CN105047740B - 一种Si基柔性不锈钢结构太阳电池及制备方法 - Google Patents

一种Si基柔性不锈钢结构太阳电池及制备方法 Download PDF

Info

Publication number
CN105047740B
CN105047740B CN201510473747.3A CN201510473747A CN105047740B CN 105047740 B CN105047740 B CN 105047740B CN 201510473747 A CN201510473747 A CN 201510473747A CN 105047740 B CN105047740 B CN 105047740B
Authority
CN
China
Prior art keywords
minutes
flow
stainless steel
solar cell
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201510473747.3A
Other languages
English (en)
Other versions
CN105047740A (zh
Inventor
张东
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Xuchang Guosheng Technology Co ltd
Original Assignee
Shenyang Institute of Engineering
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shenyang Institute of Engineering filed Critical Shenyang Institute of Engineering
Priority to CN201510473747.3A priority Critical patent/CN105047740B/zh
Publication of CN105047740A publication Critical patent/CN105047740A/zh
Application granted granted Critical
Publication of CN105047740B publication Critical patent/CN105047740B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/036Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes
    • H01L31/0392Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate
    • H01L31/03926Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by their crystalline structure or particular orientation of the crystalline planes including thin films deposited on metallic or insulating substrates ; characterised by specific substrate materials or substrate features or by the presence of intermediate layers, e.g. barrier layers, on the substrate comprising a flexible substrate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier
    • H01L31/075Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type
    • H01L31/077Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by at least one potential-jump barrier or surface barrier the potential barriers being only of the PIN type the devices comprising monocrystalline or polycrystalline materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1804Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof comprising only elements of Group IV of the Periodic System
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/547Monocrystalline silicon PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)
  • Chemical Vapour Deposition (AREA)

Abstract

本发明属于一种太阳电池制造技术领域,特别涉及一种加入保护层的Si基柔性衬底的薄膜太阳能电池及制备方法,从上到下依次包括金属Ag电极、ITO透明导电薄膜、N型Si晶体薄膜、本征I型纳米晶硅薄膜作为中间层、P型纳米晶硅薄膜、GZO透明导电薄膜、BCN薄膜绝缘层、金刚石保护薄膜绝缘层和不锈钢柔性衬底。本发明采用金刚石薄膜与BCN相结合的原理,解决了薄膜太阳能电池抗腐蚀性能差的原理,提高了薄膜太阳能电池的使用寿命,所以该方法下没有明显的薄膜损坏现象。不但提高了太阳能电池的光电转化效率,而且提高了太阳能电池的光致性能的稳定性。

Description

一种Si基柔性不锈钢结构太阳电池及制备方法
技术领域
本发明属于一种太阳电池制造技术领域,特别涉及一种加入保护层的Si基柔性衬底的薄膜太阳能电池及制备方法。
背景技术
硅晶体的第一代太阳能电池由于其转化效率高在目前的工业生产和市场上处于主导地位。但是由于需要消耗大量的原材料,成为太阳能电池发展的主要障碍。为了节约原材料,进一步推进太阳能电池的发展,薄膜太阳能电池成为近些年太阳能电池的研究热点。
传统的薄膜太阳能电池结构采用刚性材料和钢化玻璃材料作为基底,这限制其使用范围。随着太阳能电池成本越来越低,该种电池越来越多的进入民用领域,例如屋顶、书包和帐篷等等,作为一种便携电源,这就要求其具有柔性的衬底。
柔性衬底薄膜太阳能电池时指在柔性材料即聚酰亚胺(PI)或柔性不锈钢的制作的薄膜太阳能电池,由于其携带轻便、重量轻以及不易粉碎的优势,且其独特的使用特性,从而具有广阔的市场竞争力。
目前,技术相对成熟的薄膜太阳能电池大多都是硅基材料,其PIN层一般都是非晶或者微晶硅(Si)薄膜。非晶或者微晶硅(Si)薄膜又称无定型硅,就其微观结构来看,是短程有序但是长程无序的不规则网状结构,包含大量的悬挂键和空位等缺陷。其次由于非晶或者微晶硅(Si)薄膜带隙宽度在1.7eV左右,但是普通的薄膜太阳能抗腐蚀性能较差,影响其使用寿命,使其太阳能电池的光致性能稳定性较差。使薄膜太阳能电池的市场竞争力较差。
发明内容
本发明所要解决的技术问题在于提供一种解决了薄膜太阳能电池抗腐蚀性能差的原理,提高了薄膜太阳能电池的使用寿命的Si基柔性不锈钢结构太阳电池及制备方法。
本发明是这样实现的,
一种Si基柔性不锈钢结构太阳电池,从上到下依次包括金属Ag电极、ITO透明导电薄膜、N型Si晶体薄膜、本征I型纳米晶硅薄膜作为中间层、P型纳米晶硅薄膜、GZO透明导电薄膜、BCN薄膜绝缘层、金刚石保护薄膜绝缘层和不锈钢柔性衬底。
一种Si基柔性不锈钢结构太阳电池制备方法,在不锈钢柔性衬底依次制备金刚石保护薄膜绝缘层、BCN薄膜绝缘层、GZO透明导电薄膜、P型纳米晶硅薄膜、本征I型纳米晶硅薄膜作为中间层、N型Si晶体薄膜、ITO透明导电薄膜和金属Ag电极。
进一步地,制备金刚石保护薄膜绝缘层,将不锈钢柔性衬底基片先用离子水超声波清洗5分钟后,用氮气吹干送入PECVD反应室,在8.0×10-4Pa真空的条件下,沉积制备金刚石抗腐蚀绝缘层,其工艺参数条件是:氢气与甲烷作为混合气体反应源,其氢气与甲烷流量比20:1,衬底温度为300℃~500℃,沉积时间为10分钟至20分钟。
进一步地,BCN薄膜绝缘层的制备,采用磁控溅射反应室沉积制备,其工艺参数条件是:氮气和甲烷作为混合气体反应源,其氮气甲烷流量比2:1,反应溅射硼靶材的纯度为99.99%,衬底温度为100℃~200℃,沉积时间为30分钟至1个小时。
进一步地,GZO基透明导电薄膜采用电子回旋共振等离子增强有机物化学气相沉积系统,向反应室中通入氩气携带的三甲基镓和二乙基锌以及氧气,其流量比为1:5:40~1:7:50,沉积温度为100℃~600℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为10分钟~20分钟。
进一步地,制备P型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统,向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,其流量分别为Ar稀释的SiH4为4~7sccm,为H2稀释的PH3为1~8sccm,氢气流量为30sccm~80sccm,沉积温度为250℃~600℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为30~80分钟。
进一步地,制备本征I型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统,向反应室中通入Ar稀释的SiH4以及H2,其流量分别为Ar稀释的SiH4为4~7sccm,氢气流量为30sccm~80sccm,沉积温度为250℃~600℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为30~80分钟。
进一步地,制备N型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统,向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,其流量分别为Ar稀释的SiH4为4~7sccm,为H2稀释的B2H6为1~8sccm,氢气流量为30sccm~80sccm,沉积温度为250℃~600℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为30~80分钟。
进一步地,采用磁控溅射制备ITO基透明导电薄膜;其工艺参数条件是:氧气气作为气体反应源,其氧气流量为10~20sccm,反应溅射铟金属靶材的纯度为99.99%,衬底温度为50℃~150℃,沉积时间为3~10分钟。
进一步地,采用磁控溅射制备制备金属Ag电极,其工艺参数条件是:氩气作为气体反应源,其氩气流量为10~20sccm,反应溅射银金属靶材的纯度为99.99%,衬底温度为50℃~400℃,沉积时间为3~10分钟。
