CN100424899C - MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜 - Google Patents

MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜 Download PDF

Info

Publication number
CN100424899C
CN100424899C CNB2006100162514A CN200610016251A CN100424899C CN 100424899 C CN100424899 C CN 100424899C CN B2006100162514 A CNB2006100162514 A CN B2006100162514A CN 200610016251 A CN200610016251 A CN 200610016251A CN 100424899 C CN100424899 C CN 100424899C
Authority
CN
China
Prior art keywords
film
zno
zno film
temperature
mocvd
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2006100162514A
Other languages
English (en)
Other versions
CN1945858A (zh
Inventor
耿新华
陈新亮
薛俊明
赵颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Beijing Jingcheng Boyang Optoelectronic Equipment Co.,Ltd.
Fujian Golden Sun Solar Technic Co., Ltd.
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CNB2006100162514A priority Critical patent/CN100424899C/zh
Publication of CN1945858A publication Critical patent/CN1945858A/zh
Application granted granted Critical
Publication of CN100424899C publication Critical patent/CN100424899C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

一种MOCVD技术超低温制备高电导率、绒面未掺杂ZnO薄膜的方法。首先利用电子束蒸发技术或者溅射方法在玻璃衬底上沉积一层50-100nm高电导的ITO薄膜作为种子诱导层,其通常具有很好的电导率(~10-4Ωcm);然后利用MOCVD技术低温生长未掺杂的ZnO薄膜。该方法在很低的温度下即可制备具有良好光散射能力的绒面结构ZnO薄膜;其次在不需要B2H6掺杂的情况下,可大幅度降低MOCVD系统生长ZnO薄膜的电阻率(可降至~10-3Ωcm)。通过后续H2低压退火可使薄膜的电子迁移率从~18.6cm2/Vs提高到~32.5cm2/Vs(提高~30%)。该方法特别适合大面积ZnO薄膜的制备。

Description

MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜
【技术领域】:
本发明属于透明导电氧化物薄膜领域,特别是适合薄膜太阳电池应用的透明导电薄膜的制备方法。
【背景技术】:
近年来,在Si薄膜太阳电池(Solar cell)应用方面,由于SnO2膜具有极好的电学和光学特性,被广泛用作太阳电池的透明导电膜。然而,它们在氢等离子体氛围环境下光学特性发生恶化,限制了其在薄膜太阳电池中作为透明导电薄膜的应用。而ZnO薄膜不仅可以在氢等离子体环境中具有高的稳定性,并且能够实现优良光电特性(低电阻率、绒面结构,高透过率)的薄膜生长,从而成为薄膜太阳电池中极具竞争力的透明导电薄膜。对于硅(Si)薄膜太阳电池来说,陷光(light trapping)作用(即相应的绒面结构)可增加入射光的光程,对提高器件性能尤为重要。
目前生长ZnO薄膜的方法很多,包括脉冲激光沉积(PLD),分子束外延(MBE),金属有机物化学气相沉积(MOCVD),射频/直流溅射(RF/DCSputtering),电子束反应蒸发(EBRE),喷雾热分解(Spray Pyrolysis)和溶胶-凝胶法(Sol-gel)等。在用于太阳电池及其组件的ZnO薄膜制备中,国际上主要是磁控溅射和MOCVD技术。利用磁控溅射法制备薄膜太阳电池应用的ZnO薄膜,通常采用Al掺杂得到较低电阻率(~10-4Ωcm)的镜面结构。Jin Yoo等人利用射频溅射法在Corning 1737玻璃衬底上生长出了高透过率(T400-800nm>85%)低电阻率(ρ~1.9×10-4Ωcm)的ZnO:Al薄膜(参见JinsuYoo,Jeonghul Lee,Seokki Kim,etc.High transmittance and low resistive ZnO:Al films for thin film solar cells,ThinSolid Films,2005,480-481:213),其薄膜特性最优的生长工艺:射频功率100W,衬底温度573K,Ar分压0.27Pa。为适应薄膜太阳电池前电极的陷光作用,溅射后的ZnO薄膜须采取湿法刻蚀才能形成绒面结构,以期获得良好的光散射能力。调制绒面结构时,湿法腐蚀起关键作用,因此,在大面积腐蚀ZnO薄膜形成绒面结构时具有高的风险性和造成材料浪费(腐蚀后薄膜厚度减少)。
然而,MOCVD技术可直接生长出绒面结构的ZnO薄膜(参见Baosheng Sang,Akira Yamada,Makoto Konagai,Growth of Boron doped ZnO thin films by atomiclayer deposition,Solar Energy Materials and Solar cells,1997,46:19)。目前MOCVD生长低电阻率、绒面结构ZnO-TCO薄膜的衬底温度一般在423K以上,并且需要B2H6掺杂(剧毒气体)才能获得低电阻率的薄膜。
【发明内容】:
本发明的目的是解决现有方法制备ZnO薄膜需要B2H6掺杂(一种剧毒气体)而造成环境污染的问题,提供一种“绿色”环保型MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜的方法。
本发明提供的金属有机物化学气相沉积(MOCVD)超低温制备高电导率、绒面未掺杂ZnO薄膜的方法,由以下步骤实现:
(a)利用电子束蒸发技术或者溅射方法先在玻璃衬底上沉积一层50-100nm高电导的ITO薄膜作为种子诱导层;
(b)在上述诱导层上,利用金属有机物化学气相沉积法生长600-3000nm的未掺杂ZnO薄膜:反应气源二乙基锌DEZn和水H2O分别装在鼓泡器中并放置于温控水浴罐中,经由Ar气鼓泡源进入真空室;DEZn和H2O的温控水浴罐分别稳定在293-318K和313-353K;二乙基锌和水的流量分别设定为100-300μmol/min和300-600μmol/min,真空室反应气压为100-600Pa,衬底温度变化范围为398-413K,沉积薄膜时间为20-60min。
然后,对(b)步中获得沉积的ZnO薄膜用H2气低压退火。其退火温度为443-503K,可有效提高ZnO薄膜的电子迁移率。
本发明的优点及效果:此方法一方面可以低温条件下获得具有光散射特征的绒面结构,提高生长速率;其次在不需要B2H6掺杂的情况下可以大幅度降低MOCVD系统生长ZnO薄膜的电阻率(可降至~10-3Ωcm);通过后续H2退火可使薄膜的电子迁移率从~18.6cm2/Vs提高到~32.5cm2/Vs(提高~30%)。另外,本发明提供的方法对环境不会造成污染,属于“绿色”环保型技术。该方法可适合大面积(例如S=20cm*20cm)ZnO透明导电薄膜的制备。
【附图说明】:
图1是衬底温度为408K时ZnO薄膜的典型形貌图;
图2是衬底温度为408K时ZnO/ITO薄膜的表面形貌图(其中ITO薄膜为50nm)。
【具体实施方式】:
实施例1
本发明提出两部生长“绿色”环保型ZnO-TCO薄膜的方法。
首先,利用电子束蒸发技术或者溅射方法先在玻璃衬底上沉积一层100nm高电导的ITO薄膜作为种子诱导层(Seed layer),其通常具有很好的电导率(~10-4Ωcm);然后利用MOCVD技术低温生长未掺杂的ZnO薄膜。这种方法一方面可以获得具有光散射特征的绒面结构,另一方面,可以大幅度降低MOCVD系统生长ZnO薄膜的电阻率(可降至~10-3Ωcm)。
薄膜具体制造过程:
1、电子束蒸发设备中沉积一层100nm高电导的ITO薄膜
2、MOCVD生长1.2μm左右的未掺杂ZnO薄膜。
典型的生长条件如下:实验中,反应气源二乙基锌DEZn和水H2O分别装在鼓泡器中并放置于温控水浴罐中,经由Ar气鼓泡源进入反应室;DEZn和H2O的温控水浴罐分别稳定在313K和333K;二乙基锌和水的流量分别设定为202.1μmol/min和447.75μmol/min,真空室反应气压为200Pa,衬底温度变化范围为398-413K,沉积薄膜时间为30min。另外,H2气退火(~473K)可提高ZnO薄膜的电子迁移率从18.6到32.5cm2/Vs。表1是制备的ZnO薄膜和ZnO/ITO薄膜的电学特性比较。
表1ZnO薄膜和ZnO/ITO薄膜的电学特性比较
Figure C20061001625100061
ITO:d=100nm,ρ=3.5×10-4Ωcm,μ=12.21cm2/Vs,n=1.62×1021cm-3,T>85%(in VIS-NIR region).
实施例2
薄膜具体制造过程:
1、利用电子束蒸发技术或者溅射方法先在玻璃衬底上沉积一层50nm高电导 的ITO薄膜作为种子诱导层;
2、MOCVD生长1.0μm左右的未掺杂ZnO薄膜。
典型的生长条件如下:实验中,反应气源二乙基锌DEZn和水H2O分别装在鼓泡器中并放置于温控水浴罐中,经由Ar气鼓泡源进入反应室;DEZn和H2O的温控水浴罐分别稳定在313K和333K;二乙基锌和水的流量分别设定为202.1μmol/min和447.75μmol/min,真空室反应气压为200Pa,衬底温度变化范围为398-413K,沉积薄膜时间为30min。图1和图2分别为直接玻璃衬底上生长的ZnO薄膜和ITO上低温生长的绒面ZnO薄膜。ZnO/ITO薄膜的电阻率为~4.5×10-3Ωcm。

Claims (2)

1. 一种金属有机物化学气相沉积法超低温制备高电导率、绒面未掺杂ZnO薄膜的方法,其特征是该方法由以下步骤实现:
(a)利用电子束蒸发技术或者溅射方法先在玻璃衬底上沉积一层50-100nm高电导的ITO薄膜作为种子诱导层;
(b)在上述诱导层上,利用金属有机物化学气相沉积法生长600-3000nm的未掺杂ZnO薄膜:反应气源二乙基锌DEZn和水H2O分别装在鼓泡器中并放置于温控水浴罐中,经由Ar气鼓泡源进入真空室;DEZn和H2O的温控水浴罐分别稳定在293-318K和313-353K;二乙基锌和水的流量分别设定为100-300μmol/min和300-600μmol/min,真空室反应气压为100-600Pa,衬底温度变化范围为398-413K,沉积薄膜时间为20-60min。
2. 根据权利要求1所述的方法,其特征在于(b)步中最后沉积薄膜用H2气低压退火,温度443-503K以提高ZnO薄膜的电子迁移率。
CNB2006100162514A 2006-10-24 2006-10-24 MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜 Expired - Fee Related CN100424899C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2006100162514A CN100424899C (zh) 2006-10-24 2006-10-24 MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2006100162514A CN100424899C (zh) 2006-10-24 2006-10-24 MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜

Publications (2)

Publication Number Publication Date
CN1945858A CN1945858A (zh) 2007-04-11
CN100424899C true CN100424899C (zh) 2008-10-08

Family

ID=38045137

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2006100162514A Expired - Fee Related CN100424899C (zh) 2006-10-24 2006-10-24 MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜

Country Status (1)

Country Link
CN (1) CN100424899C (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160192480A1 (en) * 2014-12-30 2016-06-30 Clemson University Research Foundation Electronic device including transparent and flexible mica substrate and method for manufacturing the same

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100494486C (zh) * 2007-05-08 2009-06-03 中国科学院上海光学精密机械研究所 金属有机化学气相沉积生长m面或a面ZnO薄膜的方法
KR100870837B1 (ko) * 2008-03-04 2008-11-28 한국철강 주식회사 산화아연 박막의 수분 제거 방법
CN105349966A (zh) * 2015-10-15 2016-02-24 南开大学 一种绒面复合结构ZnO-TCO薄膜的制备方法及应用
CN106968015B (zh) * 2016-08-17 2019-08-06 佛山市中山大学研究院 一种紫外透明导电薄膜及其制造方法
CN114032525B (zh) * 2021-11-04 2023-09-12 西南科技大学 金刚石-多层石墨烯复合阴极材料及其制备方法

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283430A (ja) * 1994-04-12 1995-10-27 Matsushita Electric Ind Co Ltd 太陽電池の製造方法

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07283430A (ja) * 1994-04-12 1995-10-27 Matsushita Electric Ind Co Ltd 太陽電池の製造方法

Non-Patent Citations (6)

* Cited by examiner, † Cited by third party
Title
Aqueous Solution Route to High-Aspect-Ratio Zinc OxideNanostructures on Indium Tin Oxide Substrates. Chen-Hao Ku, Jih-Jen Wu.Journal of Physical Chemistry B,Vol.110 No.26. 2006
Aqueous Solution Route to High-Aspect-Ratio Zinc OxideNanostructures on Indium Tin Oxide Substrates. Chen-Hao Ku, Jih-Jen Wu.Journal of Physical Chemistry B,Vol.110 No.26. 2006 *
MOCVD制备的ZnO薄膜及其在太阳电池背电极应用. 陈新亮,徐步衡,薛俊明,赵颖,张晓丹,耿新华.半导体学报,第26卷第12期. 2005
MOCVD制备的ZnO薄膜及其在太阳电池背电极应用. 陈新亮,徐步衡,薛俊明,赵颖,张晓丹,耿新华.半导体学报,第26卷第12期. 2005 *
Zinc oxide phosphors synthesized bycathodicelectrodeposition. Yanwei,Huang,Ning,Yao,Binglin,Zhang.2006 19th international Vacuum Nanoelectronics Conference and 50th international Field Emission Symposium(IEEE Cat.No.06TH8886). 2006
Zinc oxide phosphors synthesized bycathodicelectrodeposition. Yanwei,Huang,Ning,Yao,Binglin,Zhang.2006 19th international Vacuum Nanoelectronics Conference and 50th international Field Emission Symposium(IEEE Cat.No.06TH8886). 2006 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160192480A1 (en) * 2014-12-30 2016-06-30 Clemson University Research Foundation Electronic device including transparent and flexible mica substrate and method for manufacturing the same

Also Published As

Publication number Publication date
CN1945858A (zh) 2007-04-11

Similar Documents

Publication Publication Date Title
Fortunato et al. Highly stable transparent and conducting gallium-doped zinc oxide thin films for photovoltaic applications
CN100424899C (zh) MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜
CN101562216B (zh) 具有类金字塔结构的绒面ZnO薄膜的制备方法
CN107464882A (zh) 一种有机‑无机杂化钙钛矿太阳能电池及其制备方法
Liu et al. Indium tin oxide with titanium doping for transparent conductive film application on CIGS solar cells
CN102312191B (zh) 利用直流磁控溅射制备高阻透明ZnO薄膜的方法
Zeng et al. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si: H/c-Si heterojunction solar cells
Zhang et al. Optimization of Al-doped ZnO films by RF magnetron sputtering at room temperature for Cu (In, Ga) Se2 solar cells
CN101221830A (zh) 一种透明导电薄膜及其制备方法
Li et al. Preparation and properties of tungsten-doped indium oxide thin films
Du et al. Synthesis of high-quality AZO polycrystalline films via target bias radio frequency magnetron sputtering
CN103746016A (zh) 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法
CN103715284B (zh) 可调带隙量子阱结构的柔性衬底太阳能电池及制备方法
CN105347692A (zh) 一种低温超声雾化热解沉积锂掺杂立方相SnO2薄膜的方法
CN102199759B (zh) 一种梯度氢气法生长绒面结构ZnO-TCO薄膜及应用
CN102199758A (zh) 一种生长绒面结构ZnO-TCO薄膜的方法及应用
CN108231940A (zh) 一种用于晶体硅异质结太阳电池的透明导电氧化物薄膜的制备方法
CN109182971A (zh) 一种利用反应等离子沉积技术生长宽光谱mgzo-tco薄膜的方法及应用
CN102220562B (zh) 一种绒面结构氧化锌透明导电薄膜的制备方法
CN103014705B (zh) Cu/ZnO/Al光电透明导电薄膜的沉积方法
CN103066134B (zh) 一种薄膜太阳能电池背反电极及其制备方法
Chu et al. Preparation of indium tin oxide thin films without external heating for application in solar cells
CN101834009B (zh) 一种低铟掺杂量氧化锌透明导电膜及其制备方法
CN103952678A (zh) 一种高迁移率的掺氟氧化锌基透明导电薄膜的制备方法
CN102157609A (zh) 一种改善ZnO透明导电薄膜形貌的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20090206

Address after: Jiangnan hi tech Zone, South Ring Road, Licheng District, Quanzhou, Fujian

Patentee after: Fujian Golden Sun Solar Technic Co., Ltd.

Address before: Nankai District Wei Jin Road, Tianjin City No. 94

Patentee before: Nankai University

ASS Succession or assignment of patent right

Owner name: FUJIAN JUNSHI ENERGY CO., LTD.

Free format text: FORMER OWNER: NANKAI UNIV.

Effective date: 20090206

ASS Succession or assignment of patent right

Owner name: BEIJING JINGCHENG APOLLO OPTOELECTRONIC EQUIPMENT

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20111121

Address after: 362000 Jiangnan hi tech Zone, South Ring Road, Licheng District, Fujian, Quanzhou

Co-patentee after: Beijing Jingcheng Boyang Optoelectronic Equipment Co.,Ltd.

Patentee after: Fujian Golden Sun Solar Technic Co., Ltd.

Address before: 362000 Jiangnan hi tech Zone, South Ring Road, Licheng District, Fujian, Quanzhou

Patentee before: Fujian Golden Sun Solar Technic Co., Ltd.

CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20081008

Termination date: 20161024

CF01 Termination of patent right due to non-payment of annual fee