CN103715284B - 可调带隙量子阱结构的柔性衬底太阳能电池及制备方法 - Google Patents

可调带隙量子阱结构的柔性衬底太阳能电池及制备方法 Download PDF

Info

Publication number
CN103715284B
CN103715284B CN201310742938.6A CN201310742938A CN103715284B CN 103715284 B CN103715284 B CN 103715284B CN 201310742938 A CN201310742938 A CN 201310742938A CN 103715284 B CN103715284 B CN 103715284B
Authority
CN
China
Prior art keywords
substrate
flow
back electrode
aln
dilution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201310742938.6A
Other languages
English (en)
Other versions
CN103715284A (zh
Inventor
张铁岩
赵琰
张东
鞠振河
郑洪�
李昱材
宋世巍
王健
边继明
刘宝丹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenyang Institute of Engineering
Original Assignee
Shenyang Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Engineering filed Critical Shenyang Institute of Engineering
Priority to CN201310742938.6A priority Critical patent/CN103715284B/zh
Priority to EP14162260.5A priority patent/EP2889921B1/en
Publication of CN103715284A publication Critical patent/CN103715284A/zh
Application granted granted Critical
Publication of CN103715284B publication Critical patent/CN103715284B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035272Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions characterised by at least one potential jump barrier or surface barrier
    • H01L31/03529Shape of the potential jump barrier or surface barrier
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0352Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their shape or by the shapes, relative sizes or disposition of the semiconductor regions
    • H01L31/035236Superlattices; Multiple quantum well structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0376Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors
    • H01L31/03762Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including amorphous semiconductors including only elements of Group IV of the Periodic Table
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PIN type, e.g. amorphous silicon PIN solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/202Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials including only elements of Group IV of the Periodic Table
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/548Amorphous silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明属于柔性太阳能电池制造技术领域,特别涉及一种可调带隙量子阱结构的柔性衬底太阳能电池及制备方法。本发明的太阳能电池具体结构是:Al电极/GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底;其制备方法是首先磁控溅射制备AlN绝缘层和Al背电极,然后采用ECR-PEMOCVD依次沉积GZO基透明导电薄膜、N型nc-Si:H薄膜、InxGa1-xN量子阱本征晶体薄膜、P型nc-Si:H薄膜、GZO基透明导电薄膜,最后制备金属Al电极。本发明的可调带隙量子阱结构的柔性衬底太阳能电池具有优异的柔软性,重量轻,携带方便,具有产业化潜力和市场空间,而且制备工艺简单,能实现规模生产。

Description

可调带隙量子阱结构的柔性衬底太阳能电池及制备方法
技术领域
本发明属于柔性太阳能电池制造技术领域,特别涉及一种可调带隙量子阱结构的柔性衬底太阳能电池及制备方法。
背景技术
柔性衬底薄膜太阳能电池是指在柔性材料即聚酰亚胺(PI)或柔性不锈钢上制作的薄膜太阳能电池,由于其具有携带轻便、重量轻以及不易粉碎的优势,以及独特的使用特性,从而具有广阔的市场竞争力。目前已经商业化应用的薄膜太阳能电池以基于玻璃衬底的非晶硅薄膜为主,其制作方法是:使用硅烷(SiH4),同时掺杂硼烷(B2H6)和磷烷(PH3)等气体,在廉价的玻璃衬底上低温制备而成,形成光伏PIN单结或者多结薄膜太阳能电池结构。
目前,技术相对成熟的薄膜太阳能电池大多都是硅基材料,其PIN中的I层一般都是非晶或者微晶硅(Si)薄膜。非晶或者微晶硅(Si)薄膜又称无定型硅,就其微观结构来看,是短程有序但是长程无序的不规则网状结构,包含大量的悬挂键和空位等缺陷。但是由于非晶或者微晶硅(Si)薄膜带隙宽度在1.7eV左右,对太阳能辐射光谱的长波很不敏感,使其光电转化效率较低,而且还存在明显的光致衰退效应,使太阳能电池的光致性能稳定性较差,导致薄膜太阳能电池的市场竞争力较差。
发明内容
针对现有技术存在的问题,本发明提供一种可调带隙量子阱结构的柔性衬底太阳能电池及制备方法,通过采用带隙宽度可以调整到太阳能电池最敏感的区域的InxGa1-xN晶体薄膜作为柔性太阳能电池的本征层(I层),其量子阱结构提高了太阳能电池的光电转化效率和光致性能的稳定性。
本发明的可调带隙量子阱结构的柔性衬底太阳能电池,是以聚酰亚胺(PI)作为柔性衬底,衬底上是AlN绝缘层,AlN绝缘层上方是Al背电极,Al背电极上方是作为缓冲层的镓掺杂氧化锌(GZO)基导电薄膜,GZO基导电薄膜上方是N型氢化纳米晶硅(nc-Si:H)薄膜,N型nc-Si:H薄膜上方是I层本征InxGa1-xN薄膜,I层本征InxGa1-xN薄膜上方是P型nc-Si:H薄膜,P型nc-Si:H薄膜上方是GZO基导电薄膜,GZO基导电薄膜上方是Al金属电极;具体结构是:Al电极/GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底,其中I层本征InxGa1-xN薄膜的带隙宽度可调且具有量子阱结构。
本发明的可调带隙量子阱结构的柔性衬底太阳能电池的制备方法按照以下步骤进行:
(1)将PI衬底基片用去离子水超声波清洗5min后,用N2吹干送入磁控溅射反应室,在9.0×10-4Pa真空的条件下,以金属铝为靶材,以Ar和N2混合气体作为反应源,Ar和N2流量比(4~10):1,将柔性PI衬底基片加热到100~200℃,沉积制备AlN绝缘层,沉积时间为30~60min;
(2)在磁控溅射制备中继续制备金属Al背电极,以金属铝为靶材,以氩气作为气体反应源,控制氩气流量为10~20sccm,衬底温度为50~150℃,沉积时间为3~10min,此时的结构是Al背电极/AlN绝缘层/PI柔性衬底;
(3)采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),制备GZO基透明导电薄膜,将沉积有AlN绝缘层和Al背电极的柔性PI衬底基片于反应室内加热到200~400℃,向反应室中通入Ar携带的三甲基镓(TMGa)、二乙基锌(DEZn)和O2,TMGa、DEZn和O2的流量比为1:2:80,控制微波功率为650W,沉积气压为0.8~1.2Pa,沉积时间为10~20min,此时的结构是GZO基透明导电薄膜/Al背电极/AlN/PI柔性衬底基片;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,Ar稀释的SiH4流量为5~8sccm,H2稀释的PH3流量为为0.5~5sccm,H2流量为25~40sccm,控制沉积温度为250~350℃,微波功率为650W,沉积气压为0.8~1.2Pa,沉积时间为30~80min,此时的结构是N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(5)继续采用ECR-PEMOCVD制备带隙可调的InxGa1-xN量子阱本征晶体薄膜,向反应室中通入H2稀释的TMGa和三甲基铟(TMIn),TMGa和TMIn流量比为2:1,N2流量为80~120sccm,沉积温度为200~300℃,微波功率为650W,沉积气压为0.9~1.4Pa,沉积时间为40~60min,此时结构是I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/PI柔性衬底基片;
(6)继续采用ECR-PEMOCVD制备P型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,Ar稀释的SiH4流量为5~8sccm,为H2稀释的B2H6流量为0.3~8sccm,H2流量为25sccm,沉积温度为250℃~350℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为30~80min,此时结构是P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:GZOH/GZOAl背电极/AlN绝缘层/PI柔性衬底基片;
(7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和氧气O2的流量比为1:2:80,沉积温度为200~400℃,微波功率为650W,沉积气压为0.8~1.2Pa,沉积时间为10~20min,此时结构是GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(8)最后采用磁控溅射反应室制备金属Al电极,以Ar作为气体反应源,以金属铝为靶材,Ar流量为10~20sccm,衬底温度为50~150℃,沉积时间为3~10min,最终得到结构为Al电极/GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片的太阳能柔性电池。
其中,所述的磁控溅射用金属铝靶材的纯度为99.99%。
所述的InxGa1-xN量子阱本征晶体薄膜,x在0~1间任意取值。
与现有技术相比,本发明的特点和有益效果是:
本发明的Al电极/GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片的太阳能柔性电池,所采用的柔性衬底为PI,此柔性太阳能电池最大的特点是重量轻、携带方便、不易粉碎,其重量比功率和体积比功率较其它种类的电池高几个数量级。具有很好的柔性,可以任意卷曲、裁剪和粘贴;本发明还改变了I层材料和结构,引入具有带隙可调的InxGa1-xN量子阱本征晶体薄膜作为I层,InxGa1-xN材料具有稳定好,耐腐蚀且具有隧穿势垒以及低的光损系数,提高了电池的转化效率;本发明还在Al背电极和N型Si基薄膜之间加入GZO透明导电薄膜,GZO一方面作为缓冲层,GZO另一方面作为透明导电电极,增加了薄膜太阳能电池的透光率同时提高了透明电极的耐腐蚀性能,使得薄膜太阳能电池的光电转换效率得到了很大的提高;本发明还采用AlN作为绝缘层,其晶格失配率相差很小,还制备出质量均匀的Al背电极。
综上,本发明的可调带隙量子阱结构的柔性衬底太阳能电池具有优异的柔软性,重量轻,携带方便,具有产业化潜力和市场空间,而且制备工艺简单,能实现规模生产。
附图说明
图1是本发明的可调带隙量子阱结构的柔性衬底太阳能电池的结构图;
图2是本发明的可调带隙量子阱结构的柔性衬底太阳能电池的制备流程图;
图3是本发明实施例1中的InxGa1-xN量子阱本征晶体薄膜的原子力显微镜(AFM)图片;
图4是本发明实施例1中的P型nc-Si:H薄膜的X射线光电子能谱分析(XPS)图;
图5是本发明实施例1中的P型nc-Si:H薄膜的Raman谱线;
图6是本发明实施例1中的P型nc-Si:H薄膜的的原子力显微镜(AFM)图片。
具体实施方式
下面对本发明的实施例作详细说明,但本发明的保护范围不限于下述的实施例。
本发明中采用RENISHAWinViaRamanMicroscope光谱仪测试沉积薄膜的Raman光谱,激光光源为632.8nm的Ne-He激光器,激光功率为35mW,分辨率为2μm;
本发明中XPS采用的是美国ThermoVG公司生产的型号为ESCALAB250的多功能表面分析系统。X射线源为Al靶Kα(1486.6eV)线;
本发明利用的原子力显微镜(AFM)的型号是Picoscan2500,产于Agilent公司。在正常室温的测试条件下对薄膜样品的形貌进行了测试与分析。样品的测试分析区域是
实施例1
本实施例的可调带隙量子阱结构的柔性衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将PI衬底基片用去离子水超声波清洗5min后,用N2吹干送入磁控溅射反应室,在9.0×10-4Pa真空的条件下,以金属铝为靶材,金属铝的纯度为99.99%,以Ar和N2混合气体作为反应源,Ar和N2流量比6:1,将柔性PI衬底基片加热到100℃,沉积制备AlN绝缘层,沉积时间为30min;
(2)在磁控溅射制备中继续制备金属Al背电极,以氩气作为气体反应源,控制氩气流量为10sccm,衬底温度为50℃,沉积时间为3min,此时的结构是Al背电极/AlN绝缘层/PI柔性衬底;
(3)采用ECR-PEMOCVD制备GZO基透明导电薄膜,将沉积有AlN绝缘层和Al背电极的柔性PI衬底基片于反应室内加热到200℃,向反应室中通入Ar携带的TMGa、二DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,控制微波功率为650W,沉积气压为0.8Pa,沉积时间为10min,此时的结构是GZO基透明导电薄膜/Al背电极/AlN/PI柔性衬底基片;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,Ar稀释的SiH4流量为5sccm,H2稀释的PH3流量为为0.5sccm,H2流量为25sccm,控制沉积温度为250℃,微波功率为650W,沉积气压为0.8Pa,沉积时间为30min,此时的结构是N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(5)继续采用ECR-PEMOCVD制备带隙可调的InxGa1-xN量子阱本征晶体薄膜,向反应室中通入H2稀释的TMGa和TMIn,TMGa和TMIn流量比为2:1,N2流量为80sccm,沉积温度为300℃,微波功率为650W,沉积气压为0.9Pa,沉积时间为40min,此时结构是I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/PI柔性衬底基片;
采用原子力显微镜对InxGa1-xN量子阱本征晶体薄膜的形貌进行了测试分析,结果如图3所示,由图3可以看出InxGa1-xN量子阱本征晶体薄膜形貌很平整,晶粒分布很均匀;
(6)继续采用ECR-PEMOCVD制备P型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,Ar稀释的SiH4流量为5sccm,为H2稀释的B2H6流量为0.3sccm,H2流量为25sccm,沉积温度为250℃,微波功率为650W,沉积气压为0.8~1.2Pa,沉积时间为30min,此时结构是P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:GZOH/GZOAl背电极/AlN绝缘层/PI柔性衬底基片;
采用XPS分析设备对得到P型nc-Si:H薄膜进行测试分析,结果如图4所示,由图4可以看出P型nc-Si:H薄膜性能良好,继续采用Raman光谱仪对P型nc-Si:H薄膜的结构性能进行了测试分析,结果如图5所示,由图5可以看出P型nc-Si:H薄膜的结构性能良好,继续采用原子力显微镜对P型nc-Si:H薄膜的形貌进行了测试分析,结果如图6所示,由图6可以看出B掺杂P型Si薄膜形貌很平整,晶粒分布很均匀;
(7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和氧气O2的流量比为1:2:80,沉积温度为200℃,微波功率为650W,沉积气压为0.8Pa,沉积时间为10min,此时结构是GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(8)最后采用磁控溅射反应室制备金属Al电极,以Ar作为气体反应源,Ar流量为10sccm,衬底温度为50℃,沉积时间为3~10min,最终得到结构为Al电极/GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片的太阳能柔性电池。
实施例2
本实施例的可调带隙量子阱结构的柔性衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将PI衬底基片用去离子水超声波清洗5min后,用N2吹干送入磁控溅射反应室,在9.0×10-4Pa真空的条件下,以金属铝为靶材,金属铝的纯度为99.99%,以Ar和N2混合气体作为反应源,Ar和N2流量比7:1,将柔性PI衬底基片加热到120℃,沉积制备AlN绝缘层,沉积时间为40min;
(2)在磁控溅射制备中继续制备金属Al背电极,以氩气作为气体反应源,控制氩气流量为15sccm,衬底温度为100℃,沉积时间为6min,此时的结构是Al背电极/AlN绝缘层/PI柔性衬底;
(3)采用ECR-PEMOCVD制备GZO基透明导电薄膜,将沉积有AlN绝缘层和Al背电极的柔性PI衬底基片于反应室内加热到280℃,向反应室中通入Ar携带的TMGa、二DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,控制微波功率为650W,沉积气压为1.0Pa,沉积时间为15min,此时的结构是GZO基透明导电薄膜/Al背电极/AlN/PI柔性衬底基片;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,Ar稀释的SiH4流量为6sccm,H2稀释的PH3流量为为2sccm,H2流量为30sccm,控制沉积温度为300℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为40min,此时的结构是N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(5)继续采用ECR-PEMOCVD制备带隙可调的InxGa1-xN量子阱本征晶体薄膜,向反应室中通入H2稀释的TMGa和TMIn,TMGa和TMIn流量比为2:1,N2流量为90sccm,沉积温度为240℃,微波功率为650W,沉积气压为1.0Pa,沉积时间为50min,此时结构是I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/PI柔性衬底基片;
(6)继续采用ECR-PEMOCVD制备P型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,Ar稀释的SiH4流量为6sccm,为H2稀释的B2H6流量为2sccm,H2流量为25sccm,沉积温度为300℃,微波功率为650W,沉积气压为1.0Pa,沉积时间为50min,此时结构是P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:GZOH/GZOAl背电极/AlN绝缘层/PI柔性衬底基片;
(7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和氧气O2的流量比为1:2:80,沉积温度为250℃,微波功率为650W,沉积气压为1.1Pa,沉积时间为15min,此时结构是GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(8)最后采用磁控溅射反应室制备金属Al电极,以Ar作为气体反应源,Ar流量为12sccm,衬底温度为100℃,沉积时间为5min,最终得到结构为Al电极/GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片的太阳能柔性电池。
实施例3
本实施例的可调带隙量子阱结构的柔性衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将PI衬底基片用去离子水超声波清洗5min后,用N2吹干送入磁控溅射反应室,在9.0×10-4Pa真空的条件下,以金属铝为靶材,金属铝的纯度为99.99%,以Ar和N2混合气体作为反应源,Ar和N2流量比9:1,将柔性PI衬底基片加热到200℃,沉积制备AlN绝缘层,沉积时间为60min;
(2)在磁控溅射制备中继续制备金属Al背电极,以氩气作为气体反应源,控制氩气流量为20sccm,衬底温度为150℃,沉积时间为10min,此时的结构是Al背电极/AlN绝缘层/PI柔性衬底;
(3)采用ECR-PEMOCVD制备GZO基透明导电薄膜,将沉积有AlN绝缘层和Al背电极的柔性PI衬底基片于反应室内加热到280℃,向反应室中通入Ar携带的TMGa、二DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,控制微波功率为650W,沉积气压为1.2Pa,沉积时间为20min,此时的结构是GZO基透明导电薄膜/Al背电极/AlN/PI柔性衬底基片;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,Ar稀释的SiH4流量为8sccm,H2稀释的PH3流量为为5sccm,H2流量为40sccm,控制沉积温度为350℃,微波功率为650W,沉积气压为1.0Pa,沉积时间为80min,此时的结构是N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(5)继续采用ECR-PEMOCVD制备带隙可调的InxGa1-xN量子阱本征晶体薄膜,向反应室中通入H2稀释的TMGa和TMIn,TMGa和TMIn流量比为2:1,N2流量为120sccm,沉积温度为200℃,微波功率为650W,沉积气压为1.4Pa,沉积时间为60min,此时结构是I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/PI柔性衬底基片;
(6)继续采用ECR-PEMOCVD制备P型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,Ar稀释的SiH4流量为8sccm,为H2稀释的B2H6流量为8sccm,H2流量为25sccm,沉积温度为350℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为80min,此时结构是P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:GZOH/GZOAl背电极/AlN绝缘层/PI柔性衬底基片;
(7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和氧气O2的流量比为1:2:80,沉积温度为400℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为20min,此时结构是GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(8)最后采用磁控溅射反应室制备金属Al电极,以Ar作为气体反应源,Ar流量为20sccm,衬底温度为150℃,沉积时间为10min,最终得到结构为Al电极/GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片的太阳能柔性电池。
实施例4
本实施例的可调带隙量子阱结构的柔性衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将PI衬底基片用去离子水超声波清洗5min后,用N2吹干送入磁控溅射反应室,在9.0×10-4Pa真空的条件下,以金属铝为靶材,金属铝的纯度为99.99%,以Ar和N2混合气体作为反应源,Ar和N2流量比4:1,将柔性PI衬底基片加热到180℃,沉积制备AlN绝缘层,沉积时间为50min;
(2)在磁控溅射制备中继续制备金属Al背电极,以氩气作为气体反应源,控制氩气流量为12sccm,衬底温度为80℃,沉积时间为4min,此时的结构是Al背电极/AlN绝缘层/PI柔性衬底;
(3)采用ECR-PEMOCVD制备GZO基透明导电薄膜,将沉积有AlN绝缘层和Al背电极的柔性PI衬底基片于反应室内加热到250℃,向反应室中通入Ar携带的TMGa、二DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,控制微波功率为650W,沉积气压为0.9Pa,沉积时间为18min,此时的结构是GZO基透明导电薄膜/Al背电极/AlN/PI柔性衬底基片;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,Ar稀释的SiH4流量为6sccm,H2稀释的PH3流量为为1sccm,H2流量为25sccm,控制沉积温度为320℃,微波功率为650W,沉积气压为1.0Pa,沉积时间为80min,此时的结构是N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(5)继续采用ECR-PEMOCVD制备带隙可调的InxGa1-xN量子阱本征晶体薄膜,向反应室中通入H2稀释的TMGa和TMIn,TMGa和TMIn流量比为2:1,N2流量为115sccm,沉积温度为240℃,微波功率为650W,沉积气压为1.0Pa,沉积时间为55min,此时结构是I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/PI柔性衬底基片;
(6)继续采用ECR-PEMOCVD制备P型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,Ar稀释的SiH4流量为7sccm,为H2稀释的B2H6流量为4sccm,H2流量为25sccm,沉积温度为260℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为50min,此时结构是P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:GZOH/GZOAl背电极/AlN绝缘层/PI柔性衬底基片;
(7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和氧气O2的流量比为1:2:80,沉积温度为290℃,微波功率为650W,沉积气压为1.1Pa,沉积时间为14min,此时结构是GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(8)最后采用磁控溅射反应室制备金属Al电极,以Ar作为气体反应源,Ar流量为20sccm,衬底温度为110℃,沉积时间为9min,最终得到结构为Al电极/GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片的太阳能柔性电池。
实施例5
本实施例的可调带隙量子阱结构的柔性衬底太阳能电池的结构图如图1所示,制备方法是:
(1)将PI衬底基片用去离子水超声波清洗5min后,用N2吹干送入磁控溅射反应室,在9.0×10-4Pa真空的条件下,以金属铝为靶材,金属铝的纯度为99.99%,以Ar和N2混合气体作为反应源,Ar和N2流量比10:1,将柔性PI衬底基片加热到120℃,沉积制备AlN绝缘层,沉积时间为30min;
(2)在磁控溅射制备中继续制备金属Al背电极,以氩气作为气体反应源,控制氩气流量为15sccm,衬底温度为50℃,沉积时间为10min,此时的结构是Al背电极/AlN绝缘层/PI柔性衬底;
(3)采用ECR-PEMOCVD制备GZO基透明导电薄膜,将沉积有AlN绝缘层和Al背电极的柔性PI衬底基片于反应室内加热到300℃,向反应室中通入Ar携带的TMGa、二DEZn和O2,TMGa、DEZn和O2的流量比为1:2:80,控制微波功率为650W,沉积气压为1.2Pa,沉积时间为20min,此时的结构是GZO基透明导电薄膜/Al背电极/AlN/PI柔性衬底基片;
(4)继续采用ECR-PEMOCVD制备N型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,Ar稀释的SiH4流量为5.5sccm,H2稀释的PH3流量为为3sccm,H2流量为25sccm,控制沉积温度为320℃,微波功率为650W,沉积气压为0.8Pa,沉积时间为80min,此时的结构是N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(5)继续采用ECR-PEMOCVD制备带隙可调的InxGa1-xN量子阱本征晶体薄膜,向反应室中通入H2稀释的TMGa和TMIn,TMGa和TMIn流量比为2:1,N2流量为80sccm,沉积温度为200℃,微波功率为650W,沉积气压为1.4Pa,沉积时间为45min,此时结构是I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN绝缘层/PI柔性衬底基片;
(6)继续采用ECR-PEMOCVD制备P型nc-Si:H薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,Ar稀释的SiH4流量为5sccm,为H2稀释的B2H6流量为2sccm,H2流量为25sccm,沉积温度为250℃,微波功率为650W,沉积气压为0.8Pa,沉积时间为50min,此时结构是P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:GZOH/GZOAl背电极/AlN绝缘层/PI柔性衬底基片;
(7)继续采用ECR-PEMOCVD制备GZO基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和氧气O2的流量比为1:2:80,沉积温度为250℃,微波功率为650W,沉积气压为1.1Pa,沉积时间为10min,此时结构是GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片;
(8)最后采用磁控溅射反应室制备金属Al电极,以Ar作为气体反应源,Ar流量为20sccm,衬底温度为150℃,沉积时间为5min,最终得到结构为Al电极/GZO/P型nc-Si:H/I层本征InxGa1-xN/N型nc-Si:H/GZO/Al背电极/AlN/PI柔性衬底基片的太阳能柔性电池。

Claims (3)

1.一种可调带隙量子阱结构的柔性衬底太阳能电池,其特征在于是以聚酰亚胺作为柔性衬底,衬底上是AlN绝缘层,AlN绝缘层上方是Al背电极,Al背电极上方是作为缓冲层的镓掺杂氧化锌基导电薄膜,镓掺杂氧化锌基导电薄膜上方是N型氢化纳米晶硅薄膜,N型氢化纳米晶硅薄膜上方是I层InxGa1-xN薄膜,I层InxGa1-xN薄膜上方是P型氢化纳米晶硅薄膜,P型氢化纳米晶硅薄膜上方是镓掺杂氧化锌基导电薄膜,镓掺杂氧化锌基导电薄膜上方是Al金属电极;具体结构是:Al电极/镓掺杂氧化锌/P型氢化纳米晶硅/I层InxGa1-xN/N型氢化纳米晶硅/镓掺杂氧化锌/Al背电极/AlN/聚酰亚胺柔性衬底,其中I层InxGa1-xN薄膜的带隙宽度可调且具有量子阱结构。
2.一种如权利要求1所述的可调带隙量子阱结构的柔性衬底太阳能电池的制备方法,其特征在于按照以下步骤进行:
(1)将聚酰亚胺衬底基片用去离子水超声波清洗后,用N2吹干送入磁控溅射反应室,在9.0×10-4Pa真空的条件下,以金属铝为靶材,以Ar和N2混合气体作为反应源,Ar和N2流量比(4~10):1,将柔性聚酰亚胺衬底基片加热到100~200℃,沉积制备AlN绝缘层,沉积时间为30~60min;
(2)在磁控溅射制备中继续制备金属Al背电极,以Ar作为气体反应源,以金属铝为靶材,控制氩气流量为10~20sccm,衬底温度为50~150℃,沉积时间为3~10min,此时的结构是Al背电极/AlN绝缘层/聚酰亚胺柔性衬底;
(3)采用ECR-PEMOCVD制备镓掺杂氧化锌基透明导电薄膜,将沉积有AlN绝缘层和Al背电极的柔性聚酰亚胺衬底基片于反应室内加热到200~400℃,向反应室中通入Ar携带的三甲基镓(TMGa)、二乙基锌(DEZn)和O2,TMGa、DEZn和O2的流量比为1:2:80,控制微波功率为650W,沉积气压为0.8~1.2Pa,沉积时间为10~20min,此时的结构是镓掺杂氧化锌基透明导电薄膜/Al背电极/AlN/聚酰亚胺柔性衬底基片;
(4)继续采用ECR-PEMOCVD制备N型氢化纳米晶硅薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,Ar稀释的SiH4流量为5~8sccm,H2稀释的PH3流量为为0.5~5sccm,H2流量为25~40sccm,控制沉积温度为250~350℃,微波功率为650W,沉积气压为0.8~1.2Pa,沉积时间为30~80min,此时的结构是N型氢化纳米晶硅/镓掺杂氧化锌/Al背电极/AlN/聚酰亚胺柔性衬底基片;
(5)继续采用ECR-PEMOCVD制备带隙可调的InxGa1-xN量子阱本征晶体薄膜,向反应室中通入H2稀释的TMGa和三甲基铟(TMIn),TMGa和TMIn流量比为2:1,N2流量为80~120sccm,沉积温度为200~300℃,微波功率为650W,沉积气压为0.9~1.4Pa,沉积时间为40~60min,此时结构是I层InxGa1-xN/N型氢化纳米晶硅/镓掺杂氧化锌/Al背电极/AlN绝缘层/聚酰亚胺柔性衬底基片;
(6)继续采用ECR-PEMOCVD制备氢化纳米晶硅薄膜,向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,Ar稀释的SiH4流量为5~8sccm,为H2稀释的B2H6流量为0.3~8sccm,H2流量为25sccm,沉积温度为250℃~350℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为30~80min,此时结构是P型氢化纳米晶硅/I层InxGa1-xN/N型氢化纳米晶硅/镓掺杂氧化锌/Al背电极/AlN绝缘层/聚酰亚胺柔性衬底基片;
(7)继续采用ECR-PEMOCVD制备镓掺杂氧化锌基透明导电薄膜,向反应室中通入Ar携带的TMGa、DEZn和O2,TMGa、DEZn和氧气O2的流量比为1:2:80,沉积温度为200~400℃,微波功率为650W,沉积气压为0.8~1.2Pa,沉积时间为10~20min,此时结构是镓掺杂氧化锌/P型氢化纳米晶硅/I层InxGa1-xN/N型氢化纳米晶硅/镓掺杂氧化锌/Al背电极/AlN/聚酰亚胺柔性衬底基片;
(8)最后采用磁控溅射反应室制备金属Al电极,以Ar作为气体反应源,以金属铝为靶材,Ar流量为10~20sccm,衬底温度为50~150℃,沉积时间为3~10min,最终得到结构为Al电极/镓掺杂氧化锌/P型氢化纳米晶硅/I层InxGa1-xN/N型氢化纳米晶硅/镓掺杂氧化锌/Al背电极/AlN/聚酰亚胺柔性衬底基片的太阳能柔性电池。
3.根据权利要求2所述的一种可调带隙量子阱结构的柔性衬底太阳能电池的制备方法,其特征在于所述的磁控溅射用金属铝靶材的纯度为99.99%。
CN201310742938.6A 2013-12-30 2013-12-30 可调带隙量子阱结构的柔性衬底太阳能电池及制备方法 Active CN103715284B (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201310742938.6A CN103715284B (zh) 2013-12-30 2013-12-30 可调带隙量子阱结构的柔性衬底太阳能电池及制备方法
EP14162260.5A EP2889921B1 (en) 2013-12-30 2014-03-28 Solar cell with flexible substrate of adjustable bandgap quantum well structure and preparation method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310742938.6A CN103715284B (zh) 2013-12-30 2013-12-30 可调带隙量子阱结构的柔性衬底太阳能电池及制备方法

Publications (2)

Publication Number Publication Date
CN103715284A CN103715284A (zh) 2014-04-09
CN103715284B true CN103715284B (zh) 2016-03-09

Family

ID=50389910

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310742938.6A Active CN103715284B (zh) 2013-12-30 2013-12-30 可调带隙量子阱结构的柔性衬底太阳能电池及制备方法

Country Status (2)

Country Link
EP (1) EP2889921B1 (zh)
CN (1) CN103715284B (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105185861A (zh) * 2015-08-05 2015-12-23 辽宁恒华航海电力设备工程有限公司 一种玻璃结构薄膜太阳能电池及制备方法
CN105140339B (zh) * 2015-08-05 2017-10-13 沈阳工程学院 金刚石保护层结构的柔性衬底薄膜太阳能电池及制备方法
CN108010989B (zh) * 2017-11-10 2019-11-08 深圳先进技术研究院 柔性太阳能电池及其制备方法
CN112186062B (zh) * 2020-09-11 2022-10-04 隆基绿能科技股份有限公司 一种太阳能电池及其制作方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288334A (ja) * 1994-04-18 1995-10-31 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体受光素子
JP2000261025A (ja) * 1999-03-12 2000-09-22 Toyoda Gosei Co Ltd 受光素子
CN101752444A (zh) * 2008-12-17 2010-06-23 中国科学院半导体研究所 p-i-n型InGaN量子点太阳能电池结构及其制作方法
CN102290493A (zh) * 2011-09-05 2011-12-21 中国电子科技集团公司第十八研究所 一种p-i-n型单结InGaN太阳能电池的制备方法
CN103022257A (zh) * 2012-12-28 2013-04-03 南京大学 p-i-n结InGaN太阳电池制造方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20080078439A1 (en) * 2006-06-23 2008-04-03 Michael Grundmann Polarization-induced tunnel junction

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07288334A (ja) * 1994-04-18 1995-10-31 Nichia Chem Ind Ltd 窒化ガリウム系化合物半導体受光素子
JP2000261025A (ja) * 1999-03-12 2000-09-22 Toyoda Gosei Co Ltd 受光素子
CN101752444A (zh) * 2008-12-17 2010-06-23 中国科学院半导体研究所 p-i-n型InGaN量子点太阳能电池结构及其制作方法
CN102290493A (zh) * 2011-09-05 2011-12-21 中国电子科技集团公司第十八研究所 一种p-i-n型单结InGaN太阳能电池的制备方法
CN103022257A (zh) * 2012-12-28 2013-04-03 南京大学 p-i-n结InGaN太阳电池制造方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
Baojie Yan et al.On the bandgap of hydrogenated nanocrystalline silicon intrinsic materials used in thin &#64257 *
InGaN Solar Cells: Present State of the Art and Important Challenges;Ghani Bhuiyan et al;《IEEE JOURNAL OF PHOTOVOLTAICS》;20120618;第2卷(第3期);全文 *
lm silicon solar cells.《Solar Energy Materials & Solar Cells》.2013,第111卷90-96. *

Also Published As

Publication number Publication date
EP2889921B1 (en) 2017-08-02
CN103715284A (zh) 2014-04-09
EP2889921A1 (en) 2015-07-01

Similar Documents

Publication Publication Date Title
CN101567395B (zh) 表面织构化n型ZnO基透明导电薄膜及其制备方法
CN103746016B (zh) 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法
CN103715284B (zh) 可调带隙量子阱结构的柔性衬底太阳能电池及制备方法
CN105132874A (zh) 一种直流/射频共溅射法制备高浓度梯度azo单晶导电薄膜的方法
CN103700576B (zh) 一种自组装形成尺寸可控的硅纳米晶薄膜的制备方法
CN104900727A (zh) 一种用于晶体硅异质结太阳电池的透明导电氧化物薄膜及其制备方法
Das et al. Synthesis of ITO nanoparticles at room temperature using plasma treatment process and use it as back reflector in a-Si flexible solar cell
CN103077981B (zh) 柔性衬底硅基多结叠层薄膜太阳电池及其制造方法
CN101582468B (zh) 一种生长太阳电池用高迁移率绒面结构IMO/ZnO复合薄膜的方法
CN101540345B (zh) 纳米硅薄膜三叠层太阳电池及其制备方法
CN105047750A (zh) 一种提高薄膜太阳能电池转换效率的方法
CN204668317U (zh) 具有梯度结构的硅基薄膜太阳能电池
CN103014705B (zh) Cu/ZnO/Al光电透明导电薄膜的沉积方法
CN103066134B (zh) 一种薄膜太阳能电池背反电极及其制备方法
CN105140339A (zh) 金刚石保护层结构的柔性衬底薄膜太阳能电池及制备方法
CN103280466B (zh) 基于AlOx/Ag/ZnO结构的高反射高绒度背电极
CN204857741U (zh) 一种金刚石保护层结构的柔性衬底的薄膜太阳能电池
Yan et al. Textured surface ZnO: B/(hydrogenated gallium-doped ZnO) and (hydrogenated gallium-doped ZnO)/ZnO: B transparent conductive oxide layers for Si-based thin film solar cells
CN105047740B (zh) 一种Si基柔性不锈钢结构太阳电池及制备方法
CN102931270B (zh) 一种弱光型非晶硅太阳能电池及其制造方法
CN204857743U (zh) 一种Si基柔性不锈钢结构太阳能电池
CN102569517A (zh) 一种纳米硅薄膜太阳能电池椭园偏振光实时监控制备方法
CN103413869A (zh) 一种绒面结构ZnO-TCO薄膜的制备方法及其应用
CN105185861A (zh) 一种玻璃结构薄膜太阳能电池及制备方法
CN103219419A (zh) 一种利用铜铟镓硒合金溅射靶材生产铜铟镓硒薄膜的方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant