CN100362212C - 热气通道部件及在该部件中形成多个冷却孔的方法 - Google Patents

热气通道部件及在该部件中形成多个冷却孔的方法 Download PDF

Info

Publication number
CN100362212C
CN100362212C CNB2004100952453A CN200410095245A CN100362212C CN 100362212 C CN100362212 C CN 100362212C CN B2004100952453 A CNB2004100952453 A CN B2004100952453A CN 200410095245 A CN200410095245 A CN 200410095245A CN 100362212 C CN100362212 C CN 100362212C
Authority
CN
China
Prior art keywords
wall
depression
cooling hole
cooling
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100952453A
Other languages
English (en)
Other versions
CN1721659A (zh
Inventor
R·S·邦克
C·-P·李
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Co
Original Assignee
General Electric Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Electric Co filed Critical General Electric Co
Publication of CN1721659A publication Critical patent/CN1721659A/zh
Application granted granted Critical
Publication of CN100362212C publication Critical patent/CN100362212C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F13/00Arrangements for modifying heat-transfer, e.g. increasing, decreasing
    • F28F13/06Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media
    • F28F13/12Arrangements for modifying heat-transfer, e.g. increasing, decreasing by affecting the pattern of flow of the heat-exchange media by creating turbulence, e.g. by stirring, by increasing the force of circulation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/022Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being wires or pins
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F28HEAT EXCHANGE IN GENERAL
    • F28FDETAILS OF HEAT-EXCHANGE AND HEAT-TRANSFER APPARATUS, OF GENERAL APPLICATION
    • F28F3/00Plate-like or laminated elements; Assemblies of plate-like or laminated elements
    • F28F3/02Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations
    • F28F3/04Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element
    • F28F3/042Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element
    • F28F3/044Elements or assemblies thereof with means for increasing heat-transfer area, e.g. with fins, with recesses, with corrugations the means being integral with the element in the form of local deformations of the element the deformations being pontual, e.g. dimples
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2230/00Manufacture
    • F05D2230/90Coating; Surface treatment
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2250/00Geometry
    • F05D2250/20Three-dimensional
    • F05D2250/28Three-dimensional patterned
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2214Improvement of heat transfer by increasing the heat transfer surface
    • F05D2260/22141Improvement of heat transfer by increasing the heat transfer surface using fins or ribs
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T50/00Aeronautics or air transport
    • Y02T50/60Efficient propulsion technologies, e.g. for aircraft
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49316Impeller making
    • Y10T29/4932Turbomachine making

Abstract

一种部件(10),其包括具有内部部分(14)和外部部分(16)的至少一个壁(12);和多个销(18),其在所述壁的所述内部部分和外部部分之间延伸。销限定包括多个流道(22)的网眼冷却结构(20)。该壁的内部部分限定多个凹陷(24)。一种用于在部件(10)中形成多个冷却孔(33)的方法,该部件包括具有内部部分和外部部分的至少一个壁。所述壁的内部部分限定多个凹陷。该方法包括:在一个凹陷上对钻孔工具(100)定中心;通过使用该钻孔工具在壁的内部部分中钻通至少一个冲击冷却孔(33);和对于多个凹陷重复定中心和钻孔步骤,以便在壁的内部部分中钻成多个冲击冷却孔。

Description

热气通道部件及在该部件中形成多个冷却孔的方法
技术领域
本发明总体涉及用于涡轮组件的热气通道部件,更具体的,本发明涉及用于冷却热气通道部件的协同方法。
背景技术
典型的气轮机用于飞机或者固定动力应用,对于两种应用来说,发动机效率是关键的设计标准。气轮机的效率随着燃烧气体流的增加的温度而增加。然而,气流温度的一个限制因素在于诸如涡轮定子和转子翼型件之类的各种热气通道部件的高温性能。定子翼型件也已知为轮叶或者导叶,转子翼型件也已知为桨叶或者叶片。
已经提出和实现了冷却热气通道部件的各种方法,以增加发动机的上部工作温度。这些方法中的一些在通过转让的Lee的题为“Internal Cooling of Turbine Airfoil Wall Using Mesh CoolingArrangement”的美国专利No.5690472中描述。这些冷却技术通常包括将压缩空气排出压缩机,以用作冷却剂。然而,通过围绕发动机的燃烧区域环绕压缩的空气来冷却热气通道部件,降低了发动机的整体效率。因此,需要增加热气通道部件的冷却效率,以便增加整体发动机效率。
一种有利的冷却技术是网眼冷却,例如如在上述的美国专利No.5690472中描述的,以及在Lee的题为“Film Cooling of TurbineAirfoil Wall using Mesh Cooling Hole Arrangement”的美国专利No.5370499中的描述。然而,需要另外改进热气通道部件的冷却。这种需要对于冷却薄翼型件壁和/或诸如翼型件的后缘之类的有限可用的区域特别强烈。因此,需要提供用于热气部件的增强的冷却效率。
发明内容
根据本发明,提供了一种热气通道部件,其包括:具有内部部分和外部部分的至少一个壁;和多个销,其在所述壁的所述内部部分和外部部分之间延伸,其中,所述销限定包括多个流道的网眼冷却结构,并且所述流道包括相互平行的第一组流道和相互平行延伸的第二组流道,其中所述第一和第二组流道在多个交点处相互交叉,以形成所述网眼冷却结构;其中,所述壁的所述内部部分限定多个凹陷,其中所述凹陷中的至少一个凹陷延伸穿过所述壁的所述内部部分以便形成冲击冷却孔,并且所述凹陷中的至少一个凹陷定位在该交点中的相应一个交点处。
本发明,还提供了一种用于在热气通道部件中形成多个冷却孔的方法,该部件包括具有内部部分和外部部分的至少一个壁,其中所述壁的所述内部部分限定多个凹陷,所述方法包括:在所述凹陷中的一个上对钻孔工具定中心;通过使用该钻孔工具在所述壁的所述内部部分中钻通至少一个冲击冷却孔;和对于多个凹陷重复所述定中心和钻孔步骤,以便在所述壁的所述内部部分中钻成多个冲击冷却孔。
附图说明
当参考附图阅读下面的详细说明书时,可以更好地理解本发明的这些和其它特征、方面和优点,在整个附图中,同样的标号表示相同的部分,其中:
图1示出了具有翼型件的典型的热气通道部件;
图2是沿着图1的线2-2截取的图1的翼型件的截面图,且指出了网眼冷却结构;
图3是具有许多设置在各交点的凹陷的图2的网眼冷却结构的典型实施例的放大的纵向截面图;
图4是沿着图3的线4-4截取的网眼冷却结构的纵向截面图;
图5是具有许多设置在各对销之间的凹陷的图2的网眼冷却结构的另一个典型实施例的放大的纵向截面图;
图6示出了网眼冷却和凹陷结构的冲击冷却的实施例;
图7示出了贯穿冷壁的凹陷形成的穿过冷却孔的冲击;
图8示出了凹陷和冲击喷口的相互影响;
图9示出了具有冲击冷却和流逸冷却的网眼冷却和凹陷结构;
图10示出了另一种具有冲击冷却和流逸冷却的网眼冷却和凹陷结构;
图11示出了在具有网眼冷却和凹陷结构的部件中形成冷却孔的方法;
图12示出了图11所示的在具有另一种网眼冷却和凹陷结构的部件中形成冷却孔的方法;
图13示出了在具有网眼冷却和凹陷结构的部件中形成冷却孔的另一方法;以及
图14示出了图13所示的在具有另一种网眼冷却和凹陷结构的部件中形成冷却孔的方法。
具体实施方式
参考图1-4来描述本发明的实施例的部件10。典型的部件包括热气通道部件,诸如桨叶、轮叶、端部壁和罩盖。本发明同样应用于定子和转子组件的其它部分,以及诸如补燃器之类的其它热部分。此外,本发明应用到各种尺寸和应用气轮机,诸如飞机发动机和陆上动力涡轮。传统的热气部件是熟知的,如网眼冷却的热气通道部件。显示的部件10是完全典型的,且本发明不限于任何特殊的部件类型。如所示的,例如在图1和2中,部件10具有至少一个壁12,其具有内部部分14和外部部分16。对于图1和2的典型实施例,壁12是翼型件壁12。如所示的,例如在图3和4中,部件10还包括许多在壁12的内部和外部部分14、16之间延伸的销18。这些销限定网眼冷却结构20,其包括许多流道22,例如如图3所示。根据制造方法,典型的销形状为倒圆的或者尖的。典型的销的形状包括圆柱形和倒圆的菱形。该形状可以部分地选择为获得更加定向的冷却流,例如增强与其它冷却增强的交互,诸如凹陷和紊流发生器。熔模铸造产生倒圆的销,而较尖的角部由制造方法产生。例如如图3和4所示,壁12的内部部分14限定多个凹陷24。
典型的凹陷24具有大约0.254到大约0.762毫米的中央深度,以及大约0.254到大约3.048毫米的表面直径,用于典型的飞机发动机应用。典型的凹陷具有大约0.254到大约1.254毫米的中央深度,以及大约0.254到大约6.35毫米的表面直径,用于典型的动力涡轮应用。凹陷24可以形成许多形状。对于图3和4的典型的实施例,凹陷24是凹进的,更具体的,是半球形或者半球形部分。另一种典型的凹陷形状是圆锥形,包括完全或者截顶倒转圆锥形。有利地,凹陷24在冷却流中建立流体涡流,其引起部件壁12(表面14和16附近或者表面14和16上,还有表面18)附近的混合,从而增强在壁12处,以及在销表面上的传热。此外,凹陷24还增加表面积,以有助于补偿由销18覆盖的区域。
对于图3的典型结构,流道22包括大致相互平行的第一组流道26,以及大致相互平行延伸的第二组流道28。如所示的,第一和第二组流道26、28在许多交点30处相互交叉,以形成网眼冷却结构20。对于图3的具体结构,凹陷24设置在交点30处。有利地,凹陷24在网眼冷却结构20内的交点30处的定位增强了冷却流和传热。凹陷24提供了表面起伏,以扩大冷却流。此外,凹陷产生额外的涡旋,进一步增强了传热。因为涡旋优先在通常45度(45°)角处排出,所以其不冲击网眼的固体部分的顶点,从而保持损耗低。尽管没有清楚地显示,但是对于较小尺寸的凹陷24,凹陷24的阵列或者排或者其它结构可以位于交点30处。
对于图5的典型实施例,凹陷24设置在各对销18之间。换句话说,凹陷24位于网眼冷却结构20的“通道部分”中,而不是交点30处。有利地,例如如图5所示,在通道部分中定位凹陷24增强了后交互流,从而使涡旋的产生平均化,且增强整个网眼的传热。
参考图6-8描述了一个冲击冷却的实施例。如图6所示,典型的实施例,凹陷24位于壁12的内部部分14中,并且至少一个凹陷24延伸穿过壁12的内部部分14以便形成冲击冷却孔33。对于图6所示的实施例,所示的每一凹陷24延伸穿过壁12的内部部分14以便形成相应的冲击冷却孔33。然而,对于其它的实施例,至少一个凹陷24不延伸穿过壁12的内部部分14。有利的是,通过延伸穿过壁12的内部部分14以便形成相应的冲击冷却孔33,从而形成了(沿箭头所示的)冲击喷口37。如上所述,冲击喷口37从作为“冷壁”(内部)的内部部分14朝向作为“热壁”(或气体侧)的外部部分16。该冲击冷却产生较高的对流传热系数,以便强化外部部分16的冷却。图7示出了强冲击的示例。如图所示,强冲击是穿透的,以便在外部部分16(“热壁”)表面上提供强传热。此外,凹陷24和对应的喷口37之间的相互影响借助散料式混合和紊流从而形成更强的传热强化,如图8所示。
参照图9描述了冲击和流逸冷却的实施例。如图所示,壁12的外部部分16限定多个冷却孔35。对于图9所示的实施例,每一冷却孔35与相应的一个凹陷24对准。对于其它实施例,冷却孔35和凹陷24不对准。典型的用于航空器发动机应用场合中的冷却孔35具有范围在0.1016-0.889毫米内的直径。对于固定的发电应用场合,典型的冷却孔35具有范围在0.1016-1.254毫米内的直径。动力涡轮机可以使用在这种情况下的整个范围。有利的是,冷却孔35提供对于热壁16的流逸冷却。如图9所示,冲击喷口37将来自冷壁14的较冷的流动供应给冷却孔35。
参照图10描述了冲击和流逸冷却的另一实施例。如图所示,凹陷24位于壁12的内部部分14和外部部分16中。至少一个凹陷24延伸穿过壁12的内部部分14以便形成冲击冷却孔33。对于图10所示的实施例,所示的每一凹陷24延伸穿过壁12的内部部分14以便形成相应的冲击冷却孔33。如上所述,通过延伸穿过壁12的内部部分14以便形成冲击冷却孔33,从而形成了(沿箭头所示的)冲击喷口37。对于图10所示的实施例,至少一个涂层34设置在壁12的外部部分16上。典型的涂层34是热绝缘涂层。为了将冷却流动供应到壁12的外部部分16的表面上,至少一个凹陷24延伸穿过壁12的外部部分16,以形成流逸冷却孔32,且涂层34至少部分地覆盖该流逸冷却孔32。对于典型实施例,每个凹陷24延伸穿过壁12的外部部分16,以形成相应的流逸冷却孔32,且每个流逸冷却孔32显示为由涂层34覆盖。有利地,通过延伸穿过壁12的外部部分16,使得凹陷24为部件壁12提供了膜冷却。更具体的,延伸穿过壁的外部部分16以形成流逸冷却孔32的所述凹陷24提供了流逸冷却,而不延伸穿过壁的外部部分的凹陷24提供通风(ventilation),以便有助于冷却部件壁12。该壁的通风对带有不穿透孔的表面具有增大作用,以便冷却剂可在额外区域内循环,从而在不产生膜冷却或流逸冷却的情况下提供冷却。
根据所需的冷却程度和具体的部件特性,凹陷24可以形成有不同的深度和/或直径,以便凹陷24中的一些凹陷、所以凹陷、或没有任何凹陷延伸穿过部件壁12的相应的内部或者外部部分14、16。如果凹陷24延伸穿过部件壁12的内部部分14,它们形成冲击冷却孔33,以便提供用于部件壁12的冲击冷却,如图10中的箭头37所示。如果凹陷24延伸穿过部件壁12的外部部分16,它们形成流逸冷却孔32,以便提供用于部件壁12的流逸冷却,如图10中的箭头所示。如果凹陷24没有延伸穿过部件壁12的外部部分16,则它们提供有助于冷却部件壁12的通风。
参照图11和12来描述本发明的用于在部件10中形成冷却孔33的方法实施例。部件10包括具有内部部分14和外部部分16的至少一个壁12,并且该壁的内部部分14限定多个凹陷24。典型的部件10包括热气通道部件,例如涡轮机叶片10。该方法包括在一个凹陷24上对钻孔工具100定中心,在凹陷24处使用该钻孔工具100在该壁12的内部部分14上钻通冲击冷却孔33,并且重复定中心和钻孔步骤,以便对于多个凹陷在该壁12的内部部分14中钻成多个冲击冷却孔33。如果该孔没有最佳地定中心,或者如果该孔相对于所示的垂直方向具有微小的角度,该方法也可等效地应用。然而,当同时钻内孔和外孔时,定中心是有利的。
更具体地,定中心操作包括在相应凹陷24的中心101附近对钻孔工具100定中心。一个典型的钻孔工具是激光器100,其构造成便于通过激光加工形成冲击冷却孔33。另一个典型的钻孔工具是放电加工设备100。另一个典型的钻孔工具100是电子束(EBEAM)加工设备100,其构造成便于将电子束引导到在壁12的内部部分14上的凹陷24处。更具体地,电子束(EBEAM)加工设备100构造成便于产生并聚焦电子束,并且通过蒸发除去物质。通过使用电子束(EBEAM)加工设备100可形成非常小的孔(如果需要可形成数量级为几纳米的孔)。
依据如图11所示特定的实施例,钻孔操作还包括使用钻孔工具100在壁12的外部部分16中钻成多个冷却孔35。有利的是,每一冷却孔35可与相应的冲击冷却孔33同时钻成。因此,每一冷却孔35与冲击冷却孔33中的相应一个冲击冷却孔33对准,如图11所示。例如如图9所示,该方法还包括在执行钻孔操作之后对壁12进行涂覆,以便在壁的外部部分16上形成涂层34。依据更特别是实施例,该涂覆步骤包括在壁12的外部部分16上形成热绝缘涂层(TBC)34。热绝缘涂层34可通过使用已知的技术来形成,其包括真空物理气相淀积、空气物理气相淀积、空气等离子喷涂、和真空等离子喷涂。典型的热绝缘涂层34在Ching-Pang Lee等人的共同转让的美国专利6599568“Method for cooling engine components using multi-layerbarrier coating”和Ching-Pang Lee等人的共同转让的美国专利6617003“Directly cooled thermal barrier coating system”中进行了描述。
对于图12所示的典型实施例,壁12的外部部分16限定多个凹陷24,并且在壁12的内部部分14和外部部分16中的凹陷24是对准的。如图12所示,钻孔操作还包括使用钻孔工具100在壁12的外部部分16中钻成多个流逸冷却孔32。如图12所示,流逸冷却孔32穿过凹陷24形成在壁12的外部部分16中。每一流逸冷却孔32可与相应的冲击冷却孔33同时钻成,并且因此流逸冷却孔32与相应的一个冲击冷却孔33对准,如图12所示。例如如图10所示,该方法还包括在执行钻孔操作之后对壁12进行涂覆,以便在壁的外部部分16上形成涂层34,例如热绝缘涂层(TBC)34。
参照图13和14来描述本发明的用于在部件10中形成多个冷却孔33的另一方法实施例。如图所示,部件10包括具有内部部分14和外部部分16的至少一个壁12,并且该壁12的内部部分14限定多个凹陷24。例如如图13所示,该方法包括在凹陷24中的相应一个凹陷上对多个钻孔工具100定中心,在凹陷24处使用相应的钻孔工具100在该壁12的内部部分14中钻通多个冲击冷却孔33。如上所述,典型的钻孔工具100包括激光器、放电设备、和EBEAM设备。对于图13所示的典型实施例,钻孔操作还包括使用多个钻孔工具100在壁12的外部部分16中钻成多个冷却孔35。如图所示,每一冷却孔35与冲击冷却孔33中的相应一个对准。对于图14所示的典型实施例,壁12的外部部分16限定多个凹陷24。如图所示,在壁12的内部部分14和外部部分16中的凹陷24是对准的。对于图14所示的典型实施例,钻孔操作还包括使用钻孔工具100在凹陷24处在壁12的外部部分16中钻通多个流逸冷却孔32。
通过组合不同的冷却元件(即网眼冷却、凹陷、和冷却孔),提供了强化传热的协同方法。由于凹陷24和冷却孔32、33、35提供了强化传热,因此这种改进的传热又通过减小获得相似传热所需的销密度从而减小部件10的重量。而且,使用多个冷却元件可以对于调节局部冷却提供更高的灵活性。使用多个冷却元件还可以提供更平衡的压力损失。所述的组合的冷却元件对于冷却燃气涡轮机的翼形叶片是特别有效的,并且特别有利于高压叶片。
尽管这里只显示和描述了本发明的一些特征,但是本领域中的普通技术人员会明白很多修改和变化。因此,可以理解,后附的权利要求书意在覆盖如位于本发明的真正精神内的所有这样的修改和变化。
附图标记表
10  部件
12  壁
14  壁的内部部分
16  壁的外部部分
18  销
20  网眼冷却结构
22  流道
24  凹陷
26  第一组流道
28  第二组流道
30  交点
32  流逸冷却孔
33  冲击冷却孔
34  涂层
35  冷却孔
37  冲击喷口
40  冷却流动
50  销的列
60  冷却结构
100 钻孔工具
101 凹陷中心

Claims (10)

1.一种热气通道部件(10),其包括:
具有内部部分(14)和外部部分(16)的至少一个壁(12);和
多个销(18),其在所述壁的所述内部部分和外部部分之间延伸,其中,所述销限定包括多个流道(22)的网眼冷却结构(20),并且所述流道包括相互平行的第一组流道(26)和相互平行延伸的第二组流道(28),其中所述第一和第二组流道在多个交点(30)处相互交叉,以形成所述网眼冷却结构;
其中,所述壁的所述内部部分限定多个凹陷(24),其中所述凹陷中的至少一个凹陷延伸穿过所述壁的所述内部部分以便形成冲击冷却孔(33),并且所述凹陷中的至少一个凹陷定位在该交点中的相应一个交点处。
2.如权利要求1所述的热气通道部件(10),其特征在于,所述凹陷(24)延伸穿过所述壁(12)的所述内部部分(14)以便形成多个冲击冷却孔(33)。
3.如权利要求2所述的热气通道部件(10),其特征在于,所述壁(12)的所述外部部分(16)限定多个冷却孔(35),并且每一所述冷却孔(35)与所述凹陷(24)中的相应一个凹陷对准。
4.如权利要求1所述的热气通道部件(10),其特征在于,其还包括在所述壁(12)的所述外部部分(16)上的至少一个涂层(34),其中所述壁的所述外部部分限定多个凹陷(24),并且所述凹陷中的至少一个凹陷延伸穿过所述壁的所述外部部分以便形成流逸冷却孔(32),并且所述涂层至少部分地覆盖所述流逸冷却孔。
5.一种用于在部件(10)中形成多个冷却孔(33)的方法,该部件包括具有内部部分(14)和外部部分(16)的至少一个壁(12),其中所述壁的所述内部部分限定多个凹陷(24),所述方法包括:
在所述凹陷中的一个上对钻孔工具(100)定中心;
通过使用该钻孔工具在所述壁的所述内部部分中钻通至少一个冲击冷却孔(33);和
对于多个凹陷重复所述定中心和钻孔步骤,以便在所述壁的所述内部部分中钻成多个冲击冷却孔。
6.如权利要求5所述的方法,其特征在于,所述定中心包括在所述凹陷(24)中的相应一个凹陷的中心(101)附近对对钻孔工具定中心。
7.如权利要求5所述的方法,其特征在于,所述钻孔工具(100)是从包括激光器、放电加工设备(100)、和电子束(EBEAM)加工设备(100)的一组中选择的。
8.如权利要求5所述的方法,其特征在于,所述钻孔包括使用钻孔工具(100)在所述壁(12)的所述外部部分(16)中钻成多个冷却孔(35),其中每一冷却孔与冲击冷却孔(33)中的相应一个对准。
9.如权利要求8所述的方法,其特征在于,其还包括在执行所述钻孔之后在该壁的外部部分(16)上形成热绝缘涂层(34)。
10.如权利要求8所述的方法,其特征在于,所述壁(12)的所述外部部分(16)限定多个凹陷(24),在内部部分和外部部分中的凹陷对准,并且每一冷却孔是穿过凹陷中的相应一个凹陷形成在壁的外部部分中的流逸冷却孔(32)。
CNB2004100952453A 2003-11-19 2004-11-19 热气通道部件及在该部件中形成多个冷却孔的方法 Expired - Fee Related CN100362212C (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US10/720,045 US7186084B2 (en) 2003-11-19 2003-11-19 Hot gas path component with mesh and dimpled cooling
US10/720045 2003-11-19
US10/881506 2004-06-29

Publications (2)

Publication Number Publication Date
CN1721659A CN1721659A (zh) 2006-01-18
CN100362212C true CN100362212C (zh) 2008-01-16

Family

ID=34435818

Family Applications (2)

Application Number Title Priority Date Filing Date
CNB2004100798056A Expired - Fee Related CN100385091C (zh) 2003-11-19 2004-09-20 具有网眼和凹陷冷却的热气通道部件
CNB2004100952453A Expired - Fee Related CN100362212C (zh) 2003-11-19 2004-11-19 热气通道部件及在该部件中形成多个冷却孔的方法

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CNB2004100798056A Expired - Fee Related CN100385091C (zh) 2003-11-19 2004-09-20 具有网眼和凹陷冷却的热气通道部件

Country Status (4)

Country Link
US (2) US7186084B2 (zh)
EP (1) EP1533475A3 (zh)
JP (1) JP2005147132A (zh)
CN (2) CN100385091C (zh)

Families Citing this family (106)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1533481A3 (en) * 2003-11-19 2009-11-04 General Electric Company Hot gas path component with a meshed and dimpled cooling structure
US7775053B2 (en) 2004-09-20 2010-08-17 United Technologies Corporation Heat transfer augmentation in a compact heat exchanger pedestal array
US20070201980A1 (en) * 2005-10-11 2007-08-30 Honeywell International, Inc. Method to augment heat transfer using chamfered cylindrical depressions in cast internal cooling passages
JP4831816B2 (ja) * 2006-03-02 2011-12-07 三菱重工業株式会社 ガスタービンの翼冷却構造
US20080005903A1 (en) * 2006-07-05 2008-01-10 United Technologies Corporation External datum system and film hole positioning using core locating holes
US7699583B2 (en) * 2006-07-21 2010-04-20 United Technologies Corporation Serpentine microcircuit vortex turbulatons for blade cooling
US7544044B1 (en) * 2006-08-11 2009-06-09 Florida Turbine Technologies, Inc. Turbine airfoil with pedestal and turbulators cooling
US20100221121A1 (en) * 2006-08-17 2010-09-02 Siemens Power Generation, Inc. Turbine airfoil cooling system with near wall pin fin cooling chambers
US8066478B1 (en) 2006-10-17 2011-11-29 Iowa State University Research Foundation, Inc. Preventing hot-gas ingestion by film-cooling jet via flow-aligned blockers
US7997867B1 (en) 2006-10-17 2011-08-16 Iowa State University Research Foundation, Inc. Momentum preserving film-cooling shaped holes
JP4929097B2 (ja) * 2007-08-08 2012-05-09 株式会社日立製作所 ガスタービン翼
JP4930276B2 (ja) * 2007-08-21 2012-05-16 株式会社Ihi 高温部品の内面冷却構造
WO2009028067A1 (ja) 2007-08-30 2009-03-05 Mitsubishi Heavy Industries, Ltd. ガスタービンの翼冷却構造
WO2009038203A1 (ja) * 2007-09-21 2009-03-26 Nec Corporation 温度制御方法及びシステム
JP5029960B2 (ja) * 2008-01-15 2012-09-19 株式会社Ihi 高温部品の内面冷却構造
EP2265800B1 (de) * 2008-03-31 2017-11-01 Ansaldo Energia IP UK Limited Kühlkanalanordnung innerhalb eines hohlgegossenen gussteils
US20120000072A9 (en) * 2008-09-26 2012-01-05 Morrison Jay A Method of Making a Combustion Turbine Component Having a Plurality of Surface Cooling Features and Associated Components
WO2010048152A1 (en) * 2008-10-20 2010-04-29 Drexel University Vertical axis wind turbine
US9145779B2 (en) * 2009-03-12 2015-09-29 United Technologies Corporation Cooling arrangement for a turbine engine component
US8206109B2 (en) * 2009-03-30 2012-06-26 General Electric Company Turbine blade assemblies with thermal insulation
US8894367B2 (en) * 2009-08-06 2014-11-25 Siemens Energy, Inc. Compound cooling flow turbulator for turbine component
EP2491230B1 (en) * 2009-10-20 2020-11-25 Siemens Energy, Inc. Gas turbine engine comprising a turbine airfoil with tapered cooling passageways
US20110110790A1 (en) * 2009-11-10 2011-05-12 General Electric Company Heat shield
US8894363B2 (en) 2011-02-09 2014-11-25 Siemens Energy, Inc. Cooling module design and method for cooling components of a gas turbine system
US8959886B2 (en) 2010-07-08 2015-02-24 Siemens Energy, Inc. Mesh cooled conduit for conveying combustion gases
US20120131938A1 (en) 2010-05-25 2012-05-31 7Ac Technologies, Inc. Air conditioning system with integrated solar inverter
US8905713B2 (en) 2010-05-28 2014-12-09 General Electric Company Articles which include chevron film cooling holes, and related processes
US9376960B2 (en) 2010-07-23 2016-06-28 University Of Central Florida Research Foundation, Inc. Heat transfer augmented fluid flow surfaces
US8684662B2 (en) 2010-09-03 2014-04-01 Siemens Energy, Inc. Ring segment with impingement and convective cooling
US8714926B2 (en) 2010-09-17 2014-05-06 Siemens Energy, Inc. Turbine component cooling channel mesh with intersection chambers
US9017027B2 (en) 2011-01-06 2015-04-28 Siemens Energy, Inc. Component having cooling channel with hourglass cross section
US8764394B2 (en) 2011-01-06 2014-07-01 Siemens Energy, Inc. Component cooling channel
CN103542748A (zh) * 2011-07-28 2014-01-29 上海交通大学 热沉的针肋-凹陷复合阵列结构及针肋-凹陷复合阵列的布置方法
CN102410687A (zh) * 2011-07-28 2012-04-11 上海交通大学 具有针肋-凹陷复合阵列的热沉及针肋-凹陷复合阵列的布置方法
US8882448B2 (en) 2011-09-09 2014-11-11 Siemens Aktiengesellshaft Cooling system in a turbine airfoil assembly including zigzag cooling passages interconnected with radial passageways
US8840363B2 (en) 2011-09-09 2014-09-23 Siemens Energy, Inc. Trailing edge cooling system in a turbine airfoil assembly
US8840370B2 (en) 2011-11-04 2014-09-23 General Electric Company Bucket assembly for turbine system
US9249670B2 (en) 2011-12-15 2016-02-02 General Electric Company Components with microchannel cooling
US9255491B2 (en) * 2012-02-17 2016-02-09 United Technologies Corporation Surface area augmentation of hot-section turbomachine component
US20130243575A1 (en) 2012-03-13 2013-09-19 United Technologies Corporation Cooling pedestal array
JP5360265B2 (ja) * 2012-06-08 2013-12-04 株式会社Ihi 高温部品の内面冷却構造
KR102189997B1 (ko) * 2012-06-11 2020-12-11 7에이씨 테크놀로지스, 아이엔씨. 난류형 내식성 열 교환기들을 위한 방법들 및 시스템들
US9995148B2 (en) 2012-10-04 2018-06-12 General Electric Company Method and apparatus for cooling gas turbine and rotor blades
US9995150B2 (en) 2012-10-23 2018-06-12 Siemens Aktiengesellschaft Cooling configuration for a gas turbine engine airfoil
US8936067B2 (en) 2012-10-23 2015-01-20 Siemens Aktiengesellschaft Casting core for a cooling arrangement for a gas turbine component
US8951004B2 (en) 2012-10-23 2015-02-10 Siemens Aktiengesellschaft Cooling arrangement for a gas turbine component
EP2929256A4 (en) 2012-12-04 2016-08-03 7Ac Technologies Inc METHODS AND SYSTEMS FOR COOLING BUILDINGS WITH HIGH THERMAL LOADS THROUGH DESICCANT COOLERS
CN103075202A (zh) * 2013-01-15 2013-05-01 上海交通大学 涡轮叶片内部带有栅格扰流的冲击冷却结构
WO2014134473A1 (en) 2013-03-01 2014-09-04 7Ac Technologies, Inc. Desiccant air conditioning methods and systems
US9850762B2 (en) 2013-03-13 2017-12-26 General Electric Company Dust mitigation for turbine blade tip turns
US20140260399A1 (en) 2013-03-14 2014-09-18 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
WO2014152888A1 (en) 2013-03-14 2014-09-25 7 Ac Technologies, Inc. Methods and systems for liquid desiccant air conditioning system retrofit
US9638057B2 (en) 2013-03-14 2017-05-02 Rolls-Royce North American Technologies, Inc. Augmented cooling system
US8985949B2 (en) 2013-04-29 2015-03-24 Siemens Aktiengesellschaft Cooling system including wavy cooling chamber in a trailing edge portion of an airfoil assembly
US9810070B2 (en) 2013-05-15 2017-11-07 General Electric Company Turbine rotor blade for a turbine section of a gas turbine
CN105229386B (zh) 2013-06-12 2020-03-06 7Ac技术公司 在顶式液体干燥剂空气调节系统
US9695696B2 (en) 2013-07-31 2017-07-04 General Electric Company Turbine blade with sectioned pins
US10427213B2 (en) 2013-07-31 2019-10-01 General Electric Company Turbine blade with sectioned pins and method of making same
WO2015073092A2 (en) * 2013-09-05 2015-05-21 United Technologies Corporation Gas turbine engine airfoil turbulator for airfoil creep resistance
US9500093B2 (en) * 2013-09-26 2016-11-22 Pratt & Whitney Canada Corp. Internally cooled airfoil
KR102138327B1 (ko) * 2013-11-15 2020-07-27 한화에어로스페이스 주식회사 터빈
EP2886797B1 (en) * 2013-12-20 2018-11-28 Ansaldo Energia Switzerland AG A hollow cooled gas turbine rotor blade or guide vane, wherein the cooling cavities comprise pins interconnected with ribs
EP3105425B1 (en) * 2014-02-13 2019-03-20 United Technologies Corporation Gas turbine engine component cooling circuit with respirating pedestal
WO2015143332A2 (en) 2014-03-20 2015-09-24 7Ac Technologies, Inc. Rooftop liquid desiccant systems and methods
CN103967621B (zh) * 2014-04-08 2016-06-08 上海交通大学 具有微小斜肋-凹陷复合结构的冷却装置
EP2949871B1 (en) * 2014-05-07 2017-03-01 United Technologies Corporation Variable vane segment
US10400674B2 (en) * 2014-05-09 2019-09-03 United Technologies Corporation Cooled fuel injector system for a gas turbine engine and method for operating the same
US10422235B2 (en) 2014-05-29 2019-09-24 General Electric Company Angled impingement inserts with cooling features
US10690055B2 (en) 2014-05-29 2020-06-23 General Electric Company Engine components with impingement cooling features
EP3149279A1 (en) 2014-05-29 2017-04-05 General Electric Company Fastback turbulator
US9957816B2 (en) 2014-05-29 2018-05-01 General Electric Company Angled impingement insert
US10364684B2 (en) * 2014-05-29 2019-07-30 General Electric Company Fastback vorticor pin
US9920635B2 (en) * 2014-09-09 2018-03-20 Honeywell International Inc. Turbine blades and methods of forming turbine blades having lifted rib turbulator structures
US10280785B2 (en) 2014-10-31 2019-05-07 General Electric Company Shroud assembly for a turbine engine
US10233775B2 (en) 2014-10-31 2019-03-19 General Electric Company Engine component for a gas turbine engine
WO2016081933A1 (en) 2014-11-21 2016-05-26 7Ac Technologies, Inc. Methods and systems for mini-split liquid desiccant air conditioning
US10048019B2 (en) 2014-12-22 2018-08-14 Hamilton Sundstrand Corporation Pins for heat exchangers
CA2973363A1 (en) * 2015-01-09 2016-07-14 President And Fellows Of Harvard College Hybrid dimple-and-void auxetic structures with engineered patterns for customized npr behavior
EP3048262A1 (en) * 2015-01-20 2016-07-27 Alstom Technology Ltd Wall for a hot gas channel in a gas turbine
EP3144485A1 (en) * 2015-09-16 2017-03-22 Siemens Aktiengesellschaft Turbomachine component with cooling features and a method for manufacturing such a turbomachine component
US10174620B2 (en) 2015-10-15 2019-01-08 General Electric Company Turbine blade
US10605170B2 (en) 2015-11-24 2020-03-31 General Electric Company Engine component with film cooling
EP3176371A1 (en) * 2015-12-03 2017-06-07 Siemens Aktiengesellschaft Component for a fluid flow engine and method
WO2017095438A1 (en) * 2015-12-04 2017-06-08 Siemens Aktiengesellschaft Turbine airfoil with biased trailing edge cooling arrangement
EP3449295B1 (en) 2016-05-13 2020-04-08 NLIGHT, Inc. Double helix coolant path for high power fiber connector
US10605093B2 (en) * 2016-07-12 2020-03-31 General Electric Company Heat transfer device and related turbine airfoil
US10830058B2 (en) 2016-11-30 2020-11-10 Rolls-Royce Corporation Turbine engine components with cooling features
US10577944B2 (en) * 2017-08-03 2020-03-03 General Electric Company Engine component with hollow turbulators
EP3704415A4 (en) 2017-11-01 2021-11-03 7AC Technologies, Inc. TANK SYSTEM FOR AN AIR CONDITIONING SYSTEM WITH LIQUID DRYING AGENTS
JP7321157B2 (ja) 2017-11-01 2023-08-04 エマーソン クライメイト テクノロジーズ,インコーポレイテッド 液体乾燥剤空調システムにおける膜モジュール内での液体乾燥剤の均一分散のための方法及び装置
DE102018203211A1 (de) * 2018-03-05 2019-09-05 MTU Aero Engines AG Schaufel mit Hitzeschild und Strömungsmaschine
US10724381B2 (en) 2018-03-06 2020-07-28 Raytheon Technologies Corporation Cooling passage with structural rib and film cooling slot
US11022330B2 (en) 2018-05-18 2021-06-01 Emerson Climate Technologies, Inc. Three-way heat exchangers for liquid desiccant air-conditioning systems and methods of manufacture
EP3803057B1 (en) * 2018-07-13 2022-11-16 Siemens Energy Global GmbH & Co. KG Airfoil for a turbine engine incorporating pins
US11339718B2 (en) * 2018-11-09 2022-05-24 Raytheon Technologies Corporation Minicore cooling passage network having trip strips
US10767492B2 (en) * 2018-12-18 2020-09-08 General Electric Company Turbine engine airfoil
GB201900474D0 (en) * 2019-01-14 2019-02-27 Rolls Royce Plc A double-wall geometry
US10767495B2 (en) 2019-02-01 2020-09-08 Rolls-Royce Plc Turbine vane assembly with cooling feature
US10711621B1 (en) 2019-02-01 2020-07-14 Rolls-Royce Plc Turbine vane assembly with ceramic matrix composite components and temperature management features
GB2584299A (en) * 2019-05-29 2020-12-02 Siemens Ag Heatshield for gas turbine engine
US11149553B2 (en) 2019-08-02 2021-10-19 Rolls-Royce Plc Ceramic matrix composite components with heat transfer augmentation features
US11268392B2 (en) 2019-10-28 2022-03-08 Rolls-Royce Plc Turbine vane assembly incorporating ceramic matrix composite materials and cooling
DK4050296T3 (da) 2021-02-26 2023-04-24 Ovh Varmevekslersystem med et gitterpanel
CN115013075B (zh) * 2022-08-10 2022-12-06 中国航发四川燃气涡轮研究院 一种防滑花纹状扰流肋及涡轮叶片
JP2024043164A (ja) * 2022-09-16 2024-03-29 三菱重工航空エンジン株式会社 熱交換隔壁
CN116950724B (zh) * 2023-09-20 2024-01-09 中国航发四川燃气涡轮研究院 一种应用于涡轮叶片尾缘的内部冷却结构及其设计方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062768A (en) * 1988-12-23 1991-11-05 Rolls-Royce Plc Cooled turbomachinery components
US5690472A (en) * 1992-02-03 1997-11-25 General Electric Company Internal cooling of turbine airfoil wall using mesh cooling hole arrangement
US6234755B1 (en) * 1999-10-04 2001-05-22 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream, and related articles of manufacture
US6331098B1 (en) * 1999-12-18 2001-12-18 General Electric Company Coriolis turbulator blade
US6644921B2 (en) * 2001-11-08 2003-11-11 General Electric Company Cooling passages and methods of fabrication

Family Cites Families (57)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1848375A (en) 1929-04-27 1932-03-08 Wellington W Muir Radiator core for automobile cooling systems
US2938333A (en) 1957-03-18 1960-05-31 Gen Motors Corp Combustion chamber liner construction
US3229763A (en) 1963-07-16 1966-01-18 Rosenblad Corp Flexible plate heat exchangers with variable spacing
US3664928A (en) 1969-12-15 1972-05-23 Aerojet General Co Dimpled heat transfer walls for distillation apparatus
US3616125A (en) * 1970-05-04 1971-10-26 Gen Motors Corp Airfoil structures provided with cooling means for improved transpiration
US3899882A (en) 1974-03-27 1975-08-19 Westinghouse Electric Corp Gas turbine combustor basket cooling
US4184326A (en) 1975-12-05 1980-01-22 United Technologies Corporation Louver construction for liner of gas turbine engine combustor
US4158949A (en) 1977-11-25 1979-06-26 General Motors Corporation Segmented annular combustor
US4407632A (en) * 1981-06-26 1983-10-04 United Technologies Corporation Airfoil pedestaled trailing edge region cooling configuration
JPH06100432B2 (ja) 1984-06-20 1994-12-12 株式会社日立製作所 伝熱管
JPS61280390A (ja) 1985-02-25 1986-12-10 Hitachi Ltd 熱交換器およびその製作方法
US4838031A (en) 1987-08-06 1989-06-13 Avco Corporation Internally cooled combustion chamber liner
US5667359A (en) * 1988-08-24 1997-09-16 United Technologies Corp. Clearance control for the turbine of a gas turbine engine
JP3006174B2 (ja) * 1991-07-04 2000-02-07 株式会社日立製作所 内部に冷却通路を有する部材
US5681144A (en) 1991-12-17 1997-10-28 General Electric Company Turbine blade having offset turbulators
US5695321A (en) 1991-12-17 1997-12-09 General Electric Company Turbine blade having variable configuration turbulators
US5370499A (en) 1992-02-03 1994-12-06 General Electric Company Film cooling of turbine airfoil wall using mesh cooling hole arrangement
US5353865A (en) 1992-03-30 1994-10-11 General Electric Company Enhanced impingement cooled components
EP0590418B1 (de) 1992-10-02 1996-08-14 Licentia Patent-Verwaltungs-GmbH Hochspannungsröhre
US5651662A (en) 1992-10-29 1997-07-29 General Electric Company Film cooled wall
US5660525A (en) 1992-10-29 1997-08-26 General Electric Company Film cooled slotted wall
US5361828A (en) 1993-02-17 1994-11-08 General Electric Company Scaled heat transfer surface with protruding ramp surface turbulators
KR0132015B1 (ko) 1993-02-24 1998-04-20 가나이 쯔도무 열 교환기
US5460002A (en) 1993-05-21 1995-10-24 General Electric Company Catalytically-and aerodynamically-assisted liner for gas turbine combustors
JPH08110012A (ja) 1994-10-07 1996-04-30 Hitachi Ltd 燃焼器ライナの製造方法
US5421158A (en) 1994-10-21 1995-06-06 General Electric Company Segmented centerbody for a double annular combustor
US5758503A (en) 1995-05-03 1998-06-02 United Technologies Corporation Gas turbine combustor
JP3297838B2 (ja) 1996-02-09 2002-07-02 株式会社日立製作所 伝熱管及びその製造方法
US5724816A (en) 1996-04-10 1998-03-10 General Electric Company Combustor for a gas turbine with cooling structure
US5933699A (en) 1996-06-24 1999-08-03 General Electric Company Method of making double-walled turbine components from pre-consolidated assemblies
US5822853A (en) 1996-06-24 1998-10-20 General Electric Company Method for making cylindrical structures with cooling channels
US5975850A (en) 1996-12-23 1999-11-02 General Electric Company Turbulated cooling passages for turbine blades
US5738493A (en) 1997-01-03 1998-04-14 General Electric Company Turbulator configuration for cooling passages of an airfoil in a gas turbine engine
US5797726A (en) 1997-01-03 1998-08-25 General Electric Company Turbulator configuration for cooling passages or rotor blade in a gas turbine engine
GB2328011A (en) 1997-08-05 1999-02-10 Europ Gas Turbines Ltd Combustor for gas or liquid fuelled turbine
US5931638A (en) * 1997-08-07 1999-08-03 United Technologies Corporation Turbomachinery airfoil with optimized heat transfer
JP4589529B2 (ja) * 1997-12-24 2010-12-01 サノフィ−アベンティス・ドイチュラント・ゲゼルシャフト・ミット・ベシュレンクテル・ハフツング Xa因子阻害剤としてのインドール誘導体
US6098397A (en) * 1998-06-08 2000-08-08 Caterpillar Inc. Combustor for a low-emissions gas turbine engine
US6237344B1 (en) 1998-07-20 2001-05-29 General Electric Company Dimpled impingement baffle
US6468669B1 (en) 1999-05-03 2002-10-22 General Electric Company Article having turbulation and method of providing turbulation on an article
US6190120B1 (en) 1999-05-14 2001-02-20 General Electric Co. Partially turbulated trailing edge cooling passages for gas turbine nozzles
US6589600B1 (en) * 1999-06-30 2003-07-08 General Electric Company Turbine engine component having enhanced heat transfer characteristics and method for forming same
US6402470B1 (en) 1999-10-05 2002-06-11 United Technologies Corporation Method and apparatus for cooling a wall within a gas turbine engine
US6494044B1 (en) 1999-11-19 2002-12-17 General Electric Company Aerodynamic devices for enhancing sidepanel cooling on an impingement cooled transition duct and related method
JP2001164701A (ja) 1999-12-08 2001-06-19 Tamutetsuku:Kk 桟 瓦
US6412268B1 (en) 2000-04-06 2002-07-02 General Electric Company Cooling air recycling for gas turbine transition duct end frame and related method
US6334310B1 (en) 2000-06-02 2002-01-01 General Electric Company Fracture resistant support structure for a hula seal in a turbine combustor and related method
US6408629B1 (en) 2000-10-03 2002-06-25 General Electric Company Combustor liner having preferentially angled cooling holes
US6511762B1 (en) * 2000-11-06 2003-01-28 General Electric Company Multi-layer thermal barrier coating with transpiration cooling
US6617003B1 (en) * 2000-11-06 2003-09-09 General Electric Company Directly cooled thermal barrier coating system
US6504274B2 (en) 2001-01-04 2003-01-07 General Electric Company Generator stator cooling design with concavity surfaces
JP3505619B2 (ja) * 2001-01-17 2004-03-08 ミネベア株式会社 面状照明装置
US6526756B2 (en) 2001-02-14 2003-03-04 General Electric Company Method and apparatus for enhancing heat transfer in a combustor liner for a gas turbine
US6607355B2 (en) 2001-10-09 2003-08-19 United Technologies Corporation Turbine airfoil with enhanced heat transfer
US6974308B2 (en) * 2001-11-14 2005-12-13 Honeywell International, Inc. High effectiveness cooled turbine vane or blade
US7022429B2 (en) 2002-04-25 2006-04-04 General Electric Company Fluid passages for power generation equipment
EP1533481A3 (en) * 2003-11-19 2009-11-04 General Electric Company Hot gas path component with a meshed and dimpled cooling structure

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5062768A (en) * 1988-12-23 1991-11-05 Rolls-Royce Plc Cooled turbomachinery components
US5690472A (en) * 1992-02-03 1997-11-25 General Electric Company Internal cooling of turbine airfoil wall using mesh cooling hole arrangement
US6234755B1 (en) * 1999-10-04 2001-05-22 General Electric Company Method for improving the cooling effectiveness of a gaseous coolant stream, and related articles of manufacture
US6331098B1 (en) * 1999-12-18 2001-12-18 General Electric Company Coriolis turbulator blade
US6644921B2 (en) * 2001-11-08 2003-11-11 General Electric Company Cooling passages and methods of fabrication

Also Published As

Publication number Publication date
CN100385091C (zh) 2008-04-30
US20050118023A1 (en) 2005-06-02
EP1533475A3 (en) 2009-11-04
EP1533475A2 (en) 2005-05-25
US7182576B2 (en) 2007-02-27
US20050106021A1 (en) 2005-05-19
US7186084B2 (en) 2007-03-06
CN1721659A (zh) 2006-01-18
JP2005147132A (ja) 2005-06-09
CN1727642A (zh) 2006-02-01

Similar Documents

Publication Publication Date Title
CN100362212C (zh) 热气通道部件及在该部件中形成多个冷却孔的方法
US6984102B2 (en) Hot gas path component with mesh and turbulated cooling
US7390168B2 (en) Vortex cooling for turbine blades
DE69924953T2 (de) Schaufel eines Gasturbinentriebwerks
US8523527B2 (en) Apparatus for cooling a platform of a turbine component
RU2531712C2 (ru) Лопатка для газовой турбины с охлаждаемой законцовкой периферической части лопатки
US8753083B2 (en) Curved cooling passages for a turbine component
EP3322881B1 (en) Turbomachine component with cooling features and a method for manufacturing