CN103746016A - 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法 - Google Patents

可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法 Download PDF

Info

Publication number
CN103746016A
CN103746016A CN201310746388.5A CN201310746388A CN103746016A CN 103746016 A CN103746016 A CN 103746016A CN 201310746388 A CN201310746388 A CN 201310746388A CN 103746016 A CN103746016 A CN 103746016A
Authority
CN
China
Prior art keywords
stainless steel
gzo
type
film
flow
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201310746388.5A
Other languages
English (en)
Other versions
CN103746016B (zh
Inventor
张铁岩
张东
鞠振河
赵琰
李昱材
宋世巍
王健
王刚
边继明
刘宝丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Engineering
Original Assignee
Shenyang Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Engineering filed Critical Shenyang Institute of Engineering
Priority to CN201310746388.5A priority Critical patent/CN103746016B/zh
Priority to EP14162221.7A priority patent/EP2889918B1/en
Publication of CN103746016A publication Critical patent/CN103746016A/zh
Application granted granted Critical
Publication of CN103746016B publication Critical patent/CN103746016B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035209Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions comprising a quantum structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02538Group 13/15 materials
    • H01L21/0254Nitrides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02551Group 12/16 materials
    • H01L21/02554Oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02518Deposited layers
    • H01L21/02521Materials
    • H01L21/02565Oxide semiconducting materials not being Group 12/16 materials, e.g. ternary compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02365Forming inorganic semiconducting materials on a substrate
    • H01L21/02612Formation types
    • H01L21/02617Deposition types
    • H01L21/0262Reduction or decomposition of gaseous compounds, e.g. CVD
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于柔性太阳能电池制造技术领域,特别涉及一种可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法。本发明的太阳能电池具体结构是:Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底,其制备方法是首先磁控溅射制备AlN绝缘层和Al背电极,然后采用ECR-PEMOCVD依次沉积GZO基透明导电薄膜、N型nc-Si:H薄膜、I层本征nc-Si:H薄膜、P型InxGa1-xN薄膜、GZO薄膜,最后制备金属Al电极。本发明的可调带隙量子阱结构的不锈钢衬底太阳能电池具有优异的柔软性,重量轻,携带方便,具有产业化潜力和市场空间,而且制备工艺简单,能实现规模生产。

Description

可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法
技术领域
    本发明属于柔性太阳能电池制造技术领域,特别涉及一种可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法。
背景技术
硅晶体的第一代太阳能电池由于转化效率高在目前的工业生产和市场上处于主导地位。但是由于需要消耗大量的原材料,成本较高,成为了太阳能电池发展的主要障碍。为了节约原材料,进一步推进太阳能电池的发展,薄膜太阳能电池成为近些年太阳能电池的研究热点。
传统的薄膜太阳能电池结构采用刚性材料和钢化玻璃材料作为基底,这限制了其使用范围。随着太阳能电池成本越来越低,该种电池越来越多的进入民用领域,例如屋顶、书包和帐篷等等,作为一种便携电源,这就要求其具有柔性的衬底。
柔性衬底薄膜太阳能电池是指在柔性材料即聚酰亚胺(PI)或柔性不锈钢上制作的薄膜太阳能电池,由于其具有携带轻便、重量轻以及不易粉碎的优势,以及独特的使用特性,从而具有广阔的市场竞争力。
目前,技术相对成熟的薄膜太阳能电池大多都是硅基材料,其PIN中的I层一般都是非晶或者微晶硅(Si)薄膜。非晶或者微晶硅(Si)薄膜又称无定型硅,就其微观结构来看,是短程有序但是长程无序的不规则网状结构,包含大量的悬挂键和空位等缺陷。但是由于非晶或者微晶硅(Si)薄膜带隙宽度在1.7eV左右,对太阳能辐射光谱的长波很不敏感,使其光电转化效率较低,而且还存在明显的光致衰退效应,使太阳能电池的光致性能稳定性较差,导致薄膜太阳能电池的市场竞争力较差。
发明内容
针对现在技术存在的不足,本发明提供一种可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法,通过采用带隙宽度可以调整到太阳能电池最敏感的区域的InxGa1-xN晶体薄膜作为柔性太阳能电池的P层,其量子阱结构提高了太阳能电池的光电转化效率和光致性能的稳定性。
一种可调带隙量子阱结构的不锈钢衬底太阳能电池,是以不锈钢片作为柔性衬底,衬底上是AlN绝缘层,AlN绝缘层上方是Al背电极,Al背电极上方是作为缓冲层的镓掺杂氧化锌(GZO)基导电薄膜,GZO基导电薄膜上方是N型氢化纳米晶硅(nc-Si:H)薄膜,N型nc-Si:H薄膜上方是I层本征nc-Si:H薄膜,I层本征nc-Si:H薄膜上方是P型InxGa1-xN薄膜,P型InxGa1-xN薄膜上方是GZO基导电薄膜,GZO基导电薄膜上方是Al金属电极;具体结构是:Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底,其中P层InxGa1-xN薄膜的带隙宽度可调且具有量子阱结构。
本发明的一种可调带隙量子阱结构的不锈钢衬底太阳能电池的制备方法按照以下步骤进行:
(1)将不锈钢柔性衬底基片去离子水超声波清洗后,用N2吹干送入磁控溅射反应室,在9.0×10-4 Pa真空的条件下,沉积制备AlN绝缘层,以Ar和N2混合气体反应源,Ar和N2的流量比10:1,以金属铝为靶材,将衬底基片加热到100~300℃,沉积时间为30~60min,此时的结构是AlN绝缘层/柔性不锈钢衬底;
    (2)继续磁控溅射制备金属Al背电极,以Ar作为气体反应源,Ar流量为10~20sccm,以金属铝为靶材,衬底温度为50~350℃,沉积时间为3~10min,此时的结构是Al背电极/AlN绝缘层/柔性不锈钢衬底;
(3)然后采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD)制备GZO基透明导电薄膜,向反应室中通入Ar携带的三甲基镓(TMGa)、二乙基锌(DEZn)和O2,TMGa、DEZn和O2的流量比为1:2:80,此时控制微波功率为650W,沉积温度为200~400℃,沉积气压为0.8~1.2Pa,沉积时间为10~20min,此时的结构是GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2稀释的PH3,Ar稀释的SiH4流量为5~8sccm,H2稀释的PH3流量为0.5~5sccm,H2流量为25~40sccm,微波功率为650W,沉积温度为250~600℃,沉积气压为0.8~1.2Pa,沉积时间为30~80min,此时的结构是N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(5)继续采用ECR-PEMOCVD制备I层本征nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2, Ar稀释的SiH4流量为5~8sccm,H2流量是25~40sccm,微波功率为650W,沉积温度为250~600℃,沉积气压为0.8~1.2Pa,沉积时间为30~80min,此时的结构是I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(6)继续采用ECR-PEMOCVD制备P型InxGa1-xN量子阱可调带隙晶体薄膜,向反应室中通入H2稀释的TMGa、三甲基铟(TMIn)、二茂镁(Mg(C5H5)2)和N2,其中TMGa、TMIn和Mg(C5H5)2流量比为8:4:1,N2流量为80~ 120sccm,微波功率为650W,沉积温度为200~600℃,沉积气压为0.9~1.4Pa,沉积时间为40~60min,此时的结构是P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
   (7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,微波功率为650W,沉积温度为200~400℃,沉积气压为0.8~1.2Pa,沉积时间为10~20min,此时的结构是GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
     (8)采用磁控溅射制备金属Al电极,以Ar作为气体反应源,Ar流量为10~20sccm,以金属铝为靶材,沉积温度为50~400℃,沉积时间为3~10min,此时的结构是Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底。
其中,所述的磁控溅射用金属铝靶材的纯度为99.99%。
所述的InxGa1-xN薄膜,x在0~1间任意取值。
与现有技术相比,本发明的特点和有益效果是:
