CN111058011A - 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法 - Google Patents

一种纳米金刚石-石墨烯复合薄膜电极及其制备方法 Download PDF

Info

Publication number
CN111058011A
CN111058011A CN201911352707.8A CN201911352707A CN111058011A CN 111058011 A CN111058011 A CN 111058011A CN 201911352707 A CN201911352707 A CN 201911352707A CN 111058011 A CN111058011 A CN 111058011A
Authority
CN
China
Prior art keywords
diamond
composite film
growth
silicon wafer
graphene composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201911352707.8A
Other languages
English (en)
Inventor
胡晓君
蒋梅燕
陈成克
李晓
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhejiang University of Technology ZJUT
Original Assignee
Zhejiang University of Technology ZJUT
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhejiang University of Technology ZJUT filed Critical Zhejiang University of Technology ZJUT
Priority to CN201911352707.8A priority Critical patent/CN111058011A/zh
Publication of CN111058011A publication Critical patent/CN111058011A/zh
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/271Diamond only using hot filaments
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/26Deposition of carbon only
    • C23C16/27Diamond only
    • C23C16/278Diamond only doping or introduction of a secondary phase in the diamond
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/28Electrolytic cell components
    • G01N27/30Electrodes, e.g. test electrodes; Half-cells
    • G01N27/308Electrodes, e.g. test electrodes; Half-cells at least partially made of carbon
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N27/00Investigating or analysing materials by the use of electric, electrochemical, or magnetic means
    • G01N27/26Investigating or analysing materials by the use of electric, electrochemical, or magnetic means by investigating electrochemical variables; by using electrolysis or electrophoresis
    • G01N27/416Systems
    • G01N27/4163Systems checking the operation of, or calibrating, the measuring apparatus

Abstract

一种纳米金刚石‑石墨烯复合薄膜,其制备方法为:将金刚石粉末和丙三醇混合,分散均匀,得到金刚石粉研磨膏,用其打磨单晶硅片,之后将硅片清洗,吹干,完成种晶过程;之后将硅片放入热丝化学气相沉积设备,以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中进行薄膜生长,完成纳米金刚石‑石墨烯复合薄膜的制备;本发明制得的NCD‑G的复合膜,具有较高的稳定性和耐蚀性,且具有相对快速的电子转移速率,该薄膜背景电流极低,电势窗口极宽,有望应用于极端环境下的痕量检测电极领域。

