CN100385091C - 具有网眼和凹陷冷却的热气通道部件 - Google Patents
具有网眼和凹陷冷却的热气通道部件 Download PDFInfo
- Publication number
- CN100385091C CN100385091C CNB2004100798056A CN200410079805A CN100385091C CN 100385091 C CN100385091 C CN 100385091C CN B2004100798056 A CNB2004100798056 A CN B2004100798056A CN 200410079805 A CN200410079805 A CN 200410079805A CN 100385091 C CN100385091 C CN 100385091C
- Authority
- CN
- China
- Prior art keywords
- parts
- wall
- turbulator
- depression
- outside part
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F13/00—Arrangements for modifying heat-transfer, e.g. increasing, decreasing
- F28F13/06—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
- F28F13/12—Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/022—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F28—HEAT EXCHANGE IN GENERAL
- F28F—DETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
- F28F3/00—Plate-like or laminated elements; Assemblies of plate-like or laminated elements
- F28F3/02—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
- F28F3/04—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
- F28F3/042—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
- F28F3/044—Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2230/00—Manufacture
- F05D2230/90—Coating; Surface treatment
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2250/00—Geometry
- F05D2250/20—Three-dimensional
- F05D2250/28—Three-dimensional patterned
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2212—Improvement of heat transfer by creating turbulence
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/221—Improvement of heat transfer
- F05D2260/2214—Improvement of heat transfer by increasing the heat transfer surface
- F05D2260/22141—Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T50/00—Aeronautics or air transport
- Y02T50/60—Efficient propulsion technologies, e.g. for aircraft
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10T—TECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
- Y10T29/00—Metal working
- Y10T29/49—Method of mechanical manufacture
- Y10T29/49316—Impeller making
- Y10T29/4932—Turbomachine making
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Thermal Sciences (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
一种部件(10),其包括具有内部部分(14)和外部部分(16)的至少一个壁(12)。多个销(18)在壁的内部和外部部分之间延伸。该销限定具有多个流道(22)的网眼冷却结构(20)。多个凹陷(24)定位在壁的至少一个内部和外部部分中。该部件还可以包括设置在壁的至少一个内部和外部部分上的许多紊流发生器(36)。
Description
技术领域
本发明总体涉及用于涡轮组件的热气通道部件。
背景技术
典型的气轮机用于飞机或者固定动力应用,对于两种应用来说,发动机效率是关键的设计标准。气轮机的效率随着燃烧气体流的增加的温度而增加。然而,气流温度的一个限制因素在于诸如涡轮定子和转子翼型件之类的各种热气通道部件的高温性能。定子翼型件也已知为轮叶或者导叶,转子翼型件也已知为桨叶或者叶片。
已经提出和实现了冷却热气通道部件的各种方法,以增加发动机的上部工作温度。这些方法中的一些在通过转让的Lee的题为“Internal Cooling of Turbine Airfoil Wall Using Mesh CoolingArrangement”的美国专利No.5690472中回顾,其通过引证在此整个引入。这些冷却技术通常包括将压缩空气排出压缩机,以用作冷却剂。然而,通过围绕发动机的燃烧区域环绕压缩的空气来冷却热气通道部件,降低了发动机的整体效率。因此,需要增加热气通道部件的冷却效率,以便增加整体发动机效率。
一种有利的冷却技术是网眼冷却,例如如在上述的美国专利No.5690472中描述的,以及在Lee的题为“Film Cooling of TurbineAirfoil Wall using Mesh Cooling Hole Arrangement”的美国专利No.5370499中描述的,其也通过引证在此整个引入。然而,需要另外改进热气通道部件的冷却。这种需要对于冷却薄翼型件壁和/或诸如翼型件的后缘之类的有限可用的区域特别强烈。因此,需要提供用于热气部件的增强的冷却效率。
美国专利No.5,690,472A;No.6,644,921B2和No.6,331,098B2涉及上述技术领域,然而未能提供解决上述技术问题的方案。
发明内容
根据本发明,提供了一种部件,其包括:具有内部部分和外部部分的至少一个壁;多个销,其在所述壁的所述内部和外部部分之间延伸,其中,所述销限定包括多个流道的网眼冷却结构;多个凹陷,其位于所述壁的所述内部和外部部分中的至少一个中;以及在所述壁的所述外部部分上的至少一个涂层,其中至少一个所述凹陷延伸穿过所述壁的所述外部部分,以形成冷却孔,其中,所述涂层至少部分地覆盖所述冷却孔。
根据本发明,还提供了一种部件,其包括:具有内部部分和外部部分的至少一个壁;多个销,其在所述壁的所述内部和外部部分之间延伸,其中,所述销限定包括多个流道的网眼冷却结构;多个凹陷,其位于所述壁的所述内部和外部部分中的至少一个中;以及多个紊流发生器,其设置在所述壁的所述内部和外部部分中的至少一个中,其中所述紊流发生器的第一子集在各对所述销之间延伸,且定位成相对于冷却流成第一角度,其中,所述紊流发生器的第二子集在各对所述销之间延伸,且定位成相对于冷却流成第二角度,以及其中第一和第二角度相交。
附图说明
当参考附图阅读下面的详细说明书时,可以更好地理解本发明的这些和其它特征、方面和优点,在整个附图中,同样的标号表示相同的部分,其中:
图1示出了具有翼型件的典型的热气通道部件;
图2是沿着图1的线2-2截取的图1的翼型件的截面图,且指出了网眼冷却结构;
图3是具有许多设置在各交点的凹陷的图2的网眼冷却结构的典型实施例的放大的纵向截面图;
图4是沿着图3的线4-4截取的网眼冷却结构的纵向截面图;
图5是具有许多设置在各对销之间的凹陷的图2的网眼冷却结构的另一个典型实施例的放大的纵向截面图;
图6示出了网眼冷却和凹陷结构的一个主动-被动蒸发和对流的实施例;
图7示出了具有凹陷和横向紊流发生器的典型的网眼冷却结构;
图8是沿着图7的线8-8截取的网眼冷却结构的纵向截面图;
图9示出了具有凹陷和倾斜的紊流发生器的典型的网眼冷却结构;
图10示出了具有凹陷和交替分段的紊流发生器的典型的网眼冷却结构;
图11示出了具有凹陷和人字形紊流发生器的典型的网眼冷却结构;
图12示出了具有凹陷和人字形紊流发生器的另一个典型的网眼冷却结构,其具有比图11的分段的人字形图案小的密度;
图13示出了用于具有凹陷和人字形紊流发生器的网眼冷却结构的典型的冷却流形态;
图14是图13的透视图;以及
图15示出了凹陷和分段的人字形紊流发生器的另一个冷却结构。
具体实施方式
参考图1-4来描述本发明的实施例的部件10。典型的部件包括热气通道部件,诸如桨叶、轮叶、端部壁和罩盖。本发明同样应用于定子和转子组件的其它部分,以及诸如补燃器之类的其它热部分。此外,本发明应用到各种尺寸和应用气轮机,诸如飞机发动机和陆上动力涡轮。传统的热气部件是熟知的,如网眼冷却的热气通道部件。显示的部件10是完全典型的,且本发明不限于任何特殊的部件类型。如所示的,例如在图1和2中,部件10具有至少一个壁12,其具有内部部分14和外部部分16。对于图1和2的典型实施例,壁12是翼型件壁12。如所示的,例如在图3和4中,部件10还包括许多在壁12的内部和外部部分14、16之间延伸的销18。这些销限定网眼冷却结构20,其包括许多流道22,例如如图3所示。根据制造方法,典型的销形状为倒圆的或者尖的。典型的销的形状包括圆柱形和倒圆的菱形。该形状可以部分地选择为获得更加定向的冷却流,例如增强与其它冷却增强的交互,诸如凹陷和紊流发生器,其将在下面讨论。熔模铸造产生倒圆的销,而较尖的角部由制造方法产生。部件10还包括位于壁12的内部和外部部分14、16中的至少一个中的许多凹陷24,例如如图3和4所示。根据三个具体的实施例,凹陷形成在壁12的内部部分14中、壁12的外部部分16中,以及在壁12的内部和外部部分14、16两个中。
典型的凹陷24具有大约0.0254到大约0.0762厘米的中央深度,以及大约0.0254到大约0.3048厘米的表面直径,用于典型的飞机发动机应用。典型的凹陷具有大约0.0254到大约0.1524厘米的中央深度,以及大约0.0254到大约0.635厘米的表面直径,用于典型的动力涡轮应用。凹陷24可以形成许多形状。对于图3和4的典型的实施例,凹陷24是凹进的,更具体的,是半球形或者半球形部分。另一种典型的凹陷形状是圆锥形,包括完全或者截顶倒转圆锥形。有利地,凹陷24在冷却流中建立流体涡流,其引起部件壁12(表面14和16附近或者表面14和16上,还有表面18)附近的混合,从而增强在壁12处,以及在销表面上的传热。此外,凹陷24还增加表面积,以有助于补偿由销18覆盖的区域。这样,本发明影响协同方法中的不同的热增强。
对于图3的典型结构,流道22包括大致相互平行的第一组流道26,以及大致相互平行延伸的第二组流道28。如所示的,第一和第二组流道26、28在许多交点30处相互交叉,以形成网眼冷却结构20。对于图3的具体结构,凹陷24设置在交点30处。有利地,凹陷24在网眼冷却结构20内的交点30处的定位增强了冷却流和传热。凹陷24提供了表面起伏,以扩大冷却流。此外,凹陷产生额外的涡旋,进一步增强了传热。因为涡旋优先在通常45度(45°)角处排出,所以其不冲击网眼的固体部分的顶点,从而保持损耗低。尽管没有清楚地显示,但是对于较小尺寸的凹陷24,凹陷24的阵列或者排或者其它结构可以位于交点30处。
对于图5的典型实施例,凹陷24设置在各对销18之间。换句话说,凹陷24位于网眼冷却结构20的“通道部分”中,而不是交点30处。有利地,例如如图5所示,在通道部分中定位凹陷24增强了交互后流,从而使涡旋的产生平均,且增强通过网眼的传热。
参考图6描述了一个主动-被动蒸发和对流冷却实施例。对于图6的典型的实施例,凹陷24位于壁12的外部部分16中,如所示的。更具体的,至少一个涂层34设置在壁12的外部部分16上。典型的涂层34是热绝缘涂层。更具体的,至少一个凹陷24延伸穿过壁12的外部部分,以形成冷却孔32,且涂层34至少部分地覆盖该冷却孔32。对于图6的典型实施例,显示的每个凹陷24延伸穿过壁12的外部部分16,以形成各冷却孔32,且每个冷却孔32显示为由涂层34覆盖。有利地,通过延伸穿过壁12的外部部分16,凹陷24为部件壁12提供膜冷却。更具体的,延伸穿过壁的外部部分16以形成冷却孔32的凹陷提供蒸发冷却,而不延伸穿过壁的外部部分的凹陷24提供对流,例如如图4所示。
根据需要的冷却水平和具体的部件特性,凹陷24可以形成在部件壁12的内部或者外部部分14、16中,或者形成在壁12的内部和外部部分14、16两者中,如上所述。类似的,凹陷24可以形成为变化的深度和/或直径,使得一些、所有或者没有凹陷延伸穿过部件壁12的各内部和外部部分14、16。当凹陷24延伸穿过壁12的各内部或者外部部分14、16时,它们形成冷却孔32,为部件壁12提供蒸发冷却,如由图6中的箭头所示。当凹陷24不延伸穿过壁12的外部部分时,它们提供通风,以有助于冷却部件壁12。
参考图1、2、7和8描述了带凹陷的、涡流的实施例。部件10包括具有内部部分14和外部部分16的至少一个壁12,如上所述。例如如图7所示,部件10还包括在壁12的内部和外部部分14、16之间延伸的许多销18。如上所述,这些销限定具有许多流道22的网眼冷却结构20。许多凹陷24位于壁12的至少一个内部和外部部分14、16中。凹陷24在上文中参考图3-6详细地讨论了。例如如图7所示,许多紊流发生器36设置在壁12的至少一个内部和外部部件14、16上。典型的紊流发生器36提供大约百分之十(10%)到大约百分之五十(50%)范围内的局部流道阻塞。对于图8的典型实施例,紊流发生器36设置在部件壁12的外部部分16上。然而,如和凹陷24一样,根据需要的冷却结构以及具体的部件特性和要求,紊流发生器36可以形成在部件壁12的内部部分14上、外部部分16上或者内部和外部部分14、16两者上。
紊流发生器36可以设置为许多形状,其例子在图7、9和10中显示。对于图7的典型实施例,紊流发生器36是“横向”紊流发生器,其在横截冷却流40的方向38上在各对销18之间延伸。对于图9的典型实施例,紊流发生器36是“倾斜的”紊流发生器,其在各对销18之间延伸,且定位成相对于冷却流40成一定角度42。在图9中显示的角度42是典型的。图10示出了“交替分段的”紊流发生器的典型结构,对于这种结构,紊流发生器36的第一子集44在各对销18之间延伸,且定位成相对于冷却流40成一定角度42。紊流发生器36的第二子集46在各对销18之间延伸,且定位成相对于冷却流40成第二角度62。对于图10的典型实施例,第一和第二角度42、62相交,更具体的,相差大约90度(90°)。通过“相交角度”,意味着在第一子集44中的紊流发生器36不平行于在第二子集46中的紊流发生器。换句话说,在第一子集44中的各紊流发生器相对于在第二子集46中的紊流发生器定位,以便如果它们足够长,它们将与第二子集46中的它们的对应物相交。有利地,当设置成图9和10的倾斜的或者交替分段的形状时,紊流发生器36还以协作方式增强了传热。这些形状引起壁附近的流被引导到销18上,以及与在从一个销排到下一个销排的倾斜的流中自然的凹陷的流旋涡相交。例如,由于从凹陷排出的倾斜的旋涡与紊流发生器起作用,图10的形状提供流场机制的协作。这样,可以获得大约三(3)倍的量级的整体传热增强。
通过组合不同的冷却元件(即,网眼冷却、凹陷和紊流发生器),产生的协作,其根据部件类型、位置、材料和具体的冷却结构,将传热增强到大约三(3)倍的因子。由于由凹陷24和紊流发生器36提供的增强,所以该改进的传热又通过减小获得类似的传热需要的销的密度来允许部件10的重量减轻。此外,紊流发生器36还可以提供一些级别的增加的强度。此外,多种冷却元件的使用提供了调节局部冷却的更大的灵活性。多种冷却元件的使用还提供了更加平衡的压力损耗。
参考图11和12描述人字形紊流发生器实施例。例如如在图11和12中所示的,各对紊流发生器36分别在部件壁12的内部和外壁板14、16之一上形成人字形紊流发生器48。对于图11和12的具体的实施例,人字形紊流发生器48是分段的人字形紊流发生器。分段相应于开口顶点56,如图11和12所示。有利地,通过提供开口顶点56,分段产生更加有效的流体旋涡。沿着紊流发生器段36的倾斜的方向的对流引起一种二级旋涡运动,其在热增强中高度有效。
图13和14示出了图11和12的分段的人字形紊流发生器结构的一些优点。如图13和14所示,冷却流通过相邻销18之间的间隙加速。然后,该加速的冷却流与人字形紊流发生器48的开口顶点部分56相互作用,以产生混合和对流旋涡,例如如图14所示。此外,人字形紊流发生器48增强冷却流与销18的下游表面区域58的相互作用,如图13所示。旋涡还直接与局部凹陷流场作用,以从这些特征引起相关的更强的旋涡。由于这些协作,增强了传热。
对于在图11和12中所示的典型实施例,销18设置在许多列50中,且凹陷24的许多子集52的每一个设置在销18的列50的各个之间,如所示的。类似的,人字形紊流发生器48的许多子集54的每一个也设置在销18的列50的各个之间,如也在图11和12中所示的。根据三个具体的实施例,凹陷24和人字形紊流发生器48分别形成在部件壁12的内部部分14上、壁12的外部部分16上,以及部件壁12的内部和外部部分14、16两者上。
对于图11的典型的实施例,凹陷24和人字形紊流发生器48交替地设置在部件壁12的内部和外部部分14、16的各个上,如所示的。图12示出了不太密集的分段人字形图案。对于图12的典型实施例,至少两个凹陷24定位在各对人字形紊流发生器48之间,如图所示的。
图11和12都示出了人字形紊流发生器48,使得顶点56相对于冷却流40定位在上游。通常,将人字形的顶点定位成指向上游增强了传热。然而,根据具体的网眼冷却和凹陷结构,还需要一些人字形紊流发生器48使顶点56相对于冷却流40定向在下游。根据一个具体的实施例,在人字形紊流发生器48的至少一个子集54内的每个人字形紊流发生器48具有相对于冷却流40定位在上游的顶点56。根据另一个实施例(没有清楚地显示),在人字形紊流发生器48的至少一个子集54内的每个人字形紊流发生器48具有相对于冷却流40定位在下游的顶点56。
有利地,图11和12的凹陷的、分段的人字形紊流发生器实施例提供用于壁内冷却的高的热效率。此外,由这些结构产生的独特的流体-表面相互作用在严格限制的空间限制内产生了大量混合和旋涡运动,用于热增强。此外,冷却元件(即,网眼冷却、紊流发生器和凹陷)的组合提供了用于实现一定范围,局部的和全局的条件的灵活性。此外,该改进的热效率允许使用较少的销18,从而减小了部件重量,这是高度需要的。
参考图1和15描述了另一个部件实施例。如图1所示,部件10具有带有内部部分14和外部部分16的至少一个壁12。许多凹陷24位于壁的至少一个内部和外部部分14、16中,例如如图15所示。许多紊流发生器36设置在部件壁12的至少一个内部和外部部分14、16中,例如在图15中所示的。对于图15的典型实施例,各对紊流发生器36在壁12的各内部和外部部分14、16上形成人字形紊流发生器48。更具体的,人字形紊流发生器48分段(或者开口),如所示的。根据一个具体的实施例,凹陷24和人字形紊流发生器48形成在部件壁12的内部和外部部分14、16两者上。
尽管这里只显示和描述了本发明的一些特征,但是本领域中的普通技术人员会明白很多修改和变化。因此,可以理解,后附的权利要求书意在覆盖如位于本发明的真正精神内的所有这样的修改和变化。
附图标记表
10部件
12壁
14壁的内部部分
16壁的外部部分
18销
20网眼冷却结构
22流道
24凹陷
26第一组流道
28第二组流道
30交点
32冷却孔
34涂层
36紊流发生器
38冷却流的方向
40冷却流
42相对于冷却流的角度
44第一子集的紊流发生器
46第二子集的紊流发生器
48人字形紊流发生器
50销的列
52凹陷的子集
54人字形紊流发生器的子集
56人字形紊流发生器的顶点
58销的下游表面
60冷却结构
62相对于冷却流的第二角度
Claims (21)
1.一种部件(10),其包括:
具有内部部分(14)和外部部分(16)的至少一个壁(12);
多个销(18),其在所述壁的所述内部和外部部分之间延伸,其中,所述销限定包括多个流道(22)的网眼冷却结构(20);
多个凹陷(24),其位于所述壁的所述内部和外部部分中的至少一个中;以及
在所述壁(12)的所述外部部分(16)上的至少一个涂层(34),其中至少一个所述凹陷(24)延伸穿过所述壁(12)的所述外部部分(16),以形成冷却孔(32),其中,所述涂层(34)至少部分地覆盖所述冷却孔。
2.如权利要求1所述的部件(10),
其特征在于,所述流道(22)包括相互平行的第一组流道(26),以及相互平行延伸的第二组流道(28),
其中,所述第一和第二组流道在多个交点(30)处相互交叉,以形成所述网眼冷却结构(20),以及
其中,至少一个所述凹陷(24)定位在各个交点处。
3.如权利要求2所述的部件(10),其特征在于,大部分所述凹陷(24)定位在各交点(30)处。
4.如权利要求1所述的部件(10),其特征在于,大部分所述凹陷(24)定位各对所述销(18)之间。
5.如权利要求1所述的部件(10),其特征在于,所述凹陷(24)位于所述壁(12)的所述内部和外部部分(14、16)两者中。
6.如权利要求1所述的部件(10),其特征在于,所述凹陷(24)位于所述壁(12)的所述外部部分(16)中。
7.如权利要求1所述的部件(10),其特征在于,所述涂层(34)包括热绝缘涂层。
8.如权利要求1所述的部件(10),其特征在于,每个所述凹陷(24)具有0.0254到0.0762厘米的中央深度,以及0.0254到0.3048厘米的表面直径。
9.如权利要求1所述的部件(10),其特征在于,至少一个所述凹陷(24)延伸穿过所述壁(12)的各个所述内部和外部部分(14、16),以形成冷却孔(32)。
10.一种部件(10),其包括:
具有内部部分(14)和外部部分(16)的至少一个壁(12);
多个销(18),其在所述壁的所述内部和外部部分之间延伸,其中,所述销限定包括多个流道(22)的网眼冷却结构(20);
多个凹陷(24),其位于所述壁的所述内部和外部部分中的至少一个中;以及
多个紊流发生器(36),其设置在所述壁的所述内部和外部部分中的至少一个中,
其中所述紊流发生器(36)的第一子集(44)在各对所述销(18)之间延伸,且定位成相对于冷却流(40)成第一角度(42),其中,所述紊流发生器(36)的第二子集(46)在各对所述销之间延伸,且定位成相对于冷却流成第二角度(62),以及其中第一和第二角度相交。
11.如权利要求10所述的部件(10),其特征在于,所述紊流发生器(36)在横截冷却流(40)的方向(38)上在各对所述销(18)之间延伸。
12.如权利要求10所述的部件(10),其特征在于,所述紊流发生器(36)在各对所述销(18)之间延伸,且相对于冷却流(40)以一角度(42、62)定向。
13.如权利要求10所述的部件(10),其特征在于,各对紊流发生器(36)在所述壁(12)的各个所述内部和外部部分(14、16)上形成人字形紊流发生器(48)。
14.如权利要求13所述的部件(10),其特征在于,所述销(18)设置在多个列(50)中,其中,所述凹陷的多个子集(52)的每一个设置在各个所述销的所述列之间,以及其中所述人字形紊流发生器(48)的多个子集(54)的每一个也设置在各个所述销的所述列之间。
15.如权利要求14所述的部件(10),其特征在于,所述凹陷(24)和所述人字形紊流发生器(48)交替地设置在所述壁(12)的各个所述内部和外部部分(14、16)上。
16.如权利要求14所述的部件(10),其特征在于,至少两个所述凹陷(24)定位在各对所述人字形紊流发生器(48)之间。
17.如权利要求14所述的部件(10),其特征在于,在所述人字形紊流发生器的至少一个所述子集(54)内的所述人字形紊流发生器(48)的每一个具有相对于冷却流(40)定位在下游的顶点(56)。
18.如权利要求14所述的部件(10),其特征在于,在所述人字形紊流发生器的至少一个所述子集(54)内的所述人字形素流发生器(48)的每一个具有相对于冷却流(40)定位在上游的顶点(56)。
19.如权利要求13所述的部件(10),其特征在于,至少一个所述人字形紊流发生器(48)是分段的。
20.如权利要求13所述的部件(10),其特征在于,所述凹陷(24)和所述人字形紊流发生器(48)形成在所述壁(12)的所述内部和外部部分(14、16)中的仅一个上。
21.如权利要求13所述的部件(10),其特征在于,所述凹陷(24)和所述人字形紊流发生器(48)形成在所述壁(12)的所述内部和外部部分(14、16)两者上。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US10/720045 | 2003-11-19 | ||
US10/720,045 US7186084B2 (en) | 2003-11-19 | 2003-11-19 | Hot gas path component with mesh and dimpled cooling |
Publications (2)
Publication Number | Publication Date |
---|---|
CN1727642A CN1727642A (zh) | 2006-02-01 |
CN100385091C true CN100385091C (zh) | 2008-04-30 |
Family
ID=34435818
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100798056A Expired - Fee Related CN100385091C (zh) | 2003-11-19 | 2004-09-20 | 具有网眼和凹陷冷却的热气通道部件 |
CNB2004100952453A Expired - Fee Related CN100362212C (zh) | 2003-11-19 | 2004-11-19 | 热气通道部件及在该部件中形成多个冷却孔的方法 |
Family Applications After (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CNB2004100952453A Expired - Fee Related CN100362212C (zh) | 2003-11-19 | 2004-11-19 | 热气通道部件及在该部件中形成多个冷却孔的方法 |
Country Status (4)
Country | Link |
---|---|
US (2) | US7186084B2 (zh) |
EP (1) | EP1533475A3 (zh) |
JP (1) | JP2005147132A (zh) |
CN (2) | CN100385091C (zh) |
Families Citing this family (106)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1533481A3 (en) * | 2003-11-19 | 2009-11-04 | General Electric Company | Hot gas path component with a meshed and dimpled cooling structure |
US7775053B2 (en) | 2004-09-20 | 2010-08-17 | United Technologies Corporation | Heat transfer augmentation in a compact heat exchanger pedestal array |
US20070201980A1 (en) * | 2005-10-11 | 2007-08-30 | Honeywell International, Inc. | Method to augment heat transfer using chamfered cylindrical depressions in cast internal cooling passages |
JP4831816B2 (ja) * | 2006-03-02 | 2011-12-07 | 三菱重工業株式会社 | ガスタービンの翼冷却構造 |
US20080005903A1 (en) * | 2006-07-05 | 2008-01-10 | United Technologies Corporation | External datum system and film hole positioning using core locating holes |
US7699583B2 (en) * | 2006-07-21 | 2010-04-20 | United Technologies Corporation | Serpentine microcircuit vortex turbulatons for blade cooling |
US7544044B1 (en) * | 2006-08-11 | 2009-06-09 | Florida Turbine Technologies, Inc. | Turbine airfoil with pedestal and turbulators cooling |
US20100221121A1 (en) * | 2006-08-17 | 2010-09-02 | Siemens Power Generation, Inc. | Turbine airfoil cooling system with near wall pin fin cooling chambers |
US7997867B1 (en) | 2006-10-17 | 2011-08-16 | Iowa State University Research Foundation, Inc. | Momentum preserving film-cooling shaped holes |
US8066478B1 (en) | 2006-10-17 | 2011-11-29 | Iowa State University Research Foundation, Inc. | Preventing hot-gas ingestion by film-cooling jet via flow-aligned blockers |
JP4929097B2 (ja) * | 2007-08-08 | 2012-05-09 | 株式会社日立製作所 | ガスタービン翼 |
JP4930276B2 (ja) * | 2007-08-21 | 2012-05-16 | 株式会社Ihi | 高温部品の内面冷却構造 |
US8556583B2 (en) * | 2007-08-30 | 2013-10-15 | Mitsubishi Heavy Industries, Ltd. | Blade cooling structure of gas turbine |
JP5556178B2 (ja) * | 2007-09-21 | 2014-07-23 | 日本電気株式会社 | 温度制御方法及びシステム |
JP5029960B2 (ja) * | 2008-01-15 | 2012-09-19 | 株式会社Ihi | 高温部品の内面冷却構造 |
EP2265800B1 (de) * | 2008-03-31 | 2017-11-01 | Ansaldo Energia IP UK Limited | Kühlkanalanordnung innerhalb eines hohlgegossenen gussteils |
US20120000072A9 (en) * | 2008-09-26 | 2012-01-05 | Morrison Jay A | Method of Making a Combustion Turbine Component Having a Plurality of Surface Cooling Features and Associated Components |
WO2010048152A1 (en) * | 2008-10-20 | 2010-04-29 | Drexel University | Vertical axis wind turbine |
US9145779B2 (en) * | 2009-03-12 | 2015-09-29 | United Technologies Corporation | Cooling arrangement for a turbine engine component |
US8206109B2 (en) * | 2009-03-30 | 2012-06-26 | General Electric Company | Turbine blade assemblies with thermal insulation |
US8894367B2 (en) * | 2009-08-06 | 2014-11-25 | Siemens Energy, Inc. | Compound cooling flow turbulator for turbine component |
EP2491230B1 (en) * | 2009-10-20 | 2020-11-25 | Siemens Energy, Inc. | Gas turbine engine comprising a turbine airfoil with tapered cooling passageways |
US20110110790A1 (en) * | 2009-11-10 | 2011-05-12 | General Electric Company | Heat shield |
US8894363B2 (en) | 2011-02-09 | 2014-11-25 | Siemens Energy, Inc. | Cooling module design and method for cooling components of a gas turbine system |
US8959886B2 (en) | 2010-07-08 | 2015-02-24 | Siemens Energy, Inc. | Mesh cooled conduit for conveying combustion gases |
CN105588236B (zh) | 2010-05-25 | 2019-07-09 | 7Ac技术公司 | 使用液体干燥剂进行空气调节及其它处理的方法和系统 |
US8905713B2 (en) | 2010-05-28 | 2014-12-09 | General Electric Company | Articles which include chevron film cooling holes, and related processes |
US9376960B2 (en) | 2010-07-23 | 2016-06-28 | University Of Central Florida Research Foundation, Inc. | Heat transfer augmented fluid flow surfaces |
US8684662B2 (en) | 2010-09-03 | 2014-04-01 | Siemens Energy, Inc. | Ring segment with impingement and convective cooling |
US8714926B2 (en) | 2010-09-17 | 2014-05-06 | Siemens Energy, Inc. | Turbine component cooling channel mesh with intersection chambers |
US9017027B2 (en) | 2011-01-06 | 2015-04-28 | Siemens Energy, Inc. | Component having cooling channel with hourglass cross section |
US8764394B2 (en) | 2011-01-06 | 2014-07-01 | Siemens Energy, Inc. | Component cooling channel |
CN103542748A (zh) * | 2011-07-28 | 2014-01-29 | 上海交通大学 | 热沉的针肋-凹陷复合阵列结构及针肋-凹陷复合阵列的布置方法 |
CN102410687A (zh) * | 2011-07-28 | 2012-04-11 | 上海交通大学 | 具有针肋-凹陷复合阵列的热沉及针肋-凹陷复合阵列的布置方法 |
US8882448B2 (en) | 2011-09-09 | 2014-11-11 | Siemens Aktiengesellshaft | Cooling system in a turbine airfoil assembly including zigzag cooling passages interconnected with radial passageways |
US8840363B2 (en) | 2011-09-09 | 2014-09-23 | Siemens Energy, Inc. | Trailing edge cooling system in a turbine airfoil assembly |
US8840370B2 (en) | 2011-11-04 | 2014-09-23 | General Electric Company | Bucket assembly for turbine system |
US9249670B2 (en) | 2011-12-15 | 2016-02-02 | General Electric Company | Components with microchannel cooling |
US9255491B2 (en) | 2012-02-17 | 2016-02-09 | United Technologies Corporation | Surface area augmentation of hot-section turbomachine component |
US20130243575A1 (en) | 2012-03-13 | 2013-09-19 | United Technologies Corporation | Cooling pedestal array |
JP5360265B2 (ja) * | 2012-06-08 | 2013-12-04 | 株式会社Ihi | 高温部品の内面冷却構造 |
KR102189997B1 (ko) | 2012-06-11 | 2020-12-11 | 7에이씨 테크놀로지스, 아이엔씨. | 난류형 내식성 열 교환기들을 위한 방법들 및 시스템들 |
US9995148B2 (en) | 2012-10-04 | 2018-06-12 | General Electric Company | Method and apparatus for cooling gas turbine and rotor blades |
US9995150B2 (en) | 2012-10-23 | 2018-06-12 | Siemens Aktiengesellschaft | Cooling configuration for a gas turbine engine airfoil |
US8936067B2 (en) | 2012-10-23 | 2015-01-20 | Siemens Aktiengesellschaft | Casting core for a cooling arrangement for a gas turbine component |
US8951004B2 (en) | 2012-10-23 | 2015-02-10 | Siemens Aktiengesellschaft | Cooling arrangement for a gas turbine component |
EP2929256A4 (en) | 2012-12-04 | 2016-08-03 | 7Ac Technologies Inc | METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH HIGH THERMAL LOADS THROUGH DESICCANT COOLERS |
CN103075202A (zh) * | 2013-01-15 | 2013-05-01 | 上海交通大学 | 涡轮叶片内部带有栅格扰流的冲击冷却结构 |
KR20200009148A (ko) | 2013-03-01 | 2020-01-29 | 7에이씨 테크놀로지스, 아이엔씨. | 흡습제 공기 조화 방법 및 시스템 |
