CN110491964A - 一种柔性双面太阳能电池及其制备方法 - Google Patents

一种柔性双面太阳能电池及其制备方法 Download PDF

Info

Publication number
CN110491964A
CN110491964A CN201910677563.7A CN201910677563A CN110491964A CN 110491964 A CN110491964 A CN 110491964A CN 201910677563 A CN201910677563 A CN 201910677563A CN 110491964 A CN110491964 A CN 110491964A
Authority
CN
China
Prior art keywords
battery
layer
sub
gaas
gainp
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201910677563.7A
Other languages
English (en)
Inventor
叶旺
潘旭
文宏
张露
黄珊珊
黄辉廉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zhongshan Dehua Chip Technology Co Ltd
Original Assignee
Zhongshan Dehua Chip Technology Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zhongshan Dehua Chip Technology Co Ltd filed Critical Zhongshan Dehua Chip Technology Co Ltd
Priority to CN201910677563.7A priority Critical patent/CN110491964A/zh
Publication of CN110491964A publication Critical patent/CN110491964A/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/0248Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies
    • H01L31/0256Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof characterised by their semiconductor bodies characterised by the material
    • H01L31/0264Inorganic materials
    • H01L31/0304Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds
    • H01L31/03046Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP
    • H01L31/03048Inorganic materials including, apart from doping materials or other impurities, only AIIIBV compounds including ternary or quaternary compounds, e.g. GaAlAs, InGaAs, InGaAsP comprising a nitride compounds, e.g. InGaN
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • H01L31/1844Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P
    • H01L31/1848Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP comprising ternary or quaternary compounds, e.g. Ga Al As, In Ga As P comprising nitride compounds, e.g. InGaN, InGaAlN
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K30/00Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation
    • H10K30/10Organic devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation comprising heterojunctions between organic semiconductors and inorganic semiconductors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/549Organic PV cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Electromagnetism (AREA)
  • Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种柔性双面太阳能电池及其制备方法,包括通过金属电极连接的正面砷化镓多结太阳能电池单元和背面钙钛矿太阳能电池单元;正面砷化镓多结太阳能电池单元以GaAs单晶片为衬底,在其上依次生长有GaAs缓冲层、AlAs牺牲层、GaInP子电池、第二隧道结、GaAs子电池、第一隧道结、用于减少位错的(AlxGa1‑x)1‑ yInyAs梯度缓冲层和GaInAs子电池,金属电极制作在GaInAs子电池上;而后湿法腐蚀掉AlAs牺牲层,将上述外延结构和金属电极从衬底剥离,剥离后在GaInP子电池上制作正面电极;背面钙钛矿太阳能电池单元包括沉积在金属电极上的石墨‑钙钛矿混合层和沉积在石墨‑钙钛矿混合层上的ITO透明电极。本发明不仅能提高对太阳光的利用率,增加光电转换效率,且制作成柔性产品,质量轻、便于携带。

Description

一种柔性双面太阳能电池及其制备方法
技术领域
本发明涉及太阳能光伏发电的技术领域,尤其是指一种柔性双面太阳能电池及其制备方法。
背景技术
砷化镓多结太阳能电池由于其超高的光电转换效率被广泛应用于地面聚光光伏系统和空间光伏电源,传统的砷化镓多结电池的结构为GaInP/GaInAs/Ge,为了保持电池结构上的晶格匹配,所以带隙选择对应为1.85/1.40/0.67eV。然而,这种结构的缺陷为GaInAs和Ge之间的带隙相差较大,使得Ge子电池的短路电流过大,三结子电池的电流失配,导致很大一部分的能量损失。为了进一步增加对太阳光的利用,提高转换效率,我们设计了GaInP/GaAs/GaInAs的三结电池结构,带隙分别为1.90/1.42/1.0eV,该电池结构的开路电压可达3.05V,可获得更高的转化效率,而由于GaAs与GaInAs之间的晶格失配,因此,我们又设计了(AlxGa1-x)1-yInyAs梯度缓冲层以利于材料的生长和材料质量优化。
在GaInP/GaAs/GaInAs结构的多结电池中,我们利于金属有机物化学气相沉积技术首先生长与GaAs晶格匹配的GaInP子电池,其次是GaAs子电池,最后是GaInAs子电池,将这样的一个倒序结构从衬底上剥离即为柔性的砷化镓多结太阳能电池。柔性电池具有质量轻,功率质量比大,可弯曲等优点,其可适应的场景十分宽广,是现今以及未来光伏领域的一个重要方向。
钙钛矿太阳能电池从其出现到现在,短短十年时间内,光电转换效率突破23%,受到了国内外研究人员的广泛关注。钙钛矿太阳能电池制备方法多样,工艺简单,成本较低,同样可制成柔性电池,因此,我们将钙钛矿电池引入,直接制备在砷化镓多结电池背面,两种材料体系的太阳能电池相结合形成柔性的双面太阳能电池。相较于常规的单面电池,双面电池两面都能吸光,对空气中反射、散射的光加以利用,可以显著提高电池的光电转换效率。
发明内容
本发明的目的在于克服现有技术的不足与缺点,提出了一种柔性双面太阳能电池及其制备方法,可以制作双面均能发电的柔性太阳能电池,提高对太阳光的利用率,增大光电转换效率。
为实现上述目的,本发明所提供的技术方案为:一种柔性双面太阳能电池,包括正面砷化镓多结太阳能电池单元和背面钙钛矿太阳能电池单元,所述正面砷化镓多结太阳能电池单元与背面钙钛矿太阳能电池单元通过金属电极连接,所述金属电极为正面砷化镓多结太阳能电池单元与背面钙钛矿太阳能电池单元的共用电极;所述正面砷化镓多结太阳能电池单元以GaAs单晶片为衬底,并在其上生长出外延结构,为按照层状叠加方式依次生长的GaAs缓冲层、AlAs牺牲层、GaInP子电池、第二隧道结、GaAs子电池、第一隧道结、用于减少位错的(AlxGa1-x)1-yInyAs梯度缓冲层和GaInAs子电池,其中所述(AlxGa1-x)1-yInyAs梯度缓冲层中的x数值依次从0.40线性降到0.08,y数值依次从0.27线性降到0.03;所述金属电极制作在GaInAs子电池上,与GaInAs子电池形成欧姆接触,且其最外层为能与钙钛矿材料功函数相匹配的金属;制作完金属电极后湿法腐蚀掉AlAs牺牲层,将上述外延结构和金属电极从GaAs单晶片上剥离,剥离后在所述GaInP子电池上制作正面电极,所述正面电极与GaInP子电池形成欧姆接触;所述背面钙钛矿太阳能电池单元包括按照层状叠加方式设置的石墨-钙钛矿混合层和ITO透明电极,所述石墨-钙钛矿混合层沉积在金属电极上,所述ITO透明电极沉积在石墨-钙钛矿混合层上。
进一步,所述GaInP子电池和GaAs子电池与GaAs单晶片保持晶格匹配。
进一步,所述GaInAs子电池带隙为1.0eV,从上至下各依次包括有n型窗口层、n型GaInAs层、p型GaInAs层及p型背场层。
进一步,所述GaAs子电池带隙为1.42eV,从上至下各依次包括有n型窗口层、n型GaAs层、p型GaAs层及p型背场层。
进一步,所述GaInP子电池带隙为1.9eV,从上至下各依次包括有n型窗口层、n型GaInP层、p型GaInP层及p型背场层。
进一步,所述石墨-钙钛矿混合层由多孔石墨与有机无机杂化钙钛矿材料混合而成,其中,所述有机无机杂化钙钛矿材料带隙为1.6eV。
进一步,所述ITO透明电极材料为In掺杂的SnO2,对太阳光谱300-800nm波段内的平均透光率大于80%。
本发明还提供了一种上述柔性双面太阳能电池的制备方法,包括以下步骤:
步骤1:采用金属有机物化学气相沉积技术,在GaAs单晶片正面生长一层GaAs缓冲层;
步骤2:采用金属有机物化学气相沉积技术,改变外延生长条件,在GaAs缓冲层之上生长AlAs牺牲层;
步骤3:采用金属有机物化学气相沉积技术,改变外延生长条件,在AlAs缓冲层之上生长GaInP子电池,所述GaInP子电池包括按照靠近AlAs牺牲层方向依次连接的p型背场层、p型GaInP层、n型GaInP层、n型窗口层;
步骤4:采用金属有机物化学气相沉积技术,改变外延生长条件,在GaInP子电池上生长第二隧道结,所述第二隧道结包括按照靠近GaInP子电池方向依次连接的p++GaAs材料层和n++AlGaAs材料层;
步骤5:采用金属有机物化学气相沉积技术,改变外延生长条件,在第二隧道结上生长GaAs子电池,所述GaAs子电池包括按照靠近第二隧道结方向依次连接的p型背场层、p型GaAs层、n型GaAs层、n型窗口层;
步骤6:采用金属有机物化学气相沉积技术,改变外延生长条件,在GaAs子电池上生长第一隧道结,所述第一隧道结包括按照靠近GaAs子电池方向依次连接的p++GaAs材料层和n++AlGaAs材料层;
步骤7:采用金属有机物化学气相沉积技术,改变外延生长条件,在第一隧道结上生长(AlxGa1-x)1-yInyAs梯度缓冲层,所述(AlxGa1-x)1-yInyAs梯度缓冲层中x、y的数值按照靠近第一隧道结方向分别从0.08、0.03线性变为0.40、0.27;
步骤8:采用金属有机物化学气相沉积技术,改变外延生长条件,在(AlxGa1-x)1- yInyAs梯度缓冲层上生长GaInAs子电池,所述GaInAs子电池按照靠近(AlxGa1-x)1-yInyAs梯度缓冲层方向依次连接的p型背场层、p型GaInAs层、n型GaInAs层、n型窗口层;
步骤9:采用薄膜沉积技术,包括但不限于真空镀膜或辅助离子束蒸镀等技术,在GaInAs子电池上沉积金属电极,所述金属电极与GaInAs子电池形成欧姆接触,且其最外层为能与钙钛矿材料功函数相匹配的金属;
步骤10:采用湿法腐蚀技术,将AlAs牺牲层腐蚀掉,使外延结构和金属电极整体从GaAs单晶片上剥离;
步骤11:采用薄膜沉积技术,包括但不限于真空镀膜或辅助离子束蒸镀等技术,在剥离出来的外延结构上沉积相应图案的正面电极,所述正面电极与GaInP子电池形成良好的欧姆接触,且要保证太阳光尽可能大的面积投射到GaInP子电池表面;
步骤12:采用印刷、喷涂或刀刮等技术,在金属电极上沉积一层多孔石墨材料,所述多孔石墨材料与金属电极接触良好;
步骤13:采用浸润或旋涂等技术,在多孔石墨材料中沉积钙钛矿材料,所述钙钛矿材料能渗入多孔石墨中,形成均匀、致密、结晶良好的钙钛矿晶体,与多孔石墨材料接触良好,最终二者混合形成为石墨-钙钛矿混合层;
步骤14:采用磁控溅射等技术,控制生长条件,在石墨-钙钛矿混合层上沉积一层ITO透明电极,所述ITO透明电极成分均匀,厚度基本一致。
本发明与现有技术相比,具有如下优点与有益效果:
1、设计结构为GaInP/GaAs/GaInAs的多结砷化镓太阳能电池,比常规的GaInP/GaInAs/Ge电池拥有更高的电压及转化效率,外延结构从GaAs单晶片上剥离,能得到质量轻、功率高、可弯曲的柔性电池,且剥离后剩下的GaAs单晶经过处理后可重复利用,减小生产成本;在砷化镓电池背面引入制备工艺简单、成本低、效率高的钙钛矿电池,同样可制成柔性产品,可以双面吸光发电,两种材料体系的太阳能电池相结合形成柔性的双面太阳能电池。
2、本发明不仅可以提高电池对太阳光谱的利用率,还可以利用地球反射光和其他散射光,从而提高太阳能电池的光电转换效率,同时,制得的双面太阳能电池为柔性产品,大大丰富了该产品的适用领域。
附图说明
图1为柔性双面太阳能电池的结构示意图。
图2为正面砷化镓多结太阳能电池外延生长结构示意图。
具体实施方式
下面结合具体实施例对本发明作进一步说明。
如图1和图2所示,本实施例所提供的柔性双面太阳能电池,包括正面砷化镓多结太阳能电池单元和背面钙钛矿太阳能电池单元,所述正面砷化镓多结太阳能电池单元与背面钙钛矿太阳能电池单元通过金属电极10连接,所述金属电极10为正面砷化镓多结太阳能电池单元与背面钙钛矿太阳能电池单元的共用电极;所述正面砷化镓多结太阳能电池单元以以4英寸GaAs单晶片为衬底(即GaAs单晶衬底1),并在其上生长出外延结构,为按照层状叠加方式依次生长的GaAs缓冲层2、AlAs牺牲层3、GaInP子电池4、第二隧道结5、GaAs子电池6、第一隧道结7、用于减少位错的(AlxGa1-x)1-yInyAs梯度缓冲层8和GaInAs子电池9,其中所述(AlxGa1-x)1-yInyAs梯度缓冲层8中的x数值依次从0.40线性降到0.08,y数值依次从0.27线性降到0.03;所述金属电极10制作在GaInAs子电池9上,与GaInAs子电池9形成良好的欧姆接触,且其最外层为能与钙钛矿材料功函数相匹配的金属,比如Ag;制作完金属电极10后,利用湿法腐蚀技术将AlAs牺牲层3腐蚀掉,而后再将上述外延结构和金属电极10从GaAs单晶衬底1上剥离,剥离后在GaInP子电池4上进行光刻、沉积减反射膜11等制备正面电极12,所述正面电极12与GaInP子电池4形成良好欧姆接触;所述背面钙钛矿太阳能电池单元包括按照层状叠加方式设置的石墨-钙钛矿混合层13和ITO透明电极14,所述石墨-钙钛矿混合层13利用印刷、喷涂、刀刮等技术手段沉积在金属电极10上,其与金属电极10接触良好,同样能够在一定的程度上弯曲,最后,利用磁控溅射技术,在石墨-钙钛矿混合层13上沉积ITO透明电极14,其中,所述石墨-钙钛矿混合层13由多孔石墨与有机无机杂化钙钛矿材料(典型的有CH3NH3PbI3,CH(NH3)2PbI3)混合而成,其中,所述有机无机杂化钙钛矿材料带隙约为1.6eV,所述ITO透明电极14材料为In掺杂的SnO2,导电性良好,对太阳光谱300-800nm波段内的平均透光率大于80%。
所述GaInP子电池4和GaAs子电池6与GaAs单晶衬底1保持晶格匹配。
所述GaInAs子电池9带隙为1.0eV,从上至下各依次包括有n型窗口层、n型GaInAs层、p型GaInAs层及p型背场层。
所述GaAs子电池6带隙为1.42eV,从上至下各依次包括有n型窗口层、n型GaAs层、p型GaAs层及p型背场层。
所述GaInP子电池4带隙为1.9eV,从上至下各依次包括有n型窗口层、n型GaInP层、p型GaInP层及p型背场层。
下面为本实施例上述柔性双面太阳能电池的具体制作方法,包括但不局限于金属有机物化学气相沉积技术、分子束外延技术和气相外延技术,优先采用金属有机物化学气相沉积技术,该方法具体包括以下步骤:
步骤1:采用金属有机物化学气相沉积技术,在GaAs单晶片正面生长一层GaAs缓冲层;
步骤2:采用金属有机物化学气相沉积技术,改变外延生长条件,在GaAs缓冲层之上生长AlAs牺牲层;
步骤3:采用金属有机物化学气相沉积技术,改变外延生长条件,在AlAs缓冲层之上生长GaInP子电池,所述GaInP子电池包括按照靠近AlAs牺牲层方向依次连接的p型背场层、p型GaInP层、n型GaInP层、n型窗口层;
步骤4:采用金属有机物化学气相沉积技术,改变外延生长条件,在GaInP子电池上生长第二隧道结,所述第二隧道结包括按照靠近GaInP子电池方向依次连接的p++GaAs材料层和n++AlGaAs材料层;
步骤5:采用金属有机物化学气相沉积技术,改变外延生长条件,在第二隧道结上生长GaAs子电池,所述GaAs子电池包括按照靠近第二隧道结方向依次连接的p型背场层、p型GaAs层、n型GaAs层、n型窗口层;
步骤6:采用金属有机物化学气相沉积技术,改变外延生长条件,在GaAs子电池上生长第一隧道结,所述第一隧道结包括按照靠近GaAs子电池方向依次连接的p++GaAs材料层和n++AlGaAs材料层;
步骤7:采用金属有机物化学气相沉积技术,改变外延生长条件,在第一隧道结上生长(AlxGa1-x)1-yInyAs梯度缓冲层,所述(AlxGa1-x)1-yInyAs梯度缓冲层中x、y的数值按照靠近第一隧道结方向分别从0.08、0.03线性变为0.40、0.27;
步骤8:采用金属有机物化学气相沉积技术,改变外延生长条件,在(AlxGa1-x)1- yInyAs梯度缓冲层上生长GaInAs子电池,所述GaInAs子电池按照靠近(AlxGa1-x)1-yInyAs梯度缓冲层方向依次连接的p型背场层、p型GaInAs层、n型GaInAs层、n型窗口层;
步骤9:采用薄膜沉积技术,包括但不限于真空镀膜或辅助离子束蒸镀等技术,在GaInAs子电池上沉积金属电极,所述金属电极与GaInAs子电池形成欧姆接触,且其最外层为能与钙钛矿材料功函数相匹配的金属;
步骤10:采用湿法腐蚀技术,将AlAs牺牲层腐蚀掉,使外延结构和金属电极整体从GaAs单晶片上剥离;
步骤11:采用薄膜沉积技术,包括但不限于真空镀膜或辅助离子束蒸镀等技术,在剥离出来的外延结构上沉积相应图案的正面电极,所述正面电极与GaInP子电池形成良好的欧姆接触,且要保证太阳光尽可能大的面积投射到GaInP子电池表面;
步骤12:采用印刷、喷涂或刀刮等技术,在金属电极上沉积一层多孔石墨材料,所述多孔石墨材料与金属电极接触良好;
步骤13:采用浸润或旋涂等技术,在多孔石墨材料中沉积钙钛矿材料,所述钙钛矿材料能渗入多孔石墨中,形成均匀、致密、结晶良好的钙钛矿晶体,与多孔石墨材料接触良好,最终二者混合形成为石墨-钙钛矿混合层;
步骤14:采用磁控溅射等技术,控制生长条件,在石墨-钙钛矿混合层上沉积一层ITO透明电极,所述ITO透明电极成分均匀,厚度基本一致。
以上所述之实施例子只为本发明之较佳实施例,并非以此限制本发明的实施范围,故凡依本发明之形状、原理所作的变化,均应涵盖在本发明的保护范围内。

Claims (8)

1.一种柔性双面太阳能电池,其特征在于:包括正面砷化镓多结太阳能电池单元和背面钙钛矿太阳能电池单元,所述正面砷化镓多结太阳能电池单元与背面钙钛矿太阳能电池单元通过金属电极连接,所述金属电极为正面砷化镓多结太阳能电池单元与背面钙钛矿太阳能电池单元的共用电极;所述正面砷化镓多结太阳能电池单元以GaAs单晶片为衬底,并在其上生长出外延结构,为按照层状叠加方式依次生长的GaAs缓冲层、AlAs牺牲层、GaInP子电池、第二隧道结、GaAs子电池、第一隧道结、用于减少位错的(AlxGa1-x)1-yInyAs梯度缓冲层和GaInAs子电池,其中所述(AlxGa1-x)1-yInyAs梯度缓冲层中的x数值依次从0.40线性降到0.08,y数值依次从0.27线性降到0.03;所述金属电极制作在GaInAs子电池上,与GaInAs子电池形成欧姆接触,且其最外层为能与钙钛矿材料功函数相匹配的金属;制作完金属电极后湿法腐蚀掉AlAs牺牲层,将上述外延结构和金属电极从GaAs单晶片上剥离,剥离后在所述GaInP子电池上制作正面电极,所述正面电极与GaInP子电池形成欧姆接触;所述背面钙钛矿太阳能电池单元包括按照层状叠加方式设置的石墨-钙钛矿混合层和ITO透明电极,所述石墨-钙钛矿混合层沉积在金属电极上,所述ITO透明电极沉积在石墨-钙钛矿混合层上。
2.根据权利要求1所述的一种柔性双面太阳能电池,其特征在于:所述GaInP子电池和GaAs子电池与GaAs单晶片保持晶格匹配。
3.根据权利要求1所述的一种柔性双面太阳能电池,其特征在于:所述GaInAs子电池带隙为1.0eV,从上至下各依次包括有n型窗口层、n型GaInAs层、p型GaInAs层及p型背场层。
4.根据权利要求1所述的一种柔性双面太阳能电池,其特征在于:所述GaAs子电池带隙为1.42eV,从上至下各依次包括有n型窗口层、n型GaAs层、p型GaAs层及p型背场层。
5.根据权利要求1所述的一种柔性双面太阳能电池,其特征在于:所述GaInP子电池带隙为1.9eV,从上至下各依次包括有n型窗口层、n型GaInP层、p型GaInP层及p型背场层。
6.根据权利要求1所述的一种柔性双面太阳能电池,其特征在于:所述石墨-钙钛矿混合层由多孔石墨与有机无机杂化钙钛矿材料混合而成,其中,所述有机无机杂化钙钛矿材料带隙为1.6eV。
7.根据权利要求1所述的一种柔性双面太阳能电池,其特征在于:所述ITO透明电极材料为In掺杂的SnO2,对太阳光谱300-800nm波段内的平均透光率大于80%。
8.一种权利要求1至7任意一项所述柔性双面太阳能电池的制备方法,其特征在于,包括以下步骤:
步骤1:采用金属有机物化学气相沉积技术,在GaAs单晶片正面生长一层GaAs缓冲层;
步骤2:采用金属有机物化学气相沉积技术,改变外延生长条件,在GaAs缓冲层之上生长AlAs牺牲层;
步骤3:采用金属有机物化学气相沉积技术,改变外延生长条件,在AlAs缓冲层之上生长GaInP子电池,所述GaInP子电池包括按照靠近AlAs牺牲层方向依次连接的p型背场层、p型GaInP层、n型GaInP层、n型窗口层;
步骤4:采用金属有机物化学气相沉积技术,改变外延生长条件,在GaInP子电池上生长第二隧道结,所述第二隧道结包括按照靠近GaInP子电池方向依次连接的p++GaAs材料层和n++AlGaAs材料层;
步骤5:采用金属有机物化学气相沉积技术,改变外延生长条件,在第二隧道结上生长GaAs子电池,所述GaAs子电池包括按照靠近第二隧道结方向依次连接的p型背场层、p型GaAs层、n型GaAs层、n型窗口层;
步骤6:采用金属有机物化学气相沉积技术,改变外延生长条件,在GaAs子电池上生长第一隧道结,所述第一隧道结包括按照靠近GaAs子电池方向依次连接的p++GaAs材料层和n++AlGaAs材料层;
步骤7:采用金属有机物化学气相沉积技术,改变外延生长条件,在第一隧道结上生长(AlxGa1-x)1-yInyAs梯度缓冲层,所述(AlxGa1-x)1-yInyAs梯度缓冲层中x、y的数值按照靠近第一隧道结方向分别从0.08、0.03线性变为0.40、0.27;
步骤8:采用金属有机物化学气相沉积技术,改变外延生长条件,在(AlxGa1-x)1-yInyAs梯度缓冲层上生长GaInAs子电池,所述GaInAs子电池按照靠近(AlxGa1-x)1-yInyAs梯度缓冲层方向依次连接的p型背场层、p型GaInAs层、n型GaInAs层、n型窗口层;
步骤9:采用薄膜沉积技术,在GaInAs子电池上沉积金属电极,所述金属电极与GaInAs子电池形成欧姆接触,且其最外层为能与钙钛矿材料功函数相匹配的金属;
步骤10:采用湿法腐蚀技术,将AlAs牺牲层腐蚀掉,使外延结构和金属电极整体从GaAs单晶片上剥离;
步骤11:采用薄膜沉积技术,在剥离出来的外延结构上沉积相应图案的正面电极,所述正面电极与GaInP子电池形成良好的欧姆接触,且要保证太阳光尽可能大的面积投射到GaInP子电池表面;
步骤12:采用印刷、喷涂或刀刮技术,在金属电极上沉积一层多孔石墨材料,所述多孔石墨材料与金属电极接触良好;
步骤13:采用浸润或旋涂技术,在多孔石墨材料中沉积钙钛矿材料,所述钙钛矿材料能渗入多孔石墨中,形成均匀、致密、结晶良好的钙钛矿晶体,与多孔石墨材料接触良好,最终二者混合形成为石墨-钙钛矿混合层;
步骤14:采用磁控溅射技术,控制生长条件,在石墨-钙钛矿混合层上沉积一层ITO透明电极,所述ITO透明电极成分均匀,厚度一致。
CN201910677563.7A 2019-07-25 2019-07-25 一种柔性双面太阳能电池及其制备方法 Pending CN110491964A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201910677563.7A CN110491964A (zh) 2019-07-25 2019-07-25 一种柔性双面太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201910677563.7A CN110491964A (zh) 2019-07-25 2019-07-25 一种柔性双面太阳能电池及其制备方法

