CN112531077A - 一种空间用柔性砷化镓太阳电池制备方法 - Google Patents

一种空间用柔性砷化镓太阳电池制备方法 Download PDF

Info

Publication number
CN112531077A
CN112531077A CN202011450238.6A CN202011450238A CN112531077A CN 112531077 A CN112531077 A CN 112531077A CN 202011450238 A CN202011450238 A CN 202011450238A CN 112531077 A CN112531077 A CN 112531077A
Authority
CN
China
Prior art keywords
gallium arsenide
solar cell
upper electrode
welding spot
region
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202011450238.6A
Other languages
English (en)
Other versions
CN112531077B (zh
Inventor
铁剑锐
李晓东
肖志斌
杜永超
许军
孙希鹏
梁存宝
王鑫
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Hengdian Space Power Source Co ltd
CETC 18 Research Institute
Original Assignee
Tianjin Hengdian Space Power Source Co ltd
CETC 18 Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Hengdian Space Power Source Co ltd, CETC 18 Research Institute filed Critical Tianjin Hengdian Space Power Source Co ltd
Priority to CN202011450238.6A priority Critical patent/CN112531077B/zh
Publication of CN112531077A publication Critical patent/CN112531077A/zh
Application granted granted Critical
Publication of CN112531077B publication Critical patent/CN112531077B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • H01L31/06875Multiple junction or tandem solar cells inverted grown metamorphic [IMM] multiple junction solar cells, e.g. III-V compounds inverted metamorphic multi-junction cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • Sustainable Energy (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明提供一种空间用柔性砷化镓太阳电池制备方法,包括:在外延片背面蒸镀下电极,在受光面光刻出开槽区域,在绝缘区域上制备绝缘层,光刻出上下电极焊点,蒸镀上电极;再蒸镀减反射膜,光刻出焊点区域,去除焊点区域的减反射膜,最终划片得到空间用柔性砷化镓太阳电池。本发明的有益效果是有效的解决柔性砷化镓太阳电池在焊接时会出现短路问题,若焊接工艺采用地面常用的导电胶粘接工艺,电池焊接的可靠性又远低于阻熔焊的问题。

Description

一种空间用柔性砷化镓太阳电池制备方法
技术领域
本发明属于太阳电池工艺技术领域,尤其是涉及一种空间用柔性砷化镓太阳电池制备方法。
背景技术
大容量通讯卫星平台,具有更强的电力供应,携带的转发器数量成倍提高。为满足该类平台功率高、重量轻的要求,高效性、轻型化是未来单体太阳电池的发展方向。
柔性砷化镓太阳电池在保证效率的情况下,电池重量远低于刚性电池重量,柔性砷化镓太阳电池重量比功率不低于1.5W/g,重量比功率是刚性电池的3倍,空间用柔性砷化镓太阳电池是提高太阳电池阵重量比功率最行之有效的手段,可以大大减少发射重量,降低发射成本。
目前国内外柔性砷化镓太阳电池报道较多,包括单结、双结、三结和四结等结构,空间用柔性电池主要是反向生长三结砷化镓太阳电池。空间太阳电池主要采用电阻焊焊接方式,焊接温度高达800℃~900℃,柔性砷化镓太阳电池在焊接时会出现短路问题,若焊接工艺采用地面常用的导电胶粘接工艺,电池焊接的可靠性又远低于阻熔焊。
发明内容
本发明要解决的问题是提供一种空间用柔性砷化镓太阳电池制备方法,有效的解决柔性砷化镓太阳电池在焊接时会出现短路问题,若焊接工艺采用地面常用的导电胶粘接工艺,电池焊接的可靠性又远低于阻熔焊的问题。
为解决上述技术问题,本发明采用的技术方案是:一种空间用柔性砷化镓太阳电池制备方法,包括:砷化镓衬底生长出外延层,得到外延片,在所述外延层表面蒸镀下电极;所述下电极上加厚金属铜;所述加厚金属铜表面涂覆粘结剂,粘结临时衬底;用第一腐蚀液腐蚀所述砷化镓衬底,腐蚀完成后,用去离子水冲洗、干燥;所述外延片的受光面上涂覆光刻胶,用显影液显影出电池边缘开槽区域、下电极焊点开槽区域和上电极焊点开槽区域后,用所述第一腐蚀液和浓盐酸在所述外延片上交替腐蚀出所述电池边缘开槽区域、所述下电极焊点开槽区域和所述上电极焊点开槽区域,腐蚀至所述下电极表面露出,停止腐蚀并去除所述光刻胶;在所述受光面上制备绝缘层;在所述受光面上涂覆光刻胶,用显影液显影出上电极焊点、下电极焊点和栅线后,蒸镀上电极,去除所述光刻胶;去除所述受光面的CAP层,在所述受光面上蒸镀减反射膜;在所述受光面上涂覆光刻胶,用显影液显影出焊点区域,用第二腐蚀液腐蚀所述焊点区域的所述减反射膜后,去除所述光刻胶;将所述外延片放入划片机中,所述受光面朝上,将所述外延片划成空间用柔性砷化镓太阳电池。
优选地,制备所述绝缘层的方法为在所述受光面上涂覆聚酰亚胺胶,固化后涂覆光刻胶,用显影液显影出除上电极焊点绝缘区和电池边缘绝缘区以外的区域,再用酒精去除所述上电极焊点绝缘区和所述电池边缘绝缘区的所述光刻胶,对剩余的所述聚酰亚胺胶进行亚胺化,形成所述绝缘层;或在所述受光面涂覆光刻胶,用显影液显影出所述上电极焊点绝缘区和所述电池边缘绝缘区,在所述上电极焊点绝缘区和所述电池边缘绝缘区中制备介质薄膜,形成所述绝缘层,所述介质薄膜厚度大于等于50nm,再用酒精去除所述光刻胶。
优选地,对所述聚酰亚胺胶进行亚胺化的方法为采用加热设备加热到100℃,每30min升高30℃,直至升高到190℃,恒温30min,然后降至室温。
优选地,对所述聚酰亚胺胶进行亚胺化的方法为采用加热设备加热到100℃,每30min升高30℃,直至升高到190℃,恒温30min,然后降至室温。
优选地,所述砷化镓衬底中生长所述外延层,所述外延层为反向三结或反向双结或单结结构。
优选地,所述下电极和所述上电极均为金属电极,厚度为30nm-5000nm。
优选地,所述临时衬底为玻璃。
优选地,所述第一腐蚀液为硫酸:双氧水:水的体积比为1:5:1组成的液体,用所述第一腐蚀液腐蚀所述砷化镓衬底时,腐蚀时间为50min,再采用盐酸继续腐蚀1min;所述第二腐蚀液为氢氟酸。
优选地,所述上电极焊点大于所述上电极焊点绝缘区,所述上电极焊点绝缘区大于所述上电极焊点绝缘区开槽区域;所述电池边缘绝缘区大于所述电池边缘开槽区域;所述焊点区域小于所述下电极焊点和所述上电极焊点。
优选地,去除所述光刻胶的方法为用丙酮或酒精去除所述光刻胶。
优选地,去除所述CAP层的方法为用柠檬酸去除所述CAP层;蒸镀所述减反射膜的方法为用电子束镀膜机蒸镀;所述减反射膜包括氧化钛-氧化铝-氟化镁单层或多层减反射膜或氧化钛-氧化硅单层或多层减反射膜。
由于上电极焊点和下电极焊点的设计,因焊点下无外延功能层,因此在焊接时不会出现短路问题,解决柔性砷化镓太阳电池在焊接时会出现短路问题;由于采用绝缘材料进行隔离使得上、下电极绝缘,解决了焊接工艺采用地面常用的导电胶粘接工艺,电池焊接的可靠性又远低于阻熔焊的问题。
附图说明
图1是本发明实施例一种空间用柔性砷化镓太阳电池制备方法电池边缘及焊点区域需开槽处光刻示意图
图2是本发明实施例一种空间用柔性砷化镓太阳电池制备方法太阳电池受光面绝缘区光刻示意图
图3是本发明实施例一种空间用柔性砷化镓太阳电池制备方法太阳电池受光面电极光刻示意图
图4是本发明实施例一种空间用柔性砷化镓太阳电池制备方法太阳电池焊点区域光刻示意图
图5本发明实施例一种空间用柔性砷化镓太阳电池制备方法制备的第一太阳电池结构示意图
图6本发明实施例一种空间用柔性砷化镓太阳电池制备方法制备的第二太阳电池结构示意图
图中:
1、上电极 2、上电极焊点 3、减反射膜
4、聚酰亚胺绝缘层 5、外延层 6、下电极
7、介质薄膜绝缘层 8、上电极焊点开槽区 9、电池边缘开槽区
域 域
10、下电极焊点开槽区域 11、上电极焊点绝缘 12、电池边缘绝缘
区 区
13、下电极焊点 14、栅线 15、焊点区域
具体实施方式
下面结合实施例和附图对本发明作进一步说明:
在本发明实施例的描述中,需要理解的是,术语“顶部”、“底部”“表面”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。
实施例1
S1:制备下电极6
砷化镓衬底在MOCVD中生长外延层5,形成外延片,外延层5可以为反向三结、反向双结或者为单结结构。在外延片背表面蒸镀下电极6,下电极6为金属电极,可以为Au、Ag、Cu、Ni、Ti、Pd等金属及其合金,厚度30nm-5000nm。
S2:金属电极加厚
在蒸镀的金属下电极6上电镀加厚金属Cu,金属Cu的厚度不低于20μm。
S3:粘接临时衬底
将电镀加厚后的外延片金属下电极6面涂覆粘接剂,与同样大小的临时衬底进行粘接,临时衬底可以为玻璃。粘接温度不低于90℃,真空度不低于1.0×10-1mBar。
S4:去除砷化镓衬底
采用硫酸:双氧水:水的体积比为1:5:1的第一腐蚀液腐蚀砷化镓衬底,腐蚀时间为50min,然后采用盐酸继续腐蚀1min,再用去离子冲洗然后进行干燥。
S5:腐蚀开槽区域
如图1一种空间用柔性砷化镓太阳电池制备方法电池边缘及焊点区域需开槽处光刻示意图所示,在外延片的受光面上涂覆光刻胶,用显影液光刻出电池边缘开槽区域9、下电极焊点开槽区域10和上电极焊点开槽区域8后,用第一腐蚀液和浓盐酸在外延片上交替腐蚀出电池边缘开槽区域9、下电极焊点开槽区域10和上电极焊点开槽区域8,腐蚀至所述下电极6表面露出,停止腐蚀并用丙酮或酒精去除光刻胶。电池边缘开槽区域9宽度为30μm~200μm。
S6:制备绝缘层
在外延片受光面旋涂聚酰亚胺胶,在110℃-140℃环境下固化20min-120min,然后旋涂光刻胶,如图2一种空间用柔性砷化镓太阳电池制备方法太阳电池受光面绝缘区光刻示意图所示,用显影液去除除上电极焊点绝缘区11和电池边缘绝缘区12的光刻胶和聚酰亚胺胶。再采用酒精去除上电极焊点绝缘区11和电池边缘绝缘区12处的光刻胶,然后对剩余聚酰亚胺胶进行亚胺化,具体方法为:采用烘箱、真空干燥箱、热板或者管式炉等加热设备从室温加热到100℃,然后每30min升高30℃,直至升高到190℃,190℃恒温30min,然后降温,形成聚酰亚胺绝缘层4。此处不采用丙酮去除光刻胶的原因是丙酮会溶解聚酰亚胺胶,所以只能用酒精去除光刻胶。
其中,上电极焊点绝缘区11大于等于上电极焊点开槽区域8;电池边缘绝缘区12的宽度大于电池边缘开槽区域9的宽度。
S7:蒸镀上电极1
如图3一种空间用柔性砷化镓太阳电池制备方法太阳电池受光面电极光刻示意图所示,在外延片受光面上涂覆光刻胶,用显影液光刻出上电极焊点2、下电极焊点13和栅线14后,蒸镀上电极1,上电极1为金属电极,可以为Au、Ag、Cu、Ni、Ti、Pd等金属及其合金,厚度30nm-5000nm。用丙酮或酒精去除光刻胶。
S8:蒸镀减反射膜3
采用柠檬酸去除受光面上的CAP层,然后采用电子束镀膜机蒸镀减反射膜3,减反射膜3可以为氧化钛-氧化铝-氟化镁单层或多层减反射膜,或氧化钛-氧化硅单层或多层减反射膜。
其中,焊点区域小于上电极焊点2,上电极焊点2大于上电极焊点绝缘区11;焊点区域15小于下电极焊点13。
S9:腐蚀焊点处减反射膜
如图4一种空间用柔性砷化镓太阳电池制备方法太阳电池焊点区域光刻示意图所示,在外延片受光面上涂覆光刻胶,用显影液光刻出焊点区域15,用第二腐蚀液腐蚀焊点区域处的减反射膜后,用丙酮或酒精去除光刻胶;
S10:划片
将腐蚀完焊点的外延片放入自动划片机中或者激光划片机上,受光面朝上,对准划片标记,自动划片,将外延片划成20×20的电池,得到空间用柔性砷化镓太阳电池。
如图5一种空间用柔性砷化镓太阳电池制备方法制备的第一太阳电池结构示意图所示,产品包括外延片背面的下电极6,外延层5,聚酰亚胺绝缘层4,受光面的上电极1,减反射膜3,上电极焊点2和下电极6之间为聚酰亚胺绝缘层4,上下电极焊点均在电池的受光面上。
本发明实施例中,焊点下无外延层,因此在焊接时不会出现短路问题出现;上下电极焊点在同一面后续组合更加方便。
实施例2
S1:制备下电极6
砷化镓衬底在MOCVD中生长外延层5,形成外延片,外延层5可以为反向三结、反向双结或者为单结结构。在外延片背表面蒸镀下电极6,下电极6为金属电极,可以为Au、Ag、Cu、Ni、Ti、Pd等金属及其合金,厚度30nm-5000nm。
S2:金属电极加厚
在蒸镀的金属下电极6上电镀加厚金属Cu,金属Cu的厚度不低于20μm。
S3:粘接临时衬底
将电镀加厚后的外延片金属下电极6面涂覆粘接剂,与同样大小的临时衬底进行粘接,临时衬底可以为玻璃。粘接温度不低于90℃,真空度不低于1.0×10-1mBar。
S4:去除砷化镓衬底
采用硫酸:双氧水:水的体积比为1:5:1的第一腐蚀液腐蚀砷化镓衬底,腐蚀时间为50min,然后采用盐酸继续腐蚀1min,再用去离子冲洗然后进行干燥。
S5:腐蚀开槽区域
如图1一种空间用柔性砷化镓太阳电池制备方法电池边缘及焊点区域需开槽处光刻示意图所示,在外延片的受光面上涂覆光刻胶,用显影液光刻出电池边缘开槽区域9、下电极焊点开槽区域10和上电极焊点开槽区域8后,用第一腐蚀液和浓盐酸在外延片上交替腐蚀出电池边缘开槽区域9、下电极焊点开槽区域10和上电极焊点开槽区域8,腐蚀至下电极6表面露出,停止腐蚀并用丙酮或酒精去除光刻胶。电池边缘开槽区域9宽度为30μm~200μm。
S6:制备绝缘层
在外延片受光面旋涂光刻胶,如图2一种空间用柔性砷化镓太阳电池制备方法太阳电池受光面绝缘区光刻示意图所示,用显影液光刻出上电极焊点绝缘区11和电池边缘绝缘区12,在上电极焊点绝缘区11和电池边缘绝缘区12处采用ALD、PECVD、磁控溅射、电子束等设备制备氧化铝、氮化硅、氧化硅等介质薄膜,薄膜厚度不低于50nm,形成介质薄膜绝缘层7。
其中,上电极焊点绝缘区11大于等于上电极焊点开槽区域8;电池边缘绝缘区12的宽度大于电池边缘开槽区域9的宽度。
S7:蒸镀上电极1
如图3一种空间用柔性砷化镓太阳电池制备方法太阳电池受光面电极光刻示意图所示,在外延片受光面上涂覆光刻胶,用显影液光刻出上电极焊点2、下电极焊点13和栅线14后,蒸镀上电极1,上电极1为金属电极,可以为Au、Ag、Cu、Ni、Ti、Pd等金属及其合金,厚度30nm-5000nm。用丙酮或酒精去除光刻胶。
S8:蒸镀减反射膜3
采用柠檬酸去除受光面上的CAP层,然后采用电子束镀膜机蒸镀减反射膜3,减反射膜3可以为氧化钛-氧化铝-氟化镁单层或多层减反射膜,或氧化钛-氧化硅单层或多层减反射膜。
其中,焊点区域15小于上电极焊点2,上电极焊点2大于上电极焊点绝缘区11;焊点区域15小于下电极焊点13。
S9:腐蚀焊点处减反射膜
如图4一种空间用柔性砷化镓太阳电池制备方法太阳电池焊点区域光刻示意图所示,在外延片受光面上涂覆光刻胶,用显影液光刻出焊点区域15,用第二腐蚀液腐蚀焊点区域处的减反射膜后,用丙酮或酒精去除光刻胶;
S10:划片
将腐蚀完焊点的外延片放入自动划片机中或者激光划片机上,受光面朝上,对准划片标记,自动划片,将外延片划成20×20的电池,得到空间用柔性砷化镓太阳电池。
如图6一种空间用柔性砷化镓太阳电池制备方法制备的第二太阳电池结构示意图所示,产品包括外延片背面的下电极6,外延层5,介质薄膜绝缘层7,受光面的上电极1,减反射膜3,上电极焊点2和下电极6之间为介质薄膜绝缘层7,上下电极焊点均在电池的受光面上。
本发明实施例中,焊点下无外延层,因此在焊接时不会出现短路问题出现;上下电极焊点在同一面后续组合更加方便。
以上对本发明的多个实施例进行了详细说明,但所述内容仅为本发明的较佳实施例,不能被认为用于限定本发明的实施范围。凡依本发明申请范围所作的均等变化与改进等,均应仍归属于本发明的专利涵盖范围之内。

Claims (10)

1.一种空间用柔性砷化镓太阳电池制备方法,包括:
砷化镓衬底生长出外延层,得到外延片,在所述外延层表面蒸镀下电极;
所述下电极上加厚金属铜;
所述加厚金属铜表面涂覆粘结剂,粘结临时衬底;
用第一腐蚀液腐蚀所述砷化镓衬底,腐蚀完成后,用去离子水冲洗、干燥;
所述外延片的受光面上涂覆光刻胶,用显影液显影出电池边缘开槽区域、下电极焊点开槽区域和上电极焊点开槽区域后,用所述第一腐蚀液和浓盐酸在所述外延片上交替腐蚀出所述电池边缘开槽区域、所述下电极焊点开槽区域和所述上电极焊点开槽区域,腐蚀至所述下电极表面露出,停止腐蚀并去除所述光刻胶;
在所述受光面上制备绝缘层;
在所述受光面上涂覆光刻胶,用显影液显影出上电极焊点、下电极焊点和栅线后,蒸镀上电极,去除所述光刻胶;
去除所述受光面的CAP层,在所述受光面上蒸镀减反射膜;
在所述受光面上涂覆光刻胶,用显影液显影出焊点区域,用第二腐蚀液腐蚀所述焊点区域的所述减反射膜后,去除所述光刻胶;
将所述外延片放入划片机中,所述受光面朝上,将所述外延片划成空间用柔性砷化镓太阳电池。
2.根据权利要求1所述的一种空间用柔性砷化镓太阳电池制备方法,其特征在于:制备所述绝缘层的方法为在所述受光面上涂覆聚酰亚胺胶,固化后涂覆光刻胶,用显影液显影出除上电极焊点绝缘区和电池边缘绝缘区以外的区域,再用酒精去除所述上电极焊点绝缘区和所述电池边缘绝缘区的所述光刻胶,对剩余的所述聚酰亚胺胶进行亚胺化,形成所述绝缘层;或在所述受光面涂覆光刻胶,用显影液显影出所述上电极焊点绝缘区和所述电池边缘绝缘区,在所述上电极焊点绝缘区和所述电池边缘绝缘区中制备介质薄膜,形成所述绝缘层,所述介质薄膜厚度大于等于50nm,再用酒精去除所述光刻胶。
3.根据权利要求2所述的一种空间用柔性砷化镓太阳电池制备方法,其特征在于:对所述聚酰亚胺胶进行亚胺化的方法为采用加热设备加热到100℃,每30min升高30℃,直至升高到190℃,恒温30min,然后降至室温。
4.根据权利要求1所述的一种空间用柔性砷化镓太阳电池制备方法,其特征在于:所述砷化镓衬底生长所述外延层,所述外延层为反向三结、反向双结或单结结构。
5.根据权利要求1所述的一种空间用柔性砷化镓太阳电池制备方法,其特征在于:所述下电极和所述上电极均为金属电极,厚度为30nm-5000nm。
6.根据权利要求1所述的一种空间用柔性砷化镓太阳电池制备方法,其特征在于:所述临时衬底为玻璃。
7.根据权利要求1所述的一种空间用柔性砷化镓太阳电池制备方法,其特征在于:所述第一腐蚀液为硫酸:双氧水:水的体积比为1:5:1组成的液体,用所述第一腐蚀液腐蚀所述砷化镓衬底时,腐蚀时间为50min,再采用盐酸继续腐蚀1min;所述第二腐蚀液为氢氟酸。
8.根据权利要求1-7任一所述的一种空间用柔性砷化镓太阳电池制备方法,其特征在于:所述上电极焊点大于所述上电极焊点绝缘区,所述上电极焊点绝缘区大于所述上电极焊点绝缘区开槽区域;所述电池边缘绝缘区大于所述电池边缘开槽区域;所述焊点区域小于所述下电极焊点和所述上电极焊点。
9.根据权利要求1所述的一种空间用柔性砷化镓太阳电池制备方法,其特征在于:去除所述光刻胶的方法为用丙酮或酒精去除所述光刻胶。
10.根据权利要求1所述的一种空间用柔性砷化镓太阳电池制备方法,其特征在于:去除所述CAP层的方法为用柠檬酸去除所述CAP层;蒸镀所述减反射膜的方法为用电子束镀膜机蒸镀;所述减反射膜包括氧化钛-氧化铝-氟化镁单层或多层减反射膜或氧化钛-氧化硅单层或多层减反射膜。
CN202011450238.6A 2020-12-11 2020-12-11 一种空间用柔性砷化镓太阳电池制备方法 Active CN112531077B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202011450238.6A CN112531077B (zh) 2020-12-11 2020-12-11 一种空间用柔性砷化镓太阳电池制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202011450238.6A CN112531077B (zh) 2020-12-11 2020-12-11 一种空间用柔性砷化镓太阳电池制备方法

Publications (2)

Publication Number Publication Date
CN112531077A true CN112531077A (zh) 2021-03-19
CN112531077B CN112531077B (zh) 2022-07-29

Family

ID=74998684

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202011450238.6A Active CN112531077B (zh) 2020-12-11 2020-12-11 一种空间用柔性砷化镓太阳电池制备方法

Country Status (1)

Country Link
CN (1) CN112531077B (zh)

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020153534A1 (en) * 2001-04-20 2002-10-24 Kazuhiro Mochizuki Semiconductor device and power amplifier using the same
CN102157622A (zh) * 2011-03-08 2011-08-17 中国科学院苏州纳米技术与纳米仿生研究所 一种串联式单片集成多结薄膜太阳能电池的制造方法
CN105762227A (zh) * 2014-12-19 2016-07-13 天津恒电空间电源有限公司 一种砷化镓太阳电池钝化边缘的方法
CN107256895A (zh) * 2017-05-23 2017-10-17 西安航谷微波光电科技有限公司 一种高性能GaAs激光电池的制作方法
CN107579122A (zh) * 2016-06-30 2018-01-12 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法
US20180331245A1 (en) * 2015-11-20 2018-11-15 Beijing Chuangyu Technology Co., Ltd. Dual-junction thin film solar cell module, and preparation method thereof
CN109768116A (zh) * 2018-12-25 2019-05-17 中国电子科技集团公司第十八研究所 一种砷化镓太阳电池的制备方法
CN110491964A (zh) * 2019-07-25 2019-11-22 中山德华芯片技术有限公司 一种柔性双面太阳能电池及其制备方法
CN110574170A (zh) * 2018-06-20 2019-12-13 天津三安光电有限公司 一种柔性薄膜太阳电池及其制造方法
CN111799344A (zh) * 2020-09-08 2020-10-20 南昌凯迅光电有限公司 一种柔性砷化镓太阳能电池及其制作方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20020153534A1 (en) * 2001-04-20 2002-10-24 Kazuhiro Mochizuki Semiconductor device and power amplifier using the same
CN102157622A (zh) * 2011-03-08 2011-08-17 中国科学院苏州纳米技术与纳米仿生研究所 一种串联式单片集成多结薄膜太阳能电池的制造方法
CN105762227A (zh) * 2014-12-19 2016-07-13 天津恒电空间电源有限公司 一种砷化镓太阳电池钝化边缘的方法
US20180331245A1 (en) * 2015-11-20 2018-11-15 Beijing Chuangyu Technology Co., Ltd. Dual-junction thin film solar cell module, and preparation method thereof
CN107579122A (zh) * 2016-06-30 2018-01-12 比亚迪股份有限公司 电池片、电池片矩阵、太阳能电池及电池片的制备方法
CN107256895A (zh) * 2017-05-23 2017-10-17 西安航谷微波光电科技有限公司 一种高性能GaAs激光电池的制作方法
CN110574170A (zh) * 2018-06-20 2019-12-13 天津三安光电有限公司 一种柔性薄膜太阳电池及其制造方法
CN109768116A (zh) * 2018-12-25 2019-05-17 中国电子科技集团公司第十八研究所 一种砷化镓太阳电池的制备方法
CN110491964A (zh) * 2019-07-25 2019-11-22 中山德华芯片技术有限公司 一种柔性双面太阳能电池及其制备方法
CN111799344A (zh) * 2020-09-08 2020-10-20 南昌凯迅光电有限公司 一种柔性砷化镓太阳能电池及其制作方法

Also Published As

Publication number Publication date
CN112531077B (zh) 2022-07-29

Similar Documents

Publication Publication Date Title
US8426236B2 (en) Method and structure of photovoltaic grid stacks by solution based processes
US5584941A (en) Solar cell and production process therefor
JP2003007629A (ja) シリコン系膜の形成方法、シリコン系膜および半導体素子
US8809097B1 (en) Passivated emitter rear locally patterned epitaxial solar cell
JP2012501551A (ja) バックコンタクト式太陽電池モジュール
US8518724B2 (en) Method to form a device by constructing a support element on a thin semiconductor lamina
TW200937645A (en) Solar module with solar cell having crystalline silicon p-n homojunction and amorphous silicon heterojunctions for surface passivation
US8101451B1 (en) Method to form a device including an annealed lamina and having amorphous silicon on opposing faces
CN105261657A (zh) 一种mis薄膜电容器的制造工艺
JP2001339081A (ja) 太陽電池およびその製造方法
CN111799344A (zh) 一种柔性砷化镓太阳能电池及其制作方法
CN110120438B (zh) 基于金属柔性基底的太阳能电池的制备方法
CN112018216A (zh) 一种太阳能电池衬底的转移方法
CN112531077B (zh) 一种空间用柔性砷化镓太阳电池制备方法
CN111613693A (zh) 柔性太阳能电池及其制作方法
KR102612797B1 (ko) 태양에너지 전지 제조방법 및 태양에너지 전지 어셈블리, 발전 시스템
CN108258062B (zh) 砷化镓太阳能电池及其制备方法
WO2018014792A1 (zh) 钝化层制造方法及高压半导体功率器件、正面电极
CN211295107U (zh) 一种石墨烯辅助GaN整流器
WO2020029581A1 (zh) 柔性太阳能电池及其制作方法
CN114335241A (zh) 一种空间用柔性砷化镓太阳电池及制备方法
CN111726076A (zh) 基于太阳能的发电储能一体化器件及其制备方法
WO2014002824A1 (ja) 薄膜太陽電池セルおよびその製造方法
JPH02244681A (ja) 太陽電池
US20230215963A1 (en) Solar cell device and method for producing the same

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant