CN101452835A - 采用氢掺杂在金刚石表面制备半导体导电膜的方法 - Google Patents

采用氢掺杂在金刚石表面制备半导体导电膜的方法 Download PDF

Info

Publication number
CN101452835A
CN101452835A CNA2008102497263A CN200810249726A CN101452835A CN 101452835 A CN101452835 A CN 101452835A CN A2008102497263 A CNA2008102497263 A CN A2008102497263A CN 200810249726 A CN200810249726 A CN 200810249726A CN 101452835 A CN101452835 A CN 101452835A
Authority
CN
China
Prior art keywords
gas
diamond
substrate
gas flow
microwave power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CNA2008102497263A
Other languages
English (en)
Other versions
CN100568454C (zh
Inventor
李西勤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
QUANSHUN SCIENCE AND TECHNOLOGY Co Ltd SHANDONG
Original Assignee
QUANSHUN SCIENCE AND TECHNOLOGY Co Ltd SHANDONG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by QUANSHUN SCIENCE AND TECHNOLOGY Co Ltd SHANDONG filed Critical QUANSHUN SCIENCE AND TECHNOLOGY Co Ltd SHANDONG
Priority to CNB2008102497263A priority Critical patent/CN100568454C/zh
Publication of CN101452835A publication Critical patent/CN101452835A/zh
Application granted granted Critical
Publication of CN100568454C publication Critical patent/CN100568454C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Crystals, And After-Treatments Of Crystals (AREA)

Abstract

本发明公开了一种采用氢掺杂在金刚石表面制备半导体导电膜的方法,本发明的方法可简称微波法,是采用磁波能量激发反应气体,由于是无极放电,使等离子体纯净,同时微波放电区集中而不扩展,能够激活产生各种原子基团,如原子氢等,产生的离子的最大动能低,不腐蚀已生成的金刚石,使金刚石表面的粗糙度有较大改进,本发明方法中的微波功率连续平缓,能使沉积温度连续稳定变化,本发明的方法能够在沉积过程中产生大面积稳定的等离子体球,从而有利于大面积、均匀沉积金刚石半导体导电膜,用本发明方法能够实现在直径为5-7.62厘米金刚石表面上制做半导体导电膜,为金刚石器件在工业应用,特别是航空、国防上的应用,提供了可靠的工业实用性。

Description

采用氢掺杂在金刚石表面制备半导体导电膜的方法
技术领域
本发明涉及金刚石,是一种采用氢掺杂在金刚石表面制备半导体导电膜的方法。
背景技术
用金刚石制作晶体管或二极管一直是本领域研究的重要课题之一,而金刚石器件在工业上的应用首先要求有较好的导电性能。但是,工业生产上在金刚石表面制作导电膜是较难实现的,多年以来一直没有一种能够工业上应用的方法。为此,申请人研究了一种用弧光放电等离子体化学气相沉淀法在金刚石制备半导体材料的方法,这种方法有较多优点,但是,经过使用发现存在的主要不足是:在直径大于5厘米的金刚石表面上制做半导体导电膜是非常困难的,制造时设备的损耗较大,大面积的基片冷却也非常难解决。
发明内容
本发明的目的是,提供一种采用氢掺杂在金刚石表面制备半导体导电膜的方法,它能够实现在直径大于5厘米的金刚石表面上制作半导体导电膜,能够工业化生产。
本发明为实现上述目的,通过以下技术方案实现:采用氢掺杂在金刚石表面制备半导体导电膜的方法,包括以下步骤:
①采用丙酮有机溶机对金刚石基片清洗;
②清洗后的基片放入CVD设备的反应室内;
③反应室抽空至10-4Torr;
④对基片加热至400—550℃;
⑤反应室通入CH4气体,对基片进行氢等离子处理,气体流量为10—200ml/min,通入时间为3—5分钟,之后关掉气源;
⑥反应室再次抽真空至10-4Torr;
⑦反应室通入H2气体和CH4气体,H2气体流量为10—50ml/min,CH4气体流量为30—300ml/min;
⑧步骤⑦所述气体通气1—2分钟后开启微波电源,在基片上进行半绝缘膜沉积,微波功率为3000—5000W,半绝缘膜的沉积速率为0.01—0.1μm/min,沉积时间为10—100分钟,半绝缘膜的厚度达到0.5—5微米后关闭微波电源;
⑨向反应室内再通入H2气体,使H2流量增至60—100ml/min,并同时通入O2气体,该气体流量为20—60ml/min;
⑩步骤⑨所述气体通气1—2分钟后开启微波电源,在基片的半绝缘膜上进行导电膜沉积,微波功率为3000—5000W;导电膜沉积速率为0.01—0.1μm/min,沉积时间为5—50分钟,最终在基片半绝缘膜上形成0.1—1微米厚度的导电膜,此时关闭微波电源,并同时关闭所有气体。
本发明所述的步骤⑦中的H2气体流量为30ml/min,CH4气体流量为120ml/min。
本发明所述的步骤⑨中的H2气体流量为85ml/min。
本发明方法所述的CVD设备是微波等离子体化学气相沉积设备,该设备目前用于绝缘金刚石膜的制造方法中,该设备的结构为公知技术,该设备用于本发明方法中的工作原理是:微波源穿过CVD设备上的绝缘窗口进入反应室,气体分子的电子吸收微波能量后碰撞加剧,气体分子被加热后分解,生成反应活性粒子,沉积在处于等离子体球中的基片表面上,形成半绝缘膜和导电膜。等离子体球的精确位置通过CVD设备波导终端的短路滑片调节,从而调节金刚石膜的均匀性。
本发明方法中所述氢等离子处理,可以形成原子氢气氛,原子氢能稳定金刚石表面的“悬挂键”,防止表面石墨化;原子氢对SP2结构碳的刻蚀能力远远大于对SP2结构碳的刻蚀能力。大量原子氢不停地将生成的石墨刻蚀掉,留下金刚石,从而使得金刚石薄膜得以不断地长大;原子氢能有效地与反应先驱物质一碳氢化合物反应,生成大量有利于金刚石薄膜生长的活性基团。
本发明的优点在于:本发明的方法可简称微波法,是采用磁波能量激发反应气体,由于是无极放电,使等离子体纯净,同时微波放电区集中而不扩展,能够激活产生各种原子基团,如原子氢等,产生的离子的最大动能低,不腐蚀已生成的金刚石,使金刚石表面的粗糙度有较大改进,本发明方法中的微波功率连续平缓,能使沉积温度连续稳定变化,本发明的方法能够在沉积过程中产生大面积稳定的等离子体球,从而有利于大面积、均匀沉积金刚石半导体导电膜,用本发明方法能够实现在直径为5—7.62厘米金刚石表面上制做半导体导电膜,为金刚石器件在工业应用,特别是航空、国防上的应用,提供了可靠的工业实用性。采用本发明方法制作的半导体导电膜的空穴迁移率大于1300V.S/cm2,氢掺杂浓度范围在5×1016—1×1019cm-2,并易于分别准确控制半绝缘膜和导电膜的厚度等。
具体实施方式
本发明所述的采用氢掺杂在金刚石表面制备半导体导电膜的方法,包括以下步骤:
①采用丙酮有机溶机对金刚石基片清洗;
②清洗后的基片放入CVD设备的反应室内;
③反应室抽空至10-4Torr;
④对基片加热至400—550℃;优选的温度可以是480℃。
⑤反应室通入CH4气体,对基片进行氢等离子处理,气体流量为10—200ml/min,通气持续时间为3—5分钟,之后关掉气源;优选的气体流量为120ml/min,通气时间为3.8分钟,当然,气体流量在10—200ml/min、通气时间为3—5分钟的任一数值内均能实施;
⑥反应室再次抽真空至10-4Torr;
⑦反应室通入H2气体和CH4气体,H2气体流量为10—50ml/min,CH4气体流量为30—300ml/min;
⑧步骤⑦所述气体通气1—2分钟后开启微波电源,在基片上进行半绝缘膜沉积,微波功率为3000—5000W,半绝缘膜的沉积速率为0.01—0.1μm/min,沉积时间为10—100分钟,半绝缘膜的厚度达到0.5—5微米后关闭微波电源,该步骤中所述的沉积时间长短及沉积速率高低与形成的半绝缘膜厚度基本成正比关系;
⑨向反应室内再通入H2气体,使H2气体流量增至60—100ml/min,并同时通入02气体,该气体流量为20—60ml/min;
⑩步骤⑨所述气体通气1—2分钟后开启微波电源,在基片的半绝缘膜上进行导电膜沉积,微波功率为3000—5000W,导电膜沉积速率为0.01—0.1μm/min,沉积时间为5—50分钟,最终在基片半绝缘膜上形成0.1—1微米厚度的导电膜,此时关闭微波电源,并同时关闭所有气体,该步骤中所述的沉积时间长短及沉积速率高低与形成的导电膜厚度基本成正比关系。
本发明所述步骤⑦中的H2气体流量为30ml/min,CH4气体流量为120ml/min是优选的方案。
本发明所述步骤⑨中的H2气体流量为85ml/min是优选的方案。
本发明方法中所述气体的纯度均为99.99%以上,所述的CH4气体,也可采用C2H4、H2O、CO2、CO、CH3OH、C2H5OH、C3H6O气体替代。

Claims (3)

1、采用氢掺杂在金刚石表面制备半导体导电膜的方法,其特征在于:包括以下步骤:
①采用丙酮有机溶机对金刚石基片清洗;
②清洗后的基片放入CVD设备的反应室内;
③反应室抽空至10-4Torr;
④对基片加热至400—550℃;
⑤反应室通入CH4气体,对基片进行氢等离子处理,气体流量为10—200ml/min,通入时间为3—5分钟,之后关掉气源;
⑥反应室再次抽真空至10-4Torr;
⑦反应室通入H2气体和CH4气体,H2气体流量为10—50ml/min,CH4气体流量为30—300ml/min;
⑧步骤⑦所述气体通气1—2分钟后开启微波电源,在基片上进行半绝缘膜沉积,微波功率为3000—5000W,半绝缘膜的沉积速率为0.01—0.1μm/min,沉积时间为10—100分钟,半绝缘膜的厚度达到0.5—5微米后关闭微波电源;
⑨向反应室内再通入H2气体,使H2气体流量增至60—100ml/min,并同时通入O2气体,该气体流量为20—60ml/min;
⑩步骤⑨所述气体通气1—2分钟后开启微波电源,在基片的半绝缘膜上进行导电膜沉积,微波功率为3000—5000W;导电膜沉积速率为0.01—0.1μm/min,沉积时间为5—50分钟,最终在基片半绝缘膜上形成0.1—1微米厚度的导电膜,此时关闭微波电源,并同时关闭所有气体。
2、根据权利要求1所述的采用氢掺杂在金刚石表面制备半导体导电膜的方法,其特征在于:步骤⑦中所述的H2气体流量为30ml/min,CH4气体流量为120ml/min。
3、根据权利要求1所述的采用氢掺杂在金刚石表面制备半导体导电膜的方法,其特征在于:步骤⑨中所述H2气体流量为85ml/min。
CNB2008102497263A 2008-12-30 2008-12-30 采用氢掺杂在金刚石表面制备半导体导电膜的方法 Expired - Fee Related CN100568454C (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CNB2008102497263A CN100568454C (zh) 2008-12-30 2008-12-30 采用氢掺杂在金刚石表面制备半导体导电膜的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CNB2008102497263A CN100568454C (zh) 2008-12-30 2008-12-30 采用氢掺杂在金刚石表面制备半导体导电膜的方法

Publications (2)

Publication Number Publication Date
CN101452835A true CN101452835A (zh) 2009-06-10
CN100568454C CN100568454C (zh) 2009-12-09

Family

ID=40734996

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2008102497263A Expired - Fee Related CN100568454C (zh) 2008-12-30 2008-12-30 采用氢掺杂在金刚石表面制备半导体导电膜的方法

Country Status (1)

Country Link
CN (1) CN100568454C (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146756A (zh) * 2017-06-27 2017-09-08 中国科学院微电子研究所 一种金刚石基底场效应晶体管制备方法
CN107331701A (zh) * 2017-06-27 2017-11-07 中国科学院微电子研究所 一种金刚石材料沟道导电特性优化方法
CN107331602A (zh) * 2017-06-27 2017-11-07 中国科学院微电子研究所 一种金刚石材料表面空穴浓度提高方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107146756A (zh) * 2017-06-27 2017-09-08 中国科学院微电子研究所 一种金刚石基底场效应晶体管制备方法
CN107331701A (zh) * 2017-06-27 2017-11-07 中国科学院微电子研究所 一种金刚石材料沟道导电特性优化方法
CN107331602A (zh) * 2017-06-27 2017-11-07 中国科学院微电子研究所 一种金刚石材料表面空穴浓度提高方法

Also Published As

Publication number Publication date
CN100568454C (zh) 2009-12-09

Similar Documents

Publication Publication Date Title
KR910006784B1 (ko) 다이어몬드 증착장치와 방법
US11673807B2 (en) Carbon nanostructured materials and methods for forming carbon nanostructured materials
CN112746262B (zh) 石墨烯复合金属箔及其双面生长方法和装置
CN107190246A (zh) 一种具有优良场发射性能的石墨烯/金刚石复合膜及其制备方法
JP2011530155A5 (zh)
TW201012308A (en) Plasma source and methods for depositing thin film coatings using plasma enhanced chemical vapor deposition
KR101353348B1 (ko) 나노 입자 합성 장치 및 나노 입자 합성 방법
CN104141109B (zh) 钛金属表面原位合成TiC‑DLC复合涂层的方法
CN112853482B (zh) 一种微波等离子体-磁控溅射复合气相沉积原位制备100面金刚石的方法及设备
CN103407988A (zh) 一种低温制备石墨烯薄膜的方法
KR20070057284A (ko) 막의 제조방법 및 당해 방법으로 제조된 막을 이용한반도체 장치
CN100568454C (zh) 采用氢掺杂在金刚石表面制备半导体导电膜的方法
CN103266306A (zh) 一种用pvd技术制备石墨烯或超薄碳膜的方法
CN103469308B (zh) 一种二维原子晶体材料、其连续化生产方法及生产线
US20150345010A1 (en) Methods of magnetically enhanced physical vapor deposition
RU2258764C1 (ru) Способ и устройство для осаждения по меньшей мере частично кристаллического кремниевого слоя на подложку
CN100562975C (zh) 采用硼掺杂在金刚石表面制备半导体导电膜的方法
EP0959148B1 (en) Method for producing diamond films using a vapour-phase synthesis system
KR20040018182A (ko) 산소 또는 질소로 종단된 실리콘 나노 결정 구조체의형성방법과 이것에 의해 형성된 산소 또는 질소로 종단된실리콘 나노 결정 구조체
TWI429779B (zh) 鑽石成核方法
KR100850499B1 (ko) 고밀도 탄소나노튜브 제조장치 및 방법
CN111910171A (zh) 一种电场和/或磁场调控合成二维材料的装置和方法
CN111607775A (zh) 制备组分可调的二维h-BNC杂化薄膜的方法
CN103964417A (zh) 一种含锗元素的掺杂石墨烯的制备方法
JP6944699B2 (ja) 六方晶系窒化ホウ素膜の製造方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20091209

Termination date: 20111230