CN109182971A - 一种利用反应等离子沉积技术生长宽光谱mgzo-tco薄膜的方法及应用 - Google Patents

一种利用反应等离子沉积技术生长宽光谱mgzo-tco薄膜的方法及应用 Download PDF

Info

Publication number
CN109182971A
CN109182971A CN201810757314.4A CN201810757314A CN109182971A CN 109182971 A CN109182971 A CN 109182971A CN 201810757314 A CN201810757314 A CN 201810757314A CN 109182971 A CN109182971 A CN 109182971A
Authority
CN
China
Prior art keywords
film
mgzo
wide spectrum
reaction
deposition technique
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201810757314.4A
Other languages
English (en)
Other versions
CN109182971B (zh
Inventor
陈新亮
张晓丹
赵颖
周忠信
李盛喆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jiezao Technology Ningbo Co ltd
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201810757314.4A priority Critical patent/CN109182971B/zh
Publication of CN109182971A publication Critical patent/CN109182971A/zh
Application granted granted Critical
Publication of CN109182971B publication Critical patent/CN109182971B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/06Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the coating material
    • C23C14/08Oxides
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/0021Reactive sputtering or evaporation
    • C23C14/0036Reactive sputtering
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C14/00Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material
    • C23C14/22Coating by vacuum evaporation, by sputtering or by ion implantation of the coating forming material characterised by the process of coating
    • C23C14/34Sputtering
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022408Electrodes for devices characterised by at least one potential jump barrier or surface barrier
    • H01L31/022425Electrodes for devices characterised by at least one potential jump barrier or surface barrier for solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1884Manufacture of transparent electrodes, e.g. TCO, ITO
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Photovoltaic Devices (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种利用反应等离子沉积技术生长宽光谱MGZO‑TCO薄膜的方法及其应用,属于光电子器件领域。以组分纯度为99.99%的MgO和Ga2O3掺杂的ZnO靶材即ZnO:Ga2O3:MgO陶瓷靶作为靶材原料,溅射气体为Ar气,镀膜过程中引入少量H2或O2,基片偏压0‑150V;衬底温度为室温‑200度,得到结构为glass/MGZO薄膜。器件界面生长缓冲层SnOx,获得复合结构SnOx/MGZO薄膜。本发明薄膜具有宽光谱透过率,并且维持优良的电学特性和表面结构,应用于晶硅异质结太阳电池器件,可提高晶体硅异质结太阳电池等器件效率。

Description

一种利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方 法及应用
技术领域
本发明属于光电子器件(如太阳电池)领域,特别是一种反应等离子体沉积室温生长宽光谱MGZO透明导电薄膜及太阳电池(如硅基和CIGS等器件)应用。
背景技术
透明导电氧化物(transparent conductive oxide-TCO)薄膜材料是太阳电池的重要组成部分,参见文献:A.V.Shah,H.Schade,M.Vanecek,et al.Progress inPhotovoltaics 12(2004)113-142、J.Müller,B.Rech,J.Springer,et al.Solar Energy77(2004)917-930。当前薄膜电池中应用最为广泛的TCO薄膜是F掺杂SnO2薄膜(SnO2:F)和Sn掺杂In2O3薄膜(In2O3:Sn)。F掺杂SnO2(FTO)薄膜通常是利用常压CVD(APCVD)技术制备,生长温度较高(~500℃),这对于低温沉积和强H等离子体环境中生长的材料而言,将限制其进一步应用,参见文献:S.Major,S.Kumar,M.Bhatnagar,et al.Applied Physics Letters49(1986)394-396。Sn掺杂In2O3(ITO)薄膜由于In的成本较高,并且在强H等离子体环境中性能容易恶化,也限制了其在太阳电池中的广泛应用。相比于其他TCO薄膜材料,ZnO薄膜具有源材料丰富,无毒且相对生长温度低(室温-300℃)和在强H等离子体环境中性能稳定等特点获得了广泛研究和应用。
ZnO-TCO薄膜在多种光电器件(如太阳电池,发光二极管等)中扮演着重要的角色。硅基太阳电池如晶硅异质结太阳电池(SHJ)和CIGS太阳电池是具有重要商业应用价值的研究课题,其顶部需要透明导电层需要较好的导电性和良好的透过率,以获得高效率电池。对于太阳电池方面的应用来说,TCO可作为硅异质结太阳电池,硅基薄膜太阳电池、铜铟镓硒薄膜太阳电池和碲化镉薄膜太阳电池的透明电极和反射层。考虑到本征氧化锌较差的导电性能,III族元素例如B,Ga,Al等作为掺杂剂改善本征ZnO的光电属性。在众多掺杂剂中,Ga离子与Zn离子半径相似,从而在掺杂时造成较少的晶格失配,并且替位的Ga离子能够作为施主改善薄膜的电学性能。
作为硅异质结太阳电池或CIGS等窗口电极层,TCO应该在约320-1200nm有很高的透过率,对于传统的Ga掺杂ZnO即GZO或者Al掺杂ZnO即AZO来说,很难平衡近红外(NIR)与近紫外(NUV)的透过率。当载流子浓度提高,由于B-M效应造成带隙展宽获得更好的NUV透过率时,由于高的载流子浓度增加载流子的吸收因而导致了NIR透过率的减小。为了能够解决这种矛盾,由于MgO具有较宽的带隙(~7.8eV),考虑引入Mg作为一种掺杂剂。许多研究已经报道通过Mg的引入,ZnO的带隙可以从3.3eV调节增加到7.8eV,参考文献:S.H.Jang,S.F.Chichibu,.Structural,elastic,and polarization parameters and bandstructures of wurtzite ZnO and MgO,Journal ofApplied Physics,2012,112:073503-073506;X.Gu,L.Zhu,Z.Ye,et al.Highly transparent and conductive Zn0.85Mg0.15O:Althin films prepared by pulsed laser deposition,Solar Energy Materials andSolar Cells,2008,92:343-347;S.W.Shin,I.Y.Kim,G.H.Lee,et al,Design and growthof quaternary Mg and Ga codoped ZnO thin films with transparent conductivecharacteristics,Crystal Growth&Design,2011,11:4819-4824。这样既展宽了带隙,又不会因为高的载流子减少了近红外边的透过率,这将同时改善近红外和近紫外的透过率。因此,这将有利于改善硅基太阳电池的量子效率。适当的Mg和Ga共同引入ZnO中能够同时改善NUV和NIR透过率并保证优良的电学性能。此外,引入氢气能够改善ZnO薄膜的电学性能,参考文献:Y.R.Park,J.Kim,Y.S.Kim,.Effect ofhydrogen doping in ZnO thin films bypulsed DC magnetron sputtering,Applied Surface Science,2009,255:9010-9014.),H能够作为浅施主改善薄膜的特性,参见文献:Chris G.Van de Walle.Hydrogen as aCause of Doping in Zinc Oxide,Physical Review Letters 85(2000)1012-1015。
生长ZnO-TCO薄膜方法很多,有磁控溅射技术,金属有机化学其相沉积技术和溶胶-凝胶技术,反应等离子体沉积技术等。其中反应等离子体沉积具有生长温度低,离子轰击小,高沉积速率和大面积镀膜等优点。