US9850762B2 (en) | 2013-03-13 | 2017-12-26 | General Electric Company | Dust mitigation for turbine blade tip turns |
US9709285B2 (en) | 2013-03-14 | 2017-07-18 | 7Ac Technologies, Inc. | Methods and systems for liquid desiccant air conditioning system retrofit |
US9638057B2 (en) | 2013-03-14 | 2017-05-02 | Rolls-Royce North American Technologies, Inc. | Augmented cooling system |
EP2972009B1 (en) | 2013-03-14 | 2019-09-18 | 7AC Technologies, Inc. | Split liquid desiccant air conditioning system |
US8985949B2 (en) | 2013-04-29 | 2015-03-24 | Siemens Aktiengesellschaft | Cooling system including wavy cooling chamber in a trailing edge portion of an airfoil assembly |
US9810070B2 (en) | 2013-05-15 | 2017-11-07 | General Electric Company | Turbine rotor blade for a turbine section of a gas turbine |
EP3667191B1 (en) | 2013-06-12 | 2024-05-29 | Copeland LP | Liquid desiccant air conditioning system and method of dehumidifying and cooling an air stream in a building |
US10427213B2 (en) | 2013-07-31 | 2019-10-01 | General Electric Company | Turbine blade with sectioned pins and method of making same |
US9695696B2 (en) | 2013-07-31 | 2017-07-04 | General Electric Company | Turbine blade with sectioned pins |
WO2015073092A2 (en) * | 2013-09-05 | 2015-05-21 | United Technologies Corporation | Gas turbine engine airfoil turbulator for airfoil creep resistance |
US9500093B2 (en) * | 2013-09-26 | 2016-11-22 | Pratt & Whitney Canada Corp. | Internally cooled airfoil |
KR102138327B1 (ko) * | 2013-11-15 | 2020-07-27 | 한화에어로스페이스 주식회사 | 터빈 |
EP2886797B1 (en) * | 2013-12-20 | 2018-11-28 | Ansaldo Energia Switzerland AG | A hollow cooled gas turbine rotor blade or guide vane, wherein the cooling cavities comprise pins interconnected with ribs |
US10370981B2 (en) * | 2014-02-13 | 2019-08-06 | United Technologies Corporation | Gas turbine engine component cooling circuit with respirating pedestal |
US10323867B2 (en) | 2014-03-20 | 2019-06-18 | 7Ac Technologies, Inc. | Rooftop liquid desiccant systems and methods |
CN103967621B (zh) * | 2014-04-08 | 2016-06-08 | 上海交通大学 | 具有微小斜肋-凹陷复合结构的冷却装置 |
EP2949871B1 (en) * | 2014-05-07 | 2017-03-01 | United Technologies Corporation | Variable vane segment |
US10400674B2 (en) * | 2014-05-09 | 2019-09-03 | United Technologies Corporation | Cooled fuel injector system for a gas turbine engine and method for operating the same |
US9957816B2 (en) | 2014-05-29 | 2018-05-01 | General Electric Company | Angled impingement insert |
CA2950011C (en) | 2014-05-29 | 2020-01-28 | General Electric Company | Fastback turbulator |
US10364684B2 (en) * | 2014-05-29 | 2019-07-30 | General Electric Company | Fastback vorticor pin |
US10422235B2 (en) | 2014-05-29 | 2019-09-24 | General Electric Company | Angled impingement inserts with cooling features |
EP3149284A2 (en) | 2014-05-29 | 2017-04-05 | General Electric Company | Engine components with impingement cooling features |
US9920635B2 (en) * | 2014-09-09 | 2018-03-20 | Honeywell International Inc. | Turbine blades and methods of forming turbine blades having lifted rib turbulator structures |
US10233775B2 (en) | 2014-10-31 | 2019-03-19 | General Electric Company | Engine component for a gas turbine engine |
US10280785B2 (en) | 2014-10-31 | 2019-05-07 | General Electric Company | Shroud assembly for a turbine engine |
JP6718871B2 (ja) | 2014-11-21 | 2020-07-08 | 7エーシー テクノロジーズ,インコーポレイテッド | 液体乾燥剤空調システム |
US10048019B2 (en) | 2014-12-22 | 2018-08-14 | Hamilton Sundstrand Corporation | Pins for heat exchangers |
US10603866B2 (en) * | 2015-01-09 | 2020-03-31 | President And Fellows Of Harvard College | Hybrid dimple-and-void auxetic structures with engineered patterns for customized NPR behavior |
EP3048262A1 (en) * | 2015-01-20 | 2016-07-27 | Alstom Technology Ltd | Wall for a hot gas channel in a gas turbine |
EP3144485A1 (en) * | 2015-09-16 | 2017-03-22 | Siemens Aktiengesellschaft | Turbomachine component with cooling features and a method for manufacturing such a turbomachine component |
US10174620B2 (en) | 2015-10-15 | 2019-01-08 | General Electric Company | Turbine blade |
US10605170B2 (en) | 2015-11-24 | 2020-03-31 | General Electric Company | Engine component with film cooling |
EP3176371A1 (en) * | 2015-12-03 | 2017-06-07 | Siemens Aktiengesellschaft | Component for a fluid flow engine and method |
WO2017095438A1 (en) * | 2015-12-04 | 2017-06-08 | Siemens Aktiengesellschaft | Turbine airfoil with biased trailing edge cooling arrangement |
EP3449295B1 (en) * | 2016-05-13 | 2020-04-08 | NLIGHT, Inc. | Double helix coolant path for high power fiber connector |
US10605093B2 (en) * | 2016-07-12 | 2020-03-31 | General Electric Company | Heat transfer device and related turbine airfoil |
US10830058B2 (en) | 2016-11-30 | 2020-11-10 | Rolls-Royce Corporation | Turbine engine components with cooling features |
US10577944B2 (en) * | 2017-08-03 | 2020-03-03 | General Electric Company | Engine component with hollow turbulators |
EP3704415A4 (en) | 2017-11-01 | 2021-11-03 | 7AC Technologies, Inc. | TANK SYSTEM FOR AN AIR CONDITIONING SYSTEM WITH LIQUID DRYING AGENTS |
EP3704416B1 (en) | 2017-11-01 | 2023-04-12 | Emerson Climate Technologies, Inc. | Methods and apparatus for uniform distribution of liquid desiccant in membrane modules in liquid desiccant air-conditioning systems |
DE102018203211A1 (de) * | 2018-03-05 | 2019-09-05 | MTU Aero Engines AG | Schaufel mit Hitzeschild und Strömungsmaschine |
US10724381B2 (en) | 2018-03-06 | 2020-07-28 | Raytheon Technologies Corporation | Cooling passage with structural rib and film cooling slot |
US11022330B2 (en) | 2018-05-18 | 2021-06-01 | Emerson Climate Technologies, Inc. | Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture |
JP7105360B2 (ja) * | 2018-07-13 | 2022-07-22 | シーメンス エナジー グローバル ゲゼルシャフト ミット ベシュレンクテル ハフツング ウント コンパニー コマンディートゲゼルシャフト | ピンを備えるタービンエンジン用の翼型 |
US11339718B2 (en) * | 2018-11-09 | 2022-05-24 | Raytheon Technologies Corporation | Minicore cooling passage network having trip strips |
US10767492B2 (en) | 2018-12-18 | 2020-09-08 | General Electric Company | Turbine engine airfoil |
GB201900474D0 (en) * | 2019-01-14 | 2019-02-27 | Rolls Royce Plc | A double-wall geometry |
US10711621B1 (en) | 2019-02-01 | 2020-07-14 | Rolls-Royce Plc | Turbine vane assembly with ceramic matrix composite components and temperature management features |
US10767495B2 (en) | 2019-02-01 | 2020-09-08 | Rolls-Royce Plc | Turbine vane assembly with cooling feature |
GB2584299A (en) * | 2019-05-29 | 2020-12-02 | Siemens Ag | Heatshield for gas turbine engine |
US11149553B2 (en) | 2019-08-02 | 2021-10-19 | Rolls-Royce Plc | Ceramic matrix composite components with heat transfer augmentation features |
US11268392B2 (en) | 2019-10-28 | 2022-03-08 | Rolls-Royce Plc | Turbine vane assembly incorporating ceramic matrix composite materials and cooling |
EP4050296B1 (en) | 2021-02-26 | 2023-04-05 | Ovh | Heat exchanger system having a mesh panel |
CN115013075B (zh) * | 2022-08-10 | 2022-12-06 | 中国航发四川燃气涡轮研究院 | 一种防滑花纹状扰流肋及涡轮叶片 |
JP2024043164A (ja) * | 2022-09-16 | 2024-03-29 | 三菱重工航空エンジン株式会社 | 熱交換隔壁 |
CN116950724B (zh) * | 2023-09-20 | 2024-01-09 | 中国航发四川燃气涡轮研究院 | 一种应用于涡轮叶片尾缘的内部冷却结构及其设计方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5062768A (en) * | 1988-12-23 | 1991-11-05 | Rolls-Royce Plc | Cooled turbomachinery components |
US5690472A (en) * | 1992-02-03 | 1997-11-25 | General Electric Company | Internal cooling of turbine airfoil wall using mesh cooling hole arrangement |
US6234755B1 (en) * | 1999-10-04 | 2001-05-22 | General Electric Company | Method for improving the cooling effectiveness of a gaseous coolant stream, and related articles of manufacture |
US6331098B1 (en) * | 1999-12-18 | 2001-12-18 | General Electric Company | Coriolis turbulator blade |
US6644921B2 (en) * | 2001-11-08 | 2003-11-11 | General Electric Company | Cooling passages and methods of fabrication |
Family Cites Families (57)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US1848375A (en) | 1929-04-27 | 1932-03-08 | Wellington W Muir | Radiator core for automobile cooling systems |
US2938333A (en) | 1957-03-18 | 1960-05-31 | Gen Motors Corp | Combustion chamber liner construction |
US3229763A (en) | 1963-07-16 | 1966-01-18 | Rosenblad Corp | Flexible plate heat exchangers with variable spacing |
US3664928A (en) | 1969-12-15 | 1972-05-23 | Aerojet General Co | Dimpled heat transfer walls for distillation apparatus |
US3616125A (en) * | 1970-05-04 | 1971-10-26 | Gen Motors Corp | Airfoil structures provided with cooling means for improved transpiration |
US3899882A (en) | 1974-03-27 | 1975-08-19 | Westinghouse Electric Corp | Gas turbine combustor basket cooling |
US4184326A (en) | 1975-12-05 | 1980-01-22 | United Technologies Corporation | Louver construction for liner of gas turbine engine combustor |
US4158949A (en) | 1977-11-25 | 1979-06-26 | General Motors Corporation | Segmented annular combustor |
US4407632A (en) * | 1981-06-26 | 1983-10-04 | United Technologies Corporation | Airfoil pedestaled trailing edge region cooling configuration |
JPH06100432B2 (ja) | 1984-06-20 | 1994-12-12 | 株式会社日立製作所 | 伝熱管 |
JPS61280390A (ja) | 1985-02-25 | 1986-12-10 | Hitachi Ltd | 熱交換器およびその製作方法 |
US4838031A (en) | 1987-08-06 | 1989-06-13 | Avco Corporation | Internally cooled combustion chamber liner |
US5667359A (en) * | 1988-08-24 | 1997-09-16 | United Technologies Corp. | Clearance control for the turbine of a gas turbine engine |
JP3006174B2 (ja) * | 1991-07-04 | 2000-02-07 | 株式会社日立製作所 | 内部に冷却通路を有する部材 |
US5695321A (en) | 1991-12-17 | 1997-12-09 | General Electric Company | Turbine blade having variable configuration turbulators |
US5681144A (en) | 1991-12-17 | 1997-10-28 | General Electric Company | Turbine blade having offset turbulators |
US5370499A (en) | 1992-02-03 | 1994-12-06 | General Electric Company | Film cooling of turbine airfoil wall using mesh cooling hole arrangement |
US5353865A (en) | 1992-03-30 | 1994-10-11 | General Electric Company | Enhanced impingement cooled components |
EP0590418B1 (de) | 1992-10-02 | 1996-08-14 | Licentia Patent-Verwaltungs-GmbH | Hochspannungsröhre |
US5660525A (en) | 1992-10-29 | 1997-08-26 | General Electric Company | Film cooled slotted wall |
US5651662A (en) | 1992-10-29 | 1997-07-29 | General Electric Company | Film cooled wall |
US5361828A (en) | 1993-02-17 | 1994-11-08 | General Electric Company | Scaled heat transfer surface with protruding ramp surface turbulators |
KR0132015B1 (ko) | 1993-02-24 | 1998-04-20 | 가나이 쯔도무 | 열 교환기 |
US5460002A (en) | 1993-05-21 | 1995-10-24 | General Electric Company | Catalytically-and aerodynamically-assisted liner for gas turbine combustors |
JPH08110012A (ja) | 1994-10-07 | 1996-04-30 | Hitachi Ltd | 燃焼器ライナの製造方法 |
US5421158A (en) | 1994-10-21 | 1995-06-06 | General Electric Company | Segmented centerbody for a double annular combustor |
US5758503A (en) | 1995-05-03 | 1998-06-02 | United Technologies Corporation | Gas turbine combustor |
JP3297838B2 (ja) | 1996-02-09 | 2002-07-02 | 株式会社日立製作所 | 伝熱管及びその製造方法 |
US5724816A (en) | 1996-04-10 | 1998-03-10 | General Electric Company | Combustor for a gas turbine with cooling structure |
US5822853A (en) | 1996-06-24 | 1998-10-20 | General Electric Company | Method for making cylindrical structures with cooling channels |
US5933699A (en) | 1996-06-24 | 1999-08-03 | General Electric Company | Method of making double-walled turbine components from pre-consolidated assemblies |
US5975850A (en) | 1996-12-23 | 1999-11-02 | General Electric Company | Turbulated cooling passages for turbine blades |
US5738493A (en) | 1997-01-03 | 1998-04-14 | General Electric Company | Turbulator configuration for cooling passages of an airfoil in a gas turbine engine |
US5797726A (en) * | 1997-01-03 | 1998-08-25 | General Electric Company | Turbulator configuration for cooling passages or rotor blade in a gas turbine engine |
GB2328011A (en) | 1997-08-05 | 1999-02-10 | Europ Gas Turbines Ltd | Combustor for gas or liquid fuelled turbine |
US5931638A (en) * | 1997-08-07 | 1999-08-03 | United Technologies Corporation | Turbomachinery airfoil with optimized heat transfer |
ATE293599T1 (de) * | 1997-12-24 | 2005-05-15 | Aventis Pharma Gmbh | Indolderivate als faktor xa inhibitoren |
US6098397A (en) | 1998-06-08 | 2000-08-08 | Caterpillar Inc. | Combustor for a low-emissions gas turbine engine |
US6237344B1 (en) * | 1998-07-20 | 2001-05-29 | General Electric Company | Dimpled impingement baffle |
US6468669B1 (en) | 1999-05-03 | 2002-10-22 | General Electric Company | Article having turbulation and method of providing turbulation on an article |
US6190120B1 (en) | 1999-05-14 | 2001-02-20 | General Electric Co. | Partially turbulated trailing edge cooling passages for gas turbine nozzles |
US6589600B1 (en) | 1999-06-30 | 2003-07-08 | General Electric Company | Turbine engine component having enhanced heat transfer characteristics and method for forming same |
US6402470B1 (en) | 1999-10-05 | 2002-06-11 | United Technologies Corporation | Method and apparatus for cooling a wall within a gas turbine engine |
US6494044B1 (en) | 1999-11-19 | 2002-12-17 | General Electric Company | Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method |
JP2001164701A (ja) | 1999-12-08 | 2001-06-19 | Tamutetsuku:Kk | 桟 瓦 |
US6412268B1 (en) | 2000-04-06 | 2002-07-02 | General Electric Company | Cooling air recycling for gas turbine transition duct end frame and related method |
US6334310B1 (en) | 2000-06-02 | 2002-01-01 | General Electric Company | Fracture resistant support structure for a hula seal in a turbine combustor and related method |
US6408629B1 (en) | 2000-10-03 | 2002-06-25 | General Electric Company | Combustor liner having preferentially angled cooling holes |
US6511762B1 (en) * | 2000-11-06 | 2003-01-28 | General Electric Company | Multi-layer thermal barrier coating with transpiration cooling |
US6617003B1 (en) * | 2000-11-06 | 2003-09-09 | General Electric Company | Directly cooled thermal barrier coating system |
US6504274B2 (en) | 2001-01-04 | 2003-01-07 | General Electric Company | Generator stator cooling design with concavity surfaces |
JP3505619B2 (ja) * | 2001-01-17 | 2004-03-08 | ミネベア株式会社 | 面状照明装置 |
US6526756B2 (en) | 2001-02-14 | 2003-03-04 | General Electric Company | Method and apparatus for enhancing heat transfer in a combustor liner for a gas turbine |
US6607355B2 (en) * | 2001-10-09 | 2003-08-19 | United Technologies Corporation | Turbine airfoil with enhanced heat transfer |
US6974308B2 (en) * | 2001-11-14 | 2005-12-13 | Honeywell International, Inc. | High effectiveness cooled turbine vane or blade |
US7022429B2 (en) | 2002-04-25 | 2006-04-04 | General Electric Company | Fluid passages for power generation equipment |
EP1533481A3 (en) * | 2003-11-19 | 2009-11-04 | General Electric Company | Hot gas path component with a meshed and dimpled cooling structure |
-
2003
- 2003-11-19 US US10/720,045 patent/US7186084B2/en not_active Expired - Fee Related
-
2004
- 2004-06-29 US US10/881,506 patent/US7182576B2/en not_active Expired - Fee Related
- 2004-09-16 EP EP04255631A patent/EP1533475A3/en not_active Withdrawn
- 2004-09-20 CN CNB2004100798056A patent/CN100385091C/zh not_active Expired - Fee Related
- 2004-09-21 JP JP2004273035A patent/JP2005147132A/ja active Pending
- 2004-11-19 CN CNB2004100952453A patent/CN100362212C/zh not_active Expired - Fee Related
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5062768A (en) * | 1988-12-23 | 1991-11-05 | Rolls-Royce Plc | Cooled turbomachinery components |
US5690472A (en) * | 1992-02-03 | 1997-11-25 | General Electric Company | Internal cooling of turbine airfoil wall using mesh cooling hole arrangement |
US6234755B1 (en) * | 1999-10-04 | 2001-05-22 | General Electric Company | Method for improving the cooling effectiveness of a gaseous coolant stream, and related articles of manufacture |
US6331098B1 (en) * | 1999-12-18 | 2001-12-18 | General Electric Company | Coriolis turbulator blade |
US6644921B2 (en) * | 2001-11-08 | 2003-11-11 | General Electric Company | Cooling passages and methods of fabrication |
Also Published As
Publication number | Publication date |
---|---|
US20050106021A1 (en) | 2005-05-19 |
US7182576B2 (en) | 2007-02-27 |
CN1727642A (zh) | 2006-02-01 |
EP1533475A3 (en) | 2009-11-04 |
CN100362212C (zh) | 2008-01-16 |
JP2005147132A (ja) | 2005-06-09 |
EP1533475A2 (en) | 2005-05-25 |
US20050118023A1 (en) | 2005-06-02 |
US7186084B2 (en) | 2007-03-06 |
CN1721659A (zh) | 2006-01-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN100385091C (zh) | 具有网眼和凹陷冷却的热气通道部件 | |
US6984102B2 (en) | Hot gas path component with mesh and turbulated cooling | |
US7390168B2 (en) | Vortex cooling for turbine blades | |
US8128366B2 (en) | Counter-vortex film cooling hole design | |
US6607355B2 (en) | Turbine airfoil with enhanced heat transfer | |
EP1327747B1 (en) | Crossover cooled airfoil trailing edge | |
EP3436668B1 (en) | Turbine airfoil with turbulating feature on a cold wall | |
EP1111190B1 (en) | Cooled turbine blade with slanted and chevron shaped turbulators | |
TWI257447B (en) | Microcircuit cooling for a turbine blade tip | |
DE69924953T2 (de) | Schaufel eines Gasturbinentriebwerks | |
US5601399A (en) | Internally cooled gas turbine vane | |
JP2006077767A (ja) | オフセットされたコリオリタービュレータブレード | |
EP3652418A1 (en) | Wall of a hot gas component and hot gas component comprising a wall | |
JPH07189603A (ja) | タービン冷却翼及び冷却部材 | |
US20060073015A1 (en) | Gas turbine airfoil film cooling hole | |
CN1327109C (zh) | 涡轮动叶片和燃气轮机 | |
JP2002242607A (ja) | ガスタービン冷却翼 | |
JP4610836B2 (ja) | 構造と冷却を強化したタービン翼 | |
EP1533481A2 (en) | Hot gas path component with a meshed and dimpled cooling structure | |
CN109083689B (zh) | 凹部、冷却结构、冷却组件和形成凹部的方法 | |
US11346248B2 (en) | Turbine nozzle segment and a turbine nozzle comprising such a turbine nozzle segment |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
C06 | Publication | ||
PB01 | Publication | ||
C10 | Entry into substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
C14 | Grant of patent or utility model | ||
GR01 | Patent grant | ||
C17 | Cessation of patent right | ||
CF01 | Termination of patent right due to non-payment of annual fee |
Granted publication date: 20080430 Termination date: 20110920 |