CN100446185C - 形成t或伽玛形电极的方法 - Google Patents

形成t或伽玛形电极的方法 Download PDF

Info

Publication number
CN100446185C
CN100446185C CNB2006100643355A CN200610064335A CN100446185C CN 100446185 C CN100446185 C CN 100446185C CN B2006100643355 A CNB2006100643355 A CN B2006100643355A CN 200610064335 A CN200610064335 A CN 200610064335A CN 100446185 C CN100446185 C CN 100446185C
Authority
CN
China
Prior art keywords
photoresist layer
insulating barrier
opening
photoresist
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100643355A
Other languages
English (en)
Other versions
CN101005019A (zh
Inventor
安浩均
林钟元
文载京
张宇镇
池弘九
金海天
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Electronics and Telecommunications Research Institute ETRI
Original Assignee
Electronics and Telecommunications Research Institute ETRI
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Electronics and Telecommunications Research Institute ETRI filed Critical Electronics and Telecommunications Research Institute ETRI
Publication of CN101005019A publication Critical patent/CN101005019A/zh
Application granted granted Critical
Publication of CN100446185C publication Critical patent/CN100446185C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/28008Making conductor-insulator-semiconductor electrodes
    • H01L21/28017Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
    • H01L21/28026Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
    • H01L21/28114Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor characterised by the sectional shape, e.g. T, inverted-T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28587Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
    • H01L21/283Deposition of conductive or insulating materials for electrodes conducting electric current
    • H01L21/285Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation
    • H01L21/28506Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers
    • H01L21/28575Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds
    • H01L21/28587Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T
    • H01L21/28593Deposition of conductive or insulating materials for electrodes conducting electric current from a gas or vapour, e.g. condensation of conductive layers on semiconductor bodies comprising AIIIBV compounds characterised by the sectional shape, e.g. T, inverted T asymmetrical sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/3105After-treatment
    • H01L21/311Etching the insulating layers by chemical or physical means
    • H01L21/31144Etching the insulating layers by chemical or physical means using masks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/41Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
    • H01L29/423Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
    • H01L29/42312Gate electrodes for field effect devices
    • H01L29/42316Gate electrodes for field effect devices for field-effect transistors
    • H01L29/4232Gate electrodes for field effect devices for field-effect transistors with insulated gate
    • H01L29/42372Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
    • H01L29/42376Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the length or the sectional shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/66007Multistep manufacturing processes
    • H01L29/66075Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
    • H01L29/66227Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
    • H01L29/66409Unipolar field-effect transistors
    • H01L29/66477Unipolar field-effect transistors with an insulated gate, i.e. MISFET
    • H01L29/66568Lateral single gate silicon transistors
    • H01L29/66613Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation
    • H01L29/66621Lateral single gate silicon transistors with a gate recessing step, e.g. using local oxidation using etching to form a recess at the gate location

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Junction Field-Effect Transistors (AREA)

Abstract

本发明提供一种形成精细T或伽玛形栅极电极的方法,包括:在半导体衬底上沉积第一绝缘层;在该第一绝缘层上涂覆具有彼此不同的敏感度的至少两个光致抗蚀剂层,且构图该光致抗蚀剂层以具有不同尺寸的开口;使用该光致抗蚀剂层作为蚀刻掩模蚀刻该第一绝缘层以形成其中接触衬底的部分比其上面的部分窄的台阶式孔,并移除该光致抗蚀剂层;在该第一绝缘层上形成光致抗蚀剂层,并在该光致抗蚀剂层中形成开口以具有T或伽玛形栅极头图案;关于栅极图案进行栅极凹进工艺;以及沉积栅极金属在该栅极图案上,并移除该光致抗蚀剂层。

