버터
JP5362657B2 (ja) 電力変換装置
Li et al. A parallel bidirectional dc/dc converter topology for energy storage systems in wind applications
CN106961226B (zh) 一种六开关的微逆变器交流侧功率耦合电路
Elanangai Multi-level inverter using a single DC voltage source connected in parallel with capacitors connected in series
JPH0965657A (ja) 太陽光発電用電力変換装置
Premalatha Design and experimental investigation of modified switched coupled inductor quasi Z-source cascaded multilevel inverter
JP2003134842A (ja) 昇降圧コンバータ及びこれを用いた系統連系インバータ
Zeltner et al. Power electronics for smart micro and nano grids controlled by a novel two-wire interface with integrated power and signal transfer
Vidhyarubini et al. Z-source inverter based photovoltaic power generation system
US20230253879A1 (en) Charger, a multiplexing current conversion circuit and an uninterruptible power supply including the same

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091202