CN100533763C - 磁隧道结元件结构和用于制造该结构的方法 - Google Patents

磁隧道结元件结构和用于制造该结构的方法 Download PDF

Info

Publication number
CN100533763C
CN100533763C CNB200580023937XA CN200580023937A CN100533763C CN 100533763 C CN100533763 C CN 100533763C CN B200580023937X A CNB200580023937X A CN B200580023937XA CN 200580023937 A CN200580023937 A CN 200580023937A CN 100533763 C CN100533763 C CN 100533763C
Authority
CN
China
Prior art keywords
layer
ferromagnetic
pinning
free
amorphous
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CNB200580023937XA
Other languages
English (en)
Other versions
CN1985377A (zh
Inventor
孙继军
雷努·W·戴夫
乔恩·M·斯劳特
约翰·阿克曼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Everspin Technologies Inc
Original Assignee
Freescale Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Freescale Semiconductor Inc filed Critical Freescale Semiconductor Inc
Publication of CN1985377A publication Critical patent/CN1985377A/zh
Application granted granted Critical
Publication of CN100533763C publication Critical patent/CN100533763C/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G11INFORMATION STORAGE
    • G11CSTATIC STORES
    • G11C11/00Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor
    • G11C11/02Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements
    • G11C11/14Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements
    • G11C11/15Digital stores characterised by the use of particular electric or magnetic storage elements; Storage elements therefor using magnetic elements using thin-film elements using multiple magnetic layers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y25/00Nanomagnetism, e.g. magnetoimpedance, anisotropic magnetoresistance, giant magnetoresistance or tunneling magnetoresistance
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3268Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn
    • H01F10/3272Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the exchange coupling being asymmetric, e.g. by use of additional pinning, by using antiferromagnetic or ferromagnetic coupling interface, i.e. so-called spin-valve [SV] structure, e.g. NiFe/Cu/NiFe/FeMn by use of anti-parallel coupled [APC] ferromagnetic layers, e.g. artificial ferrimagnets [AFI], artificial [AAF] or synthetic [SAF] anti-ferromagnets
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/14Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates
    • H01F41/30Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE]
    • H01F41/302Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F41/303Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for applying magnetic films to substrates for applying nanostructures, e.g. by molecular beam epitaxy [MBE] for applying spin-exchange-coupled multilayers, e.g. nanostructured superlattices with exchange coupling adjustment of magnetic film pairs, e.g. interface modifications by reduction, oxidation
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/01Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N50/00Galvanomagnetic devices
    • H10N50/10Magnetoresistive devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/08Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers
    • H01F10/10Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition
    • H01F10/12Thin magnetic films, e.g. of one-domain structure characterised by magnetic layers characterised by the composition being metals or alloys
    • H01F10/13Amorphous metallic alloys, e.g. glassy metals
    • H01F10/132Amorphous metallic alloys, e.g. glassy metals containing cobalt
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F10/00Thin magnetic films, e.g. of one-domain structure
    • H01F10/32Spin-exchange-coupled multilayers, e.g. nanostructured superlattices
    • H01F10/324Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer
    • H01F10/3254Exchange coupling of magnetic film pairs via a very thin non-magnetic spacer, e.g. by exchange with conduction electrons of the spacer the spacer being semiconducting or insulating, e.g. for spin tunnel junction [STJ]

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Nanotechnology (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Hall/Mr Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Magnetic Heads (AREA)
  • Thin Magnetic Films (AREA)
  • Measuring Magnetic Variables (AREA)

Abstract

提供了磁隧道结(MTJ)元件结构和用于制造MTJ元件结构的方法。MTJ元件结构(10)可以包括晶体钉扎层(26)、非晶体固定层(30)以及置于晶体钉扎层和非晶体固定层之间的耦合层(28)。非晶体固定层(30)与晶体钉扎层(26)反铁磁耦合。MTJ元件进一步包括自由层(34)以及置于非晶体固定层和自由层之间的隧道势垒层(32)。另一MTJ元件结构(60)可以包括钉扎层(26)、固定层(30)以及置于其之间的非磁耦合层(28)。隧道势垒层(32)被置于固定层(30)和自由层(34)之间。界面层(62)被安置为与隧道势垒层(32)和非晶体材料层(30)相邻。第一界面层(62)包括具有高于非晶体材料(30)的自旋极化的材料。

Description

磁隧道结元件结构和用于制造该结构的方法
技术领域
本发明通常涉及磁电子学器件,更具体地,涉及磁隧道结元件结构和用于制造磁隧道结元件结构的方法。
背景技术
磁电子学器件、自旋电子器件和自旋电子学器件是关于使用主要由电子自旋引起的效应的器件的同义词。在许多器件中使用了磁电子学效应,并且其提供了非易失的、可靠的、抗辐射的和高密度的数据存储和调取。许多磁电子学信息器件包括,但不限于,磁随机存取存储器(MRAM),磁传感器和用于盘片驱动器的读/写头。
典型地,磁电子学器件,诸如磁存储器元件,具有包括由至少一个非磁层分隔的多个铁磁层的结构。在磁存储器元件中,信息作为磁层中的磁化矢量的方向而被存储。例如,一个磁层中的磁化矢量是磁固定或钉扎的,而另一磁层的磁化方向自由地在相同和相反的方向之间切换,其分别被称为“平行”和“逆平行”状态。响应平行和逆平行状态,磁存储器元件呈现出两个不同的电阻。当两个磁层的磁化矢量基本上分别指向相同和相反的方向时,电阻具有最小和最大值。因此,检测电阻变化允许器件,诸如MRAM器件,提供存储在磁存储器元件中的信息。最小和最大电阻值之间的差除以最小电阻,被称为磁致电阻比(MR)。
一种类型的磁存储器元件,磁隧道结(MTJ)元件,包括固定的铁磁层,其具有相对于外部磁场固定的磁化方向,和自由的铁磁层,其具有相对外部磁场自由旋转的磁化方向。固定层和自由层由绝缘隧道势垒层分隔,其依赖于自旋极化电子隧穿通过自由和固定铁磁层之间的隧道势垒层的现象。隧穿现象依赖于电子自旋,使得MTJ元件的磁响应成为自由和固定铁磁层之间的传导电子的相对取向和自旋极化的函数。
由于MR强烈依赖于隧道势垒质量,因此隧道势垒层对于MTJ元件的性能是重要的。特别地,隧道势垒的表面平滑度在制造高质量的MTJ器件中具有关键的作用。典型地,隧道势垒的表面粗糙导致了由流过势垒的非隧道电流或者底部铁磁层中的高点过氧化引起的MR的减小,其因此减小了可靠性并且由此减小了MTJ器件制造中的生产量。而且,由于下代的磁电子学器件,诸如MRAM,将成比例缩小至较小的尺寸,因此将需要较薄的隧道势垒层。因此,当隧道势垒层在未来的器件中变得更薄时,表面平滑度将变得更加重要。
因此,理想的是,提供具有表面粗糙度减小的隧道势垒层的MTJ元件。此外,理想的是,提供一种用于制造具有改善的电气属性的MTJ元件的工艺。而且,通过后面的本发明的详细描述和所附权利要求,结合附图和本发明的该背景,本发明的其他的理想特征和特性将变得显而易见。
发明内容
根据本发明一个方面,提供一种磁隧道结元件,包括:
合成反铁磁钉扎结构,包括:晶体钉扎铁磁层;非晶体固定铁磁层;和非磁耦合层,其置于晶体钉扎铁磁层和非晶体固定铁磁层之间,其中非晶体固定铁磁层与晶体钉扎铁磁层反铁磁耦合;
第一电极叠层,其包括自由铁磁层;和
隧道势垒层,其置于晶体钉扎铁磁层和第一电极叠层之间。
根据本发明另一个方面,提供一种磁隧道结元件,包括:
合成反铁磁钉扎结构,包括:晶体钉扎铁磁层;非晶体固定铁磁层;和非磁耦合层,其置于钉扎铁磁层和固定铁磁层之间,其中固定铁磁层与钉扎铁磁层反铁磁耦合;
电极叠层,其包括自由铁磁层;
隧道势垒层,其置于晶体钉扎铁磁层和第一电极叠层之间;和
第一界面层,其置于自由铁磁层和非晶体固定铁磁层中的一层与隧道势垒层之间,
其中第一界面层包括的材料的自旋极化高于所述的自由铁磁层和非晶体固定铁磁层中的一层的自旋极化。
附图说明
下文将结合附图描述本发明,在附图中同样的数字表示同样的元件,并且
图1是根据本发明的一个示例性实施例的磁隧道结元件结构的截面视图;
图2是根据本发明的另一示例性实施例的磁隧道结元件结构的截面视图;以及
图3是用于制造诸如图1或2的磁隧道结元件结构的根据本发明的示例性实施例的工艺的流程图。
具体实施方式
下面的本发明的详细描述在本质上仅是示例性的,并非限制本发明或者本发明的应用和使用。而且,不存在由本发明的前述背景或者本发明的下面的详细描述所带来的限制。
参考图1,根据本发明的一个示例性实施例的MTJ元件10包括基板16、第一电极多层叠层14、第二电极多层叠层12、和置于第一电极多层叠层14和第二电极多层叠层12之间的绝缘隧道势垒层32。基板16可以包括任何适当的绝缘材料,诸如例如,介电材料。第一电极多层叠层14和第二电极多层叠层12包括铁磁层,如下文更加详细描述的。隧道势垒层32优选地由介电材料形成,并且更优选地由氧化铝(AlOx)形成。隧道势垒层32可以具有任何适当的厚度,但是优选地具有约7~约15埃的厚度。第一多层叠层14、第二多层叠层12和隧道势垒层32的层可以通过任何适当的淀积工艺形成,诸如例如,粒子束淀积、物理气相淀积(PVD)、分子束外延(MBE)等等。
第一电极多层叠层14包括第一或者基础电极层18,其是在基板16上形成的。第一电极层18可以由单一的传导材料或层组成,或者可替换地,第一电极层18可以是具有不止一个传导材料或层的多层叠层。在任一情况中,第一电极层18提供同第一电极多层叠层14的层的电气接触。
在本发明的一个实施例中,第一电极多层叠层14包括种子层20,其淀积在第一电极层18上面。种子层20可由任何适当的材料形成,其适用于对反铁磁AF钉扎层24的后继形成接种,如下文更加详细描述的。适用于形成种子层20的材料的示例包括,例如,钽(Ta)或者氮化钽(TaNx),其制造方法是,反应溅射或者相对薄的钽层(优选地小于约100埃,并且最优选地小于约50埃)的等离子体或粒子束氮化。种子层20可以是分立于第一电极层18的层,或者可以包括与第一电极层18相同的层。第一电极多层叠层14还可以包括任选的位于种子层20上面的模板层22。模板层22可以包括镍铁(NiFe)合金、镍铁钴(NiFeCo)合金、钉(Ru)、钽(Ta)、铝(Al)、或者适用于协助反铁磁钉扎层24的生长的任何其他的材料。反铁磁钉扎层24被置于种子层20和/或模板层22上面。反铁磁钉扎层24可由任何适当的反铁磁材料形成,但是优选地包括锰合金,其具有一般的组分MnX,其中X优选地是选自下列组中的一种或多种材料:铂(Pt)、钯(Pd)、镍(Ni)、铱(Ir)、锇(Os)、钌(Ru)或者铁(Fe)。
钉扎铁磁层26形成在下面的反铁磁钉扎层24上面,并且与之交换耦合,其钉扎一个方向中的钉扎铁磁层26的磁矩。钉扎铁磁层26在结构上是晶体,并且可由例如,钴铁合金制成,诸如CoFe或者CoFeX,其中X可以包括硼(B)、钽(Ta)、铪(Hf)、或者碳(C)。非晶体固定铁磁层30在金属耦合层28上面形成,金属耦合层28位于钉扎铁磁层26上面。如此处使用的,术语“非晶体”意指其中不存在长程晶序的材料,诸如使用正常的x射线衍射测量引出可易于辨识的峰值的材料,或者使用电子衍射测量引出可辨识式样的图案的材料。在本发明的一个实施例中,非晶体固定铁磁层30可由钴(Co)、铁(Fe)和硼(B)的合金形成。例如,非晶体固定层30可由包括71.2%的钴原子、8.8%的铁原子和20%的硼原子的合金形成。该组合物是其中添加硼的CoFe合金,并且可被表示为(Co89Fe11)80B20。然而,应当认识到,任何其他的适当的合金组合物,诸如CoFeX(其中X可以是钽、铪、硼、碳等中的一个或多个),或者包括钴和/或铁的合金,可用于形成非晶体固定层30。金属耦合层28可由任何适当的材料形成,其用于反铁磁地耦合到晶体钉扎层26和非晶体固定层30,诸如钌、铼、锇、铑或其合金,但是优选地由钌形成。金属耦合层28、晶体钉扎层26和非晶体固定层30产生了合成反铁磁(SAF)结构38。通过金属耦合层28提供的SAF结构的反铁磁耦合使得MTJ元件10在施加的磁场中更加稳定。此外,通过改变铁磁层26和30的厚度,可以使针对自由层的静磁耦合偏移,并且可以磁滞回线集中。
由于非晶体结构的本质,即,非晶体结构基本上不具有晶粒边界,因此相比于在晶体或者多晶体固定层上生长隧道势垒层32的情况,SAF结构38的非晶体固定层30有助于具有更平滑的表面的隧道势垒层32的生长。隧道势垒层的更平滑的表面改善了MTJ元件10的磁致电阻。此外,SAF结构38的晶体钉扎层26导致了足够的反铁磁耦合强度,由此SAF结构在外部磁场中是稳定的。因此,非晶体固定层和晶体钉扎层用于改善MTJ元件10的性能、可靠性和可制造性。
第二电极多层叠层12包括自由铁磁层34和保护性第二电极层36。第二电极层36可由任何适当的材料形成,诸如钽。在本发明的优选实施例中,第二电极层36可以包括不止一个材料层,诸如例如,钽层上面的氮化钽层。自由铁磁层34的磁矩基本上不会通过交换耦合固定或钉扎,并且在施加的磁场存在的情况下基本上可自由旋转。自由层34可以具有非晶体或者晶体结构,并且可由任何适当的合金组合物形成,诸如CoFeX(其中X可以是硼、钽、铪、碳等),或者包括镍或铁的合金,或者包括钴、镍和铁的合金。自由层34可以包括一个材料层或者可以包括多个层。例如,在本发明的一个实施例中,自由层34可以包括单一的NiFeCo层。在本发明的另一实施例中,自由层34可以是SAF结构,其包括例如,两个诸如NiFe的铁磁材料层,其由诸如钌、铼、锇、铑或其合金等的传导材料的耦合层分隔。
应当认识到,尽管图1和上文的描述公开了一种MTJ元件10,其具有位于AF钉扎层上面的晶体钉扎层、位于晶体钉扎层上面的金属耦合层、位于耦合层上面的非晶体固定层、位于固定层上面的隧道势垒层、和位于隧道势垒层上面的自由层或者自由SAF结构,但是本发明不限于此。而且,本发明还可用于具有倒转或翻转结构的MTJ元件,其具有位于自由层或者自由SAF结构上面的隧道势垒层、位于隧道势垒层上面的非晶体层、位于非晶体固定层上面的耦合层、位于金属耦合层上面的晶体钉扎层、和位于钉扎层上面的AF钉扎层。