Description

一种纳米金刚石-石墨烯复合薄膜电极及其制备方法
技术领域
本发明涉及一种纳米金刚石-石墨烯复合薄膜电极及其制备方法。
背景技术
近年来,金刚石薄膜电极在电化学催化领域的应用受到越来越多的关注。它具备独特的电化学特性,比如较低的背景电流,极宽的电势窗口,抗污染特性及耐腐蚀性等。纳米金刚石(NCD)薄膜通常由纳米金刚石晶粒和非晶碳晶界组成。研究表明,晶界中的非晶碳相对薄膜的电化学特性影响显著。扫描电化学显微镜研究结果认为,纳米金刚石薄膜的金属导电性质主要来源于晶界中连续的非晶碳相,而电化学性能是薄膜电极内金属导电部分和半导体导电部分混杂的体现。因此,NCD薄膜晶界中非晶碳的组成、形态及含量等,都决定了其导电性质和电化学特性。
通常地,NCD薄膜晶界中的非晶碳组分以无序相形式存在,其本身的无序性决定了低导电性且不能为薄膜提供良好的导电路径。众所周知,石墨烯在电学和电化学方面表现出优异的性质。已经有报道将纳米金刚石颗粒负载到大片的石墨烯表面,充分利用碳同素异形体的互补电子行为达到了良好的导电效果。如果能制备得到纳米金刚石-石墨烯复合薄膜,即NCD-G薄膜,可望大大提高薄膜的电化学性能,获得性能优异的薄膜电极。
本发明采用热丝化学气相沉积方法,一次合成了NCD-G薄膜。少层石墨烯(层数小于10层,长度为5~20nm)平行地分布在纳米金刚石晶粒周围的晶界中。这种少层石墨烯是溶液中氧化还原探针的良好电荷交换体,显著增强了电极在氧化还原探针溶液中的电化学活性,使其电化学性能远远优于本征的NCD薄膜电极。高含量的纳米金刚石晶粒给NCD-G薄膜电极提供了极低的背景电流(低于0.0001A/cm2)和极宽的电势窗口(约4V),使其有望应用于极端环境下的痕量检测领域。
发明内容
本发明的目的是制备一种由纳米金刚石-石墨烯(NCD-G)复合的薄膜材料,使其具有较宽的电势窗口和极低的背景电流,表现出优异的电化学特性。
本发明的技术方案如下:
一种纳米金刚石-石墨烯(NCD-G)复合薄膜,其制备方法包括以下两个步骤:
(1)硅基底表面种晶过程;
(2)热丝化学气相沉积过程。
一般步骤(1)采用的具体方法如下:
将金刚石粉末和丙三醇(甘油)混合,分散均匀,得到金刚石粉研磨膏,利用所得金刚石粉研磨膏打磨单晶硅片,之后将硅片清洗,吹干,完成种晶过程;
所述金刚石粉末为一级金刚石粉末(粒径1微米);
所述丙三醇的体积用量以金刚石粉末的质量计为50~100mL/g;
单晶硅片的打磨可取金刚石粉研磨膏于抛光绒布上,对单晶硅片进行打磨,打磨时间为30~60min;
打磨完毕后,将硅片依次置于丙酮、乙醇中超声清洗,之后氮气吹干,完成种晶过程,用擦镜纸包好备用。
一般步骤(2)采用的具体方法如下:
将完成种晶过程的单晶硅衬底放入热丝化学气相沉积设备,以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中进行薄膜生长,生长过程的工作参数为:氢气、丙酮的流量比200:90sccm,生长功率2000~2400W,控制生长压力1.0~2.6kPa,薄膜生长时间40~80min,生长结束之后,在氢气氛中以0.5~3V/min的速率缓慢降低功率至0,完成纳米金刚石-石墨烯复合薄膜的制备;
所述热丝化学气相沉积设备购自上海交友钻石涂层公司,型号为JUHFCVD001;
优选的,薄膜生长过程中,生长压力为2.0~2.2kPa,生长功率为2000~2200W,生长时间为40~60min。
本发明的有益效果主要体现在:
1、采用热丝气相化学沉积方法,制备出NCD-G的复合膜,纳米金刚石具有较好的晶型;
2、NCD-G膜具有较高的稳定性和耐蚀性;
3、该薄膜具有相对快速的电子转移速率;
4、该薄膜具有极低的背景电流(低于0.0001A/cm2,较B掺杂的NCD薄膜低1~2个数量级)和极宽的电势窗口(约4V),使其有望应用于极端环境下的痕量检测电极领域。
附图说明
图1为生长压力1.3kPa下,NCD-G复合膜对应的场发射扫描电镜(FESEM)图;
图2为1.3kPa下NCD-G复合膜的Raman光谱图;
图3为1.3kPa下NCD-G复合膜的高分辨透射电镜(TEM)图
图4为1.3kPa下NCD-G复合薄膜和本征NCD薄膜的电势窗口和背景电流曲线图;
图5为1.3kPa下NCD-G复合薄膜和本征NCD薄膜在0.001M Fe(CN)6 3-/4-和1M KCl溶液中的循环伏安曲线图。
图6为生长压力1.6kPa NCD-G复合膜的场发射扫描电镜(FESEM)图;
图7为1.6kPa下NCD-G复合膜的Raman光谱图;
图8为1.6kPa下NCD-G复合膜的高分辨透射电镜(TEM)图
图9为1.6kPa下NCD-G复合薄膜和本征NCD薄膜的电势窗口和背景电流曲线图;
图10为1.6kPa下NCD-G复合薄膜和本征NCD薄膜在0.001M Fe(CN)6 3-/4-和1M KCl溶液中的循环伏安曲线图;
图11为生长压力2.2kPa下NCD-G复合膜的场发射扫描电镜(FESEM)图;
图12为2.2kPa下NCD-G复合膜的Raman光谱图;
图13为2.2kPa下NCD-G复合膜的高分辨透射电镜(TEM)图
图14为2.2kPa下的NCD-G复合薄膜和本征NCD薄膜的电势窗口和背景电流曲线图;
图15为2.2kPa下NCD-G复合薄膜和本征NCD薄膜在0.001M Fe(CN)6 3-/4-和1M KCl溶液中的循环伏安曲线图。
具体实施方式
下面通过具体实施例对本发明进行进一步的说明,但本发明的保护范围并不仅限于此。
实施例1
将金刚石粉(购自上海基业磨具磨料有限公司,型号w1)和丙三醇(甘油)以1g:100ml的比例进行混合,用玻璃棒搅拌均匀,放置超声波清洗器中超声分散5分钟,使其充分均匀分散,形成金刚石粉研磨膏,留取待用;取适量调配好的金刚石粉研磨膏于抛光绒布上,打磨单晶硅片,时间为30分钟;打磨完毕后,将上述处理过的硅片先后在丙酮和酒精溶液中超声清洗5分钟;用氮气枪将清洗完后的硅片吹干,用擦镜纸包好待用。
将种晶结束的单晶硅衬底放入热丝化学气相沉积设备,以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中。其中氢气、丙酮的流量比为200:90sccm,生长功率为2200W,控制生长压力为1.3kPa,生长时间为60min。生长结束之后,在氢气氛中以1V/min的速率缓慢降低功率至0,完成薄膜制备过程。
采用场发射扫描电镜观察薄膜的表面形貌;采用Raman光谱检测金刚石-石墨烯复合膜的成分;采用电化学工作站测定其电化学性能。
图1为在1.3kPa压力下生长的纳米金刚石-石墨烯复合膜在5万倍下场发射电镜照片。可见表面由纳米级的颗粒紧密排列,连续且紧凑。颗粒尺寸保持在100纳米以下。
图2为Raman光谱图。由图可见,在1345cm-1出现sp2无定形碳的特征缺陷峰,1591cm-1为sp2无定形碳的特征峰。由于可见光拉曼光谱对于sp3相的检测敏感程度较sp2相更弱,同时薄膜内部含有较多的非晶相。因此位于1332cm-1处的金刚石峰在可见光拉曼光谱图未能检测出来。同时,与石墨烯相关的2D峰位较显著地出现于2700cm-1处,说明样品中有较多的石墨烯组分。
图3为高分辨透射电镜(TEM)图。由图的FFT可见,有大量的石墨烯组分和少量的金刚石i-carbon结构,说明该薄膜为NCD-G复合薄膜。
图4为测定的NCD-G复合膜的电势窗口对比曲线,可见其具有较宽的电势窗口,以及极低的背景电流。
图5为测定的NCD-G复合膜的CV曲线对比图,可见其具有较高的电化学活性面积,以及优良的可逆性。相比于通常的本征NCD薄膜,NCD-G薄膜具有更大的电化学活性面积,因此NCD-G电极较NCD本征电极具有更高的电化学催化活性。
实施例2
将金刚石粉(购自上海基业磨具磨料有限公司,型号w1)和丙三醇(甘油)以1g:100ml的比例进行混合,用玻璃棒搅拌均匀,放置超声波清洗器中超声分散5分钟,使其充分均匀分散,形成金刚石粉研磨膏,留取待用;取适量调配好的金刚石粉研磨膏于抛光绒布上,打磨单晶硅片,时间为30分钟;打磨完毕后,将上述处理过的硅片先后在丙酮和酒精溶液中超声清洗5分钟;用氮气抢将清洗完后的硅片吹干,用擦镜纸包好待用。将种晶结束的单晶硅衬底放入热丝化学气相沉积设备,以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中。其中氢气、丙酮的流量比为200:90sccm,生长功率为2200W,控制生长压力为1.6kPa,生长时间为60min,在生长结束之后,在氢气氛中以1V/min的速率缓慢降低功率至0,完成薄膜制备过程。
图6为在1.6kPa压力下生长的纳米金刚石-石墨烯复合膜在5万倍下场发射扫描电镜照片。可见其为纳米晶粒。
图7为Raman光谱图。由图可见,在1341cm-1为sp2无定形碳的特征缺陷峰,在1586cm-1为sp2无定形碳特征峰,同样由于可见光拉曼光谱对于sp3相的检测敏感程度较sp2相更弱,同时薄膜内部含有较多的非晶相,因此位于1332cm-1处的金刚石峰在可见光拉曼光谱图未能显现出来。同时,在2700cm-1与石墨烯相关的峰变得不明显。
图8为高分辨透射电镜(HRTEM)图。可见大量的金刚石晶粒结构和晶粒之间的石墨烯桥架结构,其中石墨相和非晶碳相含量较少,存在着大量尺寸在10-50nm之间的纳米金刚石晶粒,通过反傅里叶变换,金刚石的晶格条纹间距为0.210nm,与一般金刚石的晶格条纹间距接近,因此主要为纳米金刚石夹杂石墨烯,说明薄膜为纳米金刚石-石墨烯复合薄膜。
图9为测定的NCD-G复合膜的电势窗口对比曲线,可见其具有较宽的电势窗口,以及极低的背景电流。
图10为测定的NCD-G复合膜的CV曲线对比图,相比于本征NCD薄膜,可见其具有较高的电化学活性面积,以及优良的可逆性。
实施例3
将金刚石粉(购自上海基业磨具磨料有限公司,型号w1)和丙三醇(甘油)以1g:100ml的比例进行混合,用玻璃棒搅拌均匀,放置超声波清洗器中超声分散5分钟,使其充分均匀分散,形成金刚石粉研磨膏,留取待用;取适量调配好的金刚石粉研磨膏于抛光绒布上,打磨单晶硅片,时间为30分钟;打磨完毕后,将上述处理过的硅片先后在丙酮和酒精溶液中超声清洗5分钟;用氮气抢将清洗完后的硅片吹干,用擦镜纸包好待用。将种晶结束的单晶硅衬底放入热丝化学气相沉积设备,以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中。其中氢气、丙酮的流量比为200:90sccm,生长功率为2200W,控制生长压力为2.2kPa,生长时间为60min,在生长结束之后,在氢气氛中以1V/min的速率缓慢降低功率至0,完成薄膜制备过程。
图11为在2.2kPa压力下生长的纳米金刚石-石墨烯复合膜在5万倍下场发射电镜照片。可见为晶粒尺寸大的纳米颗粒构成,且晶型较好。
图12为Raman光谱图。由图可见,在1332cm-1处出现金刚石峰,在1348cm-1为sp2无定形碳的缺陷峰,在1559cm-1处为sp2无定形碳的特征峰,同时,2700cm-1与石墨烯相关的峰并不显著。表明该压力下薄膜主要以金刚石相存在。
图13为高分辨透射电镜(TEM)图。可见样品中存在着大量的金刚石相及一定量的石墨烯相,在金刚石的晶粒周围,分布一定含量的石墨烯,非晶碳相含量较少,经反傅里叶变换,其金刚石的晶格条纹的间距为0.217nm,跟一般金刚石的晶格条纹间距接近,因此薄膜由纳米金刚石晶粒和少量石墨烯组成,为纳米金刚石-石墨烯复合薄膜。
图14为测定的NCD-G复合膜的电势窗口对比曲线,可见其具有较宽的电势窗口,以及极低的背景电流。
图15为测定的NCD-G复合膜的CV曲线对比图,可见其具有较高的电化学活性面积,以及优良的可逆性。相比于本征NCD薄膜,NCD-G 2.2KPa薄膜具有明显增大的电化学活性面积和加速的电荷转移速率。

Claims (6)

1.一种纳米金刚石-石墨烯复合薄膜,其特征在于,按如下方法制备得到:
(1)将金刚石粉末和丙三醇混合,分散均匀,得到金刚石粉研磨膏,利用所得金刚石粉研磨膏打磨单晶硅片,之后将硅片清洗,吹干,完成种晶过程;
(2)将完成种晶过程的单晶硅衬底放入热丝化学气相沉积设备,以丙酮为碳源,采用氢气鼓泡方式将丙酮带入到反应室中进行薄膜生长,生长过程的工作参数为:氢气、丙酮的流量比200:90sccm,生长功率2000~2400W,控制生长压力1.0~2.6kPa,薄膜生长时间40~80min,生长结束之后,在氢气氛中以0.5~3V/min的速率缓慢降低功率至0,完成纳米金刚石-石墨烯复合薄膜的制备。
2.如权利要求1所述的纳米金刚石-石墨烯复合薄膜,其特征在于,步骤(1)中,所述金刚石粉末为一级金刚石粉末。
3.如权利要求1所述的纳米金刚石-石墨烯复合薄膜,其特征在于,步骤(1)中,所述丙三醇的体积用量以金刚石粉末的质量计为50~100mL/g。
4.如权利要求1所述的纳米金刚石-石墨烯复合薄膜,其特征在于,步骤(1)中,单晶硅片的打磨为:取金刚石粉研磨膏于抛光绒布上,对单晶硅片进行打磨,打磨时间为30~60min。
5.如权利要求1所述的纳米金刚石-石墨烯复合薄膜,其特征在于,步骤(1)中,打磨完毕后,将硅片依次置于丙酮、乙醇中超声清洗,之后氮气吹干,完成种晶过程,用擦镜纸包好备用。
6.如权利要求1所述的纳米金刚石-石墨烯复合薄膜,其特征在于,步骤(2)中,薄膜生长过程中,生长压力为2.0~2.2kPa,生长功率为2000~2200W,生长时间为40~60min。
CN201911352707.8A 2019-12-25 2019-12-25 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法 Pending CN111058011A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201911352707.8A CN111058011A (zh) 2019-12-25 2019-12-25 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201911352707.8A CN111058011A (zh) 2019-12-25 2019-12-25 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法

Publications (1)

Publication Number Publication Date
CN111058011A true CN111058011A (zh) 2020-04-24

Family

ID=70303408

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201911352707.8A Pending CN111058011A (zh) 2019-12-25 2019-12-25 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法

Country Status (1)

Country Link
CN (1) CN111058011A (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112862816A (zh) * 2021-03-15 2021-05-28 太原理工大学 一种hrtem图像中煤芳香烃晶格条纹的智能提取方法
CN113755819A (zh) * 2021-08-03 2021-12-07 浙江工业大学 氮化铝基底上的低粗糙度微晶金刚石薄膜及其制备方法
CN113881929A (zh) * 2021-09-15 2022-01-04 湖南新锋先进材料科技有限公司 一种双面结构的金刚石-石墨烯薄膜及其制备方法和应用
CN114032525A (zh) * 2021-11-04 2022-02-11 西南科技大学 金刚石-多层石墨烯复合阴极材料及其制备方法
EP4242648A1 (en) * 2022-03-08 2023-09-13 Politechnika Gdanska Composite electrodes for nitroexplosive detection comprising a nanodiamond foil (ndf) or a layer of nanodiamond powder (ndp) deposited on a graphene-doped polylactic acid (g-pla)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367570A (zh) * 2011-11-01 2012-03-07 南昌航空大学 一种制备金刚石-石墨烯复合膜的方法
CN104495829A (zh) * 2014-12-30 2015-04-08 南京航空航天大学 一种在低温衬底上制备石墨烯薄膜的方法
CN104762607A (zh) * 2015-03-31 2015-07-08 浙江工业大学 一种单颗粒层纳米金刚石薄膜及其制备方法
WO2017080079A1 (zh) * 2015-11-09 2017-05-18 中国矿业大学 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法
US20170190629A1 (en) * 2014-03-27 2017-07-06 Blue Cube Ip Llc Process for fabricating carbon-carbon composites
CN107190246A (zh) * 2017-05-05 2017-09-22 太原理工大学 一种具有优良场发射性能的石墨烯/金刚石复合膜及其制备方法
CN108642472A (zh) * 2018-05-30 2018-10-12 叶展 高粘高疏水碳基纳米复合颗粒薄膜及其制备方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102367570A (zh) * 2011-11-01 2012-03-07 南昌航空大学 一种制备金刚石-石墨烯复合膜的方法
US20170190629A1 (en) * 2014-03-27 2017-07-06 Blue Cube Ip Llc Process for fabricating carbon-carbon composites
CN104495829A (zh) * 2014-12-30 2015-04-08 南京航空航天大学 一种在低温衬底上制备石墨烯薄膜的方法
CN104762607A (zh) * 2015-03-31 2015-07-08 浙江工业大学 一种单颗粒层纳米金刚石薄膜及其制备方法
WO2017080079A1 (zh) * 2015-11-09 2017-05-18 中国矿业大学 一种以纳米碳材料的热扩散为预处理的硬质涂层制备方法
CN107190246A (zh) * 2017-05-05 2017-09-22 太原理工大学 一种具有优良场发射性能的石墨烯/金刚石复合膜及其制备方法
CN108642472A (zh) * 2018-05-30 2018-10-12 叶展 高粘高疏水碳基纳米复合颗粒薄膜及其制备方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112862816A (zh) * 2021-03-15 2021-05-28 太原理工大学 一种hrtem图像中煤芳香烃晶格条纹的智能提取方法
CN112862816B (zh) * 2021-03-15 2024-03-15 太原理工大学 一种hrtem图像中煤芳香烃晶格条纹的智能提取方法
CN113755819A (zh) * 2021-08-03 2021-12-07 浙江工业大学 氮化铝基底上的低粗糙度微晶金刚石薄膜及其制备方法
CN113755819B (zh) * 2021-08-03 2024-04-09 浙江工业大学 氮化铝基底上的低粗糙度微晶金刚石薄膜及其制备方法
CN113881929A (zh) * 2021-09-15 2022-01-04 湖南新锋先进材料科技有限公司 一种双面结构的金刚石-石墨烯薄膜及其制备方法和应用
CN113881929B (zh) * 2021-09-15 2024-04-02 湖南新锋先进材料科技有限公司 一种双面结构的金刚石-石墨烯薄膜及其制备方法和应用
CN114032525A (zh) * 2021-11-04 2022-02-11 西南科技大学 金刚石-多层石墨烯复合阴极材料及其制备方法
CN114032525B (zh) * 2021-11-04 2023-09-12 西南科技大学 金刚石-多层石墨烯复合阴极材料及其制备方法
EP4242648A1 (en) * 2022-03-08 2023-09-13 Politechnika Gdanska Composite electrodes for nitroexplosive detection comprising a nanodiamond foil (ndf) or a layer of nanodiamond powder (ndp) deposited on a graphene-doped polylactic acid (g-pla)

Similar Documents

Publication Publication Date Title
CN111058011A (zh) 一种纳米金刚石-石墨烯复合薄膜电极及其制备方法
US8067062B2 (en) Carbon nano tube electrode formed by directly growing carbon nano tube on surface of carbon paper and supporting platinum-based nano catalyst on carbon nano tube using CVD method and manufacturing method thereof
Raffaelle et al. Carbon nanotubes for power applications
Cho et al. Density control of carbon nanowalls grown by CH4/H2 plasma and their electrical properties
Hsueh et al. Deposition of platinum on oxygen plasma treated carbon nanotubes by atomic layer deposition
CN110527973B (zh) 一种利用固态掺杂源制备掺硼金刚石的方法
CN103193217A (zh) 一种硼掺杂金刚石与碳纳米管复合纳米锥的制备方法
Sun et al. Versatile template-free construction of hollow nanostructured CeO 2 induced by functionalized carbon materials
Rahman et al. Synthesis and optical characterization of carbon nanotube arrays
Wang et al. Facile fabrication of NiO foam@ Sn-doped In2O3 nanowire heterosturctures for highly sensitive ethylene glycol gas sensors at low temperatures
Sankaran et al. Microstructural evolution of diamond films from CH4/H2/N2 plasma and their enhanced electrical properties
CN110865099B (zh) 一种ZnO-SnO2-Zn2SnO4多孔纳米纤维气敏材料的制备方法及其应用
KR100801192B1 (ko) 나노크기 이하의 기공을 가지는 카본나이트라이드나노튜브, 이의 제조방법 및 카본나이트라이드 나노튜브의기공 크기와 양을 조절하는 방법
Zhang et al. Preparation and electrochemical properties of boron-doped polycrystalline diamond film with five-fold twin structure
Yang et al. Mechanism of enhanced wettability of nanocrystalline diamond films by plasma treatment
CN111155071B (zh) 硫离子注入纳米金刚石-石墨烯复合薄膜电极及其制备方法
Bordjiba et al. Enhanced physical and electrochemical properties of nanostructured carbon nanotubes coated microfibrous carbon paper
CN113445022B (zh) 一种硼氮共掺杂金刚石纳米片/掺硼金刚石薄膜及其制备方法和应用
CN108163829A (zh) 一种玻璃碳/多壁碳纳米管复合电极及其制备方法和应用
CN104357841A (zh) 一种铁族碳化物纳米晶体-石墨烯纳米带复合材料、制备及其应用
Hu et al. Manipulation of nanostructured carbon films as field emitters in an electric-and-magnetic-field-assisted chemical vapor deposition process
Teng et al. Single-phase tungsten carbide nanopillar arrays prepared by chemical vapor deposition
CN113755819B (zh) 氮化铝基底上的低粗糙度微晶金刚石薄膜及其制备方法
Hou et al. Synthesis of high quality nitrogen-doped single-wall carbon nanotubes
KR101968604B1 (ko) 그래핀이 코팅된 스테인리스 스틸(sus) 지지체 및 이의 제조 방법

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
RJ01 Rejection of invention patent application after publication

Application publication date: 20200424

RJ01 Rejection of invention patent application after publication