CN100441278C - 在陶瓷膜中添加阻止剂以在大气烧结过程中阻止粒子的结晶生长 - Google Patents

在陶瓷膜中添加阻止剂以在大气烧结过程中阻止粒子的结晶生长 Download PDF

Info

Publication number
CN100441278C
CN100441278C CNB2004800329140A CN200480032914A CN100441278C CN 100441278 C CN100441278 C CN 100441278C CN B2004800329140 A CNB2004800329140 A CN B2004800329140A CN 200480032914 A CN200480032914 A CN 200480032914A CN 100441278 C CN100441278 C CN 100441278C
Authority
CN
China
Prior art keywords
compound
composite
definition
volume
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004800329140A
Other languages
English (en)
Other versions
CN1878606A (zh
Inventor
G·埃切瓜扬
T·沙尔捷
P·德尔加洛
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Original Assignee
LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude filed Critical LAir Liquide SA pour lEtude et lExploitation des Procedes Georges Claude
Publication of CN1878606A publication Critical patent/CN1878606A/zh
Application granted granted Critical
Publication of CN100441278C publication Critical patent/CN100441278C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/024Oxides
    • B01D71/0271Perovskites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D67/00Processes specially adapted for manufacturing semi-permeable membranes for separation processes or apparatus
    • B01D67/0039Inorganic membrane manufacture
    • B01D67/0041Inorganic membrane manufacture by agglomeration of particles in the dry state
    • B01D67/00411Inorganic membrane manufacture by agglomeration of particles in the dry state by sintering
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/0215Silicon carbide; Silicon nitride; Silicon oxycarbide
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02231Palladium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D71/00Semi-permeable membranes for separation processes or apparatus characterised by the material; Manufacturing processes specially adapted therefor
    • B01D71/02Inorganic material
    • B01D71/022Metals
    • B01D71/0223Group 8, 9 or 10 metals
    • B01D71/02232Nickel
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J19/00Chemical, physical or physico-chemical processes in general; Their relevant apparatus
    • B01J19/24Stationary reactors without moving elements inside
    • B01J19/2475Membrane reactors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/002Mixed oxides other than spinels, e.g. perovskite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/02Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the alkali- or alkaline earth metals or beryllium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/10Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of rare earths
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/78Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with alkali- or alkaline earth metals
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/83Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with rare earths or actinides
    • B01J35/19
    • B01J35/59
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J8/00Chemical or physical processes in general, conducted in the presence of fluids and solid particles; Apparatus for such processes
    • B01J8/008Details of the reactor or of the particulate material; Processes to increase or to retard the rate of reaction
    • B01J8/009Membranes, e.g. feeding or removing reactants or products to or from the catalyst bed through a membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B13/00Oxygen; Ozone; Oxides or hydroxides in general
    • C01B13/02Preparation of oxygen
    • C01B13/0229Purification or separation processes
    • C01B13/0248Physical processing only
    • C01B13/0251Physical processing only by making use of membranes
    • C01B13/0255Physical processing only by making use of membranes characterised by the type of membrane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/32Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air
    • C01B3/34Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents
    • C01B3/38Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by reaction of gaseous or liquid organic compounds with gasifying agents, e.g. water, carbon dioxide, air by reaction of hydrocarbons with gasifying agents using catalysts
    • C01B3/386Catalytic partial combustion
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01GCOMPOUNDS CONTAINING METALS NOT COVERED BY SUBCLASSES C01D OR C01F
    • C01G49/00Compounds of iron
    • C01G49/009Compounds containing, besides iron, two or more other elements, with the exception of oxygen or hydrogen
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/26Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on ferrites
    • C04B35/2641Compositions containing one or more ferrites of the group comprising rare earth metals and one or more ferrites of the group comprising alkali metals, alkaline earth metals or lead
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62685Treating the starting powders individually or as mixtures characterised by the order of addition of constituents or additives
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/08Specific temperatures applied
    • B01D2323/081Heating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2323/00Details relating to membrane preparation
    • B01D2323/15Use of additives
    • B01D2323/18Pore-control agents or pore formers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2523/00Constitutive chemical elements of heterogeneous catalysts
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/02Processes for making hydrogen or synthesis gas
    • C01B2203/025Processes for making hydrogen or synthesis gas containing a partial oxidation step
    • C01B2203/0261Processes for making hydrogen or synthesis gas containing a partial oxidation step containing a catalytic partial oxidation step [CPO]
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1205Composition of the feed
    • C01B2203/1211Organic compounds or organic mixtures used in the process for making hydrogen or synthesis gas
    • C01B2203/1235Hydrocarbons
    • C01B2203/1241Natural gas or methane
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2203/00Integrated processes for the production of hydrogen or synthesis gas
    • C01B2203/12Feeding the process for making hydrogen or synthesis gas
    • C01B2203/1258Pre-treatment of the feed
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B2210/00Purification or separation of specific gases
    • C01B2210/0043Impurity removed
    • C01B2210/0046Nitrogen
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01PINDEXING SCHEME RELATING TO STRUCTURAL AND PHYSICAL ASPECTS OF SOLID INORGANIC COMPOUNDS
    • C01P2004/00Particle morphology
    • C01P2004/80Particles consisting of a mixture of two or more inorganic phases
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3206Magnesium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3213Strontium oxides or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3224Rare earth oxide or oxide forming salts thereof, e.g. scandium oxide
    • C04B2235/3227Lanthanum oxide or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3232Titanium oxides or titanates, e.g. rutile or anatase
    • C04B2235/3234Titanates, not containing zirconia
    • C04B2235/3236Alkaline earth titanates
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3272Iron oxides or oxide forming salts thereof, e.g. hematite, magnetite
    • C04B2235/3274Ferrites
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3286Gallium oxides, gallates, indium oxides, indates, thallium oxides, thallates or oxide forming salts thereof, e.g. zinc gallate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/76Crystal structural characteristics, e.g. symmetry
    • C04B2235/768Perovskite structure ABO3
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/78Grain sizes and shapes, product microstructures, e.g. acicular grains, equiaxed grains, platelet-structures
    • C04B2235/786Micrometer sized grains, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/80Phases present in the sintered or melt-cast ceramic products other than the main phase
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Abstract