图2说明了根据本发明的另一实施例的MTJ元件60。MTJ元件60与图1的MTJ元件10相似,其中同样的参考数字表示同样的或者相似的层。MTJ元件60包括基板16、第一电极多层叠层14、第二电极多层叠层12、和置于第一电极多层叠层14和第二电极多层叠层12之间的绝缘隧道势垒层32。如上文参考图1针对MTJ元件10描述的,第一电极叠层14可以包括第一电极18、种子层20、模板层22、反铁磁钉扎层24、晶体铁磁钉扎层26、耦合层28和非晶体铁磁固定层30。同样地,MTJ元件60的第二电极多层叠层12可以包括第二电极36和自由层34,其可以包括一个铁磁层或者可以包括诸如SAF结构的多个层。
在本发明的一个实施例中,MTJ元件60进一步包括界面层62,其是在非晶体固定层30和隧道势垒层32之间形成的。在本发明的另一实施例中,当自由层34是非晶体材料的一个层或多个层时,MTJ元件可以包括界面层64,其是在隧道势垒层32和非晶体自由层34之间形成的。在本发明的另一实施例中,MTJ元件60可以包括界面层62和界面层64。由于MTJ元件60的磁致电阻与同隧道势垒层32的任一表面相邻的铁磁层的自旋极化的积成比例,因此界面层62和/或界面层64可用于提高MTJ元件60的磁致电阻。因此,界面层62和64可以是非晶体、晶体或者多晶体的,并且可由“高自旋极化材料”形成。如此处使用的,术语“高自旋极化材料”意指具有高于其相邻的非晶体铁磁材料的自旋极化的自旋极化的材料。因此,界面层62可由具有高于非晶体固定层30的自旋极化的自旋极化的材料形成。同样地,界面层64可由具有高于非晶体自由层34的自旋极化的自旋极化的材料形成。例如,在本发明的一个实施例中,非晶体固定层30可以包括CoFeB,而界面层62可以包括CoFe。相似地,非晶体自由层34可以包括CoFeB,而界面层64可以包括CoFe。然而,应当认识到,界面层62和64还可以包括CoFeX,其中X可以包括硼、钽、铪、碳等,并且X的原子数小于5%。可替换地,界面层62和64可以包括其他的含钴合金或者其他的含铁合金。界面层62或者界面层64或者此两者的使用可以取决于多种因素,诸如例如,MTJ元件的所需的磁属性、MTJ元件的所需的电气属性、MTJ元件的预期应用等。
界面层62和64是足够薄的,使得它们不会抵消由于固定层30和/或自由层34的非晶体本质引起的MTJ器件性能的改善。在本发明的一个实施例中,界面层62和64具有不大于15埃的厚度。优选地、界面层62和64具有不大于10埃的厚度,并且更优选地,具有不大于5埃的厚度。而且,尽管固定层30和/或自由层34的非晶体本质可以改善MTJ元件60的电气属性,诸如磁致电阻的量值、磁致电阻的稳定性、反铁磁耦合强度(由饱和场(Hsat)确定)等,但是MTJ元件60中的界面层62和/或界面层64的存在也可以通过增加MTJ元件的磁致电阻改善电气属性。
图3是根据本发明的示例性实施例,用于制造诸如图1和2中说明的结构的半导体结构的工艺100的流程图。工艺100可以开始于提供基板,诸如图1和2的基板16(步骤102),并且在基板16上面形成第一电极层18(步骤104)。如上文所述,第一电极层18可以包括金属或其他传导材料的一个或多个层,其提供了同后继形成的层的电气接触。种子层20可以淀积在第一电极层18上面(步骤106)。种子层20可以是分立于第一电极层18的层,或者可替换地,种子层20可以包括与第一电极层18相同的层。然后可以在种子层20和/或第一电极层18上面制造任选的模板层22(步骤108)。
工艺100进一步包括,将反铁磁钉扎层24置于任选的模板层22和/或种子层20和/或第一电极层18上面(步骤110),并且在反铁磁钉扎层24上面形成晶体钉扎铁磁层26,由此钉扎铁磁层26与反铁磁钉扎层24交换耦合(步骤112)。然后将金属耦合层28置于钉扎铁磁层26上面(步骤114)。如上文所描述的,金属耦合层28可被形成为具有任何适当的厚度,并且可由任何适当的材料形成,其用于使晶体钉扎层26同上面的非晶体固定层30反铁磁耦合。适用于形成金属耦合层28的材料可以包括钌、锇、铑、铼等,及其合金。优选地,金属耦合层28由钌形成。
根据本发明的一个实施例,然后使金属耦合层28暴露于表面改性剂,其使金属耦合层28的暴露表面改性(步骤116)。如此处使用的,术语“表面改性剂”意指使金属耦合层28的表面改性的任何适当的材料,由此在金属耦合层28上面后继形成的固定层30呈现出相比于未使金属耦合层改性的情况的更加平滑的表面,在该表面上将形成隧道势垒层。因此,表面改性剂导致了MTJ元件的MR的增加。表面改性剂还导致了改善的击穿电压和MTJ元件中的较少的隧穿热点,因此增加了产量并且使MTJ元件阵列的比特电阻分布变窄。
在本发明的一个实施例中,表面改性剂包括氧。在这一点上,可以使金属耦合层28暴露于室温下的剂量(压力乘以暴露时间)为约10-5Torr-s~约10-1Torr-s的氧环境。使金属耦合层28暴露于氧环境一定的时间,其是足够长的,以允许氧将金属耦合层28的暴露表面改性,但是其也是足够短的,由此金属耦合层28提供的反铁磁耦合基本上不会减少。在本发明的一个实施例中,使金属耦合层暴露于氧环境一定的时间,其是足够短的,由此不允许氧淀积到可由标准的测量技术辨识的厚度。在本发明的优选实施例中,使金属耦合层28暴露于氧环境一定的时间周期,其允许在金属耦合层28的暴露表面上淀积不超过两个的氧单层。应当认识到,表面改性剂可以包括不同于氧或者除了氧以外的材料,诸如例如,空气、氩(Ar)/氧(O2)混合物、或者氮(N2)/氧(O2)混合物。
在使金属耦合层28的暴露表面改性之后,可以在金属耦合层28上面淀积固定铁磁层(步骤118)。在本发明的一个实施例中,固定铁磁层可由晶体铁磁材料形成,诸如例如,CoFe或者任何其他的适当的钴合金和/或铁合金。在本发明的另一更优选的实施例中,固定铁磁层可以是非晶体的,诸如上文参考图1和2描述的非晶体固定铁磁层。在这一点上,非晶体固定层可由非晶体铁磁合金形成,诸如CoFeX,其中X可以是硼、碳、钽、铪等,并且可由其他的钴和/或铁的合金形成。
在本发明的另一实施例中,当固定层包括非晶体材料时,工艺100可以进一步包括,在固定层上面淀积第一界面层,诸如图2的界面层62(步骤120)。界面层62可由具有高于非晶体固定层30的自旋极化的自旋极化的材料形成。例如,固定层可以包括CoFeB的非晶体层,而第一界面层可以包括CoFe。然而,在本发明的另一实施例中,第一界面层可以包括CoFeX,其中X可以包括硼、钽、碳、铪等,并且X原子数小于5%。在本发明的另一实施例中,第一界面层可以包括其他的含钴合金或者其他的含铁合金。
然后,可以在第一界面层和/或固定层上面形成绝缘的隧道势垒层,诸如图1和2的隧道势垒层32(步骤122)。可以使用用于形成隧道势垒层的半导体工业中已知的任何适当的绝缘材料形成该隧道势垒层。例如,隧道势垒层可以通过在第一界面层和/或固定层上面淀积铝层并且使该铝层氧化而形成,如本领域中公知的。
然后,可以在隧道势垒层上面形成自由铁磁层,诸如自由铁磁层34(步骤126)。如上文所述,该自由层可以具有非晶体或者晶体结构,并且可由任何适当的合金组合物形成,诸如CoFeX(其中X可以是硼、碳、钽、铪等)、NiFe合金或者包括钴、铁和镍的其他合金。在本发明的另一任选实施例中,自由层可以是SAF结构,其包括例如,两个诸如NiFe的铁磁材料层,其由诸如钌、铼、锇、铑等或其合金的绝缘材料的金属耦合层分隔。
在本发明的另一可选实施例中,当自由层包括非晶体材料时,可以在形成非晶体自由铁磁层之前,在隧道势垒层上面淀积第二界面层,诸如界面层64(步骤124)。第二界面层可以包括具有高于自由层的自旋极化的自旋极化的材料。例如,自由层可以包括非晶体CoFeB,而第二界面层可以包括CoFe。然而,在本发明的另一实施例中,第二界面层可以包括CoFeX,其中X可以包括硼、钽、铪、碳等,并且X原子数小于5%。在本发明的另一实施例中,第二界面层可以包括其他的含钴合金和/或其他的含铁合金。
在形成自由层之后,可以将第二电极层,诸如第二电极层36置于自由层上面(步骤128)。如上文所述,第二电极层可由任何适当的传导材料形成,诸如钽。在本发明的优选实施例中,第二电极层可以包括不止一个材料层,诸如例如,钽层上面的氮化钽(TaNx)层。
上文参考图3描述的工艺100的层的形成可以使用半导体工业中已知的任何适当的传统淀积方法执行,诸如例如,离子束淀积、物理气相淀积(PVD)、分子束外延(MBE)等。而且,应当认识到,本发明的工艺不限于上文参考图3描述的步骤顺序。相反地,可以以倒转的顺序执行该步骤,以制造磁隧道结元件,其具有位于自由层或者自由层SAF结构上面的隧道势垒层、位于隧道势垒层上面的固定层、位于固定层上面的钉扎层。在这一点上,当自由层是如上文所述的SAF结构时,在形成第二电极之后,可以淀积自由SAF结构的第一铁磁层,随后淀积金属耦合层。然后可以将金属耦合层暴露于表面改性剂,其使金属耦合层的暴露表面改性。表面改性剂使金属耦合层的表面改性,由此在金属耦合层上面后继形成的第二铁磁层呈现出相比于未使金属耦合层改性的情况的更加平滑的表面,在该表面上将形成隧道势垒层。在使金属耦合层的表面改性之后,自由SAF层的第二铁磁层可以淀积在金属耦合层上面。然后该工艺可以继续形成隧道势垒层和固定SAF结构。应当认识到,在本发明的另一实施例中,固定SAF结构的金属耦合层和自由SAF结构的金属耦合层,在后继淀积上面的层之前,可以暴露于表面改性剂,以改善上面的层的物理质量。
尽管在本发明的前面的详细描述中已提出了至少一个示例性实施例,但是应当认识到,存在大量的变化方案。还应当认识到,示例性实施例仅是示例,目的不在于以任何方式限制本发明的范围、应用或设置。而且,前面的详细描述将向本领域的技术人员提供用于实现本发明的示例性实施例的传统的路线图,应当理解,在不偏离所附权利要求中阐述的本发明的范围的前提下,可以针对示例性实施例中描述的元件的功能和配置进行多种变化。

Claims (14)

1.一种磁隧道结元件,包括:
合成反铁磁钉扎结构,包括:
晶体钉扎铁磁层;
非晶体固定铁磁层;和
非磁耦合层,其置于晶体钉扎铁磁层和非晶体固定铁磁层之间,其中非晶体固定铁磁层与晶体钉扎铁磁层反铁磁耦合;
第一电极叠层,其包括自由铁磁层;和
隧道势垒层,其置于晶体钉扎铁磁层和第一电极叠层之间。
2.权利要求1的磁隧道结元件,进一步包括反铁磁钉扎层,其置于晶体钉扎铁磁层附近,其中晶体钉扎铁磁层同反铁磁钉扎层交换耦合。
3.权利要求1的磁隧道结元件,非晶体固定铁磁层包括具有化学式CoFeX的材料,其中X包括下列中的至少一种材料:硼、钽、碳和铪。
4.权利要求1的磁隧道结元件,自由铁磁层包括非晶体材料或晶体材料中的一个。
5.权利要求1的磁隧道结元件,自由铁磁层包括合成反铁磁结构,其具有两个铁磁层和置于两个铁磁层之间的非磁层。
6.权利要求1的磁隧道结元件,第一电极叠层进一步包括电极层,其置于自由铁磁层附近。
7.权利要求6的磁隧道结元件,晶体钉扎铁磁层包括具有化学式CoFeX的材料,其中X包括下列中的至少一种材料:硼、钽、铪和碳。
8.权利要求1的磁隧道结元件,非磁耦合层选自下列材料:钌、铼、锇、铑及其任何组合。
9.一种磁隧道结元件,包括:
合成反铁磁钉扎结构,包括:
晶体钉扎铁磁层;
非晶体固定铁磁层;和
非磁耦合层,其置于钉扎铁磁层和固定铁磁层之间,其中固定铁磁层与钉扎铁磁层反铁磁耦合;
电极叠层,其包括自由铁磁层;
隧道势垒层,其置于晶体钉扎铁磁层和电极叠层之间;和
第一界面层,其置于自由铁磁层和非晶体固定铁磁层中的一层与隧道势垒层之间,
其中第一界面层包括的材料的自旋极化高于所述的自由铁磁层和非晶体固定铁磁层中的一层的自旋极化。
10.权利要求9的磁隧道结元件,所述的自由铁磁层和非晶体固定铁磁层中的一层包括具有化学式CoFeX的材料,其中X包括下列中的至少一种材料:硼、钽、铪和碳,并且,第一界面层包括CoFe。
11.权利要求10的磁隧道结元件,其中自由铁磁层包括非晶体材料,并且进一步包括第二界面层,其置于自由铁磁层和非晶体固定铁磁层中的另一层与隧道势垒层之间,第二界面层包括的材料的自旋极化高于自由铁磁层的自旋极化。
12.权利要求11的磁隧道结元件,其中自由铁磁层包括合成反铁磁结构,其具有由非磁耦合层分隔的两个铁磁材料层。
13.权利要求9的磁隧道结元件,自由铁磁层包括非晶体材料层,其中第一界面层置于隧道势垒层和自由铁磁层之间,并且其中第一界面层包括的材料的自旋极化高于自由铁磁层的自旋极化。
14.权利要求13的磁隧道结元件,其中自由铁磁层包括合成反铁磁结构,其具有由非磁耦合层分隔的两个铁磁材料层。
CNB200580023937XA 2004-07-26 2005-06-16 磁隧道结元件结构和用于制造该结构的方法 Active CN100533763C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/899,610 US7098495B2 (en) 2004-07-26 2004-07-26 Magnetic tunnel junction element structures and methods for fabricating the same
US10/899,610 2004-07-26

Publications (2)

Publication Number Publication Date
CN1985377A CN1985377A (zh) 2007-06-20
CN100533763C true CN100533763C (zh) 2009-08-26

Family

ID=35656217

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB200580023937XA Active CN100533763C (zh) 2004-07-26 2005-06-16 磁隧道结元件结构和用于制造该结构的方法

Country Status (6)

Country Link
US (1) US7098495B2 (zh)
JP (1) JP2008507854A (zh)
KR (1) KR101149393B1 (zh)
CN (1) CN100533763C (zh)
TW (1) TWI417878B (zh)
WO (1) WO2006023018A2 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024149212A1 (zh) * 2023-01-12 2024-07-18 苏州凌存科技有限公司 一种磁性存储单元及磁性存储器

