CN105349966A - 一种绒面复合结构ZnO-TCO薄膜的制备方法及应用 - Google Patents

一种绒面复合结构ZnO-TCO薄膜的制备方法及应用 Download PDF

Info

Publication number
CN105349966A
CN105349966A CN201510670221.4A CN201510670221A CN105349966A CN 105349966 A CN105349966 A CN 105349966A CN 201510670221 A CN201510670221 A CN 201510670221A CN 105349966 A CN105349966 A CN 105349966A
Authority
CN
China
Prior art keywords
zno
film
glass
preparation
size
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
CN201510670221.4A
Other languages
English (en)
Inventor
陈新亮
张晓丹
刘杰铭
赵颖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nankai University
Original Assignee
Nankai University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nankai University filed Critical Nankai University
Priority to CN201510670221.4A priority Critical patent/CN105349966A/zh
Publication of CN105349966A publication Critical patent/CN105349966A/zh
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/02Pretreatment of the material to be coated
    • C23C16/0227Pretreatment of the material to be coated by cleaning or etching
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/30Deposition of compounds, mixtures or solid solutions, e.g. borides, carbides, nitrides
    • C23C16/40Oxides
    • C23C16/407Oxides of zinc, germanium, cadmium, indium, tin, thallium or bismuth
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/02Details
    • H01L31/0224Electrodes
    • H01L31/022466Electrodes made of transparent conductive layers, e.g. TCO, ITO layers
    • H01L31/022483Electrodes made of transparent conductive layers, e.g. TCO, ITO layers composed of zinc oxide [ZnO]

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Electromagnetism (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Photovoltaic Devices (AREA)
  • Surface Treatment Of Glass (AREA)

Abstract

一种绒面复合结构ZnO-TCO薄膜的制备方法及应用,所述绒面结构ZnO-TCO薄膜的结构特征为微米级绒面玻璃/MOCVD-ZnO:B纳米薄膜,制备步骤是:1)先用去离子水和稀盐酸(HCl)溶液对玻璃表面进行清洗,然后采用蒙砂粉进行蒙砂刻蚀;抛光次数为1-12次,形成微米级尺寸绒面玻璃,特征尺寸~5至25μm;2)以二乙基锌(DEZn)和水(H2O)为原料,氢稀释浓度为1.0%的硼烷B2H6作为掺杂气体,利用MOCVD技术在上述粗糙微米玻璃上生长纳米尺寸(~300-800nm)高电导ZnO:B透明导电薄膜,薄膜厚度为1000-3000nm。本发明的优点是:成本低廉,可实现微纳米尺寸复合结构的ZnO薄膜,提高光散射能力,用于pin型Si基叠层薄膜太阳电池,可实现较高光电转化效率。

Description

一种绒面复合结构ZnO-TCO薄膜的制备方法及应用
技术领域
本发明涉及太阳电池透明导电氧化物薄膜,特别是一种绒面结构ZnO-TCO薄膜的制备方法及其应用。
背景技术
氢化非晶硅(a-Si:H)的光学带宽为1.7eV左右,其吸收系数在短波方向较高,而氢化微晶硅(μc-Si:H)的光学带宽约为1.1eV,其吸收系数在长波方向较高,并能吸收到近红外长波区域,吸收波长可扩展至1100nm,这就使太阳光谱能得到更好利用。此外,相比于非晶硅薄膜材料,微晶硅薄膜材料结构有序性程度高,因此,微晶硅薄膜电池具有很好的器件稳定性,无明显衰退现象。由此可见,微晶硅薄膜太阳电池可较好地利用太阳光谱的近红外光区域,而新型非晶硅/微晶硅(a-Si:H/μc-Si:H)叠层薄膜太阳电池将扩展太阳光谱应用范围,整体提高电池稳定性和效率,参见:J.Meier,S.Dubail,R.Platz,etc.Sol.EnergyMater.Sol.Cells49(1997)35;ArvindShah,J.Meier,E.Vallat-Sauvain,etc,ThinSolidFilms403-404(2002)179。绒面结构(texturedstructure)透明导电氧化物-TCO薄膜的应用可以增强光散射作用,改善陷光效果,它对提高Si基薄膜太阳电池的效率和稳定性(SW效应)起到决定性的影响,参见:A.V.Shah,H.Schade,M.Vanecek,etc,ProgressinPhotovoltaics,12(2004)113。绒面结构主要与薄膜的晶粒尺寸,晶粒形状和粗糙度等因素有关。
MOCVD(metalorganicchemicalvapordeposition-MOCVD,即金属有机物化学气相沉积)技术可直接生长出绒面结构的ZnO薄膜,参见:X.L.Chen,X.H.Geng,J.M.Xue,etc.J.Cryst.Growth,296(2006)43;W.W.Wenas,A.Yamada,K.Takahashi,etc,J.Appl.Phys.70(1991)7119;S.U.Kroll,C.Bucher,etc,Sol.EnergyMater.Sol.Cells86(2005)385;S.L.Feitknecht,R.Schluchter,etc,Sol.EnergyMater.Sol.Cells90(2006)2960。薄膜生长过程为无粒子轰击的热分解过程,沉积温度低(~423K);可以实现高速度、大面积且均匀的ZnO薄膜生长,符合产业化发展要求。典型的MOCVD-ZnO薄膜的表面形貌,晶粒呈现“类金字塔”状,XRD衍射谱中对应(110)峰择优取向,特征晶粒尺寸~300-500nm,平均粗糙度σrms=40-80nm,电阻率ρ~1.5-3×10-3Ωcm。
国际上研究了绒面结构ZnO薄膜衬底并应用于薄膜电池。意大利ENEA研究组的M.L.Addonizio等人采用Ar等离子体对薄膜表面进行了不同刻蚀时间的处理,随着处理时间的增长,薄膜表面的金字塔装结构逐渐减小,最终变为弹坑状结构,虽然薄膜表面粗糙度和Haze值都有所下降,但表面较为圆滑,改善了TCO层与a-Si电池p层的接触特性,电池的Voc、Jsc都有所提高[AddonizioML,AntonaiaA.,ThinSolidFilms,2009,518(4):1026-1031.]。2013年,荷兰H.R.Tan等人采用HF和H2O2混合溶液对玻璃表面进行湿法腐蚀,获得了横向尺寸~20μm的弹坑状形貌。沉积AZO薄膜后,以其作为前电极制备纳米晶硅(nc-Si:H)电池的Jsc为12.0mA/cm2,效率为13.3%[TanHR,PsomadakiE,IsabellaO,etal..AppliedPhysicsLetters,2013,103:173905(1)-173905(5).]。2013年,新加坡S.Venkataraj等人采用Al诱导法对玻璃表面进行了刻蚀处理,具体方法为:首先,采用蒸发法在玻璃表面沉积Al薄膜,Al会和SiO2发生反应生成Si和Al2O3,再通过HNO3/HF混合溶液对其进行腐蚀,腐蚀后得到了横向尺寸~5μm的弹坑状结构,制备的AZO/glass在800nm处的Haze值~58%[VenkatarajS,WangJ,VayalakkaraP,etal.IEEEJournalofPhotovoltaics,3(2):605-612.]
综述所述,开发具有适合太阳电池应用的绒面ZnO-TCO薄膜成为当前科研工作中的重点和未来发展方向。
发明内容
本发明的目的是提供一种宽光谱高绒度绒面结构TCO薄膜,从而提高Si薄膜电池在光电性能,获得一种宽光谱高绒度绒面结构ZnO-TCO薄膜及其应用方法,采用湿法刻蚀技术获得粗糙表面的微米结构玻璃衬底,而后采用MOCVD技术制备纳米结构ZnO:B薄膜。
本发明的技术方案:
一种绒面微纳结构ZnO-TCO薄膜的制备方法,所述绒面结构ZnO-TCO薄膜的结构特征为微米结构玻璃/MOCVD-ZnO纳米结构,制备步骤如下:
1)先用去离子水和稀盐酸溶液对玻璃表面进行清洗,然后采用蒙砂粉进行蒙砂刻蚀,刻蚀时间为1分35秒,处理完之后,为去除蒙砂过程中生成的附着物,需要用主要成分为HF/H2SO4的抛光液对其进行抛光处理;抛光次数为1-12次,每次抛光时间为5分钟;获得的微米级玻璃衬底,其弹坑状尺寸为~5-20μm;
2)以纯度为99.995%二乙基锌和水为原料,氢稀释浓度为1.0%的硼烷B2H6作为掺杂气体,利用MOCVD技术在上述粗糙微米玻璃上生长纳米尺寸(300-800nm)高电导ZnO:B透明导电薄膜,薄膜厚度1000-3000nm,利用MOCVD技术的工艺参数:衬底温度为135-165℃,B2H6掺杂气体流量为二乙基锌流量的1.0%,反应压力为1.0Torr,生长速率为20-100nm/min。
进一步的,步骤1)中所述的抛光次数为3次。
一种所制备的绒面结构ZnO-TCO薄膜的应用,用于pin型Si基薄膜太阳电池。
本发明的优点及效果:湿法刻蚀技术可获得不同弹坑状微米结构玻璃衬底,而MOCVD技术可调节获得纳米尺寸ZnO:B薄膜,获得的玻璃衬底/ZnO薄膜具有微纳米复合结构,提高光散射特性,实现较高光电转化效率。
本发明的基本思想是结合MOCVD技术生长纳米结构ZnO晶粒尺寸和微米级粗糙绒面结构玻璃的优点,实现新型复合微米纳米结构ZnO:B薄膜,并将其应用于Si基薄膜太阳电池。首先,利用蒙砂刻蚀技术实现微米级玻璃衬底,其弹坑状尺寸为5-25μm;其次,MOCVD技术在粗糙的微米尺寸玻璃衬底上制备纳米级尺寸ZnO:B透明导电薄膜,金字塔状晶粒尺寸300-800nm。新型复合绒面结构ZnO:B应用于Si基薄膜太阳电池。
采用蒙砂刻蚀法对平面玻璃(超白玻璃)表面进行湿法腐蚀处理,从而获得微米级尺寸弹坑状结构,其横向尺寸范围为~8至25μm。当抛光次数(x)为1时,玻璃的表面粗糙度(RMSroughness)达到409.0nm,在400nm-1100nm的波长范围内绒度(Haze)值~80%。复合结构玻璃/ZnO:B薄膜方块电阻可达到~20欧姆。
附图说明
图1是蒙砂刻蚀获得的微米级尺寸玻璃扫描电镜(SEM)图像。
图2是该玻璃/MOCVD-ZnO薄膜扫描电镜(SEM)图像。
图3是该玻璃/MOCVD-ZnO薄膜应用于pin型Si基叠层薄膜太阳电池的电流-电压(J-V)曲线。
具体实施方式
实施例1:
一种绒面复合结构ZnO-TCO薄膜的制备方法,所述绒面结构ZnO-TCO薄膜的结构特征为微米级结构玻璃/纳米级尺寸MOCVD-ZnO:B薄膜,制备步骤如下:
1)为得到干净的玻璃表面,先用去离子水和稀盐酸(HCl)溶液对玻璃表面进行清洗,然后采用蒙砂粉进行蒙砂刻蚀,刻蚀时间为1分35秒,处理完之后,为去除蒙砂过程中生成的附着物,需要用主要成分为HF/H2SO4的抛光液(其成分为HF和H2SO4的水溶液,HF和H2SO4比例1-10,溶液浓度5-30%)对其进行抛光处理;抛光次数为3,每次抛光时间为5分钟;获得的微米级玻璃衬底,其弹坑状尺寸为~8-10μm;
图1是蒙砂刻蚀获得的微米级尺寸玻璃扫描电镜(SEM)图像,图中表明,玻璃呈现微米级尺寸的弹坑状形貌。
2)以纯度为99.995%二乙基锌(DEZn)和水(H2O)为原料,氢稀释浓度为1.0%的硼烷B2H6作为掺杂气体,利用MOCVD技术在上述粗糙微米玻璃上生长纳米尺寸(300-800nm)高电导ZnO:B透明导电薄膜,薄膜厚度2140nm,利用MOCVD技术的工艺参数:衬底温度为135-165℃,B2H6掺杂气体流量为二乙基锌流量的1.0%,反应压力为1.0Torr,生长速率为20-100nm/min。
图2是该玻璃/MOCVD-ZnO薄膜扫描电镜(SEM)图像,图中表明:薄膜表面呈现复合结构的微纳米相结合的ZnO薄膜。
将该玻璃/MOCVD-ZnO薄膜应用于pin型硅基薄膜太阳电池,为非晶硅a-Si:H太阳电池。与以传统平面玻璃/ZnO:B绒面结构薄膜作为前电极太阳电池相比,电池效率从6.88%提高至7.22%,如图3所示。
实施例2:
一种绒面结构ZnO-TCO薄膜的制备方法,所述绒面结构ZnO-TCO薄膜的结构特征为微米级结构玻璃/纳米级尺寸MOCVD-ZnO:B薄膜,制备步骤如下:
1)为得到干净的玻璃表面,先用去离子水和稀盐酸(HCl)溶液对玻璃表面进行清洗,然后采用蒙砂粉进行蒙砂刻蚀,刻蚀时间为1分35秒,处理完之后,为去除蒙砂过程中生成的附着物,需要用主要成分为HF/H2SO4的抛光液(其成分为HF和H2SO4的水溶液,HF和H2SO4比例1-10,溶液浓度5-30%)对其进行抛光处理;抛光次数为1,每次抛光时间为5分钟;获得的微米级玻璃衬底,其弹坑状尺寸为~5μm;
2)以纯度为99.995%二乙基锌(DEZn)和水(H2O)为原料,氢稀释浓度为1.0%的硼烷B2H6作为掺杂气体,利用MOCVD技术在上述粗糙微米玻璃上生长纳米尺寸高电导ZnO:B透明导电薄膜,薄膜厚度1500nm,利用MOCVD技术的工艺参数:衬底温度为135-165℃,B2H6掺杂气体流量为二乙基锌流量的1.0%,反应压力为1.0Torr,生长速率为20-100nm/min。
将该玻璃/MOCVD-ZnO薄膜应用于pin型硅基薄膜太阳电池,与实施例1相同。
实施例3:
一种绒面结构ZnO-TCO薄膜的制备方法,所述绒面结构ZnO-TCO薄膜的结构特征为微米级结构玻璃/纳米级尺寸MOCVD-ZnO:B薄膜,制备步骤如下:
1)为得到干净的玻璃表面,先用去离子水和稀盐酸(HCl)溶液对玻璃表面进行清洗,然后采用蒙砂粉进行蒙砂刻蚀,刻蚀时间为1分35秒,处理完之后,为去除蒙砂过程中生成的附着物,需要用主要成分为HF/H2SO4的抛光液(其成分为HF和H2SO4的水溶液,HF和H2SO4比例1-10,溶液浓度5-30%)对其进行抛光处理;抛光次数为12,每次抛光时间为5分钟;获得的微米级玻璃衬底,其弹坑状尺寸为~20μm;
2)以纯度为99.995%二乙基锌(DEZn)和水(H2O)为原料,氢稀释浓度为1.0%的硼烷B2H6作为掺杂气体,利用MOCVD技术在上述粗糙微米玻璃上生长纳米尺寸高电导ZnO:B透明导电薄膜,薄膜厚度1200nm,利用MOCVD技术的工艺参数:衬底温度为135-165℃,B2H6掺杂气体流量为二乙基锌流量的1.0%,反应压力为1.0Torr,生长速率为20-100nm/min。
将该玻璃/MOCVD-ZnO薄膜应用于pin型硅基薄膜太阳电池,与实施例1相同。

Claims (3)

1.一种绒面复合结构ZnO-TCO薄膜的制备方法,所述绒面结构ZnO-TCO薄膜的结构特征为微米结构玻璃/MOCVD-ZnO纳米结构,制备步骤如下:
1)先用去离子水和稀盐酸溶液对玻璃表面进行清洗,然后采用蒙砂粉进行蒙砂刻蚀,刻蚀时间为1分35秒,处理完之后,为去除蒙砂过程中生成的附着物,需要用主要成分为HF/H2SO4的抛光液对其进行抛光处理;抛光次数为1-12次,每次抛光时间为5分钟;获得的微米级玻璃衬底,其弹坑状尺寸为~5-20μm;
2)以纯度为99.995%二乙基锌和水为原料,氢稀释浓度为1.0%的硼烷B2H6作为掺杂气体,利用MOCVD技术在上述粗糙微米玻璃上生长纳米尺寸(300-800nm)高电导ZnO:B透明导电薄膜,薄膜厚度1000-3000nm,利用MOCVD技术的工艺参数:衬底温度为135-165℃,B2H6掺杂气体流量为二乙基锌流量的1.0%,反应压力为1.0Torr,生长速率为20-100nm/min。
2.根据权利要求1所述的绒面复合结构ZnO-TCO薄膜的制备方法,其特征在于:步骤1)中所述的抛光次数为3次。
3.一种权利要求1所制备的绒面结构ZnO-TCO薄膜的应用,其特征在于:用于pin型Si基叠层薄膜太阳电池。
CN201510670221.4A 2015-10-15 2015-10-15 一种绒面复合结构ZnO-TCO薄膜的制备方法及应用 Pending CN105349966A (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201510670221.4A CN105349966A (zh) 2015-10-15 2015-10-15 一种绒面复合结构ZnO-TCO薄膜的制备方法及应用

