CN103469203A - 包覆二维原子晶体的基材、其连续化生产线及方法 - Google Patents

包覆二维原子晶体的基材、其连续化生产线及方法 Download PDF

Info

Publication number
CN103469203A
CN103469203A CN2013103903528A CN201310390352A CN103469203A CN 103469203 A CN103469203 A CN 103469203A CN 2013103903528 A CN2013103903528 A CN 2013103903528A CN 201310390352 A CN201310390352 A CN 201310390352A CN 103469203 A CN103469203 A CN 103469203A
Authority
CN
China
Prior art keywords
base material
atomic crystal
roller
chamber
winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2013103903528A
Other languages
English (en)
Other versions
CN103469203B (zh
Inventor
王钰
陈运法
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institute of Process Engineering of CAS
Original Assignee
Institute of Process Engineering of CAS
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institute of Process Engineering of CAS filed Critical Institute of Process Engineering of CAS
Priority to CN201310390352.8A priority Critical patent/CN103469203B/zh
Publication of CN103469203A publication Critical patent/CN103469203A/zh
Application granted granted Critical
Publication of CN103469203B publication Critical patent/CN103469203B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

本发明涉及一种包覆二维原子晶体的基材、其连续化生产线及方法。所述包覆二维原子晶体的基材的连续化生产线包括依次连接的设有第一卷辊(11)的放卷室(1)、磁控溅射室(6)、电感耦合-化学气相沉积室(2)、冷却室(3)以及设有第二卷辊(41)的收卷室(4)。本发明提供的包覆二维原子晶体的基材的连续化生产线能够实现包覆二维原子晶体的基材的连续化生产,制备效率高,降低了包覆二维原子晶体的基材的生产成本,生产过程条件可控,工艺条件稳定,重复性高;制备得到的包覆二维原子晶体的基材抗腐蚀和抗机械冲击力得到提高。

Description

包覆二维原子晶体的基材、其连续化生产线及方法
技术领域
本发明属于防腐基材的制备领域,具体涉及一种包覆有二维原子晶体材料的基材,尤其涉及一种包覆有大面积的二维原子晶体材料的基材、其连续化生产线及生产方法。所述基材可以是金、银、铜、钯、铝、镁、锌等金属基材或非金属氧化物如二氧化硅、二氧化钛,或者是工程塑料等非金属基材。
背景技术
二维原子晶体是指一种只有单个或几个原子厚度的二维材料,从本质上来讲更象上一种巨大的二维分子,这种材料因为其绝对的二维结构而具备了令人意外的特性与功能。典型的二维原子晶体材料包括石墨烯材料、氮化硼材料。石墨烯(Graphene)是一种由碳原子以sp2杂化轨道组成六角型呈蜂巢晶格的平面薄膜,只有一个碳原子厚度的二维材料;六方氮化硼(BN)与石墨是等电子体,具有白色石墨之称,具有类似石墨的层状结构,有良好的润滑性,电绝缘性导热性和耐化学腐蚀性,具有中子吸收能力。
现有技术报道,包覆石墨烯的多种金属(如铜、铁、钴、铂、镍、铱、金等),都可以明显改善其抗腐蚀性能,尤其对于金属铜效果更为显著,可以降低电化学腐蚀效率100倍以上。与传统的金属包覆防腐技术不同,CVD法制备的原子层石墨烯作为金属防腐包覆层,具有很多明显的优势:
①在分子结构和物理性质方面,石墨烯的碳原子排列是碳原子以sp2杂化轨道呈蜂巢晶格排列构成的单原子层二维晶体,结构非常稳定,具有1Tpa的拉伸模量(刚度),强度比钢铁还要高100倍;与传统的抗腐蚀包覆薄膜材料相比,由于碳元素自身的超轻重量和化学惰性性质,石墨烯具有质量轻、更坚硬、性质更稳定的性能;
②在材料生长工艺方面,石墨烯的生长不受基材表面形貌限制,甚至可以跨越基材晶粒间的晶界和缺陷位置,以电荷转移引发的短程静电相互作用,完美地耦合包覆在基材外表面;
③在与基材材料的兼容性方面,由于石墨烯是柔韧性最好的材料(具有高达20%的弹性),因此可以几乎不受材料热膨胀系数不同所导致的异质材料结合力减弱问题影响,始终牢固地附着在基材表面;
④从防腐机理来看,石墨烯薄膜紧密耦合包覆在基材材料的外表面,形成具有原子级堆积密度的阻隔层,有效地限制电解质中的离子与金属的表面发生腐蚀反应,从而大幅度提高金属的防腐蚀能力。
现有的二维原子晶体材料的制备方法均是“间歇式”的生长模式,无法规模化生产,制备效率低,价格昂贵;且操作为非自动化,晶体材料的生长随机,工艺不稳定,重复性差。以石墨烯为例,其现有的制备方法有微机械分离法、氧化石墨还原法、SiC热解法、化学气相沉积法(CVD)等。化学气相沉积法制备石墨烯的过程是以甲烷、乙醇等含碳化合物作为碳源,在镍、铜等金属衬底上通过将碳源高温分解,然后采用强迫冷却的方式在衬底表面形成石墨烯的过程。
现有技术在宏量制备和应用二维原子晶体材料方面都面临着如下几个问题(1)缺乏连续化制备工艺;(2)缺少全流程自动化精确控制;(3)难以形成规模化应用平台。
现有技术在宏量制备和应用二维原子晶体材料方面也做了些研究。如新加坡国立大学石墨烯研发中心采用Cluster结构,将电感耦合化学气相沉积(ICP-CVD)、磁控溅射和电子束蒸发集成,通过输送样品到不同的功能腔室,形成“排队式”连续化制备石墨烯,但是设备工艺复杂,无法得到推广,而且制备效率依然很低。日本SONY公司将Roll-to-Roll技术集成到真空CVD设备中,如图1(图1为现有技术连续生产大面积石墨烯薄膜的设备)所示,可以连续化生产100米的石墨烯薄膜,但是获得的样品质量不高,而且石墨烯薄膜本身有很多裂缝,主要是由于装置设计不合理,导致样品传输过程中张力过大。
同时,现有制备包覆二维原子晶体材料基材的方法对基材依赖性强,只有特定的几种基材能够直接作为生长二维原子晶体材料的衬底,以石墨烯为例,只有能够与碳原子发生互溶并降温后可以冷却析出的基材(如铜、镍)才可以生长石墨烯,因此如何能够打破二维原子晶体材料的连续化生产对衬底基材的依赖也是本领域一个亟待解决的问题。
因此,本领域缺乏一种连续化生产大面积的二维原子晶体材料的方法,及生产设备,所述方法和设备能够在任何需要的基材上生长二维原子晶体材料。
发明内容
针对现有技术的不足,本发明的目的之一在于提供一种包覆二维原子晶体的基材的连续化生产线,所述生产线能够连续化制备包覆二维原子晶体基材,制备得到的包覆二维原子晶体的基材的长度可控,可以制备10米、50米、100米、500米、甚至1000米长的包覆二维原子晶体的基材,且制备得到的包覆二维原子晶体的基材具有较高的质量。
本发明是通过如下技术方案实现的:
一种包覆二维原子晶体的基材的连续化生产线包括依次连接的设有第一卷辊的放卷室、磁控溅射室、电感耦合-化学气相沉积室、冷却室以及设有第二卷辊的收卷室;
其中,所述第一卷辊卷有待包覆二维原子晶体的基材,所述衬底由第一卷辊放卷,并由第二卷辊将制备得到的包覆二维原子晶体的基材收卷;
所述电感耦合-化学气相沉积室包括用于发生化学气相沉积的高温生长单元,以及与所述高温生长单元连接,并向其提供等离子体的电感耦合线圈;
所述电感耦合-化学气相沉积室具有进气口和出气口。
优选地,所述磁控溅射室包括设置于待包覆二维原子晶体的基材下面,起到支撑作用的衬底放置台,与衬底放置台平行相对的靶材;所述磁控溅射室还开有氩气通入孔;
所述靶材连接低压输出端,衬底放置台连接高压输出端。
优选地,所述电感耦合线圈串接于所述生产线上,并设置于放卷室与高温生长单元之间;
进气口设置于电感耦合线圈的前端,出气口设置于高温生长单元的后端;
优选地,当电感耦合线圈串接于生产线上时,电感耦合线圈内设置有石英套管,所述石英套管的一端略深入高温生长单元内部,所述基材处于石英套管内。
优选地,所述电感耦合线圈设置于所述高温生长单元的上方;
进气口设置于电感耦合线圈的上端,出气口设置于高温生长单元的后端。
优选地,所述冷却室采用水冷狭缝冷却;
优选地,所述待包覆二维原子晶体的基材为柔性基材;
优选地,所述衬底下方设置表面光滑的支撑台,用于支撑衬底,避免衬底由于自身重力造成的下陷弯曲;
优选地,所述支撑台为连续的石英台面或滚轴台面,或者为间隔的石英台或滚轴台面;
优选地,所述第一卷辊和第二卷辊具有相同的线速度。
优选地,所述生产线上还串接有温控室,用于对待包覆二维原子晶体的基材进行预处理;
所述温控室设置在放卷室和磁控溅射室之间。
优选地,所述放卷室内设置第一展平辊,用于展平待包覆二维原子晶体的基材的褶皱,便于均匀沉积二维原子晶体材料;所述第一展平辊设置于第一卷辊之后;
所述收卷室内设置第二展平辊,用于展平包覆有二维原子晶体的基材,防止收卷过程产生褶皱;所述第二展平辊设置于第二卷辊之前;
优选地,所述放卷室内设置第一纠偏辊,用于纠正待包覆二维原子晶体的基材的位置,便于准确沉积二维原子晶体材料;所述第一纠偏辊设置于第一卷辊之后;
所述收卷室内设置第二纠偏辊,用于纠正包覆有二维原子晶体的基材的成卷位置;所述第二纠偏辊设置于第二卷辊之前。
本发明目的之二是提供一种包覆二维原子晶体的基材的连续化生产方法,所述方法使用如目的之一所述的包覆二维原子晶体材料的基材的连续化生产线,具体包括如下步骤:
(1)将待包覆二维原子晶体的基材卷于第一卷辊上,所述衬底的自由端卷于第二卷辊上;
(2)在第一卷辊和第二卷辊的转动过程中,所述待包覆二维原子晶体的基材被输送进入磁控溅射室,进行磁控溅射,溅射缓冲层,得到具有缓冲层的待包覆二维原子晶体的基材;
(3)所述具有缓冲层的待包覆二维原子晶体的基材继续被输送至电感耦合-化学气相沉积室中,进行二维原子晶体材料的沉积,得到包覆有二维原子晶体材料的基材;
(4)所述包覆有二维原子晶体材料的基材在冷却室中得到冷却,冷却后被收卷于第二卷辊上,得到包覆有二维原子晶体的基材(8)。
优选地,步骤(1)之后,步骤(2)之前进行步骤(2’):
待包覆二维原子晶体的基材在温控室中进行预处理。
优选地,步骤(1)所述待包覆二维原子晶体的基材的材质选自铝、镁、锌、钛中的任意1种金属单质或至少2种元素的金属合金,或非金属材质,如工程塑料。所述金属合金可以为铝镁合金、锌铝合金、镁钛合金等。
优选地,所述待包覆二维原子晶体的基材为0.1~0.3mm厚的柔性箔,或0.1~0.3mm直径的管线。所述柔性箔的厚度和管线的直径独立地选自0.1~0.3mm,例如0.1~0.2mm、0.15~0.24mm、0.13mm、0.18mm、0.24mm、0.29mm等。
优选地,步骤(2)所述第一卷辊和第二卷辊的转动具有相同的线速度,所述线速度优选为0.01~0.2m/min,例如0.02m/min、0.05m/min、0.07m/min、0.1m/min、0.13m/min、0.16m/min、0.18m/min、0.19m/min等。
优选地,步骤(2)所述磁控溅射过程中,靶材连接低压输出端,衬底放置台连接高压输出端。
优选地,步骤(2)所述磁控溅射过程中,靶材为铜靶或镍靶。
优选地,步骤(2)所述磁控溅射得到的缓冲层的厚度为300~1000nm,例如302nm~502、309~700nm、312~650nm、350~500nm、408~800nm、415~856nm、584nm~952、495~754nm、520~998nm等。
优选地,步骤(2)所述磁控溅射的具体操作条件,本发明不做具体限定,本领域技术人员可以参考现有的常规磁控溅射的溅射条件进行设定。
优选地,步骤(3)所述沉积为在保护性气氛中,将气体、液体或固体的原料源物质高温分解至自由基、分子片段或原子级物种,在衬底上重新形成化学键,降温后得到二维原子晶体材料的过程。
优选地,步骤(3)所述高温分解的温度为200~800℃,例如205℃、230℃、300℃、365℃、390℃、410℃、445℃、487℃、520℃、585℃、658℃、667℃、689℃、720℃、748℃、770℃、789℃等,优选500~700℃。
优选地,步骤(3)所述高温分解过程中,电感耦合线圈22等离子发生器的功率为100~1000W,例如105W、128W、145W、180W、245W、290W、350W、400W、485W、525W、580W、675W、768W、845W、900W、935W、980W等,优选300~500W。电感耦合线圈22等离子发生器的频率也可以选择,优选13.56MHz。
优选地,步骤(3)所述保护性气氛为通入保护性气体的减压氛围;优选为通入保护性气体的5~1000Pa的减压氛围,所述减压氛围的压力典型但非限制性的如10Pa、15Pa、22Pa、55Pa、98Pa、125Pa、178Pa、268Pa、365Pa、506Pa、725Pa、889Pa、910Pa等。
优选地,步骤(3)所述保护性气氛由通入保护性气体实现,所述保护性气体的通入流速本发明不做限定,优选0.2~50sccm,例如0.5sccm、3sccm、15sccm、23sccm、30sccm、39sccm、45sccm、48sccm等。
优选地,步骤(2’)所述预处理为氢气或氢等离子体气氛下的退火处理,所述退火温度为100~800℃,例如230℃、380℃、410℃、570℃、650℃、720℃、775℃等。
本发明的目的之三是提供一种如目的之二所述的连续化生产方法制备得到的基材,所述基材包覆有二维原子晶体材料,且所述二维原子晶体材料的长度可控;
优选地,所述二维原子晶体材料为石墨烯材料、石墨烯衍生材料或氮化硼二维原子晶体材料中的任意1种;
优选地,所述石墨烯衍生材料选自氢化石墨烯材料、氮掺杂石墨烯材料、硼掺杂石墨烯材料、氮硼共掺杂石墨烯材料、氟化石墨烯材料中的任意1种。
与现有技术相比,本发明具有如下有益效果:
(1)本发明提供的包覆二维原子晶体的基材的连续化生产线能够实现连续化的生产包覆二维原子晶体材料的材质,制备效率高,降低了包覆二维原子晶体材料的基材的生产成本;
(2)本发明提供的制备包覆二维原子晶体的基材的连续化生产方法,生产过程条件可控,工艺条件稳定,重复性高;
(3)本发明提供的包覆二维原子晶体的基材改善了基材的理化性质,如抗腐蚀性和抗机械冲击性等,且通过本发明提供的生产线和生产方法制备得到的包覆二维原子晶体的基材上,二维原子晶体的长度可控,可以生长较长的二维原子晶体材料,例如对腐蚀性要求较高的铝导线等等,是本领域现有技术无法实现的;
(4)本发明提供的包覆二维原子晶体的基材的生产方法,突破了对基材的性能限定,不管基材是否适于直接生长二维原子晶体,均可用于制备包覆二维原子晶体的基材。
附图说明
图1为现有技术连续生产大面积石墨烯薄膜的设备;
图2为本发明一种实施方式提供的制备包覆二维原子晶体的基材的连续化生产线;
图3A为设有第一展平辊(12)的放卷室(1)的结构示意图;
图3B为设有第二展平辊(42)的收卷室(4)的结构示意图;
图4A为第一展平辊(12)之前设有第一纠偏辊(13)的放卷室(1)的结构示意图;
图4B为第二展平辊(42)之前设有第二纠偏辊(43)的收卷室(4)的结构示意图;
图5为串接电感耦合线圈(22)的电感耦合-化学气相沉积室(2)的结构示意图;
图6为电感耦合线圈(22)设置于上方的电感耦合-化学气相沉积室(2)的结构示意图;
图7为设置有石英套管(25)的电感耦合-化学气相沉积室(2)的结构示意图;
图8为本发明另一种实施方式提供的制备包覆二维原子晶体的基材的连续化生产线;
其中,1-放卷室;2-电感耦合-化学气相沉积室;3冷却室;4-收卷室;5-温控室;7-待包覆二维原子晶体的基材;7’-具有缓冲层的待包覆二维原子晶体的基材;8-包覆有二维原子晶体的基材;9-石英支撑台;
11-第一卷辊;12-第一展平辊;13-第一纠偏辊;
21-高温生长单元;22-电感耦合线圈;23-进气口;24-出气口;25-石英套管;
41-第二卷辊;42-第二展平辊;43-第二纠偏辊;
61-衬底放置台;62-靶材;63-氩气通入孔。
具体实施方式
接下来,参考附图,详述本发明的具体实施方式。在本发明的描述中,术语“第一”“第二”等用来将一个元件和另一个元件区分开,而所述元件不被上述术语所定义。此外,对于已知技术的描述,即使它们是与本发明相关,但如果被认为是不必要的,则当它们会使本发明的特征和描述不清楚时,可以将它们省略。
本发明通过集成roll-to-roll传输系统(连续式的卷对卷传输系统)、磁控溅射、电感耦合-化学气相沉积(ICP-CVD)以及冷却系统,实现了连续化在无法生长二维原子晶体材料的基材上大面积生长二维原子晶体材料的目的。
roll-to-roll传输系统是将衬底从圆筒状的卷辊卷出后,在衬底上加入特定用途的功能或在衬底表面加工,然后再一次把加工后的衬底卷成圆筒状或直接成品裁切的设备。在本发明中,roll-to-roll传输系统有放卷室1和收卷室4组成,基材(如铝箔、镁箔、铝导线、镀镁导线或工程塑料柔性板等等)被卷于放卷室1内,自由端卷在收卷室4内,依靠放卷室1和收卷室4内卷辊的转动,实现基材在本发明提供的制备包覆二维原子晶体的基材的连续化生产线的传输。
为了使本发明的目的,技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
实施例1提供一种包覆二维原子晶体的基材的连续化生产线,其包括依次连接的如下设备:
(i)设有第一卷辊11的放卷室1;
(ii)磁控溅射室6;
(iii)电感耦合-化学气相沉积室2;
(iv)冷却室3;
和,(v)设有第二卷辊41的收卷室4;
其中,所述第一卷辊11卷有待包覆二维原子晶体的基材7,所述基材由第一卷辊11放卷,并由第二卷辊41将制备得到的包覆有二维原子晶体的基材8收卷;
所述磁控溅射室6包括设置于待包覆二维原子晶体的基材7下面,起到支撑作用的衬底放置台61,与衬底放置台61平行相对的靶材62;所述磁控溅射室6还开有氩气通入孔63;所述靶材62连接低压输出端,衬底放置台61连接高压输出端;其中,关于氩气通入孔63的具体位置,本发明不做限定,本领域技术人员可以根据掌握的专业知识进行选择,如开在磁控溅射室6的前端;
所述电感耦合-化学气相沉积室2包括用于发生化学气相沉积的高温生长单元21,以及与所述高温生长单元21连接,并向其提供等离子体的电感耦合线圈22;
所述电感耦合-化学气相沉积室2具有进气口23和出气口24。
具体结构如图2(图2为本发明提供的包覆二维原子晶体的基材的连续化生产线)所示。下面结合图2~图7对实施例1提供的一种包覆二维原子晶体的基材的连续化生产线,以及基于该生产线的部分变形进行详细描述。
本实施例提供的包覆二维原子晶体的基材的连续化生产线,包括依次连接的如下设备:
(i)设有第一卷辊11的放卷室1,所述第一卷辊11卷有待包覆二维原子晶体的基材7,如铝箔、镁箔等金属箔或导线,或工程塑料等非金属箔,所述待包覆二维原子晶体的基材7由第一卷辊11旋转放卷,供给给后续的生产过程。
本发明所述待包覆二维原子晶体的基材7为柔性基材。
本发明对于放卷室1中的具体设置不做限定,但至少应当设置第一卷辊11。
进一步地,为了后续在待包覆二维原子晶体的基材7上均匀的沉积二维原子晶体材料,优选在放卷室1内,第一卷辊11之后设置第一展平辊12;图3A为设有第一展平辊12的放卷室1的结构示意图。
进一步地,为了后续能够准确地在既定位置进行磁控溅射缓冲层和沉积二维原子晶体材料,优选在放卷室1内,第一卷辊11之后设置第一纠偏辊13;图4A为第一展平辊12之前设有第一纠偏辊13的放卷室1的结构示意图。
当然,第一展平辊12和第一纠偏辊13均可独立的设置于放卷室1内,且当两者同时存在时,两者的位置关系不限定,即第一纠偏辊13也可以设置在第一展平辊12之后,本领域技术人员可以根据实际情况进行限定。
(ii)磁控溅射室6,所述待包覆二维原子晶体的基材7在第一卷辊11和第二卷辊41的作用下,被送入磁控溅射室6,并在相应的磁控溅射条件下进行磁控溅射,在表面溅射缓冲层,得到具有缓冲层的待包覆二维原子晶体的基材7’;
在磁控溅射室6中,靶材62的材质选自能够催化生长石墨烯的金属,优选铜、镍、钴中的任意1种或至少2种的组合;或者靶材62的材质为非金属薄膜,优选自SiO2薄膜;
在磁控溅射室6的溅射过程中,连接低压输出端的靶材62和连接高压输出端的衬底放置台61之间形成电场,在电场作用下,电子向衬底放置台61上的待包覆二维原子晶体的基材7飞行,飞行过程中与磁控溅射室6内的氩气分子碰撞,生成氩正离子,氩正离子在电场作用下飞向靶材62,轰击出靶材原子或分子,被轰击出的靶材原子或分子沉积在待包覆二维原子晶体的基材7上即可形成缓冲层,得到具有缓冲层的待包覆二维原子晶体的基材7’。
(iii)电感耦合-化学气相沉积室2,所述具有缓冲层的待包覆二维原子晶体的基材7’在第一卷辊11和第二卷辊41的作用下,被送入电感耦合-化学气相沉积室2,并在相应的化学气相沉积的反应条件下,在表面沉积二维原子晶体材料,得到包覆有二维原子晶体的基材8。
化学气相沉积的温度一般在1000℃左右,温度较高,不利于大面积的二维原子晶体材料的连续化生产,本发明采用电感耦合-化学气相沉积的方法,能够将化学气相沉积的温度降至200~800℃。
在电感耦合-化学气相沉积室2中,电感耦合等离子体(ICP)是由射频环形放电产生,当电感线圈通过射频电流时,在化学气相沉积室2中激发出交变的磁场,进而感应出电场,将化学气相沉积室2中的二维晶体材料的制备源气体(如碳源性气体,或硼氮源气体)电离,产生高密度的等离子体。
所述电感耦合-化学气相沉积室2包括用于发生化学气相沉积的高温生长单元21,以及与所述高温生长单元21连接,并向其提供等离子体的电感耦合线圈22;且所述电感耦合-化学气相沉积室2具有进气口23和出气口24;制备源气体或者保护性气体通过进气口23通入电感耦合-化学气相沉积室2;出气口24用于排出反应后的气体。
电感耦合-化学气相沉积室2中,电感耦合线圈22的位置,本发明没有限定。电感耦合线圈22可以设置于放卷室1与高温生长单元21之间,串接于所述生产线上,如图5(图5为串接电感耦合线圈22的电感耦合-化学气相沉积室的结构示意图)所示,此时,进气口23设置于电感耦合线圈22的前段,出气口设置于高温生长单元21的后端;或者,将电感耦合线圈22设置于所述高温生长单元21的上方,如图6(图6为电感耦合线圈22设置于上方的电感耦合-化学气相沉积室2的结构示意图)所示,此时进气口23设置于电感耦合线圈22的上端,出气口设置于高温生长单元21的后端。
当电感耦合线圈22串接于所述生产线上时,原料源性气体在电感耦合线圈22的作用下发生电离分解,在气流作用下进入高温生长单元21,实现在基材上的二维原子晶体材料的生长。但是电感耦合线圈22内的温度较低(大约只有100℃左右),被电离的原料源性气体在电感耦合线圈22内无法生成石墨烯,且会造成无定形碳的沉积,污染衬底;针对于这一问题,当电感耦合线圈22串接于生产线上时,本发明所述电感耦合-化学气相沉积室2内部设置石英套管25,所述基材处于石英套管25内,用于阻碍无定形碳的沉积,污染基材,具体结构如图7(图7为设置有石英套管25的电感耦合-化学气相沉积室2的结构示意图)所示。本发明所述的石英套管25设置在电感耦合线圈22的全部基材的输送长度内,并深入高温生长单元21内部一小部分,如1~20cm。
本发明所述的高温生长单元21是提供一个能够进行化学气相沉积的腔室,典型但非限制性的高温生长单元21为CVD管式炉,或者结构与CVD管式炉类似,但炉体为正方形,椭圆形的高温CVD反应室。
(iv)冷却室3,在roll-to-roll的传输系统的传输下,包覆有二维原子晶体的基材8从电感耦合-化学气相沉积室2输送出来,此时包覆有二维原子晶体的基材8的温度较高,进入冷却室3后,迅速降温。
本发明对所述冷却室3的冷却方式不做限定,优选采用水冷狭缝冷却。
所谓水冷狭缝冷却是设置一狭缝通道,通道外侧设置循环冷却水,沉积有二维原子晶体材料的基材8从狭缝通道通过,实现快速冷却的目的。
和,(iv)设有第二卷辊41的收卷室4,所述第二卷辊41旋转,以将包覆有二维原子晶体的基材8收卷至收卷室4中。
本发明对于收卷室4中的具体设置不做限定,但至少应当设置第二卷辊41。
进一步地,为了保证收卷过程中包覆有二维原子晶体的基材8的平整性,优选在收卷室4内,第二卷辊41之前设置第二展平辊42;图3B为设有第二展平辊42的收卷室4的结构示意图。
进一步地,为了保证收卷过程中包覆有二维原子晶体的基材8收卷的整齐性,优选在收卷室4内,第二卷辊41之前设置第二纠偏辊43;图4B为第二展平辊42之前设有第二纠偏辊43的收卷室4的结构示意图。
当然,第二展平辊42和第二纠偏辊43均可独立的设置于收卷室4内,且当两者同时存在时,两者的位置关系不限定,即第二纠偏辊43也可以设置在第二展平辊42之后,本领域技术人员可以根据实际情况进行限定。
在本发明提供的包覆二维原子晶体的基材的连续化生产线中,如果生产线很长,基材在自身重力的作用下,中间段会自然下陷变弯,进入电感耦合-化学气相沉积室2后,会影响基材表面包覆的二维原子晶体材料的质量,因此为了取得更好的二维原子晶体材料的包覆效果,本发明在所述包覆二维原子晶体的基材的连续化生产线内设置支撑台9,用于支撑基材,避免基材由于自身重力造成的下陷弯曲。所述支撑台9可以为连续的石英台面或滚轴台面,也可以为间隔的石英台面或滚轴台面。所谓连续的石英台面或滚轴台面为从放卷室1至收卷室4的整个生产线的基材下方设置连续不断的石英台面或滚轴台面;而间隔的石英台面或滚轴台面为从放卷室1至收卷室4的整个生产线的基材下方选择性的设置几段石英台面或滚轴台面。
作为优选,本发明提供的包覆二维原子晶体的基材的连续化生产线上还串接有温控室5,用于对待包覆二维原子晶体的基材7进行预处理。以铝箔为例,商购来的铝箔表面可能会存在毛刺或者很薄的氧化层等缺陷,通过在温控室5中对铝箔进行退火处理,可以减少这些缺陷,保证包覆二维原子晶体的基材的质量。所述温控室5设置在放卷室1和电感耦合-化学气相沉积室2之间。
在本发明提供的包覆二维原子晶体的基材的连续化生产线上制备包覆二维原子晶体的基材的过程中,为了避免由于第一卷辊11和第二卷辊41线速度差异造成的二维原子晶体材料层的断裂等缺陷,优选所述第一卷辊11和第二卷辊41具有相同的线速度。
实施例2提供一种包覆二维原子晶体的基材的连续化生产线,其包括依次连接的如下装置:
(a)设有第一卷辊11的放卷室1;
在放卷室1内,第一卷辊11之后依次设置第一纠偏辊13和第一展平辊12,待包覆二维原子晶体的基材7卷于第一卷辊11上,自由端经第一纠偏辊13矫正位置,第一展平辊12展平后,输出放卷室1;
(b)温控室5;
待包覆二维原子晶体的基材7从放卷室1输出后,进入温控室5,进行预处理(例如退火处理);
(c)磁控溅射室6;
待包覆二维原子晶体的基材7从温控示5输出后进入磁控溅射室6,在磁控溅射室6内,设置与高压输出端连接的衬底放置台61,和与之相对的,与低压输出端连接的靶材62;磁控溅射室6内通入氩气,开启电场进行磁控溅射,得到具有缓冲层的待包覆二维原子晶体的基材7’;
(d)电感耦合-化学气相沉积室2;
具有缓冲层的待包覆二维原子晶体的基材7’从磁控溅射室6输出后进入由依次串接的电感耦合线圈22和高温生长单元21组成的电感耦合-化学气相沉积室2进行化学气相沉积,得到包覆有二维原子晶体的基材8;
电感耦合-化学气相沉积室2内部设置石英套管25,所述衬底处于石英套管25内;
(e)冷却室3;
包覆有二维原子晶体的基材8从电感耦合-化学气相沉积室2输出后,进入冷却室3降温;
(f)设有第二卷辊41的收卷室4;
在收卷室4内,顺着包覆有二维原子晶体的基材8的输送方向,依次设置第二展平辊42和第二纠偏辊43;
冷却后的包覆有二维原子晶体的基材8被输送至收卷室4,并被收卷于第二卷辊41上;
和,(f)石英支撑台9;
所述石英支撑台9设置在输送路线较长的温控室5、电感耦合-化学气相沉积室2和冷却室3内。
图8为实施例2提供的制备包覆二维原子晶体的基材的连续化生产线。
实施例3提供一种包覆石墨烯的铝箔基材的连续化生产方法,所述方法使用如实施例1所述的包覆二维原子晶体的基材的连续化生产线,具体包括如下步骤:
(1)将厚度为0.1~0.3mm的铝箔卷于第一卷辊11上,所述铝箔的自由端卷于第二卷辊41上;
(2)将磁控溅射室6排净空气后,通入氩气,靶材62(铜靶)连接低压输出端,衬底放置台61连接高压输出端,在铝箔上溅射500nm厚的铜缓冲层,得到溅射有铜缓冲层的铝箔基材;
(3)第一卷辊11和第二卷辊41以0.04m/min的线速度同时转动,输送溅射有铜缓冲层的铝箔基材进入电感耦合线圈-化学气相沉积室2中,进行石墨烯的沉积,得到结构为石墨烯层/铜缓冲层/铝箔的基材;
电感耦合线圈-化学气相沉积室2的高温生长单元21温度为500℃,以2sccm的流速通入含10%气态的碳源性物质(如甲烷、乙烯、乙炔等)的氢气;电感耦合线圈-化学气相沉积室2等离子体发生器的频率为13.56MHz,功率为100W,内保持常压;在运动传输状态下,溅射有铜缓冲层的铝箔基材保持在高温生长单元21内3min,在其上沉积了不少于3层的石墨烯层;
(4)所述石墨烯层/铜缓冲层/铝箔的基材在冷却室3中冷却至室温,冷却后被收卷于第二卷辊41上,得到包覆了石墨烯层的铝箔基材。
本领域技术人员应该明了,所述碳源性物质包括碳氢化合物和/或碳氢氧化合物,所述碳氢化合物包括但不限于选自甲烷、乙烷、乙烯或乙炔中的任意1种或至少2种的组合,所述碳氢氧化合物包括但不限于选自乙醇、丙醇、异丙醇、乙酸乙酯、甲苯或聚甲基丙烯酸甲酯中的任意1种或至少2种的组合。
实施例4提供一种包覆石墨烯的铝箔基材的连续化生产方法,所述方法使用如实施例2所述的包覆二维原子晶体的基材的连续化生产线,具体包括如下步骤:
(1)将厚度为0.1~0.3mm的铝箔卷于第一卷辊11上,所述铝箔的自由端卷于第二卷辊41上;
(2’)第一卷辊11和第二卷辊41以0.2m/min的线速度转动,输送铝箔进入温控室5,进行退火预处理,退火温度为500℃;
(2)将磁控溅射室6排净空气后,通入氩气,靶材62(镍靶)连接低压输出端,衬底放置台61连接高压输出端,在铝箔上溅射300nm厚的镍缓冲层,得到具有镍缓冲层的铝箔基材;
(3)具有镍缓冲层的铝箔基材继续被输送进入电感耦合线圈-化学气相沉积室2中,进行石墨烯的沉积,得到结构为石墨烯层/镍缓冲层/铝箔的基材;
电感耦合线圈-化学气相沉积室2的高温生长单元21温度为600℃,电感耦合线圈22等离子体发生器的频率为13.56MHz,功率为100W,以10sccm的流速通入含10%气态的碳源性物质(如气态的甲烷、乙烯、乙炔等)的氢气;电感耦合线圈-化学气相沉积室2内保持500Pa的压力;在运动传输状态下,具有镍缓冲层的铝箔基材保持在高温生长单元21内3min,在其上沉积1~2层的石墨烯层;
(4)所述石墨烯层/镍缓冲层/铝箔的基材在冷却室3中冷却至室温,冷却后被收卷于第二卷辊41上,得到包覆了石墨烯层的铝箔基材。
实施例5提供一种包覆氢化石墨烯的铝箔的连续化生产方法,所述方法使用如实施例2所述的制备包覆氢化石墨烯的铝箔的连续化生产线,所述方法与实施例4的区别在于:
步骤(2’)所述退火温度为800℃;第一卷辊11和第二卷辊41转动的线速度为0.01m/min;
步骤(2)所述磁控溅射的靶材62为铜靶;在铝箔上溅射的铜缓冲层厚度为300nm;
步骤(3)所述电感耦合线圈-化学气相沉积室2的高温生长单元21温度为800℃,电感耦合线圈22等离子体发生器的功率为100W;电感耦合线圈-化学气相沉积室2中通入的氢气中碳源性物质的含量为50%,通入流速为50sccm,其中的压力为1000Pa;具有铜缓冲层的铝箔基材保持在高温生长单元21内5min。
实施例6提供一种包覆石墨烯的工程塑料板的连续化生产方法,所述方法使用如实施例1所述的制备包覆氢化石墨烯的工程塑料板的连续化生产线,所述方法与实施例3的区别在于:
步骤(2)所述磁控溅射的靶材62为铜靶;在工程塑料板上溅射的铜缓冲层厚度为1000nm;第一卷辊11和第二卷辊41转动的线速度为0.15m/min;
步骤(3)所述电感耦合线圈-化学气相沉积室2的高温生长单元21温度为200℃,电感耦合线圈22等离子体发生器的功率为1000W;电感耦合线圈-化学气相沉积室2中通入的氢气中碳源性物质的含量为30%,通入流速为40sccm,其中的压力为5Pa;具有铜缓冲层的铝箔基材保持在高温生长单元21内5min。
另外,在实施例3、4、5、6中,碳源物质也可以为液体,如易挥发性的乙醇、甲苯等,当碳源物质为液体时,可以以氢气为载气,通入电感耦合线圈-化学气相沉积室2。
在实施例3、4、5、6中,碳源物质中可以混合氮源性物质,来制备包覆氮掺杂石墨烯的基材;也可以混合硼源性物质,制备包覆硼掺杂石墨烯的基材;或者是掺杂硼源性物质和氮源性物质的混合物,制备包覆硼氮共掺杂石墨烯的基材;当然也可以以气态的碳源性物质和气态的氟源性物质的混合气体为原料源,制备包覆氟化石墨烯的基材。
其中,所述氮源性物质选自乙二胺、吡啶、氨气、氨水、三聚氰胺、尿素中的任意1种或至少2种的组合;所述硼源性物质选自硼酸三异丙酯、硼烷、三氯化硼、氧化硼、碳化硼中的任意1种或至少2种的组合;所述氟源性物质为四氟化碳和/或三氟化氮。
实施例7提供一种包覆二维氮化硼的铝箔基材的连续化生产方法,所述方法可以使用如实施例1或实施例2所述的制备包覆石墨烯的铝箔连续化生产线;所述方法与实施例3或实施例4的区别在于原料源物质不同,实施例3或实施例4的原料源物质为碳源性气体,而本实施例所使用的原料源物质为硼氮比为1:1的化合物,如环硼氮烷、B-三氯环硼氮烷或B-六氯环硼氮烷等。
本领域技术人员应当明了,本发明所述的基材为柔性箔,优选为0.1~0.3mm厚的柔性箔,或0.1~0.3mm直径的管线;所述柔性箔的材质选自铝、镁、锌、钛中的任意1种金属单质或至少2种元素的金属合金,或非金属材质,如工程塑料。具体选择何种基材本发明不做具体限定。
本发明所述原料源是沉积二维原子晶体材料所使用的原料物质;如生长石墨烯材料所使用的原料源为碳源物质;所述原料源可以是气态或液态。
申请人声明,本发明通过上述实施例来说明本发明的详细工艺设备和工艺流程,但本发明并不局限于上述详细工艺设备和工艺流程,即不意味着本发明必须依赖上述详细工艺设备和工艺流程才能实施。所属技术领域的技术人员应该明了,对本发明的任何改进,对本发明产品各原料的等效替换及辅助成分的添加、具体方式的选择等,均落在本发明的保护范围和公开范围之内。

Claims (10)

1.一种包覆二维原子晶体的基材的连续化生产线,其特征在于,所述生产线包括依次连接的设有第一卷辊(11)的放卷室(1)、磁控溅射室(6)、电感耦合-化学气相沉积室(2)、冷却室(3)以及设有第二卷辊(41)的收卷室(4);
其中,所述第一卷辊(11)卷有待包覆二维原子晶体的基材(7),所述衬底由第一卷辊(11)放卷,并由第二卷辊(41)将制备得到的包覆二维原子晶体的基材(8)收卷;
所述电感耦合-化学气相沉积室(2)包括用于发生化学气相沉积的高温生长单元(21),以及与所述高温生长单元(21)连接,并向其提供等离子体的电感耦合线圈(22);
所述电感耦合-化学气相沉积室(2)具有进气口(23)和出气口(24)。
2.如权利要求1所述的生产线,其特征在于,所述磁控溅射室(6)包括设置于待包覆二维原子晶体的基材(7)下面,起到支撑作用的衬底放置台(61),与衬底放置台(61)平行相对的靶材(62);所述磁控溅射室(6)还开有氩气通入孔(63);
所述靶材(62)连接低压输出端,衬底放置台(61)连接高压输出端。
3.如权利要求1所述的生产线,其特征在于,所述电感耦合线圈(22)串接于所述生产线上,并设置于放卷室(1)与高温生长单元(21)之间;
进气口(23)设置于电感耦合线圈(22)的前端,出气口(24)设置于高温生长单元(21)的后端;
优选地,当电感耦合线圈(22)串接于生产线上时,电感耦合线圈(22)与高温生长单元(21)内设置有石英套管(25),所述基材处于石英套管(25)内。
4.如权利要求1所述的生产线,其特征在于,所述电感耦合线圈(22)设置于所述高温生长单元(21)的上方;
进气口(23)设置于电感耦合线圈(22)的上端,出气口(24)设置于高温生长单元(21)的后端。
5.如权利要求1所述的生产线,其特征在于,所述冷却室(3)采用水冷狭缝冷却;
优选地,所述待包覆二维原子晶体的基材(7)为柔性基材;
优选地,所述衬底下方设置表面光滑的支撑台(9),用于支撑衬底,避免衬底由于自身重力造成的下陷弯曲;
优选地,所述支撑台(9)为连续的石英台面或滚轴台面,或者为间隔的石英台或滚轴台面;
优选地,所述第一卷辊(11)和第二卷辊(41)具有相同的线速度。
6.如权利要求1所述的生产线,其特征在于,所述生产线上还串接有温控室(5),用于对待包覆二维原子晶体的基材(7)进行预处理;
所述温控室(5)设置在放卷室(1)和磁控溅射室(6)之间。
7.如权利要求1所述的生产线,其特征在于,所述放卷室(1)内设置第一展平辊(12),用于展平待包覆二维原子晶体的基材(7)的褶皱,便于均匀沉积二维原子晶体材料;所述第一展平辊(12)设置于第一卷辊(11)之后;
所述收卷室(4)内设置第二展平辊(42),用于展平包覆有二维原子晶体的基材(8),防止收卷过程产生褶皱;所述第二展平辊(42)设置于第二卷辊(41)之前;
优选地,所述放卷室(1)内设置第一纠偏辊(13),用于纠正待包覆二维原子晶体的基材(7)的位置,便于准确沉积二维原子晶体材料;所述第一纠偏辊(13)设置于第一卷辊(11)之后;
所述收卷室(4)内设置第二纠偏辊(43),用于纠正包覆有二维原子晶体的基材(8)的成卷位置;所述第二纠偏辊(43)设置于第二卷辊(41)之前。
8.一种包覆二维原子晶体的基材的连续化生产方法,其特征在于,所述方法使用如权利要求1~7之一所述的包覆二维原子晶体的基材的连续化生产线,具体包括如下步骤:
(1)将待包覆二维原子晶体的基材(7)卷于第一卷辊(11)上,所述衬底的自由端卷于第二卷辊(41)上;
(2)在第一卷辊(11)和第二卷辊(41)的转动过程中,所述待包覆二维原子晶体的基材(7)被输送进入磁控溅射室(6),进行磁控溅射,溅射缓冲层,得到具有缓冲层的待包覆二维原子晶体的基材(7’);
(3)所述具有缓冲层的待包覆二维原子晶体的基材(7’)继续被输送至电感耦合-化学气相沉积室(2)中,进行二维原子晶体材料的沉积,得到包覆有二维原子晶体材料的基材(8);
(4)所述包覆有二维原子晶体材料的基材(8)在冷却室(3)中得到冷却,冷却后被收卷于第二卷辊(41)上,得到包覆有二维原子晶体的基材(8);
优选地,步骤(1)之后,步骤(2)之前进行步骤(2’):
待包覆二维原子晶体的基材(7)在温控室(5)中进行预处理。
9.如权利要求8所述的方法,其特征在于,步骤(1)所述待包覆二维原子晶体的基材(7)为柔性箔,优选为0.1~0.3mm厚的柔性箔,或0.1~0.3mm直径的管线;
优选地,所述柔性箔的材质选自铝、镁、锌、钛中的任意1种金属单质或至少2种元素的金属合金,或非金属材质,如工程塑料;
优选地,步骤(2)所述第一卷辊(11)和第二卷辊(41)的转动具有相同的线速度,所述线速度优选为0.01~0.2m/min;
优选地,步骤(2)所述磁控溅射过程中,靶材(62)连接低压输出端,衬底放置台(61)连接高压输出端;
优选地,步骤(2)所述磁控溅射过程中,靶材(62)为铜靶或镍靶;
优选地,步骤(2)所述磁控溅射得到的缓冲层的厚度为300~1000nm;
优选地,步骤(3)所述沉积为在保护性气氛中,将气体、液体或固体的原料源物质高温分解至自由基、分子片段或原子级物种,在衬底上重新形成化学键,降温后得到二维原子晶体材料的过程;
优选地,步骤(3)所述高温分解的温度为200~800℃,优选500~700℃;
优选地,步骤(3)所述高温分解过程中,电感耦合线圈22等离子发生器的功率为100~1000W,优选300~500W;
优选地,步骤(3)所述保护性气氛为通入保护性气体的减压氛围;优选为通入保护性气体的5~1000Pa的减压氛围;
优选地,步骤(2’)所述预处理为氢气或氢等离子体气氛下的退火处理,所述退火温度为100~800℃。
10.一种如权利要求8或9所述的连续化生产方法制备得到的基材,其特征在于,所述基材包覆有二维原子晶体材料,且所述二维原子晶体材料的长度可控;
优选地,所述二维原子晶体材料为石墨烯材料、石墨烯衍生材料或氮化硼二维原子晶体材料中的任意1种;
优选地,所述石墨烯衍生材料选自氢化石墨烯材料、氮掺杂石墨烯材料、硼掺杂石墨烯材料、氮硼共掺杂石墨烯材料、氟化石墨烯材料中的任意1种。
CN201310390352.8A 2013-08-30 2013-08-30 包覆二维原子晶体的基材、其连续化生产线及方法 Active CN103469203B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201310390352.8A CN103469203B (zh) 2013-08-30 2013-08-30 包覆二维原子晶体的基材、其连续化生产线及方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201310390352.8A CN103469203B (zh) 2013-08-30 2013-08-30 包覆二维原子晶体的基材、其连续化生产线及方法

Publications (2)

Publication Number Publication Date
CN103469203A true CN103469203A (zh) 2013-12-25
CN103469203B CN103469203B (zh) 2016-05-18

Family

ID=49794238

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201310390352.8A Active CN103469203B (zh) 2013-08-30 2013-08-30 包覆二维原子晶体的基材、其连续化生产线及方法

Country Status (1)

Country Link
CN (1) CN103469203B (zh)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495821A (zh) * 2014-12-16 2015-04-08 重庆墨希科技有限公司 一种单层连续石墨烯薄膜卷材的制备方法及装置
CN104495822A (zh) * 2014-12-16 2015-04-08 重庆墨希科技有限公司 一种石墨烯薄膜卷材的制备方法及装置
CN105568243A (zh) * 2016-03-16 2016-05-11 临沂大学 一种用于不锈钢表面的石墨烯防腐涂层制备方法
CN107236938A (zh) * 2017-07-11 2017-10-10 江苏星特亮科技有限公司 一种连续式薄膜生产设备
CN107557761A (zh) * 2017-08-23 2018-01-09 中国科学院过程工程研究所 一种用于在带/线材上连续化生长二维材料的卷对卷装置及其控制方法
CN107988585A (zh) * 2017-12-01 2018-05-04 中国科学院过程工程研究所 一种金属基复合线材及其制备方法和用途
CN108303596A (zh) * 2018-01-16 2018-07-20 宁波市计量测试研究院(宁波市衡器管理所、宁波新材料检验检测中心) 一种利用薄膜沉积技术制作超薄线圈的方法及超薄线圈
CN109785996A (zh) * 2017-11-14 2019-05-21 中国科学院过程工程研究所 一种金属复合线材及其制备方法
CN110512187A (zh) * 2019-09-02 2019-11-29 上海交通大学 二维材料增强金属基复合材料及其连续化制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102650046A (zh) * 2012-05-23 2012-08-29 徐明生 一种规模化连续制备二维纳米薄膜的装置
US20130011574A1 (en) * 2011-07-06 2013-01-10 Sony Corporation Graphene production method and graphene production apparatus
CN103014641A (zh) * 2012-12-05 2013-04-03 广东志成冠军集团有限公司 用于柔性线材表面镀膜的磁控溅射装置
CN103140439A (zh) * 2010-07-15 2013-06-05 成均馆大学校产学协力团 低温生产石墨烯的方法,直接转移用相同方法的石墨烯的方法与石墨烯片材

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103140439A (zh) * 2010-07-15 2013-06-05 成均馆大学校产学协力团 低温生产石墨烯的方法,直接转移用相同方法的石墨烯的方法与石墨烯片材
US20130011574A1 (en) * 2011-07-06 2013-01-10 Sony Corporation Graphene production method and graphene production apparatus
CN102650046A (zh) * 2012-05-23 2012-08-29 徐明生 一种规模化连续制备二维纳米薄膜的装置
CN103014641A (zh) * 2012-12-05 2013-04-03 广东志成冠军集团有限公司 用于柔性线材表面镀膜的磁控溅射装置

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104495821B (zh) * 2014-12-16 2016-06-15 重庆墨希科技有限公司 一种单层连续石墨烯薄膜卷材的制备方法及装置
CN104495822A (zh) * 2014-12-16 2015-04-08 重庆墨希科技有限公司 一种石墨烯薄膜卷材的制备方法及装置
CN104495821A (zh) * 2014-12-16 2015-04-08 重庆墨希科技有限公司 一种单层连续石墨烯薄膜卷材的制备方法及装置
CN105568243B (zh) * 2016-03-16 2018-04-20 临沂大学 一种用于不锈钢表面的石墨烯防腐涂层制备方法
CN105568243A (zh) * 2016-03-16 2016-05-11 临沂大学 一种用于不锈钢表面的石墨烯防腐涂层制备方法
CN107236938A (zh) * 2017-07-11 2017-10-10 江苏星特亮科技有限公司 一种连续式薄膜生产设备
CN107557761A (zh) * 2017-08-23 2018-01-09 中国科学院过程工程研究所 一种用于在带/线材上连续化生长二维材料的卷对卷装置及其控制方法
CN107557761B (zh) * 2017-08-23 2020-09-22 中国科学院过程工程研究所 一种用于在带/线材上连续化生长二维材料的卷对卷装置及其控制方法
CN109785996A (zh) * 2017-11-14 2019-05-21 中国科学院过程工程研究所 一种金属复合线材及其制备方法
CN109785996B (zh) * 2017-11-14 2021-04-20 中国科学院过程工程研究所 一种金属复合线材及其制备方法
CN107988585A (zh) * 2017-12-01 2018-05-04 中国科学院过程工程研究所 一种金属基复合线材及其制备方法和用途
CN108303596A (zh) * 2018-01-16 2018-07-20 宁波市计量测试研究院(宁波市衡器管理所、宁波新材料检验检测中心) 一种利用薄膜沉积技术制作超薄线圈的方法及超薄线圈
CN110512187A (zh) * 2019-09-02 2019-11-29 上海交通大学 二维材料增强金属基复合材料及其连续化制备方法

Also Published As

Publication number Publication date
CN103469203B (zh) 2016-05-18

Similar Documents

Publication Publication Date Title
CN103469203A (zh) 包覆二维原子晶体的基材、其连续化生产线及方法
US20140255621A1 (en) Systems and methods for production of graphene by plasma-enhanced chemical vapor deposition
EP1918967B1 (en) Method of forming a film by deposition from a plasma
Nazarov et al. Atomic layer deposition of tin oxide using tetraethyltin to produce high-capacity Li-ion batteries
US8512816B2 (en) Method of fabricating thin film by microplasma processing and apparatus for same
CN109336096B (zh) 一种开放式连续生长碳纳米材料的设备及制备方法
EP2975158A1 (en) Plasma cvd device and plasma cvd method
WO2006033268A1 (ja) 透明導電膜
CN103469308B (zh) 一种二维原子晶体材料、其连续化生产方法及生产线
CN103103493A (zh) 一种石墨烯铜线生产装置
EP2374915B1 (en) Catalyst chemical vapor deposition apparatus
Wang et al. Structure and photoluminescence properties of carbon nanotip-vertical graphene nanohybrids
CN103266306A (zh) 一种用pvd技术制备石墨烯或超薄碳膜的方法
JP7320862B2 (ja) 膜及び製造プロセス
CN1732283B (zh) 制备涂覆的金属线的方法
Park et al. Effective control of CH4/H2 plasma condition to synthesize graphene nano-walls with controlled morphology and structural quality
CN111058017B (zh) 石墨烯金属复合丝材及其低温连续化制备方法
CN100568454C (zh) 采用氢掺杂在金刚石表面制备半导体导电膜的方法
CN1844450A (zh) 一种金刚石膜生长设备的热丝及电极结构
CN105140339B (zh) 金刚石保护层结构的柔性衬底薄膜太阳能电池及制备方法
CN112740337B (zh) 导电元件
CN113897591A (zh) 金属防护方法及应用
Behura et al. Chemical vapor deposited few-layer graphene as an electron field emitter
CN108660427A (zh) 碳纳米线阵列镶嵌在非晶碳薄膜中的碳纳米线/非晶碳复合膜及其制备
Tian et al. Nanocrystalline silicon deposition at high rate and low temperature from pure silane in a modified ICP-CVD system

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant