RU2624600C1 - Способ изготовления Т-образного затвора - Google Patents

Способ изготовления Т-образного затвора Download PDF

Info

Publication number
RU2624600C1
RU2624600C1 RU2016139393A RU2016139393A RU2624600C1 RU 2624600 C1 RU2624600 C1 RU 2624600C1 RU 2016139393 A RU2016139393 A RU 2016139393A RU 2016139393 A RU2016139393 A RU 2016139393A RU 2624600 C1 RU2624600 C1 RU 2624600C1
Authority
RU
Russia
Prior art keywords
gate
layer
dielectric
etching
sio
Prior art date
Application number
RU2016139393A
Other languages
English (en)
Inventor
Юрий Владимирович Федоров
Ринат Радифович Галиев
Александр Юрьевич Павлов
Original Assignee
Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН) filed Critical Федеральное государственное бюджетное учреждение науки Институт сверхвысокочастотной полупроводниковой электроники Российской академии наук (ИСВЧПЭ РАН)
Priority to RU2016139393A priority Critical patent/RU2624600C1/ru
Application granted granted Critical
Publication of RU2624600C1 publication Critical patent/RU2624600C1/ru

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/28Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268

Landscapes

  • Junction Field-Effect Transistors (AREA)
  • Drying Of Semiconductors (AREA)

Abstract

Изобретение относится к технологии формирования Т-образных металлических затворов транзисторов различного типа, предназначенных для работы в диапазонах СВЧ и выше, а также при создании монолитных интегральных схем. Суть изготовления коротких Т-образных затворов с высоким аспектным соотношением и пологим наклоном стенок ножки с помощью диэлектрической маски заключается в последовательном нанесении двухслойного диэлектрика SiO2/SiNx, травлении щели в верхнем диэлектрике SiNx с контролем по времени или до стоп-слоя, конформном осаждении тонкого слоя диэлектрика Al2О3, его травлении с размерами щелей, соответствующих длине затвора, и дальнейшем травлении нижнего слоя SiO2 сквозь полученную маску Al2O3. После этого остатки Al2O3, нависающие над щелью в нижнем слое SiO2, удаляются сухим травлением в хлорсодержащем газе (BCl3). Последняя операция, в зависимости от времени воздействия плазмы, может создать при необходимости подзатворное углубление для приближения затвора к области канала транзистора. Изобретение обеспечивает улучшение характеристик транзистора, в частности увеличение пробивного напряжения, снижение влияния ловушек в призатворной области, уменьшение коллапса тока, а также уменьшение емкости затвор-сток. 4 з.п. ф-лы, 10 ил.

Description

Изобретение относится к технологии формирования Т-образных металлических затворов транзисторов различного типа (например, полевых с затвором Шоттки или МДП-затвором), предназначенных для работы в диапазонах СВЧ и выше, а также при создании монолитных интегральных схем (МИС), включающих подобные элементы.
Известен способ [US 5766967; H01L 21/8232] изготовления затвора к гетероструктуре с помощью трех слоев фоторезиста, которые позволяют сформировать Т-образный затвор. В данном способе трехслойный резист, в котором верхний и нижний слои менее чувствительны, а средний слой имеет наибольшую толщину и чувствительность, засвечивается электронным лучом в соответствии с рисунком затворов. После проявления всех слоев формируется грибообразный профиль. Недостатками этого и других подобных способов формирования профиля затвора в резисте являются плохая воспроизводимость размеров при увеличении аспектного соотношения размеров профиля (высоты к ширине), неустойчивость резиста к возможным необходимым воздействиям при обработке пластины перед напылением металлизации, а также возможная деградация профиля в процессе напыления в результате перегрева образца или воздействия дозы отраженных электронов при электронно-лучевом напылении.
Известен способ [US 7897446; H01L 21/338] изготовления затвора к гетероструктуре на основе нитрида галлия, заключающийся в нанесении слоя диэлектрика нитрида кремния SiN и/или нитрида алюминия AlN, нанесении слоя резиста, литографии окон в резисте, травлении диэлектрика сквозь окна в резисте, уширении окон в оставшемся резисте так, чтобы был сформирован обратный профиль, сужающийся кверху, осаждении металлов в образованные профили и последующем снятии резиста. Другой вариант, описанный там же, предполагает использование двух слоев диэлектрика с промежуточным стоп-слоем, обрабатывающихся аналогично первому варианту, но оставляя в итоге нижний слой диэлектрика в целости с осаждением металла на него. Среди недостатков этого способа можно отметить следующее: края ступеньки диэлектрик-резист, работающие как полевая пластина, недостаточно плавные, в целом профиль запыления неоптимален как с точки зрения распределения поля, так и с механической точки зрения. Кроме того, высокое аспектное соотношение, необходимое для создания эффективных транзисторов, работающих на частотах 100 ГГц и выше, в данном способе может быть достигнуто только с помощью недостаточно надежной резистивной маски.
Известен способ [ЕР 2479790; H01L 29/778] изготовления затвора к нитридной гетероструктуре, на которую нанесен слой, прекращающий травление (стоп-слой), и диэлектрический слой. Слой, прекращающий травление, может включать материалы A1N, GaN, AlGaN и/или SiO2. Диэлектрический слой может включать материалы SiN, SiO2 или SiON. Через литографическую маску различными методами селективно травят диэлектрический слой и затем, при необходимости, сквозь полученную щель травят стоп-слой. После осаждения металлов формируется Т-образный затвор с диэлектрическим подслоем или непосредственным контактом к гетероструктуре или ее кап-слою. Толщина диэлектрического слоя и, следовательно, высота ножки затвора типично выбирается 50-200 нм. Основными недостатками данного способа являются недостаточная надежность воспроизведения размеров, а также необходимость уменьшения высоты ножки при уменьшении длины затвора за счет использования резистивной литографической маски для травления. Все это позиционирует способ как прежде всего подходящий для изготовления мощных транзисторов с большой длиной затвора.
Известен способ изготовления Т-образного затвора [US 6087256 A; H01L 21/44], где для травления окон в диэлектрическом слое используется маска из слоя тугоплавкого металла (W), сформированная, например, электронно-лучевой литографией и плазмохимическим травлением. По этой маске плазмохимически травится узкое окно в диэлектрике на определенную неполную глубину, затем в том же месте после литографии более широких окон снова травится металлическая маска и сквозь нее опять травится слой диэлектрика до вскрытия дна таким образом, чтобы сформировать Т-образный профиль. Далее производится осаждение затворного металла и его обтрав по фотолитографической маске методом ионного физического травления. Данный метод позволяет получить высокое аспектное соотношение ножки затвора, но он является достаточно сложным, требующим множество газовых смесей для травления маски и диэлектрика, характеризуется вертикальными стенками профиля, что требует использования псевдоизотропного напыления металла для устранения эффектов затенения и приводит к слабому сглаживанию поля в призатворной области.
Известен способ [CN 102437182 А; H01L 29/778], принятый за прототип, изготовления затвора к нитридной гетероструктуре, в котором ножка затвора формируется путем медленного анизотропного плазмохимического травления двухслойного диэлектрика SiNx/SiO2 с суммарной толщиной до 130 нм сквозь маску электронного резиста с последующим формированием верхней области затвора в двухслойном резисте и запылением металлом получившейся полости. Недостатками этого метода являются небольшая высота ножки и отсутствие наклона стенок, облегчающего запыление металлом и улучшающего полевые характеристики затвора.
Техническим результатом изобретения является воспроизводимая и легкоконтролируемая на каждом этапе технология формирования оптимального Т-образного профиля сечения затвора, благодаря чему обеспечивается качественное заполнение металлизацией и улучшаются характеристики транзистора, в частности увеличивается пробивное напряжение Uпр, снижается влияние ловушек в призатворной области, уменьшается эффект коллапса тока, а также уменьшается емкость затвор-сток Сзс.
Технический результат достигается за счет формирования щели в двухслойном диэлектрике путем последовательного травления диэлектриков через конформные диэлектрические маски А12O3. Необходимо, чтобы тонкая диэлектрическая маска имела высокую селективность к плазмохимическому травлению в смеси газов для травления основных слоев диэлектрика. Диэлектриками, формирующими Т-образный профиль, являются последовательно осажденные SiO2 и SiNx, разделенные, при необходимости, тонкой прослойкой (5 нм) Al2O3 в качестве стоп-слоя. Диэлектрической маской служит слой Al2O3, конформно осажденный, например, методом атомно-слоевого осаждения. Для травления SiO2 и SiNx используется газовая смесь на основе фторсодержащих газов, например SF6, который не воздействует на маску. Маска Al2O3 травится в хлорсодержащей смеси, например с BCl3, в которой основные слои практически не травятся. Малая толщина слоя Al2O3 обеспечивает повышенную точность переноса размеров рисунка, сформированных в электронном резисте.
Метод позволяет формировать затвор с увеличенной высотой ножки, тем самым уменьшая емкость затвор-сток. При этом длина затвора может быть существенно меньше его высоты, тем самым обеспечивая реализацию высоких аспектных соотношений, т.е. создание сверхкоротких затворов с большой высотой ножки. Наклонные стенки ножки затвора позволяют качественно заполнить металлом профиль сечения, уменьшая сопротивление затвора и увеличивая его механическую прочность, а также работают как полевая пластина - электрод, сглаживающий распределение поля в призатворной области, что ослабляет эффект поверхностных ловушек и увеличивает пробивное напряжение.
Суть изготовления коротких Т-образных затворов с высоким аспектным соотношением и пологим наклоном стенок ножки с помощью диэлектрической маски заключается в последовательном нанесении двухслойного диэлектрика SiO2/SiNx, травлении щели в верхнем диэлектрике SiNx с контролем по времени или до стоп-слоя, конформном осаждении тонкого слоя диэлектрика Al2O3, его травлении с размерами щелей, соответствующих длине затвора, и дальнейшем травлении нижнего слоя SiO2 сквозь полученную маску Al2O3. После этого остатки Al2O3, нависающие над щелью в нижнем слое SiO2, удаляются сухим травлением в хлорсодержащем газе (BCl3). Последняя операция, в зависимости от времени воздействия плазмы, может создать при необходимости подзатворное углубление (рецесс) для приближения затвора к области канала транзистора.
Фиг. 1-8. Схематическое изображение, иллюстрирующее способ изготовления Т-образного затвора согласно примеру 1.
Фиг. 9 и фиг. 10. Схематическое изображение, иллюстрирующее способ изготовления Т-образного затвора согласно примеру 2.
ПРИМЕР 1
Предлагаемый способ позволяет надежно сформировать профиль затвора с повышенным аспектным соотношением и включает в себя следующую последовательность операций.
1. На подложку 1, на которой требуется сформировать затворную металлизацию, наносят слои диэлектрика SiO2 2 и SiNx 3 толщиной 120 и 200 нм соответственно. Затем в качестве маски наносят тонкий слой диэлектрика Al2O3 4 (5 нм). С помощью электронно-лучевой литографии с использованием резиста 6 ПММА (100 нм) в слое диэлектрика Al2O3 селективно по отношению к остальным слоям травятся окна 5 в газовой смеси BCl3:Ar (фиг. 1).
2. Далее через маску Al2O3 с окнами методом плазмохимического травления формируют щель 7 в слое диэлектрика SiNx, имеющую стенки с положительным наклоном благодаря использованию изотропного режима травления (фиг. 2).
3. Затем верхний слой Al2O3, в том числе нависающие над стенками щели участки, селективно удаляют и конформно осаждают тонкую пленку Al2O3 8 так, чтобы полностью покрыть боковые стенки верхней щели, защищая слой SiNx 3 от дальнейшего травления (фиг. 3).
4. С помощью электронно-лучевой литографии с использованием резиста ПММА в пленке Al2O3 травится щель 9 в газовой смеси BCl3:Ar (фиг. 4).
5. Сквозь щель 9 в пленке Al2O3 8 травится слой SiO2 2. Так как скорость травления SiO2 существенно ниже, чем SiNx, и при этом достигается оптимальная степень анизотропии, то при используемых толщинах SiO2 (100 нм) длительное время процесса позволяет улучшить качество травления щели и повысить воспроизводимость результатов, формируя щель 10 с положительным наклоном стенок и шириной внизу, соответствующей размеру окон в диэлектрической маске 8 (фиг. 5).
6. Завершающим этапом в формировании профиля затвора является травление Al2O3, при котором удаляется верхний слой, в том числе и нависающие участки над стенками нижней щели. При этом формируется углубление в подзатворной области 11 (рецесс), глубину которого можно задавать временем травления (фиг. 6).
7. Далее наносят систему резистов 14 для литографического формирования маски верхней области затвора - «шляпы» с шириной 0,6 мкм и высотой, достаточной для «взрыва» металлизации с толщиной, превышающей высоту ножки (>0,4 мкм). Металлизация 15 наносится методом резистивного напыления (фиг. 7).
8. После «взрыва» металлизации все слои диэлектриков последовательно удаляются плазмохимическим методом (фиг. 8).
ПРИМЕР 2
Отличается от примера 1 тем, что перед операцией 1 на подложку осаждается тонкий (5-15 нм) слой Al2O3 12, а на шаге 6 в процессе травления дна щели, в зависимости от соотношения толщин слоев 12 и 8 (фиг. 9), задавая время травления, достаточное для полного удаления верхнего слоя, можно оставить тонкий слой Al2O3 (2 нм) 13 под затвором для создания МДП-затвора вместо затвора Шоттки (фиг. 10). Слой Al2O3 около затвора будет являться пассивирующим.

Claims (5)

1. Способ изготовления Т-образного затвора, включающий формирование щели в двухслойном диэлектрике, нанесение слоев резиста и последующую металлизацию, отличающийся тем, что формирование щели производится путем последовательного травления диэлектриков через конформные диэлектрические маски Al2O3.
2. Способ по п. 1, отличающийся тем, что в качестве двухслойного диэлектрика используются слои SiO2 и SiNx.
3. Способ по п. 2, отличающийся тем, что между слоями SiO2 и SiNx вводится тонкая прослойка Al2O3.
4. Способ по п. 1, отличающийся тем, что между подложкой и слоями SiO2 и SiNx вводится тонкая прослойка Al2O3.
5. Способ по п. 4, отличающийся тем, что между слоями SiO2 и SiNx вводится тонкая прослойка Al2O3.
RU2016139393A 2016-10-07 2016-10-07 Способ изготовления Т-образного затвора RU2624600C1 (ru)

Priority Applications (1)

Application Number Priority Date Filing Date Title
RU2016139393A RU2624600C1 (ru) 2016-10-07 2016-10-07 Способ изготовления Т-образного затвора

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
RU2016139393A RU2624600C1 (ru) 2016-10-07 2016-10-07 Способ изготовления Т-образного затвора

Publications (1)

Publication Number Publication Date
RU2624600C1 true RU2624600C1 (ru) 2017-07-04

Family

ID=59312734

Family Applications (1)

Application Number Title Priority Date Filing Date
RU2016139393A RU2624600C1 (ru) 2016-10-07 2016-10-07 Способ изготовления Т-образного затвора

Country Status (1)

Country Link
RU (1) RU2624600C1 (ru)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2686863C1 (ru) * 2017-12-27 2019-05-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Способ формирования Т-образного затвора
RU2724354C1 (ru) * 2019-11-27 2020-06-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Способ формирования субмикронного Т-образного затвора
CN117038461A (zh) * 2023-08-15 2023-11-10 上海新微半导体有限公司 GaN射频器件及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087256A (en) * 1996-12-18 2000-07-11 Nec Corporation Method for manufacturing modified T-shaped gate electrode
US6355556B1 (en) * 2000-09-29 2002-03-12 Vanguard International Semiconductor Corp. Method for fabricating transistor
RU2192069C2 (ru) * 2000-07-10 2002-10-27 Физико-технологический институт РАН Способ изготовления полупроводникового прибора с т-образным управляющим электродом субмикронной длины
US6740535B2 (en) * 2002-07-29 2004-05-25 International Business Machines Corporation Enhanced T-gate structure for modulation doped field effect transistors
US20080124852A1 (en) * 2005-11-29 2008-05-29 Electronics And Telecommunications Research Institute Method of forming T- or gamma-shaped electrode
CN102437182A (zh) * 2011-12-01 2012-05-02 中国科学院半导体研究所 SiO2/SiN双层钝化层T型栅AlGaN/GaN HEMT及制作方法
EP2479790A2 (en) * 2005-07-20 2012-07-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6087256A (en) * 1996-12-18 2000-07-11 Nec Corporation Method for manufacturing modified T-shaped gate electrode
RU2192069C2 (ru) * 2000-07-10 2002-10-27 Физико-технологический институт РАН Способ изготовления полупроводникового прибора с т-образным управляющим электродом субмикронной длины
US6355556B1 (en) * 2000-09-29 2002-03-12 Vanguard International Semiconductor Corp. Method for fabricating transistor
US6740535B2 (en) * 2002-07-29 2004-05-25 International Business Machines Corporation Enhanced T-gate structure for modulation doped field effect transistors
EP2479790A2 (en) * 2005-07-20 2012-07-25 Cree, Inc. Nitride-based transistors and fabrication methods with an etch stop layer
US20080124852A1 (en) * 2005-11-29 2008-05-29 Electronics And Telecommunications Research Institute Method of forming T- or gamma-shaped electrode
CN102437182A (zh) * 2011-12-01 2012-05-02 中国科学院半导体研究所 SiO2/SiN双层钝化层T型栅AlGaN/GaN HEMT及制作方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2686863C1 (ru) * 2017-12-27 2019-05-06 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Способ формирования Т-образного затвора
RU2724354C1 (ru) * 2019-11-27 2020-06-23 Федеральное государственное бюджетное образовательное учреждение высшего образования "Томский государственный университет систем управления и радиоэлектроники" (ТУСУР) Способ формирования субмикронного Т-образного затвора
CN117038461A (zh) * 2023-08-15 2023-11-10 上海新微半导体有限公司 GaN射频器件及其制备方法

Similar Documents

Publication Publication Date Title
JP6726710B2 (ja) 斜めフィールドプレートパワーデバイス及び斜めフィールドプレートパワーデバイスの製造方法
US7183149B2 (en) Method of manufacturing field effect transistor
KR100647459B1 (ko) 티형 또는 감마형 게이트 전극의 제조방법
KR100620393B1 (ko) 전계효과 트랜지스터 및 그의 제조 방법
US5220186A (en) Semiconductor device with a mushroom-shaped gate electrode
US6403456B1 (en) T or T/Y gate formation using trim etch processing
US8586462B2 (en) Method of manufacturing a field-effect transistor
RU2624600C1 (ru) Способ изготовления Т-образного затвора
KR102154336B1 (ko) 고전압 구동용 전계효과 트랜지스터 및 제조 방법
US11538908B2 (en) Semiconductor device
US6153499A (en) Method of manufacturing semiconductor device
US7915106B2 (en) Method of fabricating T-gate
KR101596079B1 (ko) 전계효과 트랜지스터 및 그 제조 방법
US9419083B2 (en) Semiconductor structures having a gate field plate and methods for forming such structure
US5436205A (en) Method of forming electrode in semiconductor device
Kim et al. Study of the fabrication of PHEMTs for a 0.1 μm scale Γ-gate using electron beam lithography: structure, fabrication, and characteristics
KR100521700B1 (ko) 반도체소자의 티형 게이트 형성방법
KR101875513B1 (ko) 이중 t 게이트 구조의 반도체 소자의 제조 방법
KR100262941B1 (ko) 화합물 반도체 소자의 미세 티형 게이트 형성방법
KR20110052336A (ko) 트랜지스터의 제조방법
KR100582586B1 (ko) 반도체 소자의 티형 게이트 제조방법
JP2008021766A (ja) 電界効果型トランジスタおよびその製造方法
CN115241285A (zh) 一种浮空t型栅及其制备方法
KR102123845B1 (ko) 게이트 전극 형성 방법 및 이를 통해 얻은 게이트 전극을 포함한 반도체 소자
KR20110087476A (ko) 희생층을 이용한 나노 스케일의 티형 게이트 제조방법

Legal Events

Date Code Title Description
MM4A The patent is invalid due to non-payment of fees

Effective date: 20191008