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201510670221.4A CN105349966A (zh) 2015-10-15 2015-10-15 一种绒面复合结构ZnO-TCO薄膜的制备方法及应用

Publications (1)

Publication Number Publication Date
CN105349966A true CN105349966A (zh) 2016-02-24

Family

ID=55326023

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201510670221.4A Pending CN105349966A (zh) 2015-10-15 2015-10-15 一种绒面复合结构ZnO-TCO薄膜的制备方法及应用

Country Status (1)

Country Link
CN (1) CN105349966A (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991019A (zh) * 2021-12-27 2022-01-28 天津大学 一种增强有机半导体薄膜形貌稳定性的方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945858A (zh) * 2006-10-24 2007-04-11 南开大学 MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜
CN101582468A (zh) * 2009-06-19 2009-11-18 南开大学 高迁移率绒面结构IMO/ZnO复合薄膜及太阳电池应用
CN101892464A (zh) * 2010-06-18 2010-11-24 南开大学 一种柔性衬底绒面结构ZnO薄膜的制备及应用

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1945858A (zh) * 2006-10-24 2007-04-11 南开大学 MOCVD法超低温制备高电导率、绒面未掺杂ZnO薄膜
CN101582468A (zh) * 2009-06-19 2009-11-18 南开大学 高迁移率绒面结构IMO/ZnO复合薄膜及太阳电池应用
CN101892464A (zh) * 2010-06-18 2010-11-24 南开大学 一种柔性衬底绒面结构ZnO薄膜的制备及应用

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
陈新亮等: "太阳电池用绒面结构ZnO-TCO薄膜及光管理研究进展", 《材料导报A:综述篇》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113991019A (zh) * 2021-12-27 2022-01-28 天津大学 一种增强有机半导体薄膜形貌稳定性的方法

Similar Documents

Publication Publication Date Title
Gangopadhyay et al. Comparative study of different approaches of multicrystalline silicon texturing for solar cell fabrication
Zhong et al. Influence of the texturing structure on the properties of black silicon solar cell
Putra et al. 18.78% hierarchical black silicon solar cells achieved with the balance of light-trapping and interfacial contact
CN105070792B (zh) 一种基于溶液法的多晶太阳电池的制备方法
Chen et al. MACE nano-texture process applicable for both single-and multi-crystalline diamond-wire sawn Si solar cells
TW201228010A (en) Method, process and fabrication technology for high-efficiency low-cost crystalline silicon solar cells
CN104992990A (zh) 一种降低硅片表面光反射率的方法
CN102270688A (zh) 一种太阳能电池
CN104576813B (zh) 一种光电材料表面的纳米结构绒面及其制备方法
Das et al. Autogenic single p/n-junction solar cells from black-Si nano-grass structures of p-to-n type self-converted electronic configuration
CN109285897A (zh) 一种高效钝化接触晶体硅太阳电池及其制备方法
CN103887073A (zh) 一种基于表面等离子体增强原理的太阳能电池及其制备方法
CN109545868A (zh) 石墨烯量子点/黑硅异质结太阳能电池及其制备方法
WO2015122257A1 (ja) 光電変換素子
Wang et al. One-step preparation of TiO2 anti-reflection coating and cover layer by liquid phase deposition for monocrystalline Si PERC solar cell
CN103730522A (zh) 光电转换结构、应用其的太阳能电池及其制造方法
Kim et al. Enhanced absorption and short circuit current density of selective emitter solar cell using double textured structure
CN106158996A (zh) 一种单晶硅基纳米倒金字塔结构背钝化太阳电池及其制备方法
Zhao et al. Broadband omnidirectional anti-reflection property of V-groove textured silicon
JP6114603B2 (ja) 結晶シリコン太陽電池、およびその製造方法、ならびに太陽電池モジュール
CN102220562B (zh) 一种绒面结构氧化锌透明导电薄膜的制备方法
TW201010115A (en) Method for depositing an amorphous silicon film for photovoltaic devices with reduced light-induced degradation for improved stabilized performance
CN105349966A (zh) 一种绒面复合结构ZnO-TCO薄膜的制备方法及应用
Lin et al. High efficiency enhancement of multi-crystalline silicon solar cells with syringe-shaped ZnO nanorod antireflection layers
Roy et al. Cross-fertilized biomimetic structures achieved through nanosphere lithography on an ultrathin wafer for flexible black c-Si SHJ solar cells

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
WD01 Invention patent application deemed withdrawn after publication
WD01 Invention patent application deemed withdrawn after publication

Application publication date: 20160224