Families Citing this family (122)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI283477B (en) * 2004-11-16 2007-07-01 Ind Tech Res Inst Magnetic random access memory with lower switching field
JP2007194327A (ja) * 2006-01-18 2007-08-02 Alps Electric Co Ltd トンネル型磁気検出素子
US8183652B2 (en) * 2007-02-12 2012-05-22 Avalanche Technology, Inc. Non-volatile magnetic memory with low switching current and high thermal stability
US20080246104A1 (en) * 2007-02-12 2008-10-09 Yadav Technology High Capacity Low Cost Multi-State Magnetic Memory
US8508984B2 (en) * 2006-02-25 2013-08-13 Avalanche Technology, Inc. Low resistance high-TMR magnetic tunnel junction and process for fabrication thereof
US8018011B2 (en) * 2007-02-12 2011-09-13 Avalanche Technology, Inc. Low cost multi-state magnetic memory
US20070253245A1 (en) * 2006-04-27 2007-11-01 Yadav Technology High Capacity Low Cost Multi-Stacked Cross-Line Magnetic Memory
US7732881B2 (en) * 2006-11-01 2010-06-08 Avalanche Technology, Inc. Current-confined effect of magnetic nano-current-channel (NCC) for magnetic random access memory (MRAM)
US8084835B2 (en) * 2006-10-20 2011-12-27 Avalanche Technology, Inc. Non-uniform switching based non-volatile magnetic based memory
US8058696B2 (en) * 2006-02-25 2011-11-15 Avalanche Technology, Inc. High capacity low cost multi-state magnetic memory
US8363457B2 (en) * 2006-02-25 2013-01-29 Avalanche Technology, Inc. Magnetic memory sensing circuit
US8535952B2 (en) * 2006-02-25 2013-09-17 Avalanche Technology, Inc. Method for manufacturing non-volatile magnetic memory
US8063459B2 (en) * 2007-02-12 2011-11-22 Avalanche Technologies, Inc. Non-volatile magnetic memory element with graded layer
US8120949B2 (en) * 2006-04-27 2012-02-21 Avalanche Technology, Inc. Low-cost non-volatile flash-RAM memory
US8497538B2 (en) * 2006-05-31 2013-07-30 Everspin Technologies, Inc. MRAM synthetic antiferromagnet structure
US7782577B2 (en) * 2006-06-06 2010-08-24 Infineon Technologies Ag MRAM structure using sacrificial layer for anti-ferromagnet and method of manufacture
EP2047502A4 (en) * 2006-06-30 2009-12-30 Applied Materials Inc NANO CRYSTAL EDUCATION
JP5210533B2 (ja) * 2006-09-21 2013-06-12 アルプス電気株式会社 トンネル型磁気検出素子及びその製造方法
JP2008103662A (ja) * 2006-09-21 2008-05-01 Alps Electric Co Ltd トンネル型磁気検出素子及びその製造方法
TWI307507B (en) * 2006-10-20 2009-03-11 Ind Tech Res Inst Magnetic tunnel junction devices and magnetic random access memory
US20080112214A1 (en) * 2006-10-30 2008-05-15 Young Sir Chung Electronic assembly having magnetic tunnel junction voltage sensors and method for forming the same
JP5061595B2 (ja) * 2006-11-24 2012-10-31 Tdk株式会社 トンネル型磁気検出素子の製造方法
JP2008135432A (ja) * 2006-11-27 2008-06-12 Tdk Corp トンネル磁気抵抗効果素子及びその製造方法
US7598579B2 (en) * 2007-01-30 2009-10-06 Magic Technologies, Inc. Magnetic tunnel junction (MTJ) to reduce spin transfer magnetization switching current
US7869266B2 (en) * 2007-10-31 2011-01-11 Avalanche Technology, Inc. Low current switching magnetic tunnel junction design for magnetic memory using domain wall motion
US20090218645A1 (en) * 2007-02-12 2009-09-03 Yadav Technology Inc. multi-state spin-torque transfer magnetic random access memory
US8542524B2 (en) * 2007-02-12 2013-09-24 Avalanche Technology, Inc. Magnetic random access memory (MRAM) manufacturing process for a small magnetic tunnel junction (MTJ) design with a low programming current requirement
US20080205130A1 (en) * 2007-02-28 2008-08-28 Freescale Semiconductor, Inc. Mram free layer synthetic antiferromagnet structure and methods
US7663131B2 (en) * 2007-03-08 2010-02-16 Magic Technologies, Inc. SyAF structure to fabricate Mbit MTJ MRAM
US7888756B2 (en) * 2007-03-22 2011-02-15 Everspin Technologies, Inc. MRAM tunnel barrier structure and methods
US8802451B2 (en) 2008-02-29 2014-08-12 Avalanche Technology Inc. Method for manufacturing high density non-volatile magnetic memory
CN101562213B (zh) * 2008-04-16 2010-08-11 中国科学院半导体研究所 光学自旋注入方法
US8659852B2 (en) 2008-04-21 2014-02-25 Seagate Technology Llc Write-once magentic junction memory array
US7852663B2 (en) 2008-05-23 2010-12-14 Seagate Technology Llc Nonvolatile programmable logic gates and adders
US7855911B2 (en) 2008-05-23 2010-12-21 Seagate Technology Llc Reconfigurable magnetic logic device using spin torque
CN101621036B (zh) * 2008-07-02 2011-08-17 中芯国际集成电路制造(上海)有限公司 具有非晶硅mas存储单元结构的半导体器件及其制造方法
JP4845937B2 (ja) * 2008-07-24 2011-12-28 株式会社東芝 スピンmosfetおよびこのスピンmosfetを用いたリコンフィギュラブル論理回路
US7881098B2 (en) 2008-08-26 2011-02-01 Seagate Technology Llc Memory with separate read and write paths
JP2012502447A (ja) * 2008-09-03 2012-01-26 キヤノンアネルバ株式会社 非晶質または微結晶質MgOトンネル障壁に用いる優先グレイン成長強磁性シード層
WO2010026667A1 (en) * 2008-09-03 2010-03-11 Canon Anelva Corporation Ferromagnetic preferred grain growth promotion seed layer for amorphous or microcrystalline mgo tunnel barrier
US9929211B2 (en) 2008-09-24 2018-03-27 Qualcomm Incorporated Reducing spin pumping induced damping of a free layer of a memory device
US7985994B2 (en) 2008-09-29 2011-07-26 Seagate Technology Llc Flux-closed STRAM with electronically reflective insulative spacer
US8169810B2 (en) 2008-10-08 2012-05-01 Seagate Technology Llc Magnetic memory with asymmetric energy barrier
US8089132B2 (en) 2008-10-09 2012-01-03 Seagate Technology Llc Magnetic memory with phonon glass electron crystal material
US8039913B2 (en) 2008-10-09 2011-10-18 Seagate Technology Llc Magnetic stack with laminated layer
US7880209B2 (en) * 2008-10-09 2011-02-01 Seagate Technology Llc MRAM cells including coupled free ferromagnetic layers for stabilization
US8045366B2 (en) 2008-11-05 2011-10-25 Seagate Technology Llc STRAM with composite free magnetic element
US8043732B2 (en) 2008-11-11 2011-10-25 Seagate Technology Llc Memory cell with radial barrier
US7826181B2 (en) 2008-11-12 2010-11-02 Seagate Technology Llc Magnetic memory with porous non-conductive current confinement layer
US8289756B2 (en) 2008-11-25 2012-10-16 Seagate Technology Llc Non volatile memory including stabilizing structures
US20100148167A1 (en) * 2008-12-12 2010-06-17 Everspin Technologies, Inc. Magnetic tunnel junction stack
KR101584747B1 (ko) * 2009-01-20 2016-01-13 삼성전자주식회사 자기 메모리 소자
US7826259B2 (en) 2009-01-29 2010-11-02 Seagate Technology Llc Staggered STRAM cell
US8450818B2 (en) * 2009-06-18 2013-05-28 Dmitri E. Nikonov Methods of forming spin torque devices and structures formed thereby
US7999338B2 (en) 2009-07-13 2011-08-16 Seagate Technology Llc Magnetic stack having reference layers with orthogonal magnetization orientation directions
JP2011123923A (ja) * 2009-12-08 2011-06-23 Hitachi Global Storage Technologies Netherlands Bv 磁気抵抗効果ヘッド、磁気記録再生装置
US8063460B2 (en) * 2009-12-18 2011-11-22 Intel Corporation Spin torque magnetic integrated circuits and devices therefor
KR101676821B1 (ko) 2010-03-18 2016-11-17 삼성전자주식회사 자기 메모리 소자 및 그 형성방법
US20110236723A1 (en) * 2010-03-26 2011-09-29 Tsann Lin CURRENT-PERPENDICULAR-TO-PLANE (CPP) READ SENSOR WITH Co-Fe BUFFER LAYERS
KR101766899B1 (ko) 2010-04-21 2017-08-10 삼성전자주식회사 자기 메모리 소자
US8920947B2 (en) * 2010-05-28 2014-12-30 Headway Technologies, Inc. Multilayer structure with high perpendicular anisotropy for device applications
KR101652006B1 (ko) 2010-07-20 2016-08-30 삼성전자주식회사 자기 기억 소자 및 그 제조 방법
US8907436B2 (en) * 2010-08-24 2014-12-09 Samsung Electronics Co., Ltd. Magnetic devices having perpendicular magnetic tunnel junction
US8508221B2 (en) 2010-08-30 2013-08-13 Everspin Technologies, Inc. Two-axis magnetic field sensor having reduced compensation angle for zero offset
US9019758B2 (en) * 2010-09-14 2015-04-28 Avalanche Technology, Inc. Spin-transfer torque magnetic random access memory with perpendicular magnetic anisotropy multilayers
US8345471B2 (en) * 2010-10-07 2013-01-01 Hynix Semiconductor Inc. Magneto-resistance element and semiconductor memory device including the same
US9028910B2 (en) 2010-12-10 2015-05-12 Avalanche Technology, Inc. MTJ manufacturing method utilizing in-situ annealing and etch back
US8758850B2 (en) * 2010-12-10 2014-06-24 Avalanche Technology, Inc. STT-MRAM MTJ manufacturing method with in-situ annealing
US8796794B2 (en) 2010-12-17 2014-08-05 Intel Corporation Write current reduction in spin transfer torque memory devices
US8686484B2 (en) 2011-06-10 2014-04-01 Everspin Technologies, Inc. Spin-torque magnetoresistive memory element and method of fabricating same
US8817426B2 (en) 2011-10-17 2014-08-26 HGST Netherlands B.V. Magnetic sensor having CoFeBTa in pinned and free layer structures
KR101831725B1 (ko) * 2011-12-30 2018-04-04 인텔 코포레이션 수직 자기 터널 접합들에서의 상태들 간의 에너지 장벽 균형화
US9053071B2 (en) * 2012-03-15 2015-06-09 Qualcomm, Incorporated Spin torque transfer magnetic tunnel junction intelligent sensing
US8988109B2 (en) * 2012-11-16 2015-03-24 Intel Corporation High speed precessionally switched magnetic logic
CN103323796B (zh) * 2013-06-21 2015-07-29 中国人民解放军国防科学技术大学 一种以石墨烯作为势垒层的mtj磁场传感器
KR102082328B1 (ko) 2013-07-03 2020-02-27 삼성전자주식회사 수직 자기터널접합을 구비하는 자기 기억 소자
US9240547B2 (en) 2013-09-10 2016-01-19 Micron Technology, Inc. Magnetic tunnel junctions and methods of forming magnetic tunnel junctions
WO2015147933A2 (en) * 2013-12-27 2015-10-01 Drexel University Grain size tuning for radiation resistance
CN103794717B (zh) * 2014-02-28 2017-06-16 北京航空航天大学 一种包含介电层的嵌入型磁隧道结器件的制造方法
KR102265800B1 (ko) 2014-07-07 2021-06-16 인텔 코포레이션 자성 콘택들을 갖는 스핀-전달 토크 메모리(sttm) 디바이스들
JP6345037B2 (ja) * 2014-08-26 2018-06-20 ルネサスエレクトロニクス株式会社 半導体装置およびその製造方法
US9412399B2 (en) * 2014-09-17 2016-08-09 HGST Netherlands B.V. Underlayer for reference layer of polycrystalline CPP GMR sensor stack
CN106575519B (zh) 2014-09-26 2021-12-07 英特尔公司 用于在垂直sttm叠置体中改善稳定性的非晶籽晶层
US10388858B2 (en) 2014-09-26 2019-08-20 Intel Corporation Fabrication of crystalline magnetic films for PSTTM applications
US9472750B2 (en) * 2015-01-05 2016-10-18 Samsung Electronics Co., Ltd. Method and system for providing a bottom pinned layer in a perpendicular magnetic junction usable in spin transfer torque magnetic random access memory applications
US9502642B2 (en) 2015-04-10 2016-11-22 Micron Technology, Inc. Magnetic tunnel junctions, methods used while forming magnetic tunnel junctions, and methods of forming magnetic tunnel junctions
US9520553B2 (en) 2015-04-15 2016-12-13 Micron Technology, Inc. Methods of forming a magnetic electrode of a magnetic tunnel junction and methods of forming a magnetic tunnel junction
US9530959B2 (en) * 2015-04-15 2016-12-27 Micron Technology, Inc. Magnetic tunnel junctions
US9257136B1 (en) 2015-05-05 2016-02-09 Micron Technology, Inc. Magnetic tunnel junctions
US9960346B2 (en) 2015-05-07 2018-05-01 Micron Technology, Inc. Magnetic tunnel junctions
WO2016209227A1 (en) * 2015-06-24 2016-12-29 Intel Corporation A spin logic device with high spin injection efficiency from a matched spin transfer layer
KR102451098B1 (ko) 2015-09-23 2022-10-05 삼성전자주식회사 자기 메모리 장치 및 이의 제조 방법
US10580970B2 (en) 2015-09-25 2020-03-03 Intel Corporation PSTTM device with free magnetic layers coupled through a metal layer having high temperature stability
CN108028313B (zh) 2015-09-25 2022-04-15 英特尔公司 具有多层过滤器堆叠体的psttm器件
US10340445B2 (en) 2015-09-25 2019-07-02 Intel Corporation PSTTM device with bottom electrode interface material
US10483320B2 (en) 2015-12-10 2019-11-19 Everspin Technologies, Inc. Magnetoresistive stack with seed region and method of manufacturing the same
EP3284091B1 (en) 2015-12-10 2021-08-18 Everspin Technologies, Inc. Magnetoresistive stack, seed region therefor and method of manufacturing same
US10361361B2 (en) * 2016-04-08 2019-07-23 International Business Machines Corporation Thin reference layer for STT MRAM
US9680089B1 (en) 2016-05-13 2017-06-13 Micron Technology, Inc. Magnetic tunnel junctions
WO2019005083A1 (en) * 2017-06-29 2019-01-03 Intel Corporation MAGNETIC TUNNEL JUNCTION DEVICE HAVING A CARBON-DOPED FILTER LAYER
US10283246B1 (en) 2017-10-20 2019-05-07 Globalfoundries Singapore Pte. Ltd. MTJ structures, STT MRAM structures, and methods for fabricating integrated circuits including the same
WO2019099438A1 (en) * 2017-11-17 2019-05-23 Everspin Technologies, Inc. Magnetoresistive stack/structure and methods of manufacturing therefor
WO2019143052A1 (ko) * 2018-01-17 2019-07-25 한양대학교 산학협력단 메모리 소자
US10944050B2 (en) * 2018-05-08 2021-03-09 Applied Materials, Inc. Magnetic tunnel junction structures and methods of manufacture thereof
US10957849B2 (en) * 2018-05-24 2021-03-23 Applied Materials, Inc. Magnetic tunnel junctions with coupling-pinning layer lattice matching
US11502188B2 (en) 2018-06-14 2022-11-15 Intel Corporation Apparatus and method for boosting signal in magnetoelectric spin orbit logic
US11476412B2 (en) 2018-06-19 2022-10-18 Intel Corporation Perpendicular exchange bias with antiferromagnet for spin orbit coupling based memory
US11770979B2 (en) 2018-06-29 2023-09-26 Intel Corporation Conductive alloy layer in magnetic memory devices and methods of fabrication
US11616192B2 (en) 2018-06-29 2023-03-28 Intel Corporation Magnetic memory devices with a transition metal dopant at an interface of free magnetic layers and methods of fabrication
US11444237B2 (en) 2018-06-29 2022-09-13 Intel Corporation Spin orbit torque (SOT) memory devices and methods of fabrication
JP2020043224A (ja) * 2018-09-11 2020-03-19 キオクシア株式会社 磁気装置
CN113016033B (zh) * 2018-11-20 2024-06-25 华为技术有限公司 磁隧道结、磁电阻随机存储器、芯片及制备方法
US11557629B2 (en) 2019-03-27 2023-01-17 Intel Corporation Spin orbit memory devices with reduced magnetic moment and methods of fabrication
US11594673B2 (en) 2019-03-27 2023-02-28 Intel Corporation Two terminal spin orbit memory devices and methods of fabrication
KR102677779B1 (ko) 2019-07-19 2024-06-25 삼성전자주식회사 자기 기억 소자
US11522126B2 (en) 2019-10-14 2022-12-06 Applied Materials, Inc. Magnetic tunnel junctions with protection layers
CN112993152B (zh) * 2019-12-02 2024-07-19 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
US11917925B2 (en) 2020-01-23 2024-02-27 Everspin Technologies, Inc. Magnetoresistive devices and methods therefor
CN113328033A (zh) * 2020-02-28 2021-08-31 中芯国际集成电路制造(上海)有限公司 半导体结构及其形成方法
CN113657586A (zh) * 2021-07-21 2021-11-16 中国科学院微电子研究所 一种基于自旋轨道矩的神经元器件
US20230225219A1 (en) * 2022-01-07 2023-07-13 Samsung Electronics Co., Ltd. Magnetic tunneling junction device and memory device including the same
CN115799376B (zh) * 2023-02-09 2023-05-12 材料科学姑苏实验室 一种叠层光伏电池中间互联层结构及其制备方法与应用

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5909345A (en) 1996-02-22 1999-06-01 Matsushita Electric Industrial Co., Ltd. Magnetoresistive device and magnetoresistive head
JP2000091667A (ja) 1998-09-09 2000-03-31 Read Rite Smi Kk スピンバルブ磁気抵抗センサ及び薄膜磁気ヘッド
US6181537B1 (en) 1999-03-29 2001-01-30 International Business Machines Corporation Tunnel junction structure with junction layer embedded in amorphous ferromagnetic layers
JP2001007420A (ja) 1999-06-17 2001-01-12 Sony Corp 磁気抵抗効果膜とこれを用いた磁気読取りセンサ
US6205052B1 (en) * 1999-10-21 2001-03-20 Motorola, Inc. Magnetic element with improved field response and fabricating method thereof
JP3557140B2 (ja) * 1999-12-28 2004-08-25 株式会社東芝 磁気抵抗効果素子及び磁気再生装置
WO2001056602A2 (en) 2000-02-02 2001-08-09 The Government Of The United States Of America, As Represented By The Secretary, Department Of Health And Human Services Cd40 ligand adjuvant for respiratory syncytial virus
US20030072109A1 (en) * 2000-02-28 2003-04-17 Manish Sharma Magnetoresistive element including smooth spacer interface
JP3686572B2 (ja) * 2000-04-12 2005-08-24 アルプス電気株式会社 交換結合膜の製造方法と、前記交換結合膜を用いた磁気抵抗効果素子の製造方法、ならびに前記磁気抵抗効果素子を用いた薄膜磁気ヘッドの製造方法
JP4403337B2 (ja) * 2000-05-30 2010-01-27 ソニー株式会社 トンネル磁気抵抗効果素子、及びトンネル磁気抵抗効果型磁気ヘッド
EP1187103A3 (en) 2000-08-04 2003-01-08 Matsushita Electric Industrial Co., Ltd. Magnetoresistance effect device, head, and memory element
JP3890893B2 (ja) * 2000-12-28 2007-03-07 日本電気株式会社 スピントンネル磁気抵抗効果膜及び素子及びそれを用いた磁気抵抗センサー、及び磁気装置及びその製造方法
US20030021908A1 (en) * 2001-07-27 2003-01-30 Nickel Janice H. Gas cluster ion beam process for smoothing MRAM cells
US6545906B1 (en) 2001-10-16 2003-04-08 Motorola, Inc. Method of writing to scalable magnetoresistance random access memory element
US6600184B1 (en) * 2002-03-25 2003-07-29 International Business Machines Corporation System and method for improving magnetic tunnel junction sensor magnetoresistance
JP3638563B2 (ja) * 2002-03-27 2005-04-13 株式会社東芝 磁気抵抗効果素子およびこれを用いた磁気メモリ
JP2003304012A (ja) * 2002-04-10 2003-10-24 Matsushita Electric Ind Co Ltd トンネル磁気抵抗効果素子
JP2004023015A (ja) * 2002-06-20 2004-01-22 Sony Corp 磁気抵抗効果素子およびその製造方法並びに磁気メモリ装置
JP4178867B2 (ja) * 2002-08-02 2008-11-12 ソニー株式会社 磁気抵抗効果素子及び磁気メモリ装置
JP2004071897A (ja) * 2002-08-07 2004-03-04 Sony Corp 磁気抵抗効果素子及び磁気メモリ装置
US6831312B2 (en) 2002-08-30 2004-12-14 Freescale Semiconductor, Inc. Amorphous alloys for magnetic devices
US6801415B2 (en) 2002-08-30 2004-10-05 Freescale Semiconductor, Inc. Nanocrystalline layers for improved MRAM tunnel junctions
JP3866641B2 (ja) * 2002-09-24 2007-01-10 株式会社東芝 磁気記憶装置およびその製造方法
US6903909B2 (en) * 2002-11-01 2005-06-07 Hewlett-Packard Development Company, L.P. Magnetoresistive element including ferromagnetic sublayer having smoothed surface
US6756128B2 (en) * 2002-11-07 2004-06-29 International Business Machines Corporation Low-resistance high-magnetoresistance magnetic tunnel junction device with improved tunnel barrier

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024149212A1 (zh) * 2023-01-12 2024-07-18 苏州凌存科技有限公司 一种磁性存储单元及磁性存储器

Also Published As

Publication number Publication date
US7098495B2 (en) 2006-08-29
CN1985377A (zh) 2007-06-20
TW200629271A (en) 2006-08-16
WO2006023018A2 (en) 2006-03-02
TWI417878B (zh) 2013-12-01
KR101149393B1 (ko) 2012-05-25
WO2006023018A3 (en) 2006-06-22
JP2008507854A (ja) 2008-03-13
US20060017081A1 (en) 2006-01-26
KR20070035588A (ko) 2007-03-30

Similar Documents

Publication Publication Date Title
CN100533763C (zh) 磁隧道结元件结构和用于制造该结构的方法
US11672182B2 (en) Seed layer for multilayer magnetic materials
US20210234092A1 (en) Reduction of Barrier Resistance X Area (RA) Product and Protection of Perpendicular Magnetic Anisotropy (PMA) for Magnetic Device Applications
US8987848B2 (en) Co/Ni multilayers with improved out-of-plane anisotropy for magnetic device applications
US8981505B2 (en) Mg discontinuous insertion layer for improving MTJ shunt
US8216703B2 (en) Magnetic tunnel junction device
US20150061058A1 (en) Co/Ni Multilayers with Improved Out-of-Plane Anisotropy for Magnetic Device Applications
US20120261777A1 (en) Magnetoresistive Element and Method of Manufacturing the Same
JP2006506828A (ja) 改良型mramトンネル接合のためのナノ結晶層
WO2012151099A1 (en) Composite free layer within magnetic tunnel juction for mram applications
EP2880665B1 (en) Co/ni multilayers with improved out-of plane anisotropy for magnetic device applications

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C56 Change in the name or address of the patentee
CP01 Change in the name or title of a patent holder

Address after: Arizona, USA

Patentee after: Everspin Technologies Inc.

Address before: Arizona, USA

Patentee before: Freescale Semiconductor Inc.