本发明利用反应等离子体沉积技术(RPD)室温生长MgO和Ga2O3掺杂的ZnO-TCO即MGZO薄膜,并获得复合结构SnOx/MGZO,将其应用于硅基太阳电池(如晶硅异质结或CIGS太阳电池),其中ZnO陶瓷靶材(掺杂剂为MgO和Ga2O3)作为原材料,Ar气体作为溅射气体,同时生长过程中可引入H2气体和O2气体以及基片偏压。上述技术特征区别于当前其他镀膜生长获得的ZnO薄膜的方法。
发明内容
本发明的目的是针对上述技术分析,提供一种用反应等离子沉积(RPD)技术低温(如室温)生长MgO和Ga2O3掺杂的ZnO-TCO即MGZO薄膜并应用于太阳电池(尤其晶硅异质结太阳电池)。本方法解决常规镀膜技术生长ZnO薄膜光学和电学性能差、衬底温度高和对器件材料损伤等缺点,通过RPD技术生长获得离子能量轰击小,宽光谱高透过率和低电阻率MGZO薄膜;并设计了一种超薄缓冲层SnOx,形成复合结构SnOx/MGZO。该发明实现的ZnO-TCO薄膜可应用于太阳电池,有效地提高了器件效率。
本发明的技术方案:
一种利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法,以组分纯度为99.99%的MgO和Ga2O3掺杂的ZnO靶材即ZnO:Ga2O3:MgO陶瓷靶作为靶材原料,溅射气体为Ar气,镀膜过程中引入少量H2或O2,基片偏压0-150V;在玻璃衬底上生长MGZO薄膜,衬底温度为室温-200度,得到结构为glass/MGZO薄膜。进一步地,设计并生长超薄SnOx缓冲层,得到复合结构SnOx/MGZO薄膜。
所述的ZnO陶瓷靶中靶材组分Ga2O3的重量百分比均为0.5-2.0%;靶材组分MgO的重量百分比均为1.0-8.0%。
所述的MGZO薄膜厚度为100-2000nm。
所述的气体Ar气的气压为1.0-6.0mTorr;过程中引入氢气的流量为0sccm至10sccm;过程中引入氧气的流量为0sccm至10sccm。
所述的界面缓冲层SnOx的厚度为0.2-8nm。
以上利用反应等离子沉积技术生长宽光谱MGZO薄膜的方法所得薄膜应用于太阳电池器件。
所述的太阳电池器件包括晶硅基异质结太阳电池或CIGS太阳电池。
本发明的优点及效果:相比于利用溅射镀膜技术获得的ZnO-TCO薄膜,本发明反应等离子体沉积(RPD)技术生长的宽光谱MGZO-TCO薄膜具有宽光谱透过率,并且维持优良的电学特性和表面结构。该宽光谱MGZO-TCO薄膜应用于器件,可获得高效率硅基异质结太阳电池等;此外,应用界面缓冲层SnOx形成复合结构SnOx/MGZO薄膜可提高晶体硅异质结太阳电池等器件效率。
附图说明
图1为反应等离子体沉积系统示意图。
图2为MGZO薄膜结构示意图。
图3为MGZO薄膜结构SEM图像。
图4为MGZO薄膜应用于太阳电池的结构示意图。
图5为MGZO薄膜应用于太阳电池的实验J-V性能。
图6为复合结构SnOx(Buffer)/MGZO晶硅异质结太阳电池结构示意图。
表1为复合结构SnOx(Buffer)/MGZO应用于太阳电池实验J-V性能参数。
具体实施方式
实施例1:
1、利用反应等离子体沉积技术,其系统结构示意图如图1。以纯度为99.99%的ZnO陶瓷靶作为靶材原料,陶瓷靶中掺杂剂组分Ga2O3掺杂百分比为1.5%,陶瓷靶中掺杂剂组分MgO掺杂百分比为4.0%;溅射气体为Ar气体,在玻璃衬底上生长MGZO薄膜,衬底温度为室温,薄膜厚度为~480nm。该薄膜结构为glass/MGZO,如图2所示。
图3为该MGZO薄膜SEM图像,薄膜呈现一定的粗糙度2.8nm,并出现类金字塔状晶粒,晶粒尺寸~30-100nm;薄膜致密且具有350-1200较好的透过率85%和导电性10-4数量级欧姆厘米。
2、将该绒面结构ZnO薄膜应用于晶硅异质结太阳电池,图4为晶硅异质结太阳电池结构示意图。首先晶体硅制造绒面并两面分别镀制i-a-Si和p-a-Si以及n-a-Si;而后利用RPD技术室温在晶硅异质结顶部和底部分别镀制MGZO薄膜,最后镀制金属电极Ag/Al和Al电极,上述特征构成太阳电池器件。图5为晶硅异质结太阳电池J-V性能图,该发明实现的MGZO薄膜应用于硅异质结太阳电池,光电效率达19.016%。
实施例2:
1、利用反应等离子体沉积技术,以纯度为99.99%的ZnO陶瓷靶作为靶材原料,陶瓷靶中掺杂剂组分Ga2O3掺杂百分比为1.5%,陶瓷靶中掺杂剂组分MgO掺杂百分比为4.0%;溅射气体为Ar气体,在玻璃衬底上生长MGZO薄膜,衬底温度为室温;超薄缓冲层SnOx设计为~1nm,实现复合结构SnOx/MGZO。
2、图6为该SnOx/MGZO薄膜应用于晶硅异质结太阳电池结构示意图,首先晶体硅制造绒面并两面分别镀制i-a-Si和p-a-Si和n-a-Si;而后电池底部一侧镀制传统TCO薄膜,顶部一侧镀制SnOx/MGZO复合结构薄膜;最后两侧镀制金属电极Ag/Al栅线,上述特征构成太阳电池器件。表1为SnOx/MGZO薄膜应用的晶硅异质结太阳电池J-V性能实验参数。
表1晶硅异质结太阳电池J-V性能参数比较
由表1可知,相比于无缓冲层的太阳电池器件,具有SnOx/MGZO复合薄膜结构的晶体硅异质结太阳电池,其光电转化效率相对提高10.68%。

Claims (10)

1.一种利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法,其特征是:以组分纯度为99.99%的MgO和Ga2O3掺杂的ZnO靶材即ZnO:Ga2O3:MgO陶瓷靶作为靶材原料,溅射气体为Ar气,镀膜过程中引入少量H2或O2,基片偏压0-150V;在玻璃衬底上生长MGZO薄膜,衬底温度为室温-200度,得到结构为glass/MGZO薄膜。
2.根据权利要求1所述的利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法,其特征是:结合超薄SnOx缓冲层,得到复合结构SnOx/MGZO薄膜。
3.根据权利要求1所述的利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法,其特征是:所述ZnO陶瓷靶中靶材组分Ga2O3的重量百分比均为0.5-2.0%;ZnO陶瓷靶中靶材组分MgO的重量百分比均为1.0-8.0%。
4.根据权利要求1所述的利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法,其特征是:所述薄膜厚度为100-2000nm。
5.根据权利要求1所述的利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法,其特征是:气体Ar气的气压为1.0-6.0mTorr;过程中引入氢气的流量为0sccm至10sccm;过程中引入氧气的流量为0sccm至10sccm;衬底温度为室温-200度。
6.根据权利要求2所述的利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法,其特征是:界面缓冲层SnOx的厚度为0.2-8nm。
7.根据权利要求1或2所述的利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法所得薄膜的应用,其特征是:所得薄膜应用于太阳电池器件。
8.根据权利要求7所述的利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法所得薄膜的应用,其特征是:首先晶体硅制造绒面并两面分别镀制i-a-Si,而后两侧分别镀制p-a-Si和n-a-Si;而后利用RPD技术在晶硅异质结顶部和底部分别镀制MGZO薄膜,最后镀制金属电极Ag/Al和Al电极,即构成太阳电池器件。
9.根据权利要求7所述的利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法所得薄膜的应用,其特征是:首先晶体硅制造绒面并两面分别镀制i-a-Si和p-a-Si和n-a-Si;而后电池底部一侧镀制传统TCO薄膜,顶部一侧镀制SnOx/MGZO复合结构薄膜;最后两侧镀制金属电极Ag/Al栅线,即构成太阳电池器件。
10.根据权利要求8或9所述的利用反应等离子沉积技术生长宽光谱MGZO-TCO薄膜的方法所得薄膜的应用,其特征是:所述的太阳电池器件包括晶硅基异质结太阳电池和CIGS太阳电池。
CN201810757314.4A 2018-07-11 2018-07-11 一种利用反应等离子沉积技术生长宽光谱mgzo-tco薄膜的方法及应用 Active CN109182971B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810757314.4A CN109182971B (zh) 2018-07-11 2018-07-11 一种利用反应等离子沉积技术生长宽光谱mgzo-tco薄膜的方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810757314.4A CN109182971B (zh) 2018-07-11 2018-07-11 一种利用反应等离子沉积技术生长宽光谱mgzo-tco薄膜的方法及应用

Publications (2)

Publication Number Publication Date
CN109182971A true CN109182971A (zh) 2019-01-11
CN109182971B CN109182971B (zh) 2020-02-07

Family

ID=64935983

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810757314.4A Active CN109182971B (zh) 2018-07-11 2018-07-11 一种利用反应等离子沉积技术生长宽光谱mgzo-tco薄膜的方法及应用

Country Status (1)

Country Link
CN (1) CN109182971B (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883621A (zh) * 2020-07-07 2020-11-03 江苏爱康能源研究院有限公司 一种高效晶硅异质结太阳能电池的tco镀膜工艺方法
CN112885718A (zh) * 2021-01-20 2021-06-01 厦门乾照光电股份有限公司 一种复合导电薄膜的制备方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101582461A (zh) * 2009-03-24 2009-11-18 新奥光伏能源有限公司 一种新型多层透明导电膜结构及其制备方法
CN101970709A (zh) * 2007-12-19 2011-02-09 卡洛·塔利亚尼 用于沉积金属氧化物膜的方法
CN101980986A (zh) * 2007-11-02 2011-02-23 北美Agc平板玻璃公司 用于薄膜光伏应用的透明导电氧化物涂层及其生产方法
US20110277812A1 (en) * 2010-05-13 2011-11-17 Benyamin Buller Photovoltaic device conducting layer

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101980986A (zh) * 2007-11-02 2011-02-23 北美Agc平板玻璃公司 用于薄膜光伏应用的透明导电氧化物涂层及其生产方法
CN101970709A (zh) * 2007-12-19 2011-02-09 卡洛·塔利亚尼 用于沉积金属氧化物膜的方法
CN101582461A (zh) * 2009-03-24 2009-11-18 新奥光伏能源有限公司 一种新型多层透明导电膜结构及其制备方法
US20110277812A1 (en) * 2010-05-13 2011-11-17 Benyamin Buller Photovoltaic device conducting layer

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
JIE-MING LIU等: "High-haze and wide-spectrum hydrogenated MGZO TCO films on micro-textured glass substrates for thin-film solar cells", 《SOLAR ENERGY MATERIALS & SOLAR CELLS》 *
SEUNG WOOK SHIN等: "Development of transparent conductive Mg and Ga co-doped ZnO thin films: Effect of Mg concentration", 《SURFACE & COATINGS TECHNOLOGY》 *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111883621A (zh) * 2020-07-07 2020-11-03 江苏爱康能源研究院有限公司 一种高效晶硅异质结太阳能电池的tco镀膜工艺方法
CN112885718A (zh) * 2021-01-20 2021-06-01 厦门乾照光电股份有限公司 一种复合导电薄膜的制备方法

Also Published As

Publication number Publication date
CN109182971B (zh) 2020-02-07

Similar Documents

Publication Publication Date Title
EP2407575B1 (en) Transparent conductive film and transparent conductive film laminate, processes for production of same, and silicon thin film solar cell
Lin et al. Characteristics of Cu2ZnSn (SxSe1− x) 4 thin-film solar cells prepared by sputtering deposition using single quaternary Cu2ZnSnS4 target followed by selenization/sulfurization treatment
Wang et al. Effects of thickness on photoelectric properties and perovskite solar cells application of transparent conductive F and Al co-doped ZnO films
CN104781445A (zh) 透明导电膜层叠体及其制造方法、以及薄膜太阳能电池及其制造方法
CN101562216B (zh) 具有类金字塔结构的绒面ZnO薄膜的制备方法
Liu et al. Investigation of aluminum–gallium co-doped zinc oxide targets for sputtering thin film and photovoltaic application
Zeng et al. Boron-doped zinc oxide thin films grown by metal organic chemical vapor deposition for bifacial a-Si: H/c-Si heterojunction solar cells
Lai et al. Al-doped ZnO transparent conducting glass with an IGZO buffer layer for dye-sensitized solar cells
CN109182971A (zh) 一种利用反应等离子沉积技术生长宽光谱mgzo-tco薄膜的方法及应用
CN102199758B (zh) 一种生长绒面结构ZnO-TCO薄膜的方法及应用
CN100424899C (zh) MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜
KR101819775B1 (ko) 투명 도전막 적층체 및 그 제조 방법, 그리고 박막 태양 전지 및 그 제조 방법
CN110491964A (zh) 一种柔性双面太阳能电池及其制备方法
CN101820003B (zh) 薄膜太阳电池用双层氧化锌透明导电薄膜及其制备方法
CN102199759B (zh) 一种梯度氢气法生长绒面结构ZnO-TCO薄膜及应用
KR20150083869A (ko) 투명 도전막 적층체 및 그 제조 방법, 및 박막 태양 전지 및 그 제조 방법
CN102418080A (zh) 一种玻璃衬底绒面结构ZnO薄膜的制备方法及其应用
CN102433545A (zh) 一种交替生长技术制备绒面结构ZnO薄膜及其应用
CN103066134B (zh) 一种薄膜太阳能电池背反电极及其制备方法
CN102637751A (zh) 太阳电池用宽光谱陷光透明导电薄膜及其制备方法
Li et al. Influence of boron doping amount on properties of ZnO: B films grown by LPCVD technique and its correlation to a-Si: H/μc-Si: H tandem solar cells
CN207925499U (zh) 一种Cu2ZnSn(S,Se)4薄膜太阳能电池
CN101707219A (zh) 本征隔离结构太阳能电池及其制造方法
Hongsingthong et al. ZnO films prepared by two-step MOCVD process for use as front TCO in silicon-based thin film solar cells
KR20160075042A (ko) Ald 공정을 통한 박막 태양전지 제조방법 및 이로부터 제조된 박막 태양전지

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20230621

Address after: A1-1, Building 1, No. 10, Kechuang Second Street, Daxing District, Beijing Economic-Technological Development Area, 100176

Patentee after: BEIJING JIEZAO PHOTOELECTRIC TECHNOLOGY Co.,Ltd.

Address before: 300071 Tianjin City, Nankai District Wei Jin Road No. 94

Patentee before: NANKAI University

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20230719

Address after: 315615 building 10, Nan'ao high tech Industrial Park, No. 12, Nan'ao Road, Taoyuan Street, Ninghai County, Ningbo City, Zhejiang Province

Patentee after: Jiezao Technology (Ningbo) Co.,Ltd.

Address before: A1-1, Building 1, No. 10, Kechuang Second Street, Daxing District, Beijing Economic-Technological Development Area, 100176

Patentee before: BEIJING JIEZAO PHOTOELECTRIC TECHNOLOGY Co.,Ltd.

TR01 Transfer of patent right