本发明与现有技术相比,有益效果在于:本发明采用金刚石薄膜与BCN相结合的原理,解决了薄膜太阳能电池抗腐蚀性能差的原理,提高了薄膜太阳能电池的使用寿命,所以该方法下没有明显的薄膜损坏现象。不但提高了太阳能电池的光电转化效率,而且提高了太阳能电池的光致性能的稳定性。增大了市场竞争力。且在Ag背电极和Si基薄膜之间加入金刚石薄膜与BCN薄膜,进一步增加了腐蚀性能,使太阳电池寿命更长。所采用的衬底为柔性衬底的不锈钢等,此柔性太阳能电池最大的特点是重量轻、携带方便、不易粉碎采用了GZO透明薄膜作为透明导电电极,增加了薄膜太阳能电池的透光率同时提高了透明电极的耐腐蚀性能,使得薄膜太阳能电池的光电转换效率得到了很大的提高。采用金刚石薄膜与BCN薄膜作为绝缘层,既增加了传统薄膜电池的抗腐蚀性能,又使其晶格失配率相差很小,可以制备出质量均匀的GZO电极。采用BCN作为绝缘层,其晶格失配率相差很小,可以制备出质量均匀的Ag背电极。该柔性电池具有优异的柔软性,重量轻,携带方便,具有潜在的市场空间。而且制备工艺简单,可实现规模生产。
附图说明
图1为本发明柔性薄膜太阳能电池的制备结构图;
图2为本发明柔性薄膜太阳能电池的制备流程图;
图3本征I型纳米晶硅薄膜的Raman谱线;
图4本征I型纳米晶硅薄膜的XRD谱线;
图5本征I型纳米晶硅薄膜的原子力显微镜图片;
图6为金刚石薄膜的SEM图像。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
本发明样品的结晶性能测试为X射线衍射分析,其中X射线衍射分析所用仪器的型号为:Bruker AXS D8。
本发明中采用RENISHAW in Via Raman Microscope光谱仪测试沉积薄膜的Raman光谱,激光光源为632.8nm的Ne-He激光器,激光功率为35mW,分辨率为2μm,
本发明利用的原子力显微镜(AFM)的型号是Picoscan 2500,产于Agilent公司。在正常室温的测试条件下对薄膜样品的形貌进行了测试与分析。样品的测试分析区域是2μm×2μm。
本发明中制备的金刚石膜表面形貌采用日本JEOL公司生产的JSM-6360LV型扫描电镜分析样品的表面形貌和晶体形态,其加速电压为0.5~30kV,高真空模式下的二次电子分辨率为3nm,低真空模式下的二次电子分辨率为4nm,放大倍数为8~30万倍
实施例1
参见图1结合图2,
(1)、将不锈钢柔性衬底基片先用用离子水超声波清洗5分钟后,用氮气吹干送入PECVD反应室,在8.0×10-4Pa真空的条件下,沉积制备金刚石抗腐蚀绝缘层。其工艺参数条件是:氢气与甲烷作为混合气体反应源,其氢气与甲烷流量比20:1,衬底温度为300℃,沉积时间为10分钟。
(2)、然后送入磁控溅射反应室沉积制备BCN绝缘层。其工艺参数条件是:氮气和甲烷作为混合气体反应源,其氮气甲烷流量比2:1,反应溅射硼靶材的纯度为99.99%,衬底温度为100℃,沉积时间为30分钟。
(3)、然后制备GZO基透明导电薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入氩气(Ar)携带的三甲基镓(TMGa)和二乙基锌(DEZn)以及氧气(O2),其流量比为1:5:40,沉积温度为100℃,微波功率为650W,沉积气压为0.8Pa,沉积时间为10分钟。
(4)、制备P型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,其流量分别为Ar稀释的SiH4为4sccm,为H2稀释的PH3为1sccm,氢气(H2)流量为30sccm,沉积温度为250℃,微波功率为650W,沉积气压为0.8Pa,沉积时间为30分钟。
(5)、制备本征I型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2,其流量分别为Ar稀释的SiH4为4sccm,氢气(H2)流量为30sccm,沉积温度为250℃,微波功率为650W,沉积气压为0.8Pa,沉积时间为30分钟。
(6)、制备N型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,其流量分别为Ar稀释的SiH4为4sccm,为H2稀释的B2H6为1sccm,氢气(H2)流量为30sccm,沉积温度为250℃,微波功率为650W,沉积气压为0.8Pa,沉积时间为30分钟。
(7)、采用磁控溅射制备ITO基透明导电薄膜;其工艺参数条件是:氧气气作为气体反应源,其氧气流量为10sccm,反应溅射铟金属靶材的纯度为99.99%,衬底温度为50℃,沉积时间为3分钟。
(8)、制备金属Ag电极,采用磁控溅射制备,其工艺参数条件是:氩气作为气体反应源,其氩气流量为10sccm,反应溅射银金属靶材的纯度为99.99%,衬底温度为50℃,沉积时间为3分钟。
实施例2
(1)、将不锈钢柔性衬底基片先用用离子水超声波清洗5分钟后,用氮气吹干送入PECVD反应室,在8.0×10-4Pa真空的条件下,沉积制备金刚石抗腐蚀绝缘层。其工艺参数条件是:氢气与甲烷作为混合气体反应源,其氢气与甲烷流量比20:1,衬底温度为350℃,沉积时间为15分钟。
(2)、然后送入磁控溅射反应室沉积制备BCN绝缘层。其工艺参数条件是:氮气和甲烷作为混合气体反应源,其氮气甲烷流量比2:1,反应溅射硼靶材的纯度为99.99%,衬底温度为150℃,沉积时间为40分钟。
(3)、然后制备GZO基透明导电薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入氩气(Ar)携带的三甲基镓(TMGa)和二乙基锌(DEZn)以及氧气(O2),其流量比为1:7:50,沉积温度为200℃,微波功率为650W,沉积气压为0.9Pa,沉积时间为15分钟。
(4)、制备P型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,其流量分别为Ar稀释的SiH4为5sccm,为H2稀释的PH3为8sccm,氢气(H2)流量为5sccm,沉积温度为350℃,微波功率为650W,沉积气压为1.0Pa,沉积时间为50分钟。
(5)、制备本征I型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2,其流量分别为Ar稀释的SiH4为5sccm,氢气(H2)流量为60sccm,沉积温度为400℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为60分钟。
(6)、制备N型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,其流量分别为Ar稀释的SiH4为5sccm,为H2稀释的B2H6为7sccm,氢气(H2)流量为70sccm,沉积温度为400℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为70分钟。
(7)、采用磁控溅射制备ITO基透明导电薄膜;其工艺参数条件是:氧气气作为气体反应源,其氧气流量为20sccm,反应溅射铟金属靶材的纯度为99.99%,衬底温度为150℃,沉积时间为8分钟。
(8)、制备金属Ag电极,采用磁控溅射制备,其工艺参数条件是:氩气作为气体反应源,其氩气流量为15sccm,反应溅射银金属靶材的纯度为99.99%,衬底温度为300℃,沉积时间为9分钟。
实施例3
(1)、将不锈钢柔性衬底基片先用用离子水超声波清洗5分钟后,用氮气吹干送入PECVD反应室,在8.0×10-4Pa真空的条件下,沉积制备金刚石抗腐蚀绝缘层。其工艺参数条件是:氢气与甲烷作为混合气体反应源,其氢气与甲烷流量比20:1,衬底温度为450℃,沉积时间为16分钟。
(2)、然后送入磁控溅射反应室沉积制备BCN绝缘层。其工艺参数条件是:氮气和甲烷作为混合气体反应源,其氮气甲烷流量比2:1,反应溅射硼靶材的纯度为99.99%,衬底温度为150℃,沉积时间为50分钟。
(3)、然后制备GZO基透明导电薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入氩气(Ar)携带的三甲基镓(TMGa)和二乙基锌(DEZn)以及氧气(O2),其流量比为1:5:40,沉积温度为200℃,微波功率为650W,沉积气压为1.0Pa,沉积时间为10分钟。
(4)、制备P型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,其流量分别为Ar稀释的SiH4为7sccm,为H2稀释的PH3为7sccm,氢气(H2)流量为60sccm,沉积温度为600℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为60分钟。
(5)、制备本征I型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2,其流量分别为Ar稀释的SiH4为4sccm,氢气(H2)流量为50sccm,沉积温度为600℃,微波功率为650W,沉积气压为1.0Pa,沉积时间为80分钟。
(6)、制备N型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,其流量分别为Ar稀释的SiH4为7sccm,为H2稀释的B2H6为6sccm,氢气(H2)流量为80sccm,沉积温度为400℃,微波功率为650W,沉积气压为0.9Pa,沉积时间为80分钟。
(7)、采用磁控溅射制备ITO基透明导电薄膜;其工艺参数条件是:氧气气作为气体反应源,其氧气流量为20sccm,反应溅射铟金属靶材的纯度为99.99%,衬底温度为150℃,沉积时间为10分钟。
(8)、制备金属Ag电极,采用磁控溅射制备,其工艺参数条件是:氩气作为气体反应源,其氩气流量为10sccm,反应溅射银金属靶材的纯度为99.99%,衬底温度为300℃,沉积时间为8分钟。
实施例4
(1)、将不锈钢柔性衬底基片先用用离子水超声波清洗5分钟后,用氮气吹干送入PECVD反应室,在8.0×10-4Pa真空的条件下,沉积制备金刚石抗腐蚀绝缘层。其工艺参数条件是:氢气与甲烷作为混合气体反应源,其氢气与甲烷流量比20:1,衬底温度为400℃,沉积时间为20分钟。
(2)、然后送入磁控溅射反应室沉积制备BCN绝缘层。其工艺参数条件是:氮气和甲烷作为混合气体反应源,其氮气甲烷流量比2:1,反应溅射硼靶材的纯度为99.99%,衬底温度为150℃,沉积时间为30分钟。
(3)、然后制备GZO基透明导电薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入氩气(Ar)携带的三甲基镓(TMGa)和二乙基锌(DEZn)以及氧气(O2),其流量比为1:5:40,沉积温度为500℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为20分钟。
(4)、制备P型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,其流量分别为Ar稀释的SiH4为4sccm,为H2稀释的PH3为8sccm,氢气(H2)流量为50sccm,沉积温度为450℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为80分钟。
(5)、制备本征I型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2,其流量分别为Ar稀释的SiH4为7sccm,氢气(H2)流量为80sccm,沉积温度为500℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为80分钟。
(6)、制备N型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,其流量分别为Ar稀释的SiH4为7sccm,为H2稀释的B2H6为8sccm,氢气(H2)流量为60sccm,沉积温度为400℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为80分钟。
(7)、采用磁控溅射制备ITO基透明导电薄膜;其工艺参数条件是:氧气气作为气体反应源,其氧气流量为20sccm,反应溅射铟金属靶材的纯度为99.99%,衬底温度为150℃,沉积时间为8分钟。
(8)、制备金属Ag电极,采用磁控溅射制备,其工艺参数条件是:氩气作为气体反应源,其氩气流量为20sccm,反应溅射银金属靶材的纯度为99.99%,衬底温度为400℃,沉积时间为10分钟。
实施例5
(1)、将不锈钢柔性衬底基片先用用离子水超声波清洗5分钟后,用氮气吹干送入PECVD反应室,在8.0×10-4Pa真空的条件下,沉积制备金刚石抗腐蚀绝缘层。其工艺参数条件是:氢气与甲烷作为混合气体反应源,其氢气与甲烷流量比20:1,衬底温度为500℃,沉积时间为20分钟。
(2)、然后送入磁控溅射反应室沉积制备BCN绝缘层。其工艺参数条件是:氮气和甲烷作为混合气体反应源,其氮气甲烷流量比2:1,反应溅射硼靶材的纯度为99.99%,衬底温度为200℃,沉积时间为1个小时。
(3)、然后制备GZO基透明导电薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入氩气(Ar)携带的三甲基镓(TMGa)和二乙基锌(DEZn)以及氧气(O2),其流量比为1:5:40,沉积温度为600℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为20分钟。
(4)、制备P型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,其流量分别为Ar稀释的SiH4为7sccm,为H2稀释的PH3为8sccm,氢气(H2)流量为80sccm,沉积温度为600℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为80分钟。
(5)、制备本征I型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2,其流量分别为Ar稀释的SiH4为7sccm,氢气(H2)流量为80sccm,沉积温度为600℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为80分钟。
(6)、制备N型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统(ECR-PEMOCVD),向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,其流量分别为Ar稀释的SiH4为7sccm,为H2稀释的B2H6为8sccm,氢气(H2)流量为80sccm,沉积温度为600℃,微波功率为650W,沉积气压为1.2Pa,沉积时间为80分钟。
(7)、采用磁控溅射制备ITO基透明导电薄膜;其工艺参数条件是:氧气气作为气体反应源,其氧气流量为20sccm,反应溅射铟金属靶材的纯度为99.99%,衬底温度为150℃,沉积时间为10分钟。
(8)、制备金属Ag电极,采用磁控溅射制备,其工艺参数条件是:氩气作为气体反应源,其氩气流量为20sccm,反应溅射银金属靶材的纯度为99.99%,衬底温度为400℃,沉积时间为10分钟。
实验结束后采用Raman光谱仪对I层本征Si薄膜的结构性能进行了测试分析。其结果如图3所示,由图3可以看出Si薄膜结构性能良好。采用XRD衍射光谱谱线对非掺杂I层本征Si薄膜的结晶性能进行了测试分析。其结果如图4所示,由图4可以看出非掺杂I层本征Si薄膜结晶性能良好。继续采用原子力显微镜(AFM)对I层本征Si薄膜的形貌进行了测试分析。其结果如图5所示,由图5可以看出I层本征Si形貌很平整,晶粒分布很均匀。
实验结束后采用扫描电子显微镜(SEM)对金刚石保护薄膜进行了测试分析,如图6所示,结果表明,薄膜晶面清晰可见,晶粒明显,表明已经得到高质量的金刚石保护薄膜样品。
以上所述仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本发明的保护范围之内。

Claims (7)

1.一种Si基柔性不锈钢结构太阳电池制备方法,其特征在于,在不锈钢柔性衬底依次制备金刚石保护薄膜绝缘层、BCN薄膜绝缘层、GZO透明导电薄膜、P型纳米晶硅薄膜、本征I型纳米晶硅薄膜作为中间层、N型Si晶体薄膜、ITO透明导电薄膜和金属Ag电极;
制备金刚石保护薄膜绝缘层,将不锈钢柔性衬底基片先用离子水超声波清洗5分钟后,用氮气吹干送入PECVD反应室,在8.0×10-4Pa真空的条件下,沉积制备金刚石抗腐蚀绝缘层,其工艺参数条件是:氢气与甲烷作为混合气体反应源,其氢气与甲烷流量比20:1,衬底温度为300℃~500℃,沉积时间为10分钟至20分钟;
BCN薄膜绝缘层的制备,采用磁控溅射反应室沉积制备,其工艺参数条件是:氮气和甲烷作为混合气体反应源,其氮气甲烷流量比2:1,反应溅射硼靶材的纯度为99.99%,衬底温度为100℃~200℃,沉积时间为30分钟至1个小时。
2.如权利要求1所述的Si基柔性不锈钢结构太阳电池制备方法,其特征在于,GZO基透明导电薄膜采用电子回旋共振等离子增强有机物化学气相沉积系统,向反应室中通入氩气携带的三甲基镓和二乙基锌以及氧气,其流量比为1:5:40~1:7:50,沉积温度为100℃~600℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为10分钟~20分钟。
3.如权利要求1所述的Si基柔性不锈钢结构太阳电池制备方法,其特征在于,制备P型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统,向反应室中通入Ar稀释的SiH4以及H2稀释的PH3,其流量分别为Ar稀释的SiH4为4~7sccm,为H2稀释的PH3为1~8sccm,氢气流量为30sccm~80sccm,沉积温度为250℃~600℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为30~80分钟。
4.如权利要求1所述的Si基柔性不锈钢结构太阳电池制备方法,其特征在于,制备本征I型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统,向反应室中通入Ar稀释的SiH4以及H2,其流量分别为Ar稀释的SiH4为4~7sccm,氢气流量为30sccm~80sccm,沉积温度为250℃~600℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为30~80分钟。
5.如权利要求1所述的Si基柔性不锈钢结构太阳电池制备方法,其特征在于,制备N型纳米晶硅薄膜;其工艺参数条件是:采用电子回旋共振等离子增强有机物化学气相沉积系统,向反应室中通入Ar稀释的SiH4以及H2稀释的B2H6,其流量分别为Ar稀释的SiH4为4~7sccm,为H2稀释的B2H6为1~8sccm,氢气流量为30sccm~80sccm,沉积温度为250℃~600℃,微波功率为650W,沉积气压为0.8Pa~1.2Pa,沉积时间为30~80分钟。
6.如权利要求1所述的Si基柔性不锈钢结构太阳电池制备方法,其特征在于,采用磁控溅射制备ITO基透明导电薄膜;其工艺参数条件是:氧气气作为气体反应源,其氧气流量为10~20sccm,反应溅射铟金属靶材的纯度为99.99%,衬底温度为50℃~150℃,沉积时间为3~10分钟。
7.根据权利要求1所述的Si基柔性不锈钢结构太阳电池制备方法,其特征在于,采用磁控溅射制备制备金属Ag电极,其工艺参数条件是:氩气作为气体反应源,其氩气流量为10~20sccm,反应溅射银金属靶材的纯度为99.99%,衬底温度为50℃~400℃,沉积时间为3~10分钟。
CN201510473747.3A 2015-08-05 2015-08-05 一种Si基柔性不锈钢结构太阳电池及制备方法 Active CN105047740B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510473747.3A CN105047740B (zh) 2015-08-05 2015-08-05 一种Si基柔性不锈钢结构太阳电池及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510473747.3A CN105047740B (zh) 2015-08-05 2015-08-05 一种Si基柔性不锈钢结构太阳电池及制备方法

Publications (2)

Publication Number Publication Date
CN105047740A CN105047740A (zh) 2015-11-11
CN105047740B true CN105047740B (zh) 2017-10-13

Family

ID=54454127

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510473747.3A Active CN105047740B (zh) 2015-08-05 2015-08-05 一种Si基柔性不锈钢结构太阳电池及制备方法

Country Status (1)

Country Link
CN (1) CN105047740B (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108417618B (zh) * 2018-02-09 2021-08-27 沈阳工程学院 一种Si衬底异质结构器件及其制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482570A (en) * 1992-07-29 1996-01-09 Asulab S.A. Photovoltaic cell
CN103388130A (zh) * 2013-07-17 2013-11-13 沈阳工程学院 ECR-PEMOCVD在ZnO缓冲层/金刚石薄膜/Si多层膜结构基片上低温沉积InN薄膜的制备方法
CN103746016A (zh) * 2013-12-30 2014-04-23 沈阳工程学院 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5482570A (en) * 1992-07-29 1996-01-09 Asulab S.A. Photovoltaic cell
CN103388130A (zh) * 2013-07-17 2013-11-13 沈阳工程学院 ECR-PEMOCVD在ZnO缓冲层/金刚石薄膜/Si多层膜结构基片上低温沉积InN薄膜的制备方法
CN103746016A (zh) * 2013-12-30 2014-04-23 沈阳工程学院 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法

Also Published As

Publication number Publication date
CN105047740A (zh) 2015-11-11

Similar Documents

Publication Publication Date Title
Dai et al. Molybdenum thin films with low resistivity and superior adhesion deposited by radio-frequency magnetron sputtering at elevated temperature
Hou et al. Electrical and optical properties of Al-doped ZnO and ZnAl 2 O 4 films prepared by atomic layer deposition
CN100578818C (zh) 叠层型光电动势装置
JP4902779B2 (ja) 光電変換装置及びその製造方法
TWI530399B (zh) Transparent gas barrier film, transparent gas barrier film manufacturing method, organic EL element, solar cell and thin film battery (1)
CN103746016B (zh) 可调带隙量子阱结构的不锈钢衬底太阳能电池及制备方法
CN103469203A (zh) 包覆二维原子晶体的基材、其连续化生产线及方法
JP2011109154A (ja) 薄膜太陽電池の製造方法
Chen et al. Aerosol assisted chemical vapour deposition of conformal ZnO compact layers for efficient electron transport in perovskite solar cells
Park et al. Thickness-controlled multilayer hexagonal boron nitride film prepared by plasma-enhanced chemical vapor deposition
CN103715284B (zh) 可调带隙量子阱结构的柔性衬底太阳能电池及制备方法
CN105047740B (zh) 一种Si基柔性不锈钢结构太阳电池及制备方法
CN105140339B (zh) 金刚石保护层结构的柔性衬底薄膜太阳能电池及制备方法
Yoshimura et al. Grazing incidence X-ray diffraction study on carbon nanowalls
CN107516691A (zh) 一种非晶碳薄膜/单晶硅异质结太阳能电池及其制备方法
CN101540345B (zh) 纳米硅薄膜三叠层太阳电池及其制备方法
CN103014705B (zh) Cu/ZnO/Al光电透明导电薄膜的沉积方法
Seo et al. Metal-free CNTs grown on glass substrate by microwave PECVD
CN103280466A (zh) 基于AlOx/Ag/ZnO结构的高反射高绒度背电极
CN204857741U (zh) 一种金刚石保护层结构的柔性衬底的薄膜太阳能电池
CN108417618A (zh) 一种Si衬底异质结构器件及其制备方法
CN204857743U (zh) 一种Si基柔性不锈钢结构太阳能电池
Ma et al. The effect of negative bias on the preparation conditions and structural changes in boron-doped nanocrystalline silicon thin films prepared on PET
Babu et al. Composition and growth procedure-dependent properties of electrodeposited CuInSe2 thin films
CN102214735A (zh) 一种铜铟镓硒/硫太阳电池吸收层的制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Zhang Dong

Inventor before: Chen Zhiqiang

Inventor before: Ma Mingyi

Inventor before: Huang Chao

Inventor before: Huang Li

Inventor before: Li Song

Inventor before: Yin Shaorui

TA01 Transfer of patent application right

Effective date of registration: 20170801

Address after: Shenbei New Area Puchang road Shenyang City, Liaoning province 110136 No. 18

Applicant after: SHENYANG INSTITUTE OF ENGINEERING

Address before: 114000 Liaoning city of Anshan province high tech Zone Mountain Road No. 262 West Block 3 layer

Applicant before: LIAONING HENGHUA NAVIGATION ELECTRIC EQUIPMENT ENGINEERING CO.,LTD.

TA01 Transfer of patent application right
GR01 Patent grant
GR01 Patent grant
CB03 Change of inventor or designer information
CB03 Change of inventor or designer information

Inventor after: Ju Zhenhe

Inventor after: Zhang Dong

Inventor before: Zhang Dong

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20180110

Address after: Xuchang City, Henan province 461000 Yongxing urban and rural integration demonstration area east Rui energy-saving electrical Industrial Park Comprehensive sunny floor South

Patentee after: HENAN YINGJI SOLAR TECHNOLOGY CO.,LTD.

Address before: Shenbei New Area Puchang road Shenyang City, Liaoning province 110136 No. 18

Patentee before: SHENYANG INSTITUTE OF ENGINEERING

TR01 Transfer of patent right

Effective date of registration: 20231009

Address after: 461000 North side of 4th floor of Sennirui Energy Conservation Industrial Park, Yongxing Road, Urban Rural Integration Demonstration Zone, Xuchang City, Henan Province

Patentee after: Xuchang Guosheng Technology Co.,Ltd.

Address before: 461000 south area, 3rd floor, sennirui energy saving electrical industrial park, East Yongxing Road, Xuchang City, Henan Province

Patentee before: HENAN YINGJI SOLAR TECHNOLOGY CO.,LTD.

TR01 Transfer of patent right