Publications (1)

Publication Number Publication Date
CN110491964A true CN110491964A (zh) 2019-11-22

Family

ID=68548440

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201910677563.7A Pending CN110491964A (zh) 2019-07-25 2019-07-25 一种柔性双面太阳能电池及其制备方法

Country Status (1)

Country Link
CN (1) CN110491964A (zh)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531077A (zh) * 2020-12-11 2021-03-19 中国电子科技集团公司第十八研究所 一种空间用柔性砷化镓太阳电池制备方法
CN112909100A (zh) * 2021-01-18 2021-06-04 中山德华芯片技术有限公司 一种太阳能电池及其制备方法
CN113328009A (zh) * 2021-05-28 2021-08-31 扬州乾照光电有限公司 一种太阳能电池的制作方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112531077A (zh) * 2020-12-11 2021-03-19 中国电子科技集团公司第十八研究所 一种空间用柔性砷化镓太阳电池制备方法
CN112909100A (zh) * 2021-01-18 2021-06-04 中山德华芯片技术有限公司 一种太阳能电池及其制备方法
CN112909100B (zh) * 2021-01-18 2022-04-12 中山德华芯片技术有限公司 一种太阳能电池及其制备方法
CN113328009A (zh) * 2021-05-28 2021-08-31 扬州乾照光电有限公司 一种太阳能电池的制作方法

Similar Documents

Publication Publication Date Title
CN102184999B (zh) 基于npn结构的激光光伏电池及其制备工艺
CN101364482B (zh) 一种可见光铟镓氮基光电化学电池制备方法
CN103000759B (zh) 砷化镓薄膜多结叠层太阳电池的制备方法
CN110491964A (zh) 一种柔性双面太阳能电池及其制备方法
CN104393098A (zh) 基于半导体量子点的多结太阳能电池及其制作方法
CN109728119A (zh) 一种石墨烯/AlGaAs/GaAs/GaInAs多异质结太阳能电池及其制备方法
CN210535681U (zh) 一种晶格失配的五结太阳能电池
CN103219414B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN102790116A (zh) 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN104659158A (zh) 倒装多结太阳能电池及其制作方法
CN103077983A (zh) 多结太阳能电池及其制备方法
CN102790119B (zh) GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN106409958B (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
Dhere Recent developments in thin film solar cells
KR20090004262A (ko) 배면전극이 패터닝된 씨아이지에스 태양전지 제조방법
CN102376783A (zh) 一种具有表面自织构结构的氧化亚铜太阳能电池及其制备方法
CN209357742U (zh) 三结叠层太阳能电池
CN102738292B (zh) 多结叠层电池及其制备方法
CN204315612U (zh) 一种含量子结构的双面生长四结太阳电池
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN110556445A (zh) 一种叠层并联太阳能电池
CN207320126U (zh) 一种具有新型窗口层的高效三结级联砷化镓太阳电池
CN109148622A (zh) 一种双面用高效太阳能电池及其制备方法
CN101459206A (zh) 高效多结太阳能电池的制造方法
CN109182971A (zh) 一种利用反应等离子沉积技术生长宽光谱mgzo-tco薄膜的方法及应用

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination