CN100438032C - 具有辐射结构和隔离效果的高电压和低导通电阻晶体管 - Google Patents

具有辐射结构和隔离效果的高电压和低导通电阻晶体管 Download PDF

Info

Publication number
CN100438032C
CN100438032C CNB2006100031823A CN200610003182A CN100438032C CN 100438032 C CN100438032 C CN 100438032C CN B2006100031823 A CNB2006100031823 A CN B2006100031823A CN 200610003182 A CN200610003182 A CN 200610003182A CN 100438032 C CN100438032 C CN 100438032C
Authority
CN
China
Prior art keywords
type
region
drain region
place piece
piece group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100031823A
Other languages
English (en)
Other versions
CN101026159A (zh
Inventor
黄志丰
杨大勇
林振宇
简铎欣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fairchild Taiwan Corp
Original Assignee
System General Corp Taiwan
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by System General Corp Taiwan filed Critical System General Corp Taiwan
Priority to CNB2006100031823A priority Critical patent/CN100438032C/zh
Publication of CN101026159A publication Critical patent/CN101026159A/zh
Application granted granted Critical
Publication of CN100438032C publication Critical patent/CN100438032C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • H01L29/7801DMOS transistors, i.e. MISFETs with a channel accommodating body or base region adjoining a drain drift region
    • H01L29/7816Lateral DMOS transistors, i.e. LDMOS transistors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0603Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
    • H01L29/0607Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
    • H01L29/0611Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices
    • H01L29/0615Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for increasing or controlling the breakdown voltage of reverse biased devices by the doping profile or the shape or the arrangement of the PN junction, or with supplementary regions, e.g. junction termination extension [JTE]
    • H01L29/063Reduced surface field [RESURF] pn-junction structures
    • H01L29/0634Multiple reduced surface field (multi-RESURF) structures, e.g. double RESURF, charge compensation, cool, superjunction (SJ), 3D-RESURF, composite buffer (CB) structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/0684Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by the shape, relative sizes or dispositions of the semiconductor regions or junctions between the regions
    • H01L29/0692Surface layout
    • H01L29/0696Surface layout of cellular field-effect devices, e.g. multicellular DMOS transistors or IGBTs
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/08Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/0843Source or drain regions of field-effect devices
    • H01L29/0847Source or drain regions of field-effect devices of field-effect transistors with insulated gate
    • H01L29/0852Source or drain regions of field-effect devices of field-effect transistors with insulated gate of DMOS transistors
    • H01L29/0873Drain regions
    • H01L29/0886Shape

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Ceramic Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明是一种具有辐射结构和隔离效果的高电压和低导通电阻晶体管,根据本发明的一高电压LDMOS晶体管在N型阱的扩展的漏极区域中包括至少一P型场区块。P型场区块群在所述N型阱中形成接面场区,用以使漏极区域与源极区域之间的寄生电容器的电容值均化,并在击穿发生之前完全空乏漂移区。因此达到一较高的击穿电压,并因此允许具有一较高掺杂密度的N型阱。由于源极区域和P型场区块群将漏极区域包围起,使得LDMOS晶体管具有自我隔离的效果。

Description

具有辐射结构和隔离效果的高电压和低导通电阻晶体管
技术领域
本发明涉及半导体装置,且尤其涉及一具有辐射结构和隔离效果的横向双扩散晶体管(LDMOS Transistor)。
背景技术
将功率开关与控制电路相集成的单芯片制程是电源IC发展领域的主要趋势。当前,LDMOS(横向双扩散MOS)制程尤其应用于制造单片集成电路。所述LDMOS制程包括在一半导体衬底的表面上进行平面扩散,以形成一横向的主要电流路径。
在最近的发展中,已提出许多高电压LDMOS晶体管。然而,这些现有技术的LDMOS晶体管的缺点为其较高的导通电阻(on-resistance)。因此,许多具有高电压和低导通电阻LDMOS晶体管相继被提出。即便如此,其复杂的生产过程却增加了生产成本和/或降低了生产合格率。这些提出的LDMOS晶体管的另一缺点为其非隔离的源极结构。一非隔离晶体管电流可围绕衬底流动。因而在控制电路中产生噪声干扰。此外,LDMOS晶体管的电流可能产生一地弹跳(ground bounce)而扰乱控制信号。因此需要在组件之间提供一种隔离结构以防止彼此之间的扰乱。为了解决上述问题,本发明提出一种LDMOS结构以为单片集成实现一高击穿电压、低导通电阻和隔离的晶体管。
发明内容
本发明目的是为了解决上述问题,提出一种LDMOS结构以为单片集成实现一高击穿电压、低导通电阻和隔离的晶体管。
根据本发明的一高电压LDMOS晶体管包括一P型衬底。含有N型导电离子(conductivity-type ion)的一第一扩散区域和一第二扩散区域在所述P型衬底中形成一N型阱。所述第一扩散区域进一步形成一扩展的漏极区域。一含有N+型导电离子的漏极扩散区域在所述扩展的漏极区域中形成一漏极区域。一含有P型导电离子的第三扩散区域形成位于所述扩展的漏极区域中的分离的P型场区块群(P-field bloks)。所述P型场区块群具有不同尺寸。一最小尺寸的P型场区块最接近所述漏极区域。一具有N+型导电离子的源极扩散区域在由第二扩散区域形成的N型阱中形成一源极区域。一含有P+型导电离子的接触扩散区域在由第二扩散区域形成的N型阱中形成一接触区域。一含有P型导电离子的第四扩散区域在由第二扩散区域形成的N型阱中形成一隔离P型阱以防止击穿。位于第二扩散区域中的隔离P型阱包围所述源极区域和所述接触区域。一最大尺寸的P型场区块位于最接近所述源极区域。位于所述扩展的漏极区域中的所述P型场区块群在所述N型阱中形成场效接面,以空乏漂移区,并使漏极区域与源极区域之间的寄生电容器的电容均化。一通道形成于所述源极区域与所述漏极区域之间扩展穿过所述N型阱。所述分离的P型场区块群可进一步改进所述通道的导通电阻。源极扩散区域以所述漏极区域为中心围绕,以达到隔离效果。一栅极电极形成于所述通道的部分上以控制所述通道中的电流流动。此外,由第二扩散区域产生的N型阱的一部分为源极区域提供一低阻抗路径,其限制所述漏极区域与所述源极区域之间的电流流动。
前述概括描述和以下详细描述均是示范性的,且希望如所主张的提供对本发明的进一步解释。从随后描述和图式考虑,其它目的和优点将变得显而易见。
附图说明
随附图式为本发明提供进一步的理解,且并入本说明书中并构成本说明书的一部分。所述图式说明本发明的实施例,并与描述一起用以解释本发明的原理。
图1为根据本发明的一实施例的LDMOS晶体管的横截面图;
图2为本发明的第一实施例,其为本发明的LDMOS晶体管的俯视图;
图3为本发明的第二实施例,其为本发明的LDMOS晶体管的俯视图;
图4为本发明的第三实施例,其为本发明的LDMOS晶体管的俯视图;
图5为本发明的第四实施例,其为本发明的LDMOS晶体管的俯视图。
具体实施方式
一般而言,高击穿电压晶体管不具有用于隔离彼此的设计。为了改进晶体管的隔离效果并增加其利用性,本发明进一步为高击穿电压晶体管提供一具有隔离效果的结构。
图1为根据本发明的一LDMOS晶体管100的横截面图。所述LDMOS晶体管100包括一P型衬底90。所述LDMOS晶体管100进一步包括含有N型导电离子的一第一扩散区域33和一第二扩散区域37以在P型衬底90中形成一N型阱30。所述第一扩散区域33包含一扩展的漏极区域50。一含有N+型导电离子的漏极扩散区域53在所述扩展的漏极区域50中形成一漏极区域52。一含有P型导电离子的第三扩散区域在所述扩展的漏极区域50中形成一P型场区块群60。所述P型场区块群60可具有不同的尺寸、形状和数量。图2到图5说明了具有不同态样的P型场区块群的实施例。一具有N+型导电离子的源极扩散区域55在由第二扩散区域37形成的N型阱30中形成一源极区域56。一含有P+型导电离子的接触扩散区域57在由第二扩散区域37形成的N型阱30中形成一接触区域58。一含有P型导电离子的第四扩散区域67在由第二扩散区域37形成的N型阱30中形成一隔离P型阱65以防止击穿。隔离P型阱65包围所述源极区域56和所述接触区域58。前述源极区域和P型场区块群以所述漏极区域为中心环绕起,用以提供隔离效果。
一通道形成于源极区域56与漏极区域52之间扩展穿过N型阱30。所述P型场区块群60进一步降低所述通道的导通电阻。一薄栅极氧化物81和厚场氧化物87形成于P衬底90的上。一多晶硅栅极电极40形成于薄栅极氧化物81和厚场氧化物87上,以控制通道中的电流流动。一漏极间隙71形成于漏极扩散区域53与厚场氧化物87之间以在漏极扩散区域53与厚场氧化物87之间维持一空间。一源极间隙72在厚场氧化物87与隔离P型阱65之间形成以在厚场氧化物87与隔离P型阱65之间维持一空间。
一绝缘层85和一绝缘层86覆盖多晶硅栅极电极40和厚场氧化物87和88。绝缘层85、86由氧化物(例如二氧化硅)制成。一漏极金属触点15为一用于与漏极扩散区域53相接触的金属电极。一源极金属触点25为一用于与源极扩散区域55和接触扩散区域57相接触的金属电极。
图2显示本发明的第一实施例,其为LDMOS晶体管100的俯视图。根据此实施例,所述LDMOS晶体管100为圆形形状。LDMOS晶体管100包括一漏极10、一源极20和一栅极40。参看图1和图2,扩展的漏极区域50和漏极扩散区域53两者形成漏极10。隔离P型阱65、源极扩散区域55和接触扩散区域57形成源极20。包围P型场区块群60的N型阱30从漏极10连接到源极20。位于P型场区块群60之间的N型阱30的一部分降低所述通道的导通电阻。
P型场区块群60位于N型阱30的扩展的漏极区域50中。N型阱30、P型场区块群60使漂移区空乏,其在N型阱30中建立电场以提高击穿电压。为了获得较高的击穿电压,扩展的漏极区域50必须在击穿发生之前完全空乏。即使所述漂移区域的掺杂密度较高时,N型阱30和P型场区块群60也使扩展的漏极区域50能够在击穿发生之前被空乏。这允许所述漂移区域具有更高的掺杂密度并实现低电阻。可将P型场区块群60的尺寸和形状及N型阱30的掺杂密度最优化以达到所要的效果。包围漏极10的P型场区块群60和源极20提供隔离效果。由于上述包围结构,P型场区块群60以辐射形状形成。经由调整P型场区块群60的形状,其能够达到高击穿电压和低导通电阻特性。因此,可实现一高击穿电压和低导通电阻LDMOS晶体管100。此外,由第二扩散区域37形成的N型阱30的一部分为源极区域56产生一低阻抗路径,其限制漏极区域52与源极区域56之间的电流流动。
图3显示本发明的第二实施例,其为LDMOS晶体管100的俯视图。根据此实施例,所述LDMOS晶体管100为多边形形状状(例如六边形)。如图3所示,适当地决定多边形的边长和其内角可使其与其它晶体管结合度最优化。这可形成一共享源极结构以节省晶粒空间。一位于N型阱30中的P型场区块群602可为具有适当密集度的适当形状以用于调整达到高击穿电压和低导通电阻效果。图3中的结构可有效改进晶圆的区域使用率。
图4显示本发明的第三实施例,其为LDMOS晶体管100的俯视图。根据这一实施例,所述LDMOS晶体管100为圆形形状。在一单径向方向上位于N型阱30内的P型场区块群604和606至少包括一可调整的区块以达到不同的击穿电压和导通电阻效果。
图5显示本发明的第四实施例,其为LDMOS晶体管100的俯视图。根据此实施例,所述LDMOS晶体管100为圆形形状。位于N型阱30中的P型场区块群608为一环状形状。经由调整内径A和外径B,能够达到不同的击穿电压和导通电阻效果。
根据本发明的一实施例,LDMOS晶体管100的结构具有高击穿电压、低导通电阻和隔离效果的特征。此外,LDMOS晶体管100的结构可以较低成本制造并具有较高的生产合格率。
所属领域的技术人员易明了,可在不脱离本发明的范围或精神的情况下对本发明的结构进行各种修改和变化。鉴于前述内容,希望本发明涵盖在所附权利要求书和其等同物的范围内的本发明的修改和变化。

Claims (14)

1.一种晶体管,其特征在于,包含:
一P型衬底;
一第一扩散区域和一第二扩散区域,所述第一扩散区域和所述第二扩散区域具有N型导电离子,在所述P型衬底中形成一N型阱,其中所述第一扩散区域包含一扩展的漏极区域;
一漏极扩散区域,其含有N+型导电离子,在所述扩展的漏极区域中形成一漏极区域;
一P型场区块群,其形成于所述扩展的漏极区域中环绕所述漏极区域,其中所述P型场区块群的尺寸和形状予以调整以调节接面场区;
一源极扩散区域,其具有N+型导电离子,其中所述源极扩散区域在由所述第二扩散区域形成的所述N型阱中形成一源极区域,所述源极区域环绕所述漏极区域;
一通道,其形成于所述漏极区域与所述源极区域之间;
一栅极电极,其形成于所述通道之上,以控制所述通道中的一电流流动;
一接触扩散区域,其含有P+型导电离子,其中所述接触扩散区域在由所述第二扩散区域形成的所述N型阱中形成一接触区域;和
一隔离P型阱,其形成于由所述第二扩散区域形成的所述N型阱中以防止击穿,其中形成于所述第二扩散区域中的所述隔离P型阱将所述源极区域和所述接触区域包围起。
2.根据权利要求1所述的晶体管,其特征在于,所述源极扩散区域和所述P型场区块群环绕所述漏极区域以达到隔离效果。
3.根据权利要求2所述的晶体管,其特征在于,所述P型场区块群形成于所述N型阱的所述扩展的漏极区域中,其中所述N型阱空乏一漂移区,使所述漏极区域与所述源极区域之间的寄生电容器的电容值均化,并降低所述通道的一导通电阻。
4.根据权利要求2所述的晶体管,其特征在于,所述P型场区块群以不同数量、尺寸和形状加以设计以提高所述晶体管的一击穿电压并降低所述通道的一导通电阻。
5.根据权利要求4所述的晶体管,其特征在于,所述P型场区块群为环状,其中调整所述P型场区块群的一内径和一外径增加所述击穿电压并减少所述导通电阻。
6.根据权利要求2所述的晶体管,其特征在于,所述源极扩散区域为环状,且至少一P型场区块位于一单径向方向上,其中调整所述P型场区块群的数量和形状提高所述晶体管的一击穿电压并降低所述通道的一导通电阻。
7.根据权利要求2所述的晶体管,其特征在于,所述源极扩散区域为多边形形状,其中调整所述多边形形状的源极扩散区域的边长和内角促进与其它晶体管的结合,其形成一共享源极结构用以节省晶粒空间。
8.一种晶体管,其特征在于包含:
一P型衬底;
一N型阱,其形成于所述P型衬底中,具有一扩展的漏极区域;
一漏极区域,其含有N+型导电离子,形成于所述扩展的漏极区域中;
一P型场区块群,其形成于所述扩展的漏极区域中环绕所述漏极区域,其中调整所述P型场区块群的尺寸和形状用以调节接面场区;
一源极区域,其具有N+型导电离子,形成于所述N型阱中并环绕所述漏极区域;
一通道,其形成于所述漏极区域与所述源极区域之间;
一栅极电极,其形成于所述通道之上,以控制所述通道中的一电流流动;
一接触区域,其含有P+型导电离子,形成于所述N型阱中;和
一隔离P型阱,其形成于所述N型阱中以防止击穿,其中所述隔离P型阱将所述源极区域和所述接触区域包围起。
9.根据权利要求8所述的晶体管,其特征在于,所述源极区域和所述P型场区块群环绕所述漏极区域以达到隔离效果。
10.根据权利要求9所述的晶体管,其特征在于,所述P型场区块群形成于所述N型阱的所述扩展的漏极区域中,其中所述N型阱空乏一漂移区,使所述漏极区域与所述源极区域之间的寄生电容器的电容均化,并降低所述通道的一导通电阻。
11.根据权利要求9所述的晶体管,其特征在于,所述P型场区块群以不同数量、尺寸和形状加以设计以提高所述晶体管的一击穿电压并降低所述通道的一导通电阻。
12.根据权利要求9所述的晶体管,其特征在于,所述P型场区块群为环状形状,其中调整所述P型场区块群的一内径和一外径以提高所述晶体管的一击穿电压并降低所述通道的一导通电阻。
13.根据权利要求9所述的晶体管,其特征在于,所述源极区域为环状形状,且至少一P型场区块位于一单径向方向上,其中调整所述P型场区块群的数量和形状以提高所述晶体管的一击穿电压并降低所述通道的一导通电阻。
14.根据权利要求9所述的晶体管,其特征在于,所述源极区域为多边形形状,其中调节所述多边形形状的源极区域的边长和内角促进与其它晶体管的结合,其形成一共享源极结构用以节省晶粒空间。
CNB2006100031823A 2006-02-22 2006-02-22 具有辐射结构和隔离效果的高电压和低导通电阻晶体管 Expired - Fee Related CN100438032C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100031823A CN100438032C (zh) 2006-02-22 2006-02-22 具有辐射结构和隔离效果的高电压和低导通电阻晶体管

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100031823A CN100438032C (zh) 2006-02-22 2006-02-22 具有辐射结构和隔离效果的高电压和低导通电阻晶体管

Publications (2)

Publication Number Publication Date
CN101026159A CN101026159A (zh) 2007-08-29
CN100438032C true CN100438032C (zh) 2008-11-26

Family

ID=38744257

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100031823A Expired - Fee Related CN100438032C (zh) 2006-02-22 2006-02-22 具有辐射结构和隔离效果的高电压和低导通电阻晶体管

Country Status (1)

Country Link
CN (1) CN100438032C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777584B (zh) * 2010-01-29 2011-12-07 四川长虹电器股份有限公司 p沟道横向双扩散金属氧化物半导体器件

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101930982B (zh) * 2010-07-07 2012-04-18 中国电子科技集团公司第五十八研究所 基于flotox结构的抗辐射eeprom存储单元结构
CN102169903B (zh) * 2011-03-22 2013-05-01 成都芯源系统有限公司 Ldmos器件
CN102931234B (zh) * 2011-08-10 2016-01-20 无锡华润上华半导体有限公司 Ldmos器件及其制造方法
CN103855212B (zh) * 2012-12-04 2018-10-23 中芯国际集成电路制造(上海)有限公司 一种横向扩散半导体器件
CN105870188B (zh) * 2016-04-19 2019-04-09 上海华虹宏力半导体制造有限公司 高压ldmos器件及工艺方法
CN105810740B (zh) * 2016-04-19 2019-04-09 上海华虹宏力半导体制造有限公司 高压ldmos器件及工艺方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531355B2 (en) * 1999-01-25 2003-03-11 Texas Instruments Incorporated LDMOS device with self-aligned RESURF region and method of fabrication
US6593621B2 (en) * 2001-08-23 2003-07-15 Micrel, Inc. LDMOS field effect transistor with improved ruggedness in narrow curved areas
CN1524296A (zh) * 2001-03-09 2004-08-25 �����ɷ� 一种射频功率ldmos(横向扩散金属氧化物半导体)晶体管
CN1661812A (zh) * 2004-02-24 2005-08-31 崇贸科技股份有限公司 具有隔离结构的高电压ldmos晶体管

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6531355B2 (en) * 1999-01-25 2003-03-11 Texas Instruments Incorporated LDMOS device with self-aligned RESURF region and method of fabrication
CN1524296A (zh) * 2001-03-09 2004-08-25 �����ɷ� 一种射频功率ldmos(横向扩散金属氧化物半导体)晶体管
US6593621B2 (en) * 2001-08-23 2003-07-15 Micrel, Inc. LDMOS field effect transistor with improved ruggedness in narrow curved areas
CN1661812A (zh) * 2004-02-24 2005-08-31 崇贸科技股份有限公司 具有隔离结构的高电压ldmos晶体管

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101777584B (zh) * 2010-01-29 2011-12-07 四川长虹电器股份有限公司 p沟道横向双扩散金属氧化物半导体器件

Also Published As

Publication number Publication date
CN101026159A (zh) 2007-08-29

Similar Documents

Publication Publication Date Title
US5798554A (en) MOS-technology power device integrated structure and manufacturing process thereof
CN100438032C (zh) 具有辐射结构和隔离效果的高电压和低导通电阻晶体管
US8652930B2 (en) Semiconductor device with self-biased isolation
TWI538209B (zh) 半導體功率元件及其製備方法
EP2860762B1 (en) High voltage junction field effect transistor
US8816410B2 (en) Semiconductor device
US20110079849A1 (en) Lateral-diffusion metal-oxide-semiconductor device
JP2002319675A (ja) 埋設導電層を備えた高電圧トランジスタ
JP2934390B2 (ja) 双方向電流阻止mosfet及び双方向電流阻止mosfetのオン抵抗を低減する方法
US9391195B2 (en) High side gate driver device
JP2015523723A5 (zh)
US9543431B2 (en) Radio frequency LDMOS device and a fabrication method therefor
US7851883B2 (en) Semiconductor device and method of manufacture thereof
US7923787B2 (en) MOSFET with isolation structure and fabrication method thereof
US9349795B2 (en) Semiconductor switching device with different local threshold voltage
JP2000332247A (ja) 半導体装置
KR102255545B1 (ko) 반도체 장치 및 반도체 장치의 제조 방법
US20090045460A1 (en) mosfet for high voltage applications and a method of fabricating same
CN103050510B (zh) Rfldmos工艺中的esd器件及其制造方法
CN106952946B (zh) 一种过渡区结构
TWI503972B (zh) 橫向式絕緣閘雙極電晶體及其製造方法
CN103531586B (zh) 一种功率半导体器件及其制造方法
JP6401394B2 (ja) 高電圧p型横方向二重拡散金属酸化物半導体電界効果トランジスタ
US9583395B2 (en) Method for manufacturing a semiconductor switching device with different local cell geometry
CN108962890B (zh) 集成半导体器件

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081126

Termination date: 20180222