Description

形成T或伽玛形电极的方法
技术领域
本发明涉及一种形成栅极电极的方法,更特别地,涉及一种形成T或伽玛形栅极电极的方法。
背景技术
精细的T或伽玛(gamma)形电极是在利用高频的领域中使用的晶体管的制造中广泛采用的栅极电极。随着半导体器件被高度集成,对于能够减小栅极长度,具有卓越的高频特性且不会使增益和噪声特性变劣的电极的形成方法进行了各种研究。
现在将参考图1A至1E描述形成这样的T或伽玛形电极的常规工艺。
首先,在化合物半导体衬底例如半绝缘GaAs衬底或另一半导体衬底10上顺序形成有源层20和盖层30(图1A)。通过光致抗蚀剂定义其中将形成欧姆金属层40的区域,并沉积欧姆金属,由此通过快速热退火工艺等完成欧姆金属层40(图1B)。在制造器件例如使用化合物半导体的高电子迁移率晶体管(HEMT)或金属半导体场效应晶体管(MESFET)的情况下,欧姆金属层40可以是通过顺序沉积AuGe、Ni和Au至预定厚度形成的金属层。
在具有欧姆金属层40的衬底上形成光致抗蚀剂层50、60和70,且通过光学光刻或电子束光刻工艺形成T形栅极图案(图1C)。
其中将沉积栅极金属的栅极凹陷区80通过进行栅极凹陷工艺(gaterecess process)形成(图1D),栅极凹陷工艺即蚀刻由T形栅极图案暴露的半导体衬底10。栅极凹陷工艺是诸如使用化合物半导体的HEMT或MESFET的器件的制造中最关键的步骤,通常在测量电流时进行,且可以以单个或数个步骤进行。例如,栅极凹陷工艺可以通过湿法工艺、干法工艺或湿法和干法工艺的组合进行。例如,栅极凹陷工艺可以在用于干法蚀刻的装置例如电子回旋共振(ECR)或感应耦合等离子体(ICP)中利用诸如BCl3或SF6的气体进行,或者利用各种湿法蚀刻溶液例如其中以预定比率混合H3PO4H2O2和H2O的基于磷酸的溶液进行。
然后,栅极金属90沉积在栅极电极图案上,且通过顶离(lift-off)工艺移除光致抗蚀剂层,从而完成T形栅极电极90(图1E)。此处,在制造诸如使用化合物半导体的HEMT或者MESFET的器件的情况下,栅极电极可以通过顺序沉积金属层例如Ti、Pt和Au至预定厚度来形成。
然而,根据形成栅极电极的常规方法,栅极脚(gate foot)的长度由光刻工艺的分辨率确定,且其高度由光致抗蚀剂层的厚度确定。因此,考虑到开口图案的尺寸和光致抗蚀剂层的厚度,关于精细栅极图案难以控制栅极脚的高度,且由此会有寄生元件的增加。特别地,当栅极头(gate head)变宽时,这样的寄生元件会有额外的增加。
因此,通过常规方法,难以稳定地制造包括具有精细栅极长度的T或伽玛形电极的高性能器件。
另一方面,在韩国专利No.10-0400718中,发明人公开了一种形成超精细栅极的方法以克服该问题;其包括步骤:使用具有相互不同的蚀刻速率的双绝缘层形成台阶式孔(step hole);在孔中形成T形栅极以改善台阶覆盖;以及通过沉积和回蚀刻第三绝缘层来调整栅极脚的长度。然而,该发明也具有一缺点,它使用了具有不同蚀刻速率的多层绝缘层。
发明内容
本发明涉及一种形成栅极电极的方法,其通过使用具有不同敏感度的多层光致抗蚀剂层的光刻工艺、绝缘层的沉积、以及蚀刻工艺改善了台阶覆盖,容易地调整栅极脚的高度,并增加了栅极的横截面积。
本发明的一个方面提供了一种形成T或伽玛形栅极电极的方法,包括:第一步骤,在半导体衬底上沉积第一绝缘层;第二步骤,在该第一绝缘层上涂覆具有彼此不同的敏感度的至少两个光致抗蚀剂层,且构图光致抗蚀剂层以具有不同尺寸的开口;第三步骤,使用光致抗蚀剂层作为蚀刻掩模蚀刻该第一绝缘层从而在第一绝缘层中形成其中接触衬底的部分比其上面的部分窄的台阶式孔,并移除光致抗蚀剂层;第四步骤,在该第一绝缘层上形成光致抗蚀剂层,并在该光致抗蚀剂层中形成开口以具有T或伽玛形栅极头图案;第五步骤,关于栅极图案进行栅极凹进工艺;以及第六步骤,沉积栅极金属在该栅极图案上,并移除该光致抗蚀剂层。
在此,栅极脚的高度可通过调整该第一绝缘层的厚度来调整。
该第一绝缘层可包括至少一层。
在第二步骤中涂敷的光致抗蚀剂层可包括至少两层。接触第一绝缘层的第一光致抗蚀剂层可由聚甲基丙烯酸甲酯(PMMA)或ZEP形成,接触第一光致抗蚀剂层的第二光致抗蚀剂层可由甲基丙烯酸甲酯共甲基丙烯酸聚合物(MMA-MAA)或聚甲基丙烯酸甲酯戊二酰亚胺(PMGI)形成。
第一和第二光致抗蚀剂层的开口可具有1∶1.2至1∶3的尺寸比。下部台阶式孔的宽度可等于第一光致抗蚀剂层的开口的宽度,且上部台阶式孔的宽度可等于第二光致抗蚀剂层的开口的宽度。
在第二步骤中涂敷的光致抗蚀剂层可包括第一和第二光致抗蚀剂层。与第一绝缘层接触的第一光致抗蚀剂层可由MMA-MAA或PMGI形成,与第一光致抗蚀剂层接触的第二光致抗蚀剂层可由PMMA或ZEP形成。
第一和第二光致抗蚀剂层的开口可具有1∶0.3至1∶0.8的尺寸比。台阶式孔的下部分的宽度可等于第二光致抗蚀剂层的开口的宽度,且台阶式孔的上部的宽度可等于第一光致抗蚀剂层的开口的宽度。
在第三步骤中蚀刻第一绝缘层的步骤可通过干法蚀刻工艺例如反应离子蚀刻(RIE)、磁增强反应离子蚀刻(MERIE)或电感耦合等离子体(ICP)来进行。
可以使用从由CF4、CF4和CHF3的混合物、CF4和O2的混合物、以及C2H6构成的组选择的气体或气体混合物进行该干法蚀刻工艺。
该第四步骤中的光致抗蚀剂层可包括至少一层,且具有条(bar)形、T形或伽玛形栅极头图案。
该第四步骤中的光致抗蚀剂层可包括至少两层。下光致抗蚀剂层可具有比上光致抗蚀剂层小的开口,从而形成其上部分比下部分宽的T或伽玛形栅极头图案。
该第五步骤的栅极凹进工艺可通过第一湿法蚀刻工艺、干法蚀刻工艺和第二湿法蚀刻工艺顺序进行。
该干法蚀刻工艺可通过电子回旋共振(ECR)或ICP进行。
该干法蚀刻工艺可使用BCl3或SF6
该第一和第二湿法蚀刻工艺可使用其中H3PO4H2O2和H2O以适当比率混合的磷酸基溶液。
该第六步骤的栅极金属可通过顺序堆叠Ti、Pt和Au来形成。
该第六步骤中所述光致抗蚀剂层的移除可通过顶离工艺进行。
附图说明
通过参考附图详细描述其示范性实施例,本发明的上述和其它特征和优点对于本领域技术人员是明显的,图中;
图1A至1E是示出形成栅极电极的常规方法的截面图;
图2A至2K是示出根据本发明一示范性实施例形成栅极电极的方法的截面图;
图3是示出根据本发明另一示范性实施例形成栅极电极的方法的截面图。
具体实施方式
现在将参考附图详细描述本发明,附图中示出了本发明的示范性实施例。本发明可以以各种形式实现,且不限于在此描述的示范性实施例。
现在将参考图2A至2K描述根据本发明一示范性实施例形成精细T形栅极电极的方法。
首先在半导体衬底上形成有源层110和盖层120(图2A),然后光致抗蚀剂图案定义将形成用作源极和漏极的欧姆金属层130的区域。沉积欧姆金属,从而通过称为快速热退火(RTA)的工艺形成欧姆金属层130(图2B)。
此处,欧姆金属层130可以是具有其中AuGe、Ni和Au沉积至预定厚度的多层结构的金属层。
然后将具有预定厚度的第一绝缘层140沉积在盖层120和欧姆金属层130上。第一绝缘层140可由诸如氮化硅或氧化硅的材料形成以保护化合物半导体衬底的表面。此处,光致抗蚀剂层的蚀刻厚度和T形栅极脚的高度可通过调整第一绝缘层140的厚度来控制(图2C)。
考虑到相对于该绝缘层的蚀刻选择性,在衬底100上涂敷具有不同敏感度的多层光致抗蚀剂层,然后在多层光致抗蚀剂层中形成具有开口的精细图形,开口具有比下部宽的上部。在该实施例中,聚甲基丙烯酸甲酯(PMMA)或ZEP用于形成最下面的光致抗蚀剂层(第一光致抗蚀剂层150),具有比第一光致抗蚀剂层150高的敏感度的材料例如甲基丙烯酸甲酯共甲基丙烯酸聚合物(methyl methacrylate-co-methacrylic acid polymer,MMA-MAA)或聚甲基丙烯酸甲酯戊二酰亚胺(polymethylglutarimide,PMGI)用于形成在第一光致抗蚀剂层150上的层(第二光致抗蚀剂层160),且因此在两光致抗蚀剂层的显影之后,由第二光致抗蚀剂层160定义的开口具有比由第一光致抗蚀剂层150定义的开口更大的图案(图2D)。第一和第二光致抗蚀剂层的开口可具有1∶1.2至1∶3的尺寸比。
如果该比率大于1∶3,则第二光致抗蚀剂层的开口远大于第一光致抗蚀剂层的开口,从而不会影响第二绝缘层的沉积之后V形槽的形成。然而,如果其在1∶1和1∶1.2之间,则第一和第二光致抗蚀剂层的开口尺寸相似,因此在沉积第二绝缘层之后的蚀刻结果与其开口尺寸相等的时候类似。
与该图中示出的实施例不同,第一和第二光致抗蚀剂层的开口尺寸比也可以是1∶0.3至1∶0.8,其是第一和第二光致抗蚀剂层的开口的反比(reversedratio)。
即,考虑到在给定蚀刻条件下第二光致抗蚀剂层和绝缘层之间的蚀刻选择性,调整第二光致抗蚀剂层的厚度以在蚀刻绝缘层期间蚀刻第二光致抗蚀剂层。结果,台阶式孔的下部分具有与第二光致抗蚀剂层的开口相等的宽度,该孔的上部分具有与第一光致抗蚀剂层的开口相等的宽度。在此,第一和第二光致抗蚀剂层将由与上述那些相反的材料形成。
然后进行干法蚀刻工艺从而各向异性蚀刻通过光致抗蚀剂图案暴露的第一绝缘层140(图2E)。使用光致抗蚀剂图案作为蚀刻掩模进行该蚀刻工艺。在该工艺中,蚀刻通过第二光致抗蚀剂层160的宽开口暴露的第一光致抗蚀剂层150、以及第一光致抗蚀剂层150下方的第一绝缘层140的上部分,且将第一绝缘层140的下部分蚀刻成第一光致抗蚀剂层150的开口的尺寸。结果,在第一绝缘层140中形成的开口具有其中上部分比下部分宽的台阶式孔结构。
当第一绝缘层140由氮化硅或氧化硅形成时,绝缘层的各向异性蚀刻工艺可以使用气体或气体混合物通过干法蚀刻工艺例如反应离子蚀刻(RIE)、磁增强反应离子蚀刻(MERIE)或电感耦合等离子体(ICP)进行,所述气体或气体混合物选自CF4、CF4和CHF3的混合物、CF4和O2的混合物、以及C2H6构成的组。
用丙酮或微波除去在第一绝缘层140的蚀刻工艺之后残留在半导体衬底100上的光致抗蚀剂层(图2F),将第二绝缘层170沉积在半导体衬底100的整个表面上。在此,第二绝缘层170具有V形槽173,这是由于在沉积之前形成在第一绝缘层140中的台阶式孔175(图2G)。
然后不用蚀刻掩模蚀刻第二绝缘层170以暴露半导体衬底100,且第二绝缘层170残留在台阶式孔175的侧壁上。台阶式孔175通过回蚀刻第二绝缘层170形成为具有带宽的上部分和窄的下部分的开口(图2H)。在此,通过回蚀刻工艺调整残留的第二绝缘层的厚度,从而调整栅极脚的长度,且孔的上部分形成得比其下部分宽,从而改善了台阶覆盖,这在制造0.1μm以下的超精细栅极电极时导致改善的栅极电极的结特性。
顺序地形成光致抗蚀剂层以具有T或伽玛形图案,其具有暴露第一绝缘层140中的孔的开口。在此,下光致抗蚀剂层180a的开口形成得小于上光致抗蚀剂层180b的开口,且因此完成了其上部分比其下部分宽的T或伽玛形栅极头图案(图2I)。另外,在该实施例中,另一光致抗蚀剂层180c还设置在光致抗蚀剂层180b上,这使得易于形成栅极图案,但是本发明不限于此。因此,光致抗蚀剂层可仅包括一层,且在此情况下,该层可仅形成T或伽玛形头图案。本领域技术人员可容易地变换这样的光致抗蚀剂层的形状、数目或厚度,且因此将省略其详细描述。
其上将沉积栅极金属的栅极凹进区190通过蚀刻在T形栅极图案上暴露的半导体衬底的栅极凹进工艺形成(图2J)。栅极凹进工艺190是制造使用化合物半导体的器件例如高电子迁移率晶体管(HEMT)、金属半导体场效应晶体管(MESFET)等中的关键步骤,其通常在测量电流时进行,且在包括湿法工艺、干法工艺或其组合的单个步骤或数个步骤中进行。例如,该栅极凹进工艺在干法蚀刻装置例如电子回旋谐振(ECR)和ICP利用气体例如BCl3或SF6来进行,或者使用各种湿法蚀刻溶液例如其中H3PO4H2O2和H2O以适当比率混合的磷酸基溶液来进行。
在此,为了去除在第二绝缘层170的蚀刻工艺之后暴露的半导体的表面上被等离子体损坏的层,栅极凹进工艺可以以湿法/干法/湿法蚀刻工艺的序列进行。
最后,沉积栅极金属195,且通过顶离(lift-off)工艺去除光致抗蚀剂层。在此,在HEMT器件的情况下,通过顺序沉积诸如Ti、Pt和Au的金属层形成栅极金属195。
图3示出了根据本发明另一示范性实施例形成的T或伽玛栅极电极。该实施例中栅极电极的形成方法与上述方法相同,除了残留在第一绝缘层中形成的孔的壁上的第二绝缘层的形状,因此省略了详细描述。
根据本发明,形成T或伽玛形栅极电极的方法可使用具有不同敏感度的光致抗蚀剂层在绝缘层上容易且稳定地形成其上部分比其下部分宽的台阶式孔。
因此,该方法可容易地调整台阶覆盖以及栅极脚的长度和高度,而不需要具有不同蚀刻速度的绝缘层,从而改善了栅极电极的结(junction)特性。
虽然已经参考其某些示范性实施例示出并描述了本发明,但是本领域技术人员应当理解,其中可作出形式和细节上的各种变化,而不脱离如所附权利要求定义的本发明的精神和范围。
本申请要求2005年11月29日申请的韩国专利申请No.2005-114565的优先权并享受其权益,在此引入其全部内容作为参考。

Claims (12)

1.一种形成T或伽玛形栅极电极的方法,包括:
第一步骤,在半导体衬底上沉积第一绝缘层;
第二步骤,在该第一绝缘层上涂敷具有彼此不同敏感度的至少两光致抗蚀剂层,并构图所述至少两光致抗蚀剂层以具有不同尺寸的开口;
第三步骤,使用所述至少两光致抗蚀剂层作为蚀刻掩模蚀刻该第一绝缘层从而在该第一绝缘层中形成其中接触该衬底的部分比其上面的部分窄的台阶式孔,并移除所述至少两光致抗蚀剂层;
第四步骤,在该第一绝缘层上形成光致抗蚀剂层,并在该光致抗蚀剂层中形成开口以具有T或伽玛形栅极头图案;
第五步骤,关于该栅极头图案进行栅极凹进工艺;以及
第六步骤,在该栅极头图案上沉积栅极金属,并移除该光致抗蚀剂层。
2.根据权利要求1的方法,其中调整该第一绝缘层的厚度以调整栅极脚的高度。
3.根据权利要求1的方法,其中该第一绝缘层包括至少一层。
4.根据权利要求1的方法,其中在该第二步骤中涂敷的所述至少两光致抗蚀剂层包括第一和第二光致抗蚀剂层,与该第一绝缘层接触的该第一光致抗蚀剂层由聚甲基丙烯酸甲酯或ZEP形成,接触该第一光致抗蚀剂层的该第二光致抗蚀剂层由甲基丙烯酸甲酯共甲基丙烯酸聚合物或聚甲基丙烯酸甲酯戊二酰亚胺形成。
5.根据权利要求4的方法,其中该第一和第二光致抗蚀剂层的开口具有1∶1.2至1∶3的尺寸比。
6.根据权利要求4的方法,其中该台阶式孔的下部分具有等于该第一光致抗蚀剂层的开口的宽度,该台阶式孔的上部分具有等于该第二光致抗蚀剂层的开口的宽度。
7.根据权利要求1的方法,其中在该第二步骤中涂敷的所述至少两光致抗蚀剂层包括第一和第二光致抗蚀剂层,与该第一绝缘层接触的该第一光致抗蚀剂层由甲基丙烯酸甲酯共甲基丙烯酸聚合物或聚甲基丙烯酸甲酯戊二酰亚胺形成,与该第一光致抗蚀剂层接触的该第二光致抗蚀剂层由聚甲基丙烯酸甲酯或ZEP形成。
8.根据权利要求7的方法,其中该第一和第二光致抗蚀剂层的开口具有1∶0.3至1∶0.8的尺寸比。
9.根据权利要求7的方法,其中该台阶式孔的下部分具有等于该第二光致抗蚀剂层的开口的宽度,该台阶式孔的上部分具有等于该第一光致抗蚀剂层的开口的宽度。
10.根据权利要求1的方法,其中在该第四步骤中的该光致抗蚀剂层包括至少一层,并具有条状栅极头图案。
11.根据权利要求1的方法,其中在该第四步骤中的该光致抗蚀剂层包括至少两层,且下光致抗蚀剂层具有比上光致抗蚀剂层的开口小的开口,从而形成其上部分比下部分宽的T或伽玛形栅极头图案。
12.根据权利要求1的方法,还包括步骤:
在该第三步骤之后,
在该第一绝缘层上沉积第二绝缘层,且回蚀刻该第二绝缘层以部分地暴露该半导体衬底并保留该第二绝缘层在该台阶式孔的壁上。
CNB2006100643355A 2005-11-29 2006-11-29 形成t或伽玛形电极的方法 Expired - Fee Related CN100446185C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR114565/05 2005-11-29
KR1020050114565A KR100647459B1 (ko) 2005-11-29 2005-11-29 티형 또는 감마형 게이트 전극의 제조방법

Publications (2)

Publication Number Publication Date
CN101005019A CN101005019A (zh) 2007-07-25
CN100446185C true CN100446185C (zh) 2008-12-24

Family

ID=37712867

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100643355A Expired - Fee Related CN100446185C (zh) 2005-11-29 2006-11-29 形成t或伽玛形电极的方法

Country Status (3)

Country Link
US (1) US20080124852A1 (zh)
KR (1) KR100647459B1 (zh)
CN (1) CN100446185C (zh)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010118556A (ja) * 2008-11-13 2010-05-27 Furukawa Electric Co Ltd:The 半導体装置および半導体装置の製造方法
KR101243836B1 (ko) * 2009-09-04 2013-03-20 한국전자통신연구원 반도체 소자 및 그 형성 방법
JP5694020B2 (ja) 2011-03-18 2015-04-01 トランスフォーム・ジャパン株式会社 トランジスタ回路
JP6198039B2 (ja) * 2013-04-12 2017-09-20 住友電工デバイス・イノベーション株式会社 半導体装置
JP2017168768A (ja) * 2016-03-18 2017-09-21 三菱電機株式会社 電界効果トランジスタおよびその製造方法
RU2624600C1 (ru) * 2016-10-07 2017-07-04 Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН) Способ изготовления Т-образного затвора
CN111095584A (zh) * 2017-08-31 2020-05-01 谷歌有限责任公司 使用多层堆叠制造器件
WO2020214227A2 (en) 2019-04-04 2020-10-22 Hrl Laboratories, Llc Miniature field plate t-gate and method of fabricating the same
CN110544625B (zh) * 2019-07-25 2022-04-22 西安电子科技大学 用于抑制短沟道效应的t形栅极及其制造工艺
CN110808207B (zh) * 2019-11-13 2023-09-26 中国电子科技集团公司第十三研究所 一种t型纳米栅及其制备方法
CN110707150B (zh) * 2019-11-13 2023-06-27 中国电子科技集团公司第十三研究所 一种双t型纳米栅及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299440A (ja) * 1991-04-03 1993-11-12 Mitsubishi Electric Corp 半導体装置の製造方法
CN1273434A (zh) * 2000-04-05 2000-11-15 信息产业部电子第十三研究所 半导体器件栅帽与栅足自对准的t形栅加工方法
US6403456B1 (en) * 2000-08-22 2002-06-11 Advanced Micro Devices, Inc. T or T/Y gate formation using trim etch processing
KR100400718B1 (ko) * 2002-02-01 2003-10-08 한국전자통신연구원 티(t)형 게이트 형성 방법
CN1661779A (zh) * 2004-01-29 2005-08-31 罗姆及海斯电子材料有限公司 T栅的形成
CN1675779A (zh) * 2002-08-14 2005-09-28 富士通株式会社 微t型电极的制造方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2978972B2 (ja) * 1992-03-12 1999-11-15 富士通株式会社 半導体装置の製造方法
JP3612533B2 (ja) 1996-10-29 2005-01-19 株式会社デンソー 半導体装置の製造方法
US6200906B1 (en) * 1998-12-17 2001-03-13 Micron Technology, Inc. Stepped photoresist profile and opening formed using the profile
TW569077B (en) * 2003-05-13 2004-01-01 Univ Nat Chiao Tung Method for fabricating nanometer gate in semiconductor device using thermally reflowed resist technology

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05299440A (ja) * 1991-04-03 1993-11-12 Mitsubishi Electric Corp 半導体装置の製造方法
CN1273434A (zh) * 2000-04-05 2000-11-15 信息产业部电子第十三研究所 半导体器件栅帽与栅足自对准的t形栅加工方法
US6403456B1 (en) * 2000-08-22 2002-06-11 Advanced Micro Devices, Inc. T or T/Y gate formation using trim etch processing
KR100400718B1 (ko) * 2002-02-01 2003-10-08 한국전자통신연구원 티(t)형 게이트 형성 방법
CN1675779A (zh) * 2002-08-14 2005-09-28 富士通株式会社 微t型电极的制造方法
CN1661779A (zh) * 2004-01-29 2005-08-31 罗姆及海斯电子材料有限公司 T栅的形成

Also Published As

Publication number Publication date
CN101005019A (zh) 2007-07-25
US20080124852A1 (en) 2008-05-29
KR100647459B1 (ko) 2006-11-23

Similar Documents

Publication Publication Date Title
CN100446185C (zh) 形成t或伽玛形电极的方法
US7183149B2 (en) Method of manufacturing field effect transistor
CN100521235C (zh) 场效应晶体管及其制造方法
US20040051183A1 (en) Method of forming self-aligned contact structure with locally etched gate conductive layer
KR100985214B1 (ko) 자기 정렬되어 선택적으로 식각된 이중 리세스형 고 전자이동도 트랜지스터 형성 방법
US6235626B1 (en) Method of forming a gate electrode using an insulating film with an opening pattern
US20070264781A1 (en) Method for the production of a semiconductor component having a metallic gate electrode disposed in a double-recess structure
EP0704882B1 (en) Formation of closely spaced metal electrodes in a semiconductor device
KR101243836B1 (ko) 반도체 소자 및 그 형성 방법
US5773333A (en) Method for manufacturing self-aligned T-type gate
JPH03248439A (ja) 化合物半導体装置の製造方法
US20010051386A1 (en) Method of manufacturing a semiconductor device
US20230197797A1 (en) Transistors with source-connected field plates
US20240145575A1 (en) Semiconductor device and manufacturing method thereof
KR100451990B1 (ko) 반도체소자 제조방법
KR100430690B1 (ko) 반도체소자의콘택형성방법
JPS6323669B2 (zh)
KR100264532B1 (ko) 모드 또는 문턱전압이 각기 다른 전계효과 트랜지스터 제조 방법
KR100942698B1 (ko) 다층의 금속 배선 제조 방법
JPH1012871A (ja) 半導体装置の製造方法
JPH0745816A (ja) 半導体装置およびその製造方法
TW201919131A (zh) 半導體結構及其形成方法
KR101043440B1 (ko) 반도체 소자의 형성 방법
JPH11186224A (ja) 半導体装置の製造方法
JP2000243758A (ja) 半導体装置及びその製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081224

Termination date: 20211129