CN104659158A - 倒装多结太阳能电池及其制作方法 - Google Patents

倒装多结太阳能电池及其制作方法 Download PDF

Info

Publication number
CN104659158A
CN104659158A CN201510111095.9A CN201510111095A CN104659158A CN 104659158 A CN104659158 A CN 104659158A CN 201510111095 A CN201510111095 A CN 201510111095A CN 104659158 A CN104659158 A CN 104659158A
Authority
CN
China
Prior art keywords
upside
solar cell
down mounting
multijunction solar
growth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510111095.9A
Other languages
English (en)
Inventor
毕京锋
陈文浚
林桂江
李森林
刘冠洲
宋明辉
王笃祥
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tianjin Sanan Optoelectronics Co Ltd
Original Assignee
Tianjin Sanan Optoelectronics Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tianjin Sanan Optoelectronics Co Ltd filed Critical Tianjin Sanan Optoelectronics Co Ltd
Priority to CN201510111095.9A priority Critical patent/CN104659158A/zh
Publication of CN104659158A publication Critical patent/CN104659158A/zh
Priority to PCT/CN2016/070463 priority patent/WO2016145936A1/zh
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1876Particular processes or apparatus for batch treatment of the devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/1892Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof methods involving the use of temporary, removable substrates
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/44Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the method of coating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0687Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/068Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells
    • H01L31/0693Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN homojunction type, e.g. bulk silicon PN homojunction solar cells or thin film polycrystalline silicon PN homojunction solar cells the devices including, apart from doping material or other impurities, only AIIIBV compounds, e.g. GaAs or InP solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0725Multiple junction or tandem solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/072Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type
    • H01L31/0735Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers the potential barriers being only of the PN heterojunction type comprising only AIIIBV compound semiconductors, e.g. GaAs/AlGaAs or InP/GaInAs solar cells
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/04Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices
    • H01L31/06Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers
    • H01L31/078Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof adapted as photovoltaic [PV] conversion devices characterised by potential barriers including different types of potential barriers provided for in two or more of groups H01L31/062 - H01L31/075
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/184Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof the active layers comprising only AIIIBV compounds, e.g. GaAs, InP
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • Y02E10/544Solar cells from Group III-V materials
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Energy (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Photovoltaic Devices (AREA)

Abstract

本发明公开了一种倒装多结太阳能电池及制作方法,其中制作方法具体包括步骤:作方法,包括步骤:(1)提供一生长衬底,用于半导体材料的外延生长;(2)将所述生长衬底置于MOCVD设备中,在所述衬底上方采用MOCVD方法倒装生长第一外延结构,其具有多结子电池叠层;(3)将上述生长完成结构转移至MBE设备中,采用MBE方法在其上倒装形成第二外延结构,其至少包含一结子电池,形成串联倒装多结太阳能电池;其中第一外延结构的带隙大于第二外延结构的带隙。

Description

倒装多结太阳能电池及其制作方法
技术领域
    本发明涉及晶格匹配的倒装多结太阳能电池及其制作方法,属半导体材料技术领域。
背景技术
近些年来,作为第三代光伏发电技术的聚光多结化合物太阳电池,因其高光电转换效率而倍受关注。传统GaInP/GaAs/Ge三结太阳电池由于Ge底电池过多的吸收了低能光子,因而与InGaP和GaAs中顶电池的短路电流不匹配,所以传统的GaInP/GaAs/Ge三结太阳电池结构并不是效率最优化的组合。中国专利文献CN201010193582.1公开了一种采用倒装生长方式,其先生长与衬底GaAs晶格匹配的In0.5Ga0.5P和GaAs中顶电池,再通过渐变缓冲层(InGaP、InAlP或InGaAs)过渡到InGaAs底电池及后续的衬底剥离、新衬底键合等工艺逐步实施,实现整个电池的全结构制备。此技术的优点在于能够有效降低位错密度,剥离的衬底能够循环使用,降低了成本。整个制作过程中的主要技术难点在于:克服从GaAs 晶格常数0.5653 nm向In0.3Ga0.7As晶格常数0.5775 nm过渡时产生的2.15%的晶格失配,也就是异质结渐变缓冲层的生长;而且生长过程中会不可避免的产生穿透位错,这些位错会形成复合中心,降低电池的效率。             
         相较于晶格失配的InGaAs底电池,美国专利文献US20110232730A1公开了采用分子束外延(MBE)生长和GaAs衬底晶格匹配的GaInNAsSb五元系稀氮材料。MBE作为超高真空的晶体生长手段在工业化进程中,量产能力一直不如金属有机化学气相沉积(MOCVD)。传统的MBE外延生长,为保证结构均匀,一般采用单片外延,单质源的坩埚口径限制了量产能力,而MOCVD采用气相沉积,其反应室大,以Veeco E475为例,单炉(run)可以外延生长15~16片,量产能力较MBE高一个量级,即使工业级MBE,其量产能力也远不如MOCVD。
发明内容
本发明公开了一种晶格匹配的倒装多结太阳能电池及其制作方法,其先采用MOCVD设备进行宽带隙子电池外延结构生长,后采用MBE进行窄带隙子电池外延结构生长,从而获得高效率倒装多结太阳能电池。
本发明的具体技术方案为:倒装多结太阳能电池的制作方法,包括步骤:(1)提供一生长衬底,用于半导体材料的外延生长;(2)将所述生长衬底置于MOCVD设备中,在所述衬底上方采用MOCVD方法倒装生长第一外延结构,其具有多结子电池叠层;(3)将上述生长完成结构转移至MBE设备中,采用MBE方法在其上倒装形成第二外延结构,其至少包含一结子电池,形成串联倒装多结太阳能电池;其中第一外延结构的带隙大于第二外延结构的带隙。
采用本方法制作获得的倒装多结太阳能电池,其所述第一外延结构的晶格常数与第二外延结构的晶格常数匹配。
优选地,所述步骤(2)形成的第一外延结构还包括一形成于其顶面上的转移隔离层,在进行步骤(3)前,先去除所述转移隔离层,进行表面清洗,抛光至可直接外延状态(Epi-ready状态),然后将上述结构立即转移到MBE设备中进行步骤(3)。在一些较佳实施例中,所述步骤(2)包括下面子步骤:在所述生长衬底上形成刻蚀截止层;在所述刻蚀截止层上方采用MOCVD方法倒装生长具有宽带隙的多结子电池叠层,用于吸收短波端太阳光;在所述宽带隙多结子电池上形成转移隔离层;在完成步骤(2)后,采用选择蚀刻液蚀刻去除所述转移隔离层,并进行表面清洗,抛光至可直接外延状态(Epi-ready状态),然后将上述结构立即转移到MBE设备中进行步骤(3)。所述转移隔离层用以完成第一次外延生长后切换至不同生长设备(MBE设备)过程中隔离外界的大气氧化、硫化、有机污染、杂质吸附、水蒸气吸附,在进行下一次外延之前将其连同表面杂质一起腐蚀掉,从而起到保护其下功能层的作用。
优选地,所述步骤(2)的生长温度高于步骤(3)的生长温度。如此采用倒装生长规避了不同的衬底温度造成的影响,形成多结太阳能电池时,保护了已生长完毕宽带隙子电池,避免其遭受高温损伤。在一些具体实施例中,所述步骤(2)中MOCVD的生长温度可为620~700℃,步骤(3)中MBE的生长温度可为500~600℃。
优选地,前述倒装多结太阳能电池的制作方法还包括步骤(4):对形成的倒装多结太阳能电池的外延结构的进行表面清洗、抛光,并键合支撑衬底、去除所述生长衬底、制作电极结构,实现倒装多结太阳能电池。 
在MBE和MOCVD两种外延生长技术中,MBE方法是将原子或者分子束打向衬底,对于衬底温度可能要求不用太高,可以采用相对较低的温度进行生长。而MOCVD方法采用有机源裂解反应室内沉积生长,其衬底温度需要将有机源进行裂解,然后再发生化学反应进行沉积,所以一般衬底温度较高。本发明的制作方法结合两种生长方法的差异,采用MOCVD生长宽带隙子电池,其量产能力大,但衬底温度相对较高,优先于MBE生长的子电池,这即是整体电池结构采用倒装外延的初衷,如此可以获得高效率获得高晶体质量的多结太阳能电池,同时规避了不同的衬底温度造成的影响。相比于完全使用MBE外延生长相同带隙结构的多结太阳电池全结构来说,采用MOCVD生长部分子电池能够降低外延成本,提高量产能力。相比于完全使用MOCVD外延生长相同带隙结构的多结太阳电池全结构来说,采用本发明制作方法所获得的其各个子电池全部晶格匹配、晶体质量高,所以光电转化效率高。
本发明的其它特征和优点将在随后的说明书中阐述,并且,部分地从说明书中变得显而易见,或者通过实施本发明而了解。本发明的目的和其他优点可通过在说明书、权利要求书以及附图中所特别指出的结构来实现和获得。
附图说明
附图用来提供对本发明的进一步理解,并且构成说明书的一部分,与本发明的实施例一起用于解释本发明,并不构成对本发明的限制。此外,附图数据是描述概要,不是按比例绘制。
图1为根据本发明实施的一种倒装多结太阳能电池的制作方法流程图。
图2~图4显示了根据本发明实施的一种倒装四结太阳电池制作方法之各个过程中的结构截面图,其中图2为采用MOCVD方法外延生长第一外延结构后的结构截面图,图3为采用MBE方法完成第二外延结构后的截面图,图4 为完成芯片工艺后的倒装四结太阳能电池结构截面图。
图中各标号表示:
001:生长衬底
002:刻蚀截至层
003:欧姆接触层
004:支撑衬底
101:第一子电池窗口层
102:第一子电池发射区
103:第一子电池基区
104:第一子电池背场层
201:第二子电池窗口层
202:第二子电池发射区
203:第二子电池基区
204:第二子电池背场层
005:转移隔离层
301:第三子电池窗口层
302:第三子电池发射区
303:第三子电池基区
304:第三子电池背场层
401:第四子电池窗口层
402:第四子电池发射区
403:第四子电池基区
404:第四子电池背场层
501:第一、二子电池隧穿结
502:第二、三子电池隧穿结
502:第二、三子电池隧穿结
500:重掺杂盖帽层
600:减反射层
700:正面金属电极
800:背面金属电极。
具体实施方式
下面将结合示意图对本发明的倒装太阳能电池及其制作方法进行更详细的描述,其中表示了本发明的优选实施例,应该理解本领域技术人员可以修改在此描述的本发明,而仍然实现本发明的有利效果。因此,下列描述应当被理解为对于本领域技术人员的广泛知道,而并不作为对本发明的限制。
请参看附图1,一种倒装多结太阳能电池的制作流程图,包括了步骤S11~S31,其中步骤S11~S13为采用MOCVD方法生长第一外延结构,步骤S21~S23为采用MBE方法生长第二外延结构,步骤S31为采用芯片工艺形成倒装多结太阳能电池,具体如下:
步骤S11:在MOCVD设备中外延生长刻蚀截至层(ESL)和欧姆接触层;
步骤S12:在MOCVD设备中外延生长第一外延结构的功能层,其含有多结子电池叠层,用于吸收短波端太阳光;
步骤S13:在MCVD设备中外延生长转移隔离层,用以完成第一次外延生长后切换至不同生长设备(MBE设备)过程中隔离外界的大气氧化、硫化、有机污染、杂质吸附、水蒸气吸附等,在进行下一次外延之前再将其连同表面杂质一起腐蚀掉,从而起到保护其下功能层的作用;
步骤S21:将经过前面处理的样品取出MOCVD设备外,去除转移隔离层并进行清洗、抛光至Epi-ready状态后转移至MBE设备中;
步骤S22:在MBE设备中外延生长第二外延结构的功能层,其至少含有一结子电池叠层,带隙小于第一外延结构的带隙,用于吸收长波端太阳光;
步骤S23:在MBE设备中外延长生欧姆接触层;
步骤S31:采用芯片工艺形成倒装多结太阳能电池,包括键合支撑衬底、剥离生长衬底、去除刻蚀截至层、制作金属电极等。
【实施例1】
 图3所示为一种倒装四结太阳电池的外延结构,至下而上包括:生长衬底001、刻蚀截止层002、欧姆接触层003、GaInP第一子电池100、GaAs第二子电池200、GaInNAsSb第三子电池300,GaInNAsSb第四子电池400,重掺杂盖帽层500,其中每结子电池通过隧穿结501、502、503连接。下面结合其制作方法对该结构做详细描述。
第一步:选用n型掺杂的向(111)晶面偏角为90的GaAs衬底作为生长衬底001,厚度在350微米左右,掺杂浓度在1×1018cm-3 ~4×1018cm-3之间。将该衬底放置在MOCVD系统中,依次在此衬底上生长InGaP刻蚀截止层002和GaAs欧姆接触层003。其中InGaP刻蚀截止层002厚度为100 nm、掺杂约为1×1018cm-3,GaAs欧姆接触层003的厚度为200 nm、掺杂约为1×1018cm-3
第二步:在GaAs欧姆接触层003上方倒装生长第一子电池100,其带隙为 1.89~1.92eV,具体包括:窗口层101、发射区102、基区103和背场层104。在本实施例中, n+-AlInP窗口层101的厚度为25 nm,掺杂浓度在1×1018cm-3左右; n+-InGaP发射区102的厚度为100 nm,掺杂浓度为在2×1018cm-3; p+-InGaP基区103的厚度优选值为900 nm,掺杂浓度为在5×1017cm-3;p型AlGaInP背场层104的厚度为常规背场层厚度的2倍,可取100 nm,掺杂浓度在1×1018cm-3左右。
第三步:在第一子电池100上方生长重掺杂的p++/n++-AlGaAs/GaInP隧穿结501,其厚度是50 nm,掺杂浓度高达2×1019cm-3
第四步:在隧穿结401上方倒装生长GaAs第二子电池200,其带隙1.42eV,具体包括:窗口层201、发射区202、基区203和背场层204。在本实施例中,n+-AlInP窗口层201的厚度为50 nm,此厚度2倍于常规窗口层厚度,掺杂渐变,从隧穿结界面出由高到低,浓度变化范围是1~5×1018cm-3左右;n+-GaAs发射区202的厚度为150 nm,掺杂浓度为在2×1018cm-3; P+-GaAs基区203的厚度优选值为3200 nm,掺杂浓度为在5×1017cm-3; p型AlGaAs背场层204的厚度为100 nm,此厚度为常规背场层厚度的2倍,掺杂渐变,从隧穿结界面出由高到低,浓度变化范围是1~5×1018cm-3左右。
第五步:在第二子电池上方生长重掺杂的p++/n++-GaAs隧穿结502,其厚度是50 nm,掺杂浓度高达2×1019cm-3
第六步:在隧穿结502的上方形成转移隔离层005,至此在MOCVD设备中完成第一外延结构,其结构图如图2所示。移转隔离层005主要用以完成第一次外延生长后切换至不同生长设备(MBE设备)过程中隔离外界的大气氧化、硫化、有机污染、杂质吸附、水蒸气吸附等作用,在进行下一次外延之前将其连同表面杂质一起腐蚀掉,从而起到保护其下功能层的作用。在本实施例中,转移隔离层005采用n+-GaInP,厚度为5 nm,掺杂5×1018cm-3左右。
第七步:将上述生长完成结构转移至MBE设备中,转移之前用选择溶液腐蚀掉转移隔离层GaInP 005,并且清洗、抛光表面至可直接用于外延(Epi-ready)状态。
第八步:在经抛光处理的表面上倒装生长第三子电池300,其带隙大约0.9~1eV,具体包括:窗口层301、发射区302、基区303和背场层304。在本实施例中,n+-GaInP窗口层301的厚度为25 nm,掺杂浓度在1×1018cm-3左右; n+-GaInNAsSb发射区302的厚度为250 nm,掺杂浓度为在2×1018cm-3; P+-GaInNAsSb基区303的厚度优选值为3000 nm,掺杂浓度为在5×1017cm-3;p型GaInP背场层304的厚度为50 nm,掺杂浓度在1×1018cm-3左右。
第九步:在第三子电池上方外延生长重掺杂的p++/n++-GaAs 隧穿结503,其厚度是50 nm,掺杂浓度高达2×1019cm-3
第十步:在隧穿结503倒装生长第四子电池400,至此完成倒装四结太阳能电池的外延生长,其结构图如图3所示。第四子电池400的带隙大约0.6~0.7eV,具体包括:窗口层401、发射区402基区403和背场层404。在本实施例中,n+-GaInP窗口层401的厚度为25 nm,掺杂浓度在1×1018cm-3左右; n+-GaInNAsSb发射区402的厚度为250 nm,掺杂浓度为在2×1018cm-3; P+-GaInNAsSb基区403的厚度优选值为3500 nm,掺杂浓度为在5×1017cm-3;p型GaInP背场层404的厚度为50 nm,掺杂浓度在1×1018cm-3左右。
第十一步:在第四子电池400上方面生长高掺杂的p++- GaInNAsSb盖帽层500,以便做欧姆接触,其掺杂浓度为2×1019cm-3
第十二步:电池的外延生长结束后,进行芯片工艺,包括键合支撑衬底004、剥离生长衬底001、去除刻蚀截至层002、蒸镀减反膜600、制作正面金属电极700和背面金属电极800,完成倒装四结太阳能电池的制作,其结构图如图4所示。
采用上述制作方法所获得的其各个子电池全部晶格匹配、晶体质量高,所以光电转化效率高,而且先进行高温MOCVD外延生长,后进行低温MBE外延长生,规避了不同的衬底温度造成的影响。
【实施例2】
本实施例与实施例1的区别在于第四子电池400采用Ge电池,其中n+-Ge发射区的厚度为250 nm,掺杂浓度为在2×1018cm-3; P+-Ge基区的厚度优选值为2500 nm。

Claims (9)

1.倒装多结太阳能电池的制作方法,包括步骤:
(1)提供一生长衬底,用于半导体材料的外延生长;
(2)将所述生长衬底置于MOCVD设备中,在所述衬底上方采用MOCVD方法倒装生长第一外延结构,其具有多结子电池叠层;
(3)将上述生长完成结构转移至MBE设备中,采用MBE方法在其上倒装形成第二外延结构,其至少包含一结子电池,形成串联倒装多结太阳能电池;
其中第一外延结构的带隙大于第二外延结构的带隙。
2.根据权利要求1所述的倒装多结太阳能电池的制作方法,其特征在于:所述步骤(2)形成的第一外延结构还包括一形成于其顶面上的转移隔离层,在进行步骤(3)前,先去除所述转移隔离层,进行表面清洗,抛光至可直接外延状态(Epi-ready状态),然后将上述结构立即转移到MBE设备中进行步骤(3)。
3.根据权利要求2所述的倒装多结太阳能电池的制作方法,其特征在于:所述步骤(2)包括下面子步骤:
在所述生长衬底上形成刻蚀截止层;
在所述刻蚀截止层上方采用MOCVD方法倒装生长具有宽带隙的多结子电池叠层,用于吸收短波端太阳光;
在所述宽带隙多结子电池上形成转移隔离层,用以完成第一次外延生长后切换至MBE设备过程中隔离外界的大气氧化、硫化、有机污染、杂质吸附、水蒸气吸附,在进行下一次外延之前将其连同表面杂质一起腐蚀掉,从而起到保护其下功能层的作用。
4.根据权利要求3所述的倒装多结太阳能电池的制作方法,其特征在于:在完成步骤(2)后,采用选择蚀刻液蚀刻去除所述转移隔离层,并进行表面清洗,抛光至可直接外延状态(Epi-ready状态),然后将上述结构立即转移到MBE设备中进行步骤(3)。
5.根据权利要求1所述的倒装多结太阳能电池的制作方法,其特征在于:所述采用MBE形成的第二外延结构的晶格常数与采用MOCVD形成的第一外延结构的晶格匹配。
6.根据权利要求1所述的倒装多结太阳能电池的制作方法,其特征在于:所述步骤(2)的生长温度高于步骤(3)的生长温度。
7.根据权利要求1所述的倒装多结太阳能电池的制作方法,其特征在于:还包括步骤(4):对形成的倒装多结太阳能电池的外延结构的进行表面清洗、抛光,并键合支撑衬底、去除所述生长衬底、制作电极结构,实现倒装多结太阳能电池。
8.一种倒装多结太阳能电池,其特征在于:采用权利要求1~7中所述的任意一种制作方法制备获得。
9.根据权利要求8所述的一种倒装多结太阳能电池,其特征在于:所述第一外延结构的晶格常数与第二外延结构的晶格常数匹配。
CN201510111095.9A 2015-03-16 2015-03-16 倒装多结太阳能电池及其制作方法 Pending CN104659158A (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201510111095.9A CN104659158A (zh) 2015-03-16 2015-03-16 倒装多结太阳能电池及其制作方法
PCT/CN2016/070463 WO2016145936A1 (zh) 2015-03-16 2016-01-08 倒装多结太阳能电池及其制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510111095.9A CN104659158A (zh) 2015-03-16 2015-03-16 倒装多结太阳能电池及其制作方法

Publications (1)

Publication Number Publication Date
CN104659158A true CN104659158A (zh) 2015-05-27

Family

ID=53250065

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510111095.9A Pending CN104659158A (zh) 2015-03-16 2015-03-16 倒装多结太阳能电池及其制作方法

Country Status (2)

Country Link
CN (1) CN104659158A (zh)
WO (1) WO2016145936A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105261659A (zh) * 2015-11-12 2016-01-20 天津三安光电有限公司 太阳能电池及其制备方法
CN105720126A (zh) * 2016-04-27 2016-06-29 天津三安光电有限公司 一种倒装四结太阳能电池结构及其制备方法
WO2016145936A1 (zh) * 2015-03-16 2016-09-22 天津三安光电有限公司 倒装多结太阳能电池及其制备方法
CN106252450A (zh) * 2016-09-05 2016-12-21 上海空间电源研究所 一种含有末端小失配子电池的多结太阳电池及其制备方法
CN112447880A (zh) * 2019-08-29 2021-03-05 阿聚尔斯佩西太阳能有限责任公司 两阶段的孔蚀刻方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299159A (zh) * 2011-08-17 2011-12-28 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池及其制备方法
CN102751389A (zh) * 2012-07-19 2012-10-24 厦门市三安光电科技有限公司 一种高效多结太阳能电池的制备方法
CN103151413A (zh) * 2013-03-22 2013-06-12 中国科学院苏州纳米技术与纳米仿生研究所 倒装四结太阳电池及其制备方法
CN203351629U (zh) * 2011-11-15 2013-12-18 太阳光电公司 光伏电池和光伏系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6252287B1 (en) * 1999-05-19 2001-06-26 Sandia Corporation InGaAsN/GaAs heterojunction for multi-junction solar cells
US20100122724A1 (en) * 2008-11-14 2010-05-20 Emcore Solar Power, Inc. Four Junction Inverted Metamorphic Multijunction Solar Cell with Two Metamorphic Layers
FR2981195A1 (fr) * 2011-10-11 2013-04-12 Soitec Silicon On Insulator Multi-jonctions dans un dispositif semi-conducteur forme par differentes techniques de depot
US20140137930A1 (en) * 2012-11-16 2014-05-22 Solar Junction Corporation Multijunction solar cells
CN104659158A (zh) * 2015-03-16 2015-05-27 天津三安光电有限公司 倒装多结太阳能电池及其制作方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102299159A (zh) * 2011-08-17 2011-12-28 中国科学院苏州纳米技术与纳米仿生研究所 GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池及其制备方法
CN203351629U (zh) * 2011-11-15 2013-12-18 太阳光电公司 光伏电池和光伏系统
CN102751389A (zh) * 2012-07-19 2012-10-24 厦门市三安光电科技有限公司 一种高效多结太阳能电池的制备方法
CN103151413A (zh) * 2013-03-22 2013-06-12 中国科学院苏州纳米技术与纳米仿生研究所 倒装四结太阳电池及其制备方法

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016145936A1 (zh) * 2015-03-16 2016-09-22 天津三安光电有限公司 倒装多结太阳能电池及其制备方法
CN105261659A (zh) * 2015-11-12 2016-01-20 天津三安光电有限公司 太阳能电池及其制备方法
CN105720126A (zh) * 2016-04-27 2016-06-29 天津三安光电有限公司 一种倒装四结太阳能电池结构及其制备方法
WO2017185774A1 (zh) * 2016-04-27 2017-11-02 天津三安光电有限公司 一种倒装四结太阳能电池结构及其制备方法
CN106252450A (zh) * 2016-09-05 2016-12-21 上海空间电源研究所 一种含有末端小失配子电池的多结太阳电池及其制备方法
CN106252450B (zh) * 2016-09-05 2018-03-23 上海空间电源研究所 一种含有末端小失配子电池的多结太阳电池及其制备方法
CN112447880A (zh) * 2019-08-29 2021-03-05 阿聚尔斯佩西太阳能有限责任公司 两阶段的孔蚀刻方法
CN112447880B (zh) * 2019-08-29 2023-07-14 阿聚尔斯佩西太阳能有限责任公司 两阶段的孔蚀刻方法

Also Published As

Publication number Publication date
WO2016145936A1 (zh) 2016-09-22

Similar Documents

Publication Publication Date Title
CN102569475B (zh) 一种四结四元化合物太阳能电池及其制备方法
CN103000759B (zh) 砷化镓薄膜多结叠层太阳电池的制备方法
CN102790120B (zh) GaInP/GaAs/Ge三结级联太阳能电池及其制备方法
CN104659158A (zh) 倒装多结太阳能电池及其制作方法
CN103151413B (zh) 倒装四结太阳电池及其制备方法
CN103928539A (zh) 多结iii-v太阳能电池及其制造方法
CN102832274B (zh) 倒装太阳能电池及其制备方法
CN102790116B (zh) 倒装GaInP/GaAs/Ge/Ge四结太阳能电池及其制备方法
CN103219414B (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN102790117A (zh) GaInP/GaAs/InGaNAs/Ge四结太阳能电池及其制备方法
CN103077983A (zh) 多结太阳能电池及其制备方法
CN106409958B (zh) 基于石墨衬底的倒装三结太阳电池及其制备方法
CN103000740B (zh) GaAs/GaInP双结太阳能电池及其制作方法
CN209357742U (zh) 三结叠层太阳能电池
CN209357741U (zh) 三结叠层太阳能电池
CN104157725A (zh) GaInP/GaAs/InGaAsP/InGaAs四结级联太阳电池的制作方法
CN105355668A (zh) 一种具有非晶态缓冲层结构的In0.3Ga0.7As电池及制备方法
CN104993005A (zh) 一种基于外延正向失配生长的多结GaAs薄膜太阳能电池
CN111312843A (zh) 三结叠层太阳能电池及其制备方法
CN110556445A (zh) 一种叠层并联太阳能电池
CN104681652A (zh) 一种倒装多结太阳能电池及其制备方法
CN104241416A (zh) 一种含量子阱结构的三结太阳能电池
CN107403850B (zh) 一种含嵌入式背场结构的多结太阳能电池及其制备方法
CN104218108A (zh) 一种高效率柔性薄膜太阳能电池
CN111129196B (zh) 一种锗基叠层太阳电池及制备方法

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20150527