一种复合材料(M),其包含至少75体积%选自掺杂陶瓷氧化物的混合电子/氧阴离子O2-传导化合物(C1),所述掺杂陶瓷氧化物在使用温度下为具有氧化物离子晶格空穴的结晶网络形式,并且更特别地为立方相、氟石相、白带黛眼蝶类型钙钛矿相、钙铁石相或烧绿石相;和0.01-25体积%与化合物(C1)不同的化合物(C2),其选自氧化物类型陶瓷、非氧化物类型陶瓷、金属、金属合金或这些不同类型材料的混合物;和0体积%-2.5体积%通过下述方程式代表的至少一种反应产生的化合物(C3):xFc1+yFc2→zFc3其中,Fc1、Fc2和Fc3代表化合物(C1)、(C2)和(C3)的各自原表达式,x、y和z代表大于或等于0的有理数。本发明还涉及其制备方法及其用作用于通过催化氧化甲烷或天然气合成合成气的膜催化反应器的混合导体材料和/或作为用于陶瓷膜的混合导体的用途。

Description

在陶瓷膜中添加阻止剂以在大气烧结过程中阻止粒子的结晶生长
本发明的目标是一种混合的电子/O2-阴离子传导复合材料、其制备方法和其在催化膜反应器中用作固体电介质的用途,所述固体膜电介质特别是为用于通过甲烷或天然气的重整而生产合成气。
由陶瓷生产的催化膜反应器(以下称为CMR)用于从空气中分离氧,具体通过氧以阴离子形式在陶瓷中扩散以及后者与天然气(主要是甲烷)在沉积于膜表面的催化点(Ni或贵金属颗粒)的反应。合成气通过GTL(气体到液体)过程转变为液体燃料要求H2/CO摩尔比为2。该比值2可通过涉及CMR的方法直接获得。
但是,陶瓷是脆性的,并且其机械强度直接取决于微观结构(粒子的形状和大小、次要相、孔隙率)。在所有其他因素相同的情况下,当构成陶瓷的粒子的大小减小时,用作CMR的陶瓷的机械强度增大。在一定温度下运行时,粒子的尺寸可能增大,并且限制系统的寿命。多种出版物公开了旨在改善其寿命的方案。
美国专利US 5306411和US 5478444公开了由电子传导材料和离子传导材料混合物构成的复合材料,因而构成了混合传导性的固体电解质。
美国专利US 5911860公开了主要由混合的或离子导体构成的和由化学性质与混合的导体不同的成分、优选含量为0-20重量%的金属构成的材料。该公开突出了对第二相的需要,以限制烧结期间的材料开裂并由此在改善其催化效率的同时提高其机械性能。
美国专利US 6187157公开了多相系统,其中包含混合离子/电子传导相或仅离子传导相和第二电子传导相,以改善材料的催化性能。该次要相通常是金属的,并且占材料体积的13%。
美国专利US 6332964公开了一种致密膜或多孔载体,其由包含MCeOx、MZrOx型(M:镧系)类型的离子传导性或混合传导性(LaSrGaMgOx)的混合金属氧化物的相和具有电子传导性的第二相(金属、金属合金或LaSrMOx型的混合氧化物,其中M=过渡金属)组成,所述第二相为基体体积的1-30体积%。美国专利申请US 2002/0022568公开了一种具有高混合传导性、低热膨胀系数和改进的机械性能的式Ln1-xSryCax-yMO3-δ的材料(Ln:镧系和钇,或这二者的混合物;M:过渡金属或过渡金属的混合物)。美国专利US 6471921公开了一种混合传导性多相材料,其次要相不明显参与传导,但的确提高了该材料的机械性能。所述次要相是由于偏离了用于合成混合导体的前体的化学计量混合而产生的,因此是该反应的副产物。该次要相的含量为0.1-20重量%。主材料是结构为AxA’x’A”(2-x-x’)ByB’y’B”(2-y-y’)O5+z的钙铁石相,次要相具有组成(A,A’)2(B,B’)O4、A’2(B,B’)O4、(A,A’)(B,B’)2O4,...等等。所有这些次要相由用于合成材料的反应形成。它们不在材料形成之前加入。
本申请人一直致力于开发具有精细均匀结构、粒子的大小接近一微米、从而保证高且持久的机械性能的复合材料。
因此,根据第一方面,本发明的一个目标是复合材料(M),其包含:
-至少75体积%的选自掺杂陶瓷氧化物的混合电子/氧阴离子O2-传导化合物(C1),所述掺杂陶瓷氧化物在使用温度下为具有氧化物离子空穴的晶格形式,并且更特别地为立方相、氟石相、aurivillius类型钙钛矿相、钙铁石相或烧绿石相;和
-0.01-25体积%的与化合物(C1)不同的化合物(C2),其选自氧化物类型陶瓷、非氧化物类型陶瓷、金属、金属合金或这些不同类型材料的混合物;和
-0体积%-2.5体积%通过下述方程式代表的至少一种化学反应产生的化合物(C3):
xFc1+yFc2→zFc3
其中,Fc1、Fc2和Fc3代表化合物C1、C2和C3的各自原表达式(crudeformulae),x、y和z代表大于或等于0的有理数。
在下述陈述中,化合物(C2)经常称为阻止剂,因为其在本发明复合材料中的存在抑制了化合物(C1)的粒子在其制造方法的一个或多个步骤中的结晶生长。阻止剂的粒子的形状优选为直径为0.1μm-5μm、优选小于1μm的球体,或者粒子为等轴的形状,或为长度为5μm或更小的针状粒子。
短语“化合物(C1)或(C2)”是指如上定义的复合材料可以包含:
-与单一化合物(C2)混合的化合物(C1);
-或者与单一化合物(C2)混合的数种化合物(C1)的组合;
-或者与数种化合物(C2)的组合混合的化合物(C1);
-或者与数种化合物(C2)的组合混合的数种化合物(C1)的组合。
在本发明复合材料的定义中,术语“体积分率”理解为是指最终复合材料中的体积分率。
根据本发明的第一优选实施方式,化合物(C3)在所述复合材料中的体积分率不超过1.5体积%,并且尤其不超过0.5体积%。
根据该优选实施方式的一个特别方面,化合物(C2)在从室温到烧结温度的温度范围内相对于化合物(C1)基本是化学惰性的,该温度范围包括操作温度,并且化合物(C3)的体积分率趋于0。
根据本发明的第二优选方面,化合物(C2)的体积分率不小于0.1%但不超过10%,并且更特别地,化合物(C2)的体积分率不超过5体积%但不低于1体积%。
在如上定义的复合材料中,化合物(C2)主要选自:
-氧化物型陶瓷,例如氧化镁(MgO)、氧化钙(CaO)、氧化铝(Al2O3)、氧化锆(ZrO2)、氧化钛(TiO2)、混合的锶铝氧化物SrAl2O4或Sr3Al2O6,混合的钙钛矿结构氧化物,例如BaTiO3或CaTiO3或,更特别地具有结构ABO3-δ的物质,例如La0.5Sr0.5Fe0.9Ti0.1O3-δ或La0.6Sr0.4Fe0.9Ga0.1O3-δ,其中δ使得晶格保持电中性;
-或者选自非氧化物类型(碳化物、氮化物、硼化物)的材料,例如碳化硅(SiC)或氮化硼(BN);
-或选自金属,例如镍、铂、钯或铑。
根据上述定义的复合材料的第一特别方面,化合物(C1)选自式(I)的氧化物:
(RaOb)1-x(RcOd)x    (I)
其中:
Ra代表至少一种主要选自铋(Bi)、铈(Ce)、锆(Zr)、钍(Th)、镓(Ga)和铪(Hf)的三价或四价原子,并且a和b使得结构RaOb呈电中性;
Rc代表至少一种主要选自镁(Mg)、钙(Ca)、钡(Ba)、锶(Sr)、钆(Gd)、钪(Sc)、镱(Yb)、钇(Y)、钐(Sm)、铒(Er)、铟(In)、铌(Nb)和镧(La)的二价或三价原子,并且c和d使得结构RcOd呈电中性;并且
其中x一般在0.05和0.30之间,且尤其在0.075和0.15之间。
式(I)氧化物的实例包括铈稳定的氧化物、镓酸盐和氧化锆。
根据该第一特别方面,化合物(C1)优选选自式(Ia)的稳定的氧化锆:
(ZrO2)1-x(Y2O3)x    (Ia)
其中x在0.05和0.15之间。
根据上述定义的复合材料的第二特别方面,化合物(C1)选自式(II)的钙钛矿氧化物:
[Ma1-x-uMa’xMa”u][Mb1-y-vMb’yMb”v]O3-w    (II)
其中:
Ma代表选自钪、钇或选自镧系、锕系或碱土金属的原子;
Ma’与Ma不同,代表选自钪、钇或选自镧系、锕系或碱土金属的原子;
Ma”与Ma和Ma’不同,代表选自铝(Al)、镓(Ga)、铟(In)、铊(Tl)或碱土金属的原子;
Mb代表选自过渡金属的原子;
Mb’与Mb不同,代表选自过渡金属、铝(Al)、铟(In)、镓(Ga)、锗(Ge)、锑(Sb)、铋(Bi)、锡(Sn)、铅(Pb)和钛(Ti)的原子;
Mb”与Mb和Mb’不同,代表选自过渡金属、碱土金属、铝(Al)、铟(In)、镓(Ga)、锗(Ge)、锑(Sb)、铋(Bi)、锡(Sn)、铅(Pb)和钛(Ti)的原子;
0<x≤0.5;
0≤u≤0.5;
(x+u)≤0.5;
0≤y≤0.9;
0≤v≤0.9;
0≤(y+v)≤0.9;并且
w使得所讨论的结构呈电中性。
根据该第二特别方面,化合物(C1)更特别地选自其中u等于零的式(II)化合物、或选自其中u不等于零的式(II)化合物、或其中(y+v)的和等于零的式(II)化合物、或其中(y+v)的和不等于零的式(II)化合物。
在上述定义的式(II)中,Ma更特别地选自La、Ce、Y、Gd、Mg、Ca、Sr和Ba。在这种情况下,化合物(C1)优选为式(IIa)的化合物:
La(1-x-u)Ma’xMa”uMb(1-y-v)Mb’yMb”vO3-w  (IIa),
其对应于其中Ma代表镧原子的式(II)。
在上述定义的式(II)中,Ma’更特别地选自La、Ce、Y、Gd、Mg、Ca、Sr和Ba。在这种情况下,化合物(C1)优选为式(IIb)的化合物:
Ma(1-x-u)SrxMa”uMb(1-y-v)Mb’yMb”vO3-w    (IIb),
其对应于其中Ma’代表锶原子的式(II)。
在上述定义的式(II)中,Mb更特别地选自Fe、Cr、Mn、Co、Ni和Ti。在这种情况下,化合物(C1)优选为式(IIc)的化合物:
Ma(1-x-u)Ma’xMa”uFe(1-y-v)Mb’yMb”vO3-w  (IIc),
其对应于其中Mb代表铁原子的式(II)。
在上述定义的式(II)中,Mb’更特别地选自Co、Ni、Ti和Ga,而Mb”更特别地选自Ti和Ga。
在这种情况下,化合物(C1)优选为式(IId)的化合物:
La(1-x)SrxFe(1-v)Mb”vO3-w(IId),
其对应于其中u=0、y=0、Mb代表铁原子、Ma代表镧原子、Ma’代表锶原子的式(II)。在上述定义的式(II)中,Ma”更特别地选自Ba、Ca、Al和Ga。在本发明复合材料中,化合物(C1)更特别地为下式化合物:
La(1-x-u)SrxAluFe(1-v)TivO3-w、La(1-x-u)SrxAluFe(1-v)GavO3-w
La(1-x)SrxFe(1-v)TivO3-w、La(1-x)SrxTi(1-v)FevO3-w
La(1-x)SrxFe(1-v)GavO3-w或La(1-x)SrxFeO3-w,并且更特别地为下述化合物的一种:La0.6Sr0.4Fe0.9Ga0.1O3-w或La0.5Sr0.5Fe0.9Ti0.1O3-w
在具有式(II)钙钛矿型晶体结构的化合物中,优选用于本发明复合材料的是式(II’)的化合物:
Ma(a) (1-x-u)Ma’(a-1) xMa”(a”) uMb(b) (1-s-y-v)Mb(b+1) sMb’(b+β) yMb”(b”) vO3-δ(II’)
在式(II’)中:
a、a-1、a”、b、(b+1)、(b+β)和b”是代表Ma、Ma’、Ma”、Mb、Mb’、Mb”原子各自价态的整数;并且a、a”、b、b”、β、x、y、s、u、v和δ使得晶格保持电中性,
a>1;
a”、b和b”大于零;
-2≤β≤2;
a+b=6;
0<s<x;
0<x≤0.5;
0≤u≤0.5;
(x+u)≤0.5;
0≤y≤0.9;
0≤v≤0.9;
0≤(y+v+s)≤0.9;
[u(a”-a)+v(b”-b)-x+s+βy+2δ]=0;并且
δ最小<δ<δ最大,其中
δ最小=[u(a-a”)+v(b-b”)-βy]/2和
δ最大=[u(a-a”)+v(b-b”)-βy+x]/2
并且,Ma、Ma’、Ma”、Mb、Mb’和Mb”定义如上,Mb选自能够以几种可能的价态存在的过渡金属。
根据上述材料的第三特别方面,化合物(C1)选自式(III)钙铁石族材料:
[Mc2-xMc’x][Md2-yMd’y]O6-w    (III)
其中:
Mc代表选自钪、钇或选自镧系、锕系或碱土金属的原子;
Mc’与Mc不同,代表选自钪、钇或选自镧系、锕系或碱土金属的原子;
Md代表选自过渡金属的原子;且
Md’与Md不同,代表选自过渡金属、铝(Al)、铟(In)、镓(Ga)、锗(Ge)、锑(Sb)、铋(Bi)、锡(Sn)、铅(Pb)和钛(Ti)的原子;并且
x和y大于或等于0并且小于或等于2,w使得所讨论的结构呈电中性。
根据本发明材料的第三特别方面,化合物(C1)更特别地为式(IIIa)的化合物:
[Mc2-xLax][Md2-yFey]O6-w    (IIIa),
式(IIIb)的化合物:
[Sr2-xLax][Ga2-yMd’y]O6-w  (IIIb),
并且更特别地为式(IIIc)的化合物:
[Sr2-xLax][Ga2-yFey]O6-w    (IIIc),
例如下式化合物:
Sr1.4La0.6GaFeO5.3;Sr1.6La0.4Ga1.2Fe0.8O5.3;Sr1.6La0.4GaFeO5.2
Sr1.6La0.4Ga0.8Fe1.2O5.2;Sr1.6La0.4Ga0.6Fe1.4O5.2;Sr1.6La0.4Ga0.4Fe1.6O5.2
Sr1.6La0.4Ga0.2Fe1.8O5.2;Sr1.6La0.4Fe2O5.2;Sr1.7La0.3GaFeO5.15
Sr1.7La0.3Ga0.8Fe1.2O5.15;Sr1.7La0.3Ga0.6Fe1.4O5.15
Sr1.7La0.3Ga0.4Fe1.6O5.15;Sr1.7La0.3Ga0.2Fe1.8O5.15;Sr1.8La0.2GaFeO5.1
Sr1.8La0.2Ga0.4Fe1.6O5.1;或Sr1.8La0.2Ga0.2Fe1.8O5.1
根据本发明的一个更特别的方面,其主题是如上定义的复合材料,其中化合物(C1)选自下式化合物:
La0.6Sr0.4Fe0.9Ga0.1O3-δ
La0.5Sr0.5Fe0.9Ti0.1O3-δ
并且化合物(C2)选自氧化镁(MgO)、氧化铝(Al2O3)、混合的锶铝氧化物Sr3Al2O6和混合的钡钛氧化物(BaTiO3)。
根据后一特别方面,包含2-10体积%的氧化镁(MgO)和90-98体积%的La0.6Sr0.4Fe0.9Ga0.1O3-δ的复合材料是优选的。
根据第二方面,本发明的另一主题是制备上述定义的复合材料的方法,其特征在于包括至少一个将化合物(C1)和化合物(C2)的粉末掺合物烧结、同时控制反应混合物周围气氛的氧分压(pO2)的步骤。
在上述定义的方法中,复合材料的烧结温度在800℃和1500℃之间,优选在1000℃和1350℃之间。
烧结包括两个同时发生的通常相互竞争的现象,即通过消除多孔性使材料致密化和粒子增长。如果为了将其用作混合导体而必须使材料的致密化最大化,晶体的生长对其机械性能可能是有害的。因此必须调节烧结步骤以在使粒子生长最小化的同时使部件致密化。但是,取决于所用材料的性质或施加的烧结条件,满足这两个条件常常是困难的。在混合导体中存在合适量的化合物(C2)保证了令人满意的致密化,同时限制或甚至阻止导体(C1)的结晶生长。
上述定义的方法更特别地以下述方式使用:烧结步骤在氧分压为0.1Pa或更低的气氛中进行。
根据另一特别方面,上述定义方法的特征在于化合物(C1)和化合物(C2)的粉末掺合物在烧结步骤之前进行成形步骤,然后除去粘合剂。
根据另一方面,本发明的另一个主题是上述定义的复合材料的下述用途:用作催化膜反应器(其用于通过甲烷或天然气的催化氧化而合成合成气)的混合传导复合材料和/或用作陶瓷膜(其用于从空气中分离氧)的混合传导复合材料。
本发明的最后一个主题是在制备催化膜反应器的烧结步骤期间抑制和/或控制混合的电子/氧化物离子传导化合物中粒子的晶体生长的方法,其特征在于包括将75-99.99体积%的混合导体(C1)与0.01-25体积%的化合物(C2)掺合的在前步骤。
根据上述方法的优选方式,这包括将90-98体积%的La0.6Sr0.4Fe0.9Ga0.1O3-δ与2-10体积%的氧化镁掺合的在前步骤。
实施例
多相复合材料的制备
阻止剂一般通过市售高纯度粉末或粉末掺合物获得。它还可以由掺合的氧化物和/或硝酸盐和/或碳酸盐前体合成并以合适的方式均化。然后该前体掺合物在800℃-1400℃的高温下煅烧,以进行反应并形成期望的复合材料,这些材料通过X-射线衍射法检查。如果必要,对前体粉末进行研磨,优选使用磨碎机研磨,以便窄化粒径分布并减小粒径,例如减小到0.5μm。形成复合材料(包括将颗粒(C2)均匀掺入基体(C1))和除去粘合剂的步骤与仅混合(C1)导体的步骤相同。
高温热处理一般与阻止剂的存在相适应,其利于烧结。
实施例1:MgO(5体积%)/La0.5Sr0.5Fe0.9Ti0.1O3-δ(95体积%)陶瓷膜
本实施例是符合上述条件的掺合物,其包含5体积%氧化镁(MgO)(化合物C2)和95体积%La0.5Sr0.5Fe0.9Ti0.1O3-δ陶瓷(化合物C1)。烧结步骤在氮气氛中于1150℃下进行1.5小时。
图1显示了两个通过扫描电子显微术获得的、具有不同放大率(图1a:×8000,图1b:×10000)的图像。这些图像表明MgO粒子均匀地分散于基体中,其具有的粒径小于1μm。La0.5Sr0.5Fe0.9Ti0.1O3-δ粒子均小于2μm。
不包含MgO且在相同条件下烧结(在氮气氛中于1150℃下烧结1.5小时)的La0.5Sr0.5Fe0.9Ti0.1O3-δ膜具有的粒子粒径在2和3μm之间。
图2显示了通过EDS分析获得的膜的组成元素图。由其可以看出所有元素都均匀分布。这些图清楚地说明了MgO阻止剂相对La0.5Sr0.5Fe0.9Ti0.1O3-δ的化学惰性。
实施例2:MgO(5体积%)/La0.6Sr0.4Fe0.9Ga0.1O3-δ(95体积%)陶瓷膜
本实施例是符合上述条件的掺合物,其包含5体积%氧化镁(MgO)(化合物C2)和95体积%La0.6Sr0.4Fe0.9Ga0.1O3-δ陶瓷(在图中缩写为LSFG;化合物C1)。烧结步骤在氮气氛中于1235℃下进行2小时。
图3通过X-射线衍射表明下述事实:MgO(40体积%)/La0.6Sr0.4Fe0.9Ga0.1O3-δ(60体积%)掺合物在于1200℃在氮气中煅烧几小时后没有形成任何新的化合物。X-射线衍射图表明MgO阻止剂与La0.5Sr0.5Fe0.9Ga0.1O3-δ之间不存在化学活性。
图4通过X-射线衍射表明BaTiO3(40体积%)/La0.6Sr0.4Fe0.9Ga0.1O3-δ(60体积%)掺合物在于1200℃在氮气中煅烧几小时后没有形成任何新的化合物。X-射线衍射图表明BaTiO3阻止剂与La0.5Sr0.5Fe0.9Ga0.1O3-δ之间不存在化学活性。
图5是不包含阻止剂的复合材料的二次电子SEM显微照片(放大率:×3000,粒径在2和10μm之间)。烧结步骤在氮气中于1235℃进行2小时(现有技术的复合材料)。
图6是包含5体积%氧化镁作为阻止剂的La0.6Sr0.4Fe0.9Ga0.1O3-δ复合材料的二次电子SEM显微照片(放大率:×20000,粒径在0.1和1μm之间)。烧结步骤在氮气中于1235℃进行2小时。
图7是包含5体积%氧化镁作为阻止剂的La0.6Sr0.4Fe0.9Ga0.1O3-δ复合材料的二次电子SEM显微照片(放大率:×50000,粒径在0.2和1.6μm之间)。烧结步骤在氮气中于1300℃进行2小时。
实施例3:存在于La0.6Sr0.4Fe0.9Ga0.1O3-δ(LSFG)中的氧化镁(MgO)对膜的氧渗透性的影响
a)制备试样
称重LSFG和MgO粉末并按照不同的体积比混合,从而获得包含(100-x)体积%LSFG和x体积%MgO的材料,其中x=0;2;5。
利用The Encyclopedia of Advanced Materials,第4卷,Pergamon1994,Cambridge,T.Chartier著,第2763-2767页描述的流延法由这些组分制备厚度约1mm、面积3.1cm2的致密膜,并且其中除去粘合剂的步骤以缓慢加热速率进行,烧结步骤在90%氮/10%氧的气氛中在1250-1350℃下进行2小时。渗透测量使用图8显示的设备进行,该设备由管式炉、气体进料和分析仪(气相色谱-YSZ基氧探头)组成。
将纯(LSFG)相和复合相(LSFG/2M;LSFG/5M)的致密膜沉积在氧化铝管的顶部,通过位于支撑管和膜之间的玻璃环并通过氧化铝盖在管内部和外部之间提供密封,以便将其保持在适当位置并从上部施加压力。
将整个装置插入管式炉内,并将其加热最高达玻璃环的玻璃态转变温度。
在密封之前,使膜在其外表面上经受氩气流、在其内表面经受流速为200ml(STP)/分钟的调配空气(79%N2/21O2)流。使用色谱仪分析流出该装置的气体以确认对氧的100%选择率,并使用氧探头分析以确定通过各复合材料的氧的渗透通量。
b)结果
图9显示了对于各复合材料的氧流量变化(其为温度的函数)的曲线。该图显示了因阻止剂的存在由氧流量导致的倍增系数(在950℃下,在LSFG/2M情况下与LSFG相比,MF=4,在LSFG/5M情况下与LSFG相比,MF=6)。
图10显示了膜的微观结构对氧的渗透通量活化能的影响,当氧化镁的比例提高时,活化能下降。

Claims (31)

1.一种复合材料(M),其包含:
-至少75体积%的选自掺杂陶瓷氧化物的混合的电子/氧阴离子O2-传导化合物(C1),所述掺杂陶瓷氧化物在使用温度下为具有氧化物离子空穴的晶格形式;和
-0.01-25体积%的与化合物(C1)不同的化合物(C2),其选自氧化物类型陶瓷、非氧化物类型陶瓷、金属、金属合金或这些不同类型材料的混合物;和
-0体积%-2.5体积%的通过下述方程式代表的至少一种化学反应产生的化合物(C3):
xFc1+yFc2→zFc3
其中,Fc1、Fc2和Fc3代表化合物(C1)、(C2)和(C3)的各自原表达式,x、y和z代表大于或等于0的有理数。
2.如权利要求1定义的复合材料,其中化合物(C2)的粒子具有等轴的形状,直径为0.1μm-5μm。
3.如权利要求1或2定义的复合材料,其中化合物(C3)的体积分率不超过1.5体积%。
4.如权利要求1定义的复合材料,其中化合物(C2)的粒子具有直径小于1μm的等轴形状,且其中化合物(C3)的体积分率不超过0.5体积%。
5.如权利要求3定义的复合材料,其中化合物(C3)在所述复合材料中的体积分率趋于0。
6.如权利要求1或2定义的复合材料,其中化合物(C2)的体积分率不小于0.1%但不超过10%。
7.如权利要求6定义的复合材料,其中化合物(C2)的体积分率不超过5体积%。
8.如权利要求1或2定义的复合材料,其中化合物(C2)选自氧化物类型材料。
9.如权利要求1或2定义的复合材料,其中化合物(C2)选自非氧化物类型材料。
10.如权利要求1定义的复合材料,其中化合物(C1)选自式(I)的氧化物:
(RaOb)1-x(RcOd)x    (I),
其中:
Ra代表至少一种主要选自铋(Bi)、铈(Ce)、锆(Zr)、钍(Th)、镓(Ga)和铪(Hf)的三价或四价原子,并且a和b使得结构RaOb呈电中性;
Rc代表至少一种主要选自镁(Mg)、钙(Ca)、钡(Ba)、锶(Sr)、钆(Gd)、钪(Sc)、镱(Yb)、钇(Y)、钐(Sm)、铒(Er)、铟(In)、铌(Nb)和镧(La)的二价或三价原子,并且c和d使得结构RcOd呈电中性;并且
其中x一般在0.05和0.30之间。
11.如权利要求10定义的复合材料,其中x在0.075和0.15之间。
12.如权利要求10定义的复合材料,其中化合物(C1)选自式(Ia)的稳定的氧化锆:
(ZrO2)1-x(Y2O3)x    (Ia),
其中x在0.05和0.15之间。
13.如权利要求10定义的复合材料,其中化合物(C1)选自式(II)的钙钛矿氧化物:
[Ma1-x-uMa’xMa”u][Mb1-y-vMb’yMb”v]O3-w    (II)
其中:
Ma代表选自钪、钇或选自镧系、锕系或碱土金属的原子;
Ma’与Ma不同,代表选自钪、钇或选自镧系、锕系或碱土金属的原子;
Ma”与Ma和Ma’不同,代表选自铝(Al)、镓(Ga)、铟(In)、铊(Tl)或选自碱土金属的原子;
Mb代表选自过渡金属的原子;
Mb’与Mb不同,代表选自过渡金属、铝(Al)、铟(In)、镓(Ga)、锗(Ge)、锑(Sb)、铋(Bi)、锡(Sn)、铅(Pb)和钛(Ti)的原子;
Mb”与Mb和Mb’不同,代表选自过渡金属、碱土金属、铝(Al)、铟(In)、镓(Ga)、锗(Ge)、锑(Sb)、铋(Bi)、锡(Sn)、铅(Pb)和钛(Ti)的原子;
0<x≤0.5;
0≤u≤0.5;
(x+u)≤0.5;
0≤y≤0.9;
0≤v≤0.9;
0≤(y+v)≤0.9;并且
w使得所讨论的结构呈电中性。
14.如权利要求13定义的复合材料,其中化合物(C1)选自式(IIa)的化合物:
La(1-x-u)Ma’xMa”uMb(1-y-v)Mb’yMb”vO3-w    (IIa),
其对应于其中Ma代表镧原子的式(II)。
15.如权利要求13定义的复合材料,其中化合物(C1)选自式(IIb)的化合物:
Ma(1-x-u)SrxMa”uMb(1-y-v)Mb’yMb”vO3-w    (IIb),
其对应于其中Ma’代表锶原子的式(II)。
16.如权利要求13定义的复合材料,其中化合物(C1)选自式(IIc)的化合物:
Ma(1-x-u)Ma’xMa”uFe(1-y-v)Mb’yMb”vO3-w    (IIc),
其对应于其中Mb代表铁原子的式(II)。
17.如权利要求13定义的复合材料,其中化合物(C1)选自式(IId)的化合物:
La(1-x)SrxFe(1-v)Mb”vO3-w    (IId),
其对应于其中u=0、y=0、Mb代表铁原子、Ma代表镧原子、Ma’代表锶原子的式(II)。
18.如权利要求13定义的复合材料,其中化合物(C1)为下式化合物:
La(1-x-u)SrxAluFe(1-v)TivO3-w
La(1-x-u)SrxAluFe(1-v)GavO3-w
La(1-x)SrxFe(1-v)TivO3-w
La(1-x)SrxTi(1-v)FevO3-w
La(1-x)SrxFe(1-v)GavO3-w
La(1-x)SrxFeO3-w
19.如权利要求18定义的复合材料,其为下式的化合物:
La0.6Sr0.4Fe0.9Ga0.1O3-w
La0.5Sr0.5Fe0.9Ti0.1O3-w
20.如权利要求13定义的复合材料,其中化合物(C1)选自式(II’)的化合物:
Ma(a)(1-x-u)Ma’(a-1) xMa”(a”) uMb(b) (1-s-y-v)Mb(b+1) sMb’(b+β) yMb”(b”) vO3-δ   (II’)
在式(II’)中:
a、a-1、a”、b、(b+1)、(b+β)和b”是代表Ma、Ma’、Ma”、Mb、Mb’、Mb”原子各自价态的整数;并且a、a”、b、b”、β、x、y、s、u、v和δ使得晶格保持电中性,
a>1;
a”、b和b”大于零;
-2≤β≤2;
a+b=6;
0<s<x;
0<x≤0.5;
0≤u≤0.5;
(x+u)≤0.5;
0≤y≤0.9;
0≤v≤0.9;
0≤(y+v+s)≤0.9;
[u(a”-a)+v(b”-b)-x+s+βy+2δ]=0;并且
δ最小<δ<δ最大,其中
δ最小=[u(a-a”)+v(b-b”)-βy]/2和
δ最大=[u(a-a”)+v(b-b”)-βy+x]/2
并且,Ma、Ma’、Ma”、Mb、Mb’和Mb”定义如上,Mb选自能够以几种可能的价态存在的过渡金属。
21.如权利要求1定义的复合材料,其中化合物(C1)选自式(III)的氧化物:
[Mc2-xMc’x][Md2-yMd’y]O6-w    (III)
其中:
Mc代表选自钪、钇或选自镧系、锕系或碱土金属的原子;
Mc’与Mc不同,代表选自钪、钇或选自镧系、锕系或碱土金属的原子;
Md代表选自过渡金属的原子;且
Md’与Md不同,代表选自过渡金属、铝(Al)、铟(In)、镓(Ga)、锗(Ge)、锑(Sb)、铋(Bi)、锡(Sn)、铅(Pb)和钛(Ti)的原子;并且
x和y大于或等于0并且小于或等于2,w使得所讨论的结构呈电中性。
22.如权利要求21定义的复合材料,其中化合物(C1)为式(IIIa)的化合物:
[Mc2-xLax][Md2-yFey]O6-w    (IIIa),
式(IIIb)的化合物:
[Sr2-xLax][Ga2-yMd’y]O6-w    (IIIb)。
23.如权利要求22定义的复合材料,其中化合物(C1)为下式的化合物:
Sr1.4La0.6GaFeO5.3
Sr1.6La0.4Ga1.2Fe0.8O5.3
Sr1.6La0.4GaFeO5.2
Sr1.6La0.4Ga0.8Fe1.2O5.2
Sr1.6La0.4Ga0.6Fe1.4O5.2
Sr1.6La0.4Ga0.4Fe1.6O5.2
Sr1.6La0.4Ga0.2Fe1.8O5.2
Sr1.6La0.4Fe2O5.2
Sr1.7La0.3GaFeO5.15
Sr1.7La0.3Ga0.8Fe1.2O5.15
Sr1.7La0.3Ga0.6Fe1.4O5.15
Sr1.7La0.3Ga0.4Fe1.6O5.15
Sr1.7La0.3Ga0.2Fe1.8O5.15
Sr1.8La0.2GaFeO5.1
Sr1.8La0.2Ga0.4Fe1.6O5.1;或
Sr1.8La0.2Ga0.2Fe1.8O5.1
24.如权利要求8定义的复合材料,其中化合物(C1)选自下式化合物:
La0.6Sr0.4Fe0.9Ga0.1O3-δ
La0.5Sr0.5Fe0.9Ti0.1O3-δ
并且化合物(C2)选自氧化镁(MgO)、氧化铝(Al2O3)、混合的锶铝氧化物Sr3Al2O6和混合的钡钛氧化物(BaTiO3)。
25.如权利要求24定义的复合材料,其中包含2体积%-10体积%的氧化镁(MgO)和90体积%-98体积%的La0.6Sr0.4Fe0.9Ga0.1O3-δ
26.一种制备如权利要求1-25中任意一项定义的复合材料的方法,其特征在于包括至少一个将化合物(C1)和化合物(C2)的粉末掺合物烧结、同时控制反应混合物周围的气氛中的氧分压(pO2)的步骤。
27.如权利要求26定义的方法,其中所述烧结步骤在具有0.1Pa或更低的氧分压的气氛中进行。
28.如权利要求26或27所述的方法,其中化合物(C1)和化合物(C2)的粉末掺合物在烧结步骤之前进行成形步骤,然后除去粘合剂。
29.如权利要求1-25中任意一项定义的复合材料的用途,用作用于通过甲烷或天然气的催化氧化而合成合成气的催化膜反应器的混合传导复合材料和/或用作用于从空气中分离氧的陶瓷膜的混合传导复合材料。
30.一种在制备催化膜反应器的烧结步骤期间抑制和/或控制混合电子/氧化物离子传导化合物的粒子的晶体生长的方法,其特征在于其包括将75-99.99体积%的化合物(C1)与0.01-25体积%的化合物(C2)掺合的在前步骤,其中化合物(C1)和化合物(C2)如权利要求1至25中任一项所定义。
31.如权利要求30定义的方法,其包含2-10体积%的氧化镁(MgO)和90-98体积%的La0.6Sr0.4Fe0.9Ga0.1O3-δ,其中δ使得晶格保持电中性。
CNB2004800329140A 2003-11-06 2004-11-05 在陶瓷膜中添加阻止剂以在大气烧结过程中阻止粒子的结晶生长 Expired - Fee Related CN100441278C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR0350802A FR2862005B1 (fr) 2003-11-06 2003-11-06 Ajout d'agent(s) bloquant(s) dans une membrane ceramique pour bloquer la croissance cristalline des grains lors du frittage sous atmosphere
FR0350802 2003-11-06

Publications (2)

Publication Number Publication Date
CN1878606A CN1878606A (zh) 2006-12-13
CN100441278C true CN100441278C (zh) 2008-12-10

Family

ID=34508738

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004800329140A Expired - Fee Related CN100441278C (zh) 2003-11-06 2004-11-05 在陶瓷膜中添加阻止剂以在大气烧结过程中阻止粒子的结晶生长

Country Status (8)

Country Link
US (2) US7955526B2 (zh)
EP (1) EP1697025B1 (zh)
JP (1) JP2007512214A (zh)
CN (1) CN100441278C (zh)
AT (1) ATE404271T1 (zh)
DE (1) DE602004015838D1 (zh)
FR (1) FR2862005B1 (zh)
WO (1) WO2005046850A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1795260A1 (fr) 2005-12-07 2007-06-13 L'AIR LIQUIDE, Société Anonyme pour l'Etude et l'Exploitation des Procédés Georges Claude Catalyseur constitué d'un support solide, d'un oxyde, et d'une phase active métallique greffée sur l'oxyde, procédé pour sa préparation et application
JP5807782B2 (ja) * 2011-12-28 2015-11-10 トヨタ自動車株式会社 排ガス浄化用触媒
JP6524434B2 (ja) * 2014-11-06 2019-06-05 日本製鉄株式会社 固体酸化物型燃料電池の空気極、固体酸化物型燃料電池、及び固体酸化物型燃料電池の空気極の製造方法
CN105642131B (zh) * 2014-11-13 2019-06-18 中国科学院大连化学物理研究所 一种纳米粒子稳定钙钛矿结构透氧膜的方法
CN108786784A (zh) * 2018-06-15 2018-11-13 南京中科水治理股份有限公司 一种光催化降解复合材料的制备方法
CN111825107A (zh) * 2019-04-15 2020-10-27 中国科学院福建物质结构研究所 一种膜反应器、其制备方法及应用
CN115231514B (zh) * 2022-07-15 2023-08-04 江苏集萃安泰创明先进能源材料研究院有限公司 一种六方氮化硼负载纳米镍粒子催化的镁基储氢材料及其制备方法

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1134395A (zh) * 1994-09-22 1996-10-30 Abb管理有限公司 生产混合金属氧化物粉末的方法及由此法生产的混合粉末
WO1999021649A1 (en) * 1997-10-29 1999-05-06 Eltron Research, Inc. Catalytic membrane reactor with two component three-dimensional catalysis
WO2000059613A1 (en) * 1999-04-06 2000-10-12 Eltron Research, Inc. Catalytic membrane reactor materials for the separation of oxygen from air
US6146549A (en) * 1999-08-04 2000-11-14 Eltron Research, Inc. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties
CN1275428A (zh) * 1999-06-01 2000-12-06 普拉塞尔技术有限公司 用于陶瓷薄膜的稳定钙钛矿
US20010002990A1 (en) * 1993-12-08 2001-06-07 Richard Mackay Materials and methods for the separation of oxygen from air
US20020022568A1 (en) * 1993-12-08 2002-02-21 Richard Mackay Ceramic membranes for use in catalytic membrane reactors with high ionic conductivities and improved mechanical properties
US6471921B1 (en) * 1999-05-19 2002-10-29 Eltron Research, Inc. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5306411A (en) * 1989-05-25 1994-04-26 The Standard Oil Company Solid multi-component membranes, electrochemical reactor components, electrochemical reactors and use of membranes, reactor components, and reactor for oxidation reactions
JPH084741B2 (ja) * 1987-04-17 1996-01-24 松下電器産業株式会社 気体吸着分解剤
JPH04298240A (ja) * 1991-03-27 1992-10-22 Tokuyama Soda Co Ltd 電極用組成物
US5478444A (en) * 1992-05-11 1995-12-26 Gas Research Institute Composite mixed ionic-electronic conductors for oxygen separation and electrocatalysis
US5624542A (en) * 1992-05-11 1997-04-29 Gas Research Institute Enhancement of mechanical properties of ceramic membranes and solid electrolytes
US5534471A (en) * 1994-01-12 1996-07-09 Air Products And Chemicals, Inc. Ion transport membranes with catalyzed mixed conducting porous layer
JPH09299749A (ja) * 1996-05-09 1997-11-25 Sekiyu Sangyo Kasseika Center 排ガス浄化用素子、素子の製造方法および窒素酸化物の浄化方法
US6332964B1 (en) * 1996-12-31 2001-12-25 Praxair Technology, Inc. Multi-phase solid ion and electron conducting membrane with low volume percentage electron conducting phase and methods for fabricating
US6187157B1 (en) * 1996-12-31 2001-02-13 Praxair Technology, Inc. Multi-phase solid electrolyte ionic transport membrane and method for fabricating same
US5911860A (en) * 1996-12-31 1999-06-15 Praxair Technology, Inc. Solid electrolyte membrane with mechanically-enhancing constituents
US6153163A (en) * 1998-06-03 2000-11-28 Praxair Technology, Inc. Ceramic membrane reformer
JP3456436B2 (ja) * 1999-02-24 2003-10-14 三菱マテリアル株式会社 固体酸化物型燃料電池
FR2820055B1 (fr) * 2001-01-26 2003-03-21 Air Liquide Structures-microstructures de membrane ceramique conducteurs par ions oxyde pour la production d'oxygene sous pression elevee

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20010002990A1 (en) * 1993-12-08 2001-06-07 Richard Mackay Materials and methods for the separation of oxygen from air
US20020022568A1 (en) * 1993-12-08 2002-02-21 Richard Mackay Ceramic membranes for use in catalytic membrane reactors with high ionic conductivities and improved mechanical properties
CN1134395A (zh) * 1994-09-22 1996-10-30 Abb管理有限公司 生产混合金属氧化物粉末的方法及由此法生产的混合粉末
WO1999021649A1 (en) * 1997-10-29 1999-05-06 Eltron Research, Inc. Catalytic membrane reactor with two component three-dimensional catalysis
WO2000059613A1 (en) * 1999-04-06 2000-10-12 Eltron Research, Inc. Catalytic membrane reactor materials for the separation of oxygen from air
US6471921B1 (en) * 1999-05-19 2002-10-29 Eltron Research, Inc. Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
CN1275428A (zh) * 1999-06-01 2000-12-06 普拉塞尔技术有限公司 用于陶瓷薄膜的稳定钙钛矿
US6146549A (en) * 1999-08-04 2000-11-14 Eltron Research, Inc. Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties

Also Published As

Publication number Publication date
US7955526B2 (en) 2011-06-07
CN1878606A (zh) 2006-12-13
FR2862005A1 (fr) 2005-05-13
FR2862005B1 (fr) 2006-01-06
DE602004015838D1 (de) 2008-09-25
US20110298165A1 (en) 2011-12-08
ATE404271T1 (de) 2008-08-15
EP1697025B1 (fr) 2008-08-13
EP1697025A1 (fr) 2006-09-06
US8337724B2 (en) 2012-12-25
WO2005046850A1 (fr) 2005-05-26
JP2007512214A (ja) 2007-05-17
US20070228323A1 (en) 2007-10-04

Similar Documents

Publication Publication Date Title
US6471921B1 (en) Mixed ionic and electronic conducting ceramic membranes for hydrocarbon processing
EP1224149B1 (en) Ceramic membranes for catalytic membrane reactors with high ionic conductivities and low expansion properties
JP5126535B2 (ja) 複合体型混合導電体
JP3212304B2 (ja) 新規な固体多成分膜、電気化学的リアクター、並びに酸化反応に対する膜およびリアクターの使用
CA2200160C (en) Lanthanide ceramic material
US8337724B2 (en) Addition of (A) blocking agent(s) in a ceramic membrane for blocking crystalline growth of grains during atmospheric sintering
US6592782B2 (en) Materials and methods for the separation of oxygen from air
US5911860A (en) Solid electrolyte membrane with mechanically-enhancing constituents
US6235187B1 (en) Oxygen separation method using a mixed conducting cubic perovskite ceramic ion transport membrane
EP1183092A1 (en) Catalytic membrane reactor materials for the separation of oxygen from air
ZA200600220B (en) Perovskite material, preparation method and use in catalytic membrane reactor
Ubaldini et al. Kinetics and mechanism of formation of barium zirconate from barium carbonate and zirconia powders
JP2005336022A (ja) プロトン伝導性セラミックス
AU3779800A (en) Stabilized perovskite for ceramic membranes
JPH08236818A (ja) 熱電変換材料
JP4330151B2 (ja) プロトン−電子混合伝導性セラミックス
JP3876306B2 (ja) 混合伝導性酸化物
JP2007512214A5 (zh)
Huo et al. Synthesis of mixed conducting ceramic oxides SrFeCo0. 5Oy powder by hybrid microwave heating
Kriven et al. SOFC powder synthesis by the organic steric entrapment method
CN115992387A (zh) 一种用于陶瓷离子膜元件的稳定立方晶体钙钛矿结构
JP2003300708A (ja) 混合伝導性酸化物の前駆体組成物

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081210

Termination date: 20181105