本发明的Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底太阳能电池,所采用的衬底为柔性衬底的不锈钢等,此柔性太阳能电池最大的特点是重量轻、携带方便、不易粉碎,其重量比功率和体积比功率较其它种类的电池高几个数量级。具有很好的柔性,可以任意卷曲、裁剪和粘贴;在制备中,改变了P层材料和结构,引入具有带隙可调的InxGa1-xN量子阱晶体薄膜作为P掺杂层,InxGa1-xN材料具有稳定好,耐腐蚀且具有隧穿势垒以及低的光损系数,提高了电池的转化效率;本发明中还在Al背电极和N型Si基薄膜之间采用了GZO透明薄膜作为透明导电电极,GZO一方面作为缓冲层,另一方面作为透明导电电极,增加了薄膜太阳能电池的透光率,同时提高了透明电极的耐腐蚀性能,使得薄膜太阳能电池的光电转换效率得到了很大的提高;本发明还采用AlN作为绝缘层,其晶格失配率相差很小,制备出质量均匀的Al背电极;
综上,本发明的柔性太阳能电池具有优异的柔软性,重量轻,携带方便,具有具有产业化潜力和市场空间,而且制备工艺简单,能实现规模生产。
附图说明
图1是本发明的可调带隙量子阱结构的不锈钢衬底太阳能电池的结构图;
图2是本发明的可调带隙量子阱结构的不锈钢衬底太阳能电池的制备流程图;
图3 是本发明实施例1中的N型nc-Si:H薄膜的X射线光电子能谱分析(XPS)图;
图4是本发明实施例1中的N型nc-Si:H薄膜的Raman谱线;
图5是本发明实施例1中的N型nc-Si:H薄膜的原子力显微镜(AFM)图片;
图6 是本发明实施例1中的I层本征nc-Si:H薄膜的Raman谱线;
图7 是本发明实施例1中的I层本征nc-Si:H薄膜的XRD谱线;
图8 是本发明实施例1中的 P型InxGa1-xN量子阱晶体薄膜的AFM图片。
具体实施方式
下面对本发明的实施例作详细说明,但本发明的保护范围不限于下述的实施例。
     本发明样品的结晶性能测试为X射线衍射分析,其中X射线衍射分析所用仪器的型号为:Bruker AXS D8。
     本发明中采用 RENISHAW in Via Raman Microscope光谱仪测试沉积薄膜的Raman光谱,激光光源为632.8nm的Ne-He激光器,激光功率为35mW,分辨率为2μm,
    本发明中XPS采用的是美国Thermo VG公司生产的型号为ESCALAB250的多功能表面分析系统。X射线源为Al靶Kα(1486.6eV)线。
本发明利用的原子力显微镜(AFM)的型号是Picoscan 2500,产于Agilent公司。在正常室温的测试条件下对薄膜样品的形貌进行了测试与分析。样品的测试分析区域是                                               
Figure 2013107463885100002DEST_PATH_IMAGE002
实施例1
    本实施例的可调带隙量子阱结构的不锈钢衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将不锈钢柔性衬底基片去离子水超声波清洗5分钟后,用N2吹干送入磁控溅射反应室,在9.0×10-4 Pa真空的条件下,沉积制备AlN绝缘层,以Ar和N2混合气体反应源,Ar和N2的流量比10:1,将衬底基片加热到100℃,沉积时间为30min,此时的结构是AlN绝缘层/柔性不锈钢衬底;
    (2)继续磁控溅射制备金属Al背电极,以Ar作为气体反应源,Ar流量为10sccm,衬底温度为50℃,沉积时间为3min,此时的结构是Al背电极/AlN绝缘层/柔性不锈钢衬底;
(3)然后采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,此时控制微波功率为650W,沉积温度为200℃,沉积气压为0.8Pa,沉积时间为10min,此时的结构是GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2稀释的PH3,Ar稀释的SiH4流量为5sccm,H2稀释的PH3流量为0.5sccm,H2流量为25sccm,微波功率为650W,沉积温度为250℃,沉积气压为0.8Pa,沉积时间为30min,此时的结构是N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
采用XPS分析设备对P掺杂的N型nc-Si:H薄膜的性能进行了测试分析,结果如图3所示,由图3可以看出P掺杂N型Si薄膜性能良好;采用Raman光谱仪对薄膜的结构性能进行了测试分析,结果如图4所示,由图4可以看出P掺杂的N型nc-Si:H薄膜的结构性能良好;采用AFM对P掺杂N型Si薄膜的形貌进行了测试分析,结果如图5所示,由图5可以看出P掺杂的N型nc-Si:H薄膜形貌很平整,晶粒分布很均匀;
(5)继续采用ECR-PEMOCVD制备I层本征nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2, Ar稀释的SiH4流量为5sccm,H2流量是25sccm,微波功率为650W,沉积温度为250℃,沉积气压为0.8Pa,沉积时间为30min,此时的结构是I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
采用Raman光谱仪对非掺杂I层本征nc-Si:H薄膜的结构性能进行了测试分析,结果如图6所示,由图6可以看出非掺杂I层本征Si薄膜结构性能良好;采用XRD衍射光谱谱线对非掺杂I层本征Si薄膜的结晶性能进行了测试分析;结果如图7所示,由图7可以看出非掺杂I层本征Si薄膜结晶性能良好;
(6)继续采用ECR-PEMOCVD制备P型InxGa1-xN量子阱可调带隙晶体薄膜,向反应室中通入H2稀释的TMGa、TMIn、Mg(C5H5)2和N2,其中TMGa、TMIn和Mg(C5H5)2流量比为8:4:1,N2流量为80sccm,微波功率为650W,沉积温度为200℃,沉积气压为0.9Pa,沉积时间为40min,此时的结构是P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
采用AFM对Mg掺杂的P型InxGa1-xN量子阱晶体薄膜的形貌进行了测试分析。其结果如图8所示,由图8可以看出InxGa1-xN量子阱本征晶体薄膜形貌很平整,晶粒分布很均匀。
   (7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,微波功率为650W,沉积温度为200℃,沉积气压为0.8Pa,沉积时间为10min,此时的结构是GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
     (8)采用磁控溅射制备金属Al电极,以Ar作为气体反应源,Ar流量为10sccm,沉积温度为50℃,沉积时间为3min,此时的结构是Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底。
实施例2
本实施例的可调带隙量子阱结构的不锈钢衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将不锈钢柔性衬底基片去离子水超声波清洗5分钟后,用N2吹干送入磁控溅射反应室,在9.0×10-4 Pa真空的条件下,沉积制备AlN绝缘层,以Ar和N2混合气体反应源,Ar和N2的流量比10:1,将衬底基片加热到150℃,沉积时间为45min,此时的结构是AlN绝缘层/柔性不锈钢衬底;
    (2)继续磁控溅射制备金属Al背电极,以Ar作为气体反应源,Ar流量为12sccm,衬底温度为150℃,沉积时间为5min,此时的结构是Al背电极/AlN绝缘层/柔性不锈钢衬底;
(3)然后采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,此时控制微波功率为650W,沉积温度为250℃,沉积气压为1.0Pa,沉积时间为13min,此时的结构是GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2稀释的PH3,Ar稀释的SiH4流量为6sccm,H2稀释的PH3流量为3sccm,H2流量为28sccm,微波功率为650W,沉积温度为300℃,沉积气压为1.0Pa,沉积时间为40min,此时的结构是N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(5)继续采用ECR-PEMOCVD制备I层本征nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2, Ar稀释的SiH4流量为6sccm,H2流量是26sccm,微波功率为650W,沉积温度为300℃,沉积气压为1.0Pa,沉积时间为48min,此时的结构是I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(6)继续采用ECR-PEMOCVD制备P型InxGa1-xN量子阱可调带隙晶体薄膜,向反应室中通入H2稀释的TMGa、TMIn、Mg(C5H5)2和N2,其中TMGa、TMIn和Mg(C5H5)2流量比为8:4:1,N2流量为105sccm,微波功率为650W,沉积温度为600℃,沉积气压为1.0Pa,沉积时间为50min,此时的结构是P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
   (7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,微波功率为650W,沉积温度为400℃,沉积气压为1.0Pa,沉积时间为18min,此时的结构是GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
     (8)采用磁控溅射制备金属Al电极,以Ar作为气体反应源,Ar流量为18sccm,沉积温度为150℃,沉积时间为10min,此时的结构是Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底。
实施例3
本实施例的可调带隙量子阱结构的不锈钢衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将不锈钢柔性衬底基片去离子水超声波清洗5分钟后,用N2吹干送入磁控溅射反应室,在9.0×10-4 Pa真空的条件下,沉积制备AlN绝缘层,以Ar和N2混合气体反应源,Ar和N2的流量比10:1,将衬底基片加热到300℃,沉积时间为60min,此时的结构是AlN绝缘层/柔性不锈钢衬底;
    (2)继续磁控溅射制备金属Al背电极,以Ar作为气体反应源,Ar流量为20sccm,衬底温度为350℃,沉积时间为10min,此时的结构是Al背电极/AlN绝缘层/柔性不锈钢衬底;
(3)然后采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,此时控制微波功率为650W,沉积温度为400℃,沉积气压为1.2Pa,沉积时间为20min,此时的结构是GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2稀释的PH3,Ar稀释的SiH4流量为8sccm,H2稀释的PH3流量为5sccm,H2流量为40sccm,微波功率为650W,沉积温度为600℃,沉积气压为1.2Pa,沉积时间为80min,此时的结构是N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(5)继续采用ECR-PEMOCVD制备I层本征nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2, Ar稀释的SiH4流量为8sccm,H2流量是40sccm,微波功率为650W,沉积温度为600℃,沉积气压为1.8Pa,沉积时间为80min,此时的结构是I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(6)继续采用ECR-PEMOCVD制备P型InxGa1-xN量子阱可调带隙晶体薄膜,向反应室中通入H2稀释的TMGa、TMIn、Mg(C5H5)2和N2,其中TMGa、TMIn和Mg(C5H5)2流量比为8:4:1,N2流量为120sccm,微波功率为650W,沉积温度为300℃,沉积气压为1.4Pa,沉积时间为60min,此时的结构是P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
   (7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,微波功率为650W,沉积温度为300℃,沉积气压为1.2Pa,沉积时间为20min,此时的结构是GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
     (8)采用磁控溅射制备金属Al电极,以Ar作为气体反应源,Ar流量为20sccm,沉积温度为400℃,沉积时间为5min,此时的结构是Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底。
实施例4
本实施例的可调带隙量子阱结构的不锈钢衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将不锈钢柔性衬底基片去离子水超声波清洗5分钟后,用N2吹干送入磁控溅射反应室,在9.0×10-4 Pa真空的条件下,沉积制备AlN绝缘层,以Ar和N2混合气体反应源,Ar和N2的流量比10:1,将衬底基片加热到250℃,沉积时间为50min,此时的结构是AlN绝缘层/柔性不锈钢衬底;
    (2)继续磁控溅射制备金属Al背电极,以Ar作为气体反应源,Ar流量为18sccm,衬底温度为280℃,沉积时间为9min,此时的结构是Al背电极/AlN绝缘层/柔性不锈钢衬底;
(3)然后采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,此时控制微波功率为650W,沉积温度为380℃,沉积气压为1.1Pa,沉积时间为18min,此时的结构是GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2稀释的PH3,Ar稀释的SiH4流量为7sccm,H2稀释的PH3流量为4sccm,H2流量为35sccm,微波功率为650W,沉积温度为550℃,沉积气压为1.1Pa,沉积时间为70min,此时的结构是N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(5)继续采用ECR-PEMOCVD制备I层本征nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2, Ar稀释的SiH4流量为7sccm,H2流量是36sccm,微波功率为650W,沉积温度为500℃,沉积气压为1.0Pa,沉积时间为60min,此时的结构是I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(6)继续采用ECR-PEMOCVD制备P型InxGa1-xN量子阱可调带隙晶体薄膜,向反应室中通入H2稀释的TMGa、TMIn、Mg(C5H5)2和N2,其中TMGa、TMIn和Mg(C5H5)2流量比为8:4:1,N2流量为100sccm,微波功率为650W,沉积温度为600℃,沉积气压为1.2Pa,沉积时间为50min,此时的结构是P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
   (7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,微波功率为650W,沉积温度为300℃,沉积气压为1.1Pa,沉积时间为15min,此时的结构是GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
     (8)采用磁控溅射制备金属Al电极,以Ar作为气体反应源,Ar流量为18sccm,沉积温度为300℃,沉积时间为8min,此时的结构是Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底。
实施例5
本实施例的可调带隙量子阱结构的不锈钢衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将不锈钢柔性衬底基片去离子水超声波清洗5分钟后,用N2吹干送入磁控溅射反应室,在9.0×10-4 Pa真空的条件下,沉积制备AlN绝缘层,以Ar和N2混合气体反应源,Ar和N2的流量比10:1,将衬底基片加热到230℃,沉积时间为60min,此时的结构是AlN绝缘层/柔性不锈钢衬底;
    (2)继续磁控溅射制备金属Al背电极,以Ar作为气体反应源,Ar流量为15sccm,衬底温度为300℃,沉积时间为10min,此时的结构是Al背电极/AlN绝缘层/柔性不锈钢衬底;
(3)然后采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,此时控制微波功率为650W,沉积温度为400℃,沉积气压为1.1Pa,沉积时间为20min,此时的结构是GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2稀释的PH3,Ar稀释的SiH4流量为8sccm,H2稀释的PH3流量为5sccm,H2流量为35sccm,微波功率为650W,沉积温度为500℃,沉积气压为1.1Pa,沉积时间为75min,此时的结构是N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(5)继续采用ECR-PEMOCVD制备I层本征nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2, Ar稀释的SiH4流量为7sccm,H2流量是40sccm,微波功率为650W,沉积温度为600℃,沉积气压为0.8Pa,沉积时间为70min,此时的结构是I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(6)继续采用ECR-PEMOCVD制备P型InxGa1-xN量子阱可调带隙晶体薄膜,向反应室中通入H2稀释的TMGa、TMIn、Mg(C5H5)2和N2,其中TMGa、TMIn和Mg(C5H5)2流量比为8:4:1,N2流量为110sccm,微波功率为650W,沉积温度为600℃,沉积气压为1.2Pa,沉积时间为60min,此时的结构是P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
   (7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,微波功率为650W,沉积温度为300℃,沉积气压为1.2Pa,沉积时间为20min,此时的结构是GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
     (8)采用磁控溅射制备金属Al电极,以Ar作为气体反应源,Ar流量为1820sccm,沉积温度为300℃,沉积时间为8min,此时的结构是Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底。

Claims (4)

1.一种可调带隙量子阱结构的不锈钢衬底太阳能电池,其特征在于是以不锈钢片作为柔性衬底,衬底上是AlN绝缘层,AlN绝缘层上方是Al背电极,Al背电极上方是作为缓冲层的镓掺杂氧化锌(GZO)基导电薄膜,GZO基导电薄膜上方是N型氢化纳米晶硅(nc-Si:H)薄膜,N型nc-Si:H薄膜上方是I层本征nc-Si:H薄膜,I层本征nc-Si:H薄膜上方是P型InxGa1-xN薄膜,P型InxGa1-xN薄膜上方是GZO基导电薄膜,GZO基导电薄膜上方是Al金属电极;具体结构是:Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底,其中P层InxGa1-xN薄膜的带隙宽度可调且具有量子阱结构。
2.根据权利要求1所述的一种可调带隙量子阱结构的不锈钢衬底太阳能电池,其特征在于所述的InxGa1-xN薄膜,x在0~1间任意取值。
3.根据权利要求1所述的一种可调带隙量子阱结构的不锈钢衬底太阳能电池的制备方法,其特征在于按照以下步骤进行:
(1)将不锈钢柔性衬底基片去离子水超声波清洗后,用N2吹干送入磁控溅射反应室,在9.0×10-4 Pa真空的条件下,以金属铝为靶材,沉积制备AlN绝缘层,以Ar和N2混合气体反应源,Ar和N2的流量比10:1,将衬底基片加热到100~300℃,沉积时间为30~60min,此时的结构是AlN绝缘层/柔性不锈钢衬底;
    (2)继续磁控溅射制备金属Al背电极,以Ar作为气体反应源,Ar流量为10~20sccm,以金属铝为靶材,衬底温度为50~350℃,沉积时间为3~10min,此时的结构是Al背电极/AlN绝缘层/柔性不锈钢衬底;
(3)然后采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD)制备GZO基透明导电薄膜,向反应室中通入Ar携带的三甲基镓(TMGa)、二乙基锌(DEZn)和O2,TMGa、DEZn和O2的流量比为1:2:80,此时控制微波功率为650W,沉积温度为200~400℃,沉积气压为0.8~1.2Pa,沉积时间为10~20min,此时的结构是GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2稀释的PH3,Ar稀释的SiH4流量为5~8sccm,H2稀释的PH3流量为0.5~5sccm,H2流量为25~40sccm,微波功率为650W,沉积温度为250~600℃,沉积气压为0.8~1.2Pa,沉积时间为30~80min,此时的结构是N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(5)继续采用ECR-PEMOCVD制备I层本征nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4和H2, Ar稀释的SiH4流量为5~8sccm,H2流量是25~40sccm,微波功率为650W,沉积温度为250~600℃,沉积气压为0.8~1.2Pa,沉积时间为30~80min,此时的结构是I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
(6)继续采用ECR-PEMOCVD制备P型InxGa1-xN量子阱可调带隙晶体薄膜,向反应室中通入H2稀释的TMGa、三甲基铟(TMIn)、二茂镁(Mg(C5H5)2)和N2,其中TMGa、TMIn和Mg(C5H5)2流量比为8:4:1,N2流量为80~ 120sccm,微波功率为650W,沉积温度为200~600℃,沉积气压为0.9~1.4Pa,沉积时间为40~60min,此时的结构是P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
   (7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,微波功率为650W,沉积温度为200~400℃,沉积气压为0.8~1.2Pa,沉积时间为10~20min,此时的结构是GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H /GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底;
     (8)采用磁控溅射制备金属Al电极,以Ar作为气体反应源,Ar流量为10~20sccm,以金属铝为靶材,沉积温度为50~400℃,沉积时间为3~10min,此时的结构是Al电极/GZO/P型InxGa1-xN/I层本征nc-Si:H/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/柔性不锈钢衬底。
4.根据权利要求3所述的一种可调带隙量子阱结构的不锈钢衬底太阳能电池的制备方法,其特征在于所述的磁控溅射用金属铝靶材的纯度为99.99%。
CN201310746388.5A 2013-12-30 2013-12-30 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法 Active CN103746016B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310746388.5A CN103746016B (zh) 2013-12-30 2013-12-30 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法
EP14162221.7A EP2889918B1 (en) 2013-12-30 2014-03-28 Preparation method of solar cell with stainless steel substrate of adjustable bandgap quantum well structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310746388.5A CN103746016B (zh) 2013-12-30 2013-12-30 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法

Publications (2)

Publication Number Publication Date
CN103746016A true CN103746016A (zh) 2014-04-23
CN103746016B CN103746016B (zh) 2016-03-09

Family

ID=50503023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310746388.5A Active CN103746016B (zh) 2013-12-30 2013-12-30 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法

Country Status (2)

Country Link
EP (1) EP2889918B1 (zh)
CN (1) CN103746016B (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047740A (zh) * 2015-08-05 2015-11-11 辽宁恒华航海电力设备工程有限公司 一种Si基柔性不锈钢结构太阳电池及制备方法
CN105140339A (zh) * 2015-08-05 2015-12-09 辽宁恒华航海电力设备工程有限公司 金刚石保护层结构的柔性衬底薄膜太阳能电池及制备方法
CN105185861A (zh) * 2015-08-05 2015-12-23 辽宁恒华航海电力设备工程有限公司 一种玻璃结构薄膜太阳能电池及制备方法
WO2018072054A1 (zh) * 2016-10-17 2018-04-26 北京四方创能光电科技有限公司 一种柔性不锈钢衬底太阳能电池组件的全激光刻划方法
CN112467005A (zh) * 2020-11-18 2021-03-09 福建中晶科技有限公司 一种多复合层图形化蓝宝石衬底的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938863A (zh) * 2004-05-27 2007-03-28 佛文恩股份有限公司 非晶硅垂直滤色片
US20070175507A1 (en) * 2006-01-28 2007-08-02 Banpil Photonics, Inc. High efficiency photovoltaic cells
US20100200837A1 (en) * 2008-11-05 2010-08-12 Goldeneye, Inc. Dual sided processing and devices based on freestanding nitride and zinc oxide films
CN201754407U (zh) * 2010-04-30 2011-03-02 华中科技大学 硅基单结氮化镓铟太阳能电池

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2949278B1 (fr) * 2009-08-18 2012-11-02 Commissariat Energie Atomique Procede de fabrication d'un dispositif d'emission de lumiere a base de diodes electroluminescentes

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1938863A (zh) * 2004-05-27 2007-03-28 佛文恩股份有限公司 非晶硅垂直滤色片
US20070175507A1 (en) * 2006-01-28 2007-08-02 Banpil Photonics, Inc. High efficiency photovoltaic cells
US20100200837A1 (en) * 2008-11-05 2010-08-12 Goldeneye, Inc. Dual sided processing and devices based on freestanding nitride and zinc oxide films
CN201754407U (zh) * 2010-04-30 2011-03-02 华中科技大学 硅基单结氮化镓铟太阳能电池

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047740A (zh) * 2015-08-05 2015-11-11 辽宁恒华航海电力设备工程有限公司 一种Si基柔性不锈钢结构太阳电池及制备方法
CN105140339A (zh) * 2015-08-05 2015-12-09 辽宁恒华航海电力设备工程有限公司 金刚石保护层结构的柔性衬底薄膜太阳能电池及制备方法
CN105185861A (zh) * 2015-08-05 2015-12-23 辽宁恒华航海电力设备工程有限公司 一种玻璃结构薄膜太阳能电池及制备方法
CN105047740B (zh) * 2015-08-05 2017-10-13 沈阳工程学院 一种Si基柔性不锈钢结构太阳电池及制备方法
WO2018072054A1 (zh) * 2016-10-17 2018-04-26 北京四方创能光电科技有限公司 一种柔性不锈钢衬底太阳能电池组件的全激光刻划方法
GB2567568A (en) * 2016-10-17 2019-04-17 Beijing Sifang Crenergey Optoelectronics Tech Co Ltd Full-laser scribing method for solar cell module on flexible stainless steel substrate
US10784389B2 (en) 2016-10-17 2020-09-22 Beijing Sifang Crenergey Optoelectronics Technology Co., Ltd. Full-laser scribing method for flexible stainless steel substrate solar cell module
GB2567568B (en) * 2016-10-17 2022-10-05 Beijing Sifang Crenergey Optoelectronics Tech Co Ltd Full-laser scribing method for flexible stainless steel substrate solar cell module
CN112467005A (zh) * 2020-11-18 2021-03-09 福建中晶科技有限公司 一种多复合层图形化蓝宝石衬底的制备方法

Also Published As

Publication number Publication date
EP2889918B1 (en) 2017-08-02
EP2889918A1 (en) 2015-07-01
CN103746016B (zh) 2016-03-09

Similar Documents

Publication Publication Date Title
CN101777593B (zh) 一种具有掺杂中间层结构的非晶/微晶硅叠层太阳电池及其制造方法
CN101567395B (zh) 表面织构化n型ZnO基透明导电薄膜及其制备方法
CN103746016B (zh) 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法
Ren et al. Fabrication of textured SnO2: F thin films by spray pyrolysis
CN105132874A (zh) 一种直流/射频共溅射法制备高浓度梯度azo单晶导电薄膜的方法
CN103700576B (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN103715284B (zh) 可调带隙量子阱结构的柔性衬底太阳能电池及制备方法
CN102280500B (zh) 基于异质结结构的硅量子点太阳能电池及其制备方法
Chen et al. Textured surface boron-doped ZnO transparent conductive oxides on polyethylene terephthalate substrates for Si-based thin film solar cells
CN103077981B (zh) 柔性衬底硅基多结叠层薄膜太阳电池及其制造方法
CN103137765A (zh) 一种铝诱导晶化多晶硅薄膜太阳能电池及制备方法
CN101582468B (zh) 一种生长太阳电池用高迁移率绒面结构IMO/ZnO复合薄膜的方法
CN101540345B (zh) 纳米硅薄膜三叠层太阳电池及其制备方法
CN107516691A (zh) 一种非晶碳薄膜/单晶硅异质结太阳能电池及其制备方法
CN204668317U (zh) 具有梯度结构的硅基薄膜太阳能电池
CN103014705B (zh) Cu/ZnO/Al光电透明导电薄膜的沉积方法
CN103066134B (zh) 一种薄膜太阳能电池背反电极及其制备方法
CN105140339A (zh) 金刚石保护层结构的柔性衬底薄膜太阳能电池及制备方法
CN204857741U (zh) 一种金刚石保护层结构的柔性衬底的薄膜太阳能电池
CN103280466A (zh) 基于AlOx/Ag/ZnO结构的高反射高绒度背电极
CN102931270B (zh) 一种弱光型非晶硅太阳能电池及其制造方法
CN204857743U (zh) 一种Si基柔性不锈钢结构太阳能电池
CN105047740A (zh) 一种Si基柔性不锈钢结构太阳电池及制备方法
CN102569517A (zh) 一种纳米硅薄膜太阳能电池椭园偏振光实时监控制备方法
CN203325950U (zh) 一种多带隙双面透光太阳能电池

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant