CN114032525B - 金刚石-多层石墨烯复合阴极材料及其制备方法 - Google Patents
金刚石-多层石墨烯复合阴极材料及其制备方法 Download PDFInfo
- Publication number
- CN114032525B CN114032525B CN202111300528.7A CN202111300528A CN114032525B CN 114032525 B CN114032525 B CN 114032525B CN 202111300528 A CN202111300528 A CN 202111300528A CN 114032525 B CN114032525 B CN 114032525B
- Authority
- CN
- China
- Prior art keywords
- diamond
- cathode material
- composite cathode
- multilayer graphene
- graphene composite
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
Classifications
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
-
- C—CHEMISTRY; METALLURGY
- C23—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
- C23C—COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
- C23C16/00—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
- C23C16/22—Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
- C23C16/26—Deposition of carbon only
- C23C16/27—Diamond only
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J1/00—Details of electrodes, of magnetic control means, of screens, or of the mounting or spacing thereof, common to two or more basic types of discharge tubes or lamps
- H01J1/02—Main electrodes
- H01J1/30—Cold cathodes, e.g. field-emissive cathode
- H01J1/304—Field-emissive cathodes
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J9/00—Apparatus or processes specially adapted for the manufacture, installation, removal, maintenance of electric discharge tubes, discharge lamps, or parts thereof; Recovery of material from discharge tubes or lamps
- H01J9/02—Manufacture of electrodes or electrode systems
- H01J9/022—Manufacture of electrodes or electrode systems of cold cathodes
- H01J9/025—Manufacture of electrodes or electrode systems of cold cathodes of field emission cathodes
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Materials Engineering (AREA)
- Inorganic Chemistry (AREA)
- General Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacturing & Machinery (AREA)
- Crystals, And After-Treatments Of Crystals (AREA)
- Cold Cathode And The Manufacture (AREA)
- Carbon And Carbon Compounds (AREA)
Abstract
本发明提供金刚石‑多层石墨烯复合阴极材料及其制备方法,主要采用有机液态小分子作为碳氮源,取代了传统的甲烷,氮气等气源并通过MPCVD法制备得到的一种在金刚石纳米线两侧围绕着几十纳米(≧20nm)厚的多层石墨烯的复合材料。该方法中采用的有机液态小分子正丁胺,比传统气源操作更简单,更安全,更廉价。所获得的复合阴极材料具有较好稳定性和优异的场发射性能。在场发射显示器、真空微波器件、X射线源(管)等真空微电子系统领域有着广阔的应用前景。
Description
技术领域
本发明涉及到金刚石-多层石墨烯复合阴极材料及其制备方法,属于光电子材料技术领域。
背景技术
随着自由电子激光、高功率微波、真空微电子器件系统等的快速发展,制约电子束质量的阴极材料是电子束相关器件和系统性能的关键。因此研制具有开启场强低、电流密度大的阴极材料已成为其应用中亟需解决的关键问题。
石墨烯纳米结构材料由于高的载流子迁移率、优异的导电性、低的功函数、高纵横比和锋利的边缘,使其具有较低的开启电压和高的电流密度值。然而石墨烯发射稳定性差、寿命短以及本身致密性产生的电场屏蔽效应从而限制了它们在场发射领域的实际应用。金刚石具有强共价SP3键,高硬度、高化学惰性、高稳定性、低的有效功函数和负电子亲和力(NEA)等优异的物理化学性能,是具有较高的发射稳定性的良好候选材料,但金刚石材料固有的绝缘性以及光滑的表面,限制了电子在其内部的传输并发射到真空。因此将两者性能结合互补的金刚石-石墨烯复合阴极材料有望成为未来阴极材料研究重点。
然而在制备金刚石-石墨烯复合阴极材料的方法中,采用传统的气源甲烷(CH4),氮气(N2)等,不仅存在用气过程中的安全隐患,而且操作过程繁琐复杂,原材料价格也比较昂贵。为解决这些问题,本发明采用一种比传统的甲烷,氮气等气源更安全,更廉价的液态有机小分子正丁胺作为唯一的碳氮源,操作过程更简单,仅通过正丁胺在不同温度的饱和蒸气压与沉积腔室的压力差作为驱动力,将正丁胺输送至沉积腔室裂解成沉积所需要的各种基团,完成生长。所制备的金刚石-多层石墨烯复合阴极材料显示出了较为优异的电子场发射性能。
发明内容
本发明所要解决的技术问题是提供一种降低制备成本、操作过程复杂性,提升操作过程的安全性,同时兼具低开启电场和高发射电流密度的金刚石-多层石墨烯复合阴极材料及其制备方法。
本发明所提供的具有优异场发射性能的金刚石-多层石墨烯复合阴极材料的制备方法,包括以下步骤:
(1)将硅基片在粒径为1.5μm的金刚石粉中磨出均匀致密的划痕;
(2)将磨好的硅基片放入粒径为0.25μm金刚石粉制成的悬浮液中超声30min,完成种晶;
(3)将有机小分子液态源密封在带有恒温水浴槽的不锈钢罐中;
(4)通过不锈钢罐中液态源的饱和蒸气压与沉积腔室的压力差,将有机小分子液态源输送到沉积腔室中裂解成沉积所需要的基团,沉积得到金刚石-多层石墨烯复合阴极材料。
上述方案中,步骤(1)中所述的硅基片采用(100)取向的P型掺杂的单晶硅,电阻率为0.001~0.009Ω.cm。
上述方案中,步骤(3)中所述的有机小分子液态源为正丁胺,纯度为99.9%,分子式为C4H11N,饱和蒸气压在25℃时为93mm Hg。
所述的恒温水浴槽的温度可根据所需要的有机小分子液态源的饱和蒸汽压灵活调控;
上述方案中,所述的沉积方法采用本领域常规的制备方法,微波等离子体化学气相沉积法。
上述方案中,所述的沉积条件:微波功率为4kW,工作气压为11.5kPa,沉积温度为750℃,生长时间为1h。
上述方案中,所述的通过微波等离子体化学气相沉积法制备的金刚石-多层石墨烯复合阴极材料的截面厚度为11.3μm。
上述方案中,所述的金刚石-多层石墨烯复合阴极材料是由金刚石纳米棒为核,大面积的多层石墨烯为外围包裹层的核壳结构。
上述方案中,所述的金刚石-多层石墨烯复合阴极材料呈垂直于衬底的片状阵列,具有锋利的边缘,较大的长宽比。
本发明获得的金刚石-多层石墨烯复合阴极材料薄膜表现出负的霍尔系数,低的开启场(4.0Vμm-1),高的发射电流密度(13.0mA cm-2@8.8Vμm-1)。
从上述技术方案可以看出,本发明具有以下有益效果:
(1)本发明仅需要一种有机液态小分子作为唯一的碳氮源,取代了传统的甲烷,氮气等气源。在原材料上更加简单,廉价。
(2)本发明仅需要一种有机液态小分子作为唯一的碳氮源,取代了传统的甲烷,氮气等气源。在操作上也更加简单,避免了使用气瓶过程中的安全隐患,更适合实验室及工业生产中的安全规范。
(3)本发明所制备的金刚石-多层石墨烯复合阴极材料采用单步化学气相沉积方法,精简了制备过程,降低了制备成本。
(4)本发明所制备的金刚石-多层石墨烯复合阴极材料场发射性能优异,对其实现在场致发射技术领域的应用具有重要的科学意义和工程价值。
附图说明
图1a为本发明提供的金刚石-多层石墨烯复合阴极材料的表面形貌和横截面的SEM图之一;
图1b为本发明提供的金刚石-多层石墨烯复合阴极材料的表面形貌和横截面的SEM图之二;
图2a为本发明提供的金刚石-多层石墨烯复合阴极材料的TEM图;
图2b为图2a中白色虚线框部分的高分辨电镜图;
图3a为本发明提供的金刚石-多层石墨烯复合阴极材料的Raman图;
图3b为本发明提供的金刚石-多层石墨烯复合阴极材料的XRD图;
图4a为本发明提供的金刚石-多层石墨烯复合阴极材料的场发射测试结果图之一;
图4b为本发明提供的金刚石-多层石墨烯复合阴极材料的场发射测试结果图之二。
具体实施方式
以下结合具体实施例,并参照附图,对本发明进一步详细说明,但不局限与以下实施例。
实施例1:金刚石-多层石墨烯复合阴极材料的制备方法
首先,将(100)取向的P型掺杂的单晶硅依次用丙酮和无水乙醇超声15min,洗去表面油脂等有机杂质,利用粒径为1.5μm金刚石粉对其表面进行研磨直至出现均匀致密的划痕,将磨好的硅基片放入粒径为0.25μm金刚石粉制成的悬浮液中超声30min,最后用无水乙醇多次清洗并烘干,作为金刚石-多层石墨烯复合阴极材料生长的基底。
有机小分子液态正丁胺被密封在带有恒温水浴槽的不锈钢罐中,生长时通过升高水温至所需要液态源饱和蒸气压的温度(根据实际需要灵活调控),通过不锈钢罐中液态源的饱和蒸气压与沉积腔室的压力差,将正丁胺输送到沉积腔室中。
采用微波等离子体化学气相沉积设备在5mm×5mm×1mm的硅基片上生长金刚石-多层石墨烯复合阴极材料,微波功率为4kW,工作气压维持在11.5kPa,生长温度750℃,生长时间1h,得到横截面厚度为11.3μm的金刚石-多层石墨烯复合阴极材料。
如图1a和图1b所示,为本发明提供的金刚石-多层石墨烯复合阴极材料表面形貌和横截面SEM图,可看出金刚石-多层石墨烯复合阴极材料呈垂直于衬底的片状阵列,具有锋利的边缘,较大的长宽比,同时其横截面厚度也为11.3μm。
图2a和图2b给出了本发明提供的金刚石-多层石墨烯复合阴极材料横截面TEM图,从选区电子衍射图谱(图2a中的内插图)可看到金刚石(111)D、(220)D、(311)D晶面所对应的衍射斑点环以及石墨(002)G和(004)G所对应的衍射环。图2b为图2a中白色虚线框部分的高分辨电镜图,可看出以金刚石纳米线为核,大尺寸(≧20nm)的多层石墨烯为外围包裹层核壳结构。从其局部放大图中得到的0.21nm和0.35nm的晶面间距,与(111)金刚石面和(002)石墨面的理论值非常一致。其傅里叶变换图像(ft1,ft2)也都分别证实了图2b中“1”“2”区域所对应的立方金刚石相和多层石墨烯的存在。
图3a和图3b分别给出了本发明提供的金刚石-多层石墨烯复合阴极材料的Raman光谱和XRD图谱。从Raman图中可见,D峰位置1352cm-1,G峰位置1584cm-1,2D峰位置2710cm-1。IG/I2D>1,进一步说明多层石墨烯的存在。从XRD图中可见,金刚石的(111)、(220)、(311)晶面分别位于43.9°、75.4°、91.6°处的衍射峰以及石墨的(002)、(110)晶面分别位于26.3°、77.9°处的衍射峰。这些结果都表明了本发明中所制备的材料是金刚石和多层石墨烯共存的复合材料。
图4a和图4b给出了本发明提供的金刚石-多层石墨烯复合阴极材料的电子场发射特性曲线。场发射测试在高真空(10-5Pa)的场发射测试系统中进行,采用ITO玻璃作为阳极,金刚石-多层石墨烯复合材料作为阴极,阴阳极之间距离为250μm,I-V特性曲线由Keithley248进行测量。从图可看出本发明所制备的金刚石-多层石墨烯复合材料表现出优异的电子场发射性能,开启场低至4.0Vμm-1(开启场定义为产生电流密度为10μA cm-2所需要的电场),在8.8Vμm-1的电场下,发射电流密度高达13.0mA cm-2。
以上所述仅为本发明的具体实施例,并不用于限制本发明,凡在本发明的精神和原则之内,所做的任何修改、等同替换、改进等,均应包括在本发明的保护范围之内。
Claims (4)
1.金刚石-多层石墨烯复合阴极材料的制备方法,其特征在于,包括以下步骤:
(1)将硅基片在金刚石粉中磨出均匀致密的划痕;所述金刚石粉的粒径为1.5μm;
(2)将磨好的硅基片放入金刚石粉制成的悬浮液中超声30min,完成种晶;所述金刚石粉的粒径为0.25μm;
(3)将有机小分子液态源密封在带有恒温水浴槽的不锈钢罐中;所述的有机小分子液态源为正丁胺;
(4)通过不锈钢罐中液态源的饱和蒸气压与沉积腔室的压力差,将有机小分子液态源输送到沉积腔室中裂解成沉积所需要的基团,沉积得到金刚石-多层石墨烯复合阴极材料;采用微波等离子体化学气相沉积法,参数为微波功率为4kW,工作气压为11.5kPa,沉积温度为750℃,生长时间为1h,复合阴极材料的截面厚度为11.3μm。
2.根据权利要求1所述的金刚石-多层石墨烯复合阴极材料的制备方法,其特征在于,步骤(1)中所述的硅基片采用(100)取向的P型掺杂的单晶硅,电阻率为0.001~0.009Ω.cm。
3.金刚石-多层石墨烯复合阴极材料,其特征在于,根据权利要求1或2所述的制备方法所得。
4.根据权利要求3所述的金刚石-多层石墨烯复合阴极材料,其特征在于,由金刚石纳米棒为核、多层石墨烯为外围包裹层的核壳结构。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111300528.7A CN114032525B (zh) | 2021-11-04 | 2021-11-04 | 金刚石-多层石墨烯复合阴极材料及其制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN202111300528.7A CN114032525B (zh) | 2021-11-04 | 2021-11-04 | 金刚石-多层石墨烯复合阴极材料及其制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN114032525A CN114032525A (zh) | 2022-02-11 |
CN114032525B true CN114032525B (zh) | 2023-09-12 |
Family
ID=80142822
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN202111300528.7A Active CN114032525B (zh) | 2021-11-04 | 2021-11-04 | 金刚石-多层石墨烯复合阴极材料及其制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN114032525B (zh) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN115386862A (zh) * | 2022-07-22 | 2022-11-25 | 西南科技大学 | 一种金属/石墨烯/多晶金刚石膜粒子探测器制备方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1945858A (zh) * | 2006-10-24 | 2007-04-11 | 南开大学 | MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜 |
CN102399092A (zh) * | 2010-09-09 | 2012-04-04 | 西南科技大学 | 掺氮纳米金刚石薄膜的制备方法 |
CN106148910A (zh) * | 2015-04-03 | 2016-11-23 | 中国科学院上海高等研究院 | 一种氮掺杂石墨烯薄膜的制备方法 |
CN108130522A (zh) * | 2017-12-22 | 2018-06-08 | 中国科学院电工研究所 | 金属表面沉积TiO2薄膜抑制微放电的方法及装置 |
CN108642472A (zh) * | 2018-05-30 | 2018-10-12 | 叶展 | 高粘高疏水碳基纳米复合颗粒薄膜及其制备方法 |
CN111051579A (zh) * | 2017-07-21 | 2020-04-21 | 胜高股份有限公司 | 金刚石层叠硅晶片的制造方法及金刚石层叠硅晶片 |
CN111058011A (zh) * | 2019-12-25 | 2020-04-24 | 浙江工业大学 | 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法 |
CN111155071A (zh) * | 2019-12-25 | 2020-05-15 | 浙江工业大学 | 硫离子注入纳米金刚石-石墨烯复合薄膜电极及其制备方法 |
CN111593318A (zh) * | 2020-07-13 | 2020-08-28 | 内蒙古科技大学 | 金刚石纳米晶/氮掺杂碳化硅界面相的n型半导体复合薄膜及其制备方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102415010B1 (ko) * | 2014-12-16 | 2022-07-01 | 스텔라 케미파 가부시키가이샤 | 질소 함유 탄소 재료 및 그 제조 방법 |
-
2021
- 2021-11-04 CN CN202111300528.7A patent/CN114032525B/zh active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1945858A (zh) * | 2006-10-24 | 2007-04-11 | 南开大学 | MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜 |
CN102399092A (zh) * | 2010-09-09 | 2012-04-04 | 西南科技大学 | 掺氮纳米金刚石薄膜的制备方法 |
CN106148910A (zh) * | 2015-04-03 | 2016-11-23 | 中国科学院上海高等研究院 | 一种氮掺杂石墨烯薄膜的制备方法 |
CN111051579A (zh) * | 2017-07-21 | 2020-04-21 | 胜高股份有限公司 | 金刚石层叠硅晶片的制造方法及金刚石层叠硅晶片 |
CN108130522A (zh) * | 2017-12-22 | 2018-06-08 | 中国科学院电工研究所 | 金属表面沉积TiO2薄膜抑制微放电的方法及装置 |
CN108642472A (zh) * | 2018-05-30 | 2018-10-12 | 叶展 | 高粘高疏水碳基纳米复合颗粒薄膜及其制备方法 |
CN111058011A (zh) * | 2019-12-25 | 2020-04-24 | 浙江工业大学 | 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法 |
CN111155071A (zh) * | 2019-12-25 | 2020-05-15 | 浙江工业大学 | 硫离子注入纳米金刚石-石墨烯复合薄膜电极及其制备方法 |
CN111593318A (zh) * | 2020-07-13 | 2020-08-28 | 内蒙古科技大学 | 金刚石纳米晶/氮掺杂碳化硅界面相的n型半导体复合薄膜及其制备方法 |
Non-Patent Citations (1)
Title |
---|
超纳米金刚石—石墨烯纳米墙复合薄膜及场发射冷阴极应用研究;官磊;中国优秀硕士学位论文全文数据库;全文 * |
Also Published As
Publication number | Publication date |
---|---|
CN114032525A (zh) | 2022-02-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Zhuang et al. | Revisiting the role of active sites for hydrogen evolution reaction through precise defect adjusting | |
Jiang et al. | Controlled synthesis of large-scale, uniform, vertically standing graphene for high-performance field emitters | |
Xia et al. | Growth of large-area aligned pentagonal graphene domains on high-index copper surfaces | |
Shi et al. | Narrow‐Gap Quantum Wires Arising from the Edges of Monolayer MoS2 Synthesized on Graphene | |
JP5872672B2 (ja) | SiNWアレイ上垂直配向型CNTの無触媒合成 | |
Chen et al. | Sub-10 nm stable graphene quantum dots embedded in hexagonal boron nitride | |
CN114032525B (zh) | 金刚石-多层石墨烯复合阴极材料及其制备方法 | |
Wang et al. | Structure and photoluminescence properties of carbon nanotip-vertical graphene nanohybrids | |
Li et al. | Space‐Confined Synthesis of Monolayer Graphdiyne in MXene Interlayer | |
Padya et al. | Self-organized growth of bamboo-like carbon nanotube arrays for field emission properties | |
Uh et al. | Improved field emission properties from carbon nanotubes grown onto micron-sized arrayed silicon pillars with pyramidal bases | |
Wang et al. | Growth and field-emission properties of single-crystalline conic ZnO nanotubes | |
Gupta et al. | Field emission properties of highly ordered low-aspect ratio carbon nanocup arrays | |
Song et al. | Enhanced field emission from aligned ZnO nanowires grown on a graphene layer with hydrothermal method | |
Lee et al. | Plasma treatment effects on surface morphology and field emission characteristics of carbon nanotubes | |
Sankaran et al. | Hierarchical hexagonal boron nitride nanowall–diamond nanorod heterostructures with enhanced optoelectronic performance | |
KR101400163B1 (ko) | 탄소나노트리 및 그의 제조방법 | |
Fursey et al. | Low-threshold field electron emission from carbon nanoclusters formed upon cold destruction of graphite | |
Zhai et al. | Effect of annealing on field emission properties of nanodiamond coating | |
Lee et al. | Sensitive and stable gas ionization sensor based on 3-D single-walled carbon nanotube networks suspended on ZnO nanorods | |
Srivastava et al. | Carbon Nanowalls: A potential 2-Dimensional material for field emission and energy-related applications | |
LU503066B1 (en) | Graphene-based composite material and its preparation method and application | |
Farazmand et al. | Retracted article: Morphological and field emission properties of ZnO deposited MWCNT by RF sputtering and PECVD | |
Salar Elahi et al. | RETRACTED ARTICLE: Increase of the Surface Mobility of Carbon Molecular Crystals (CMCs) Using the PECVD Technique | |
Sattorov et al. | Graphene-Film Electron Field Emitter for THz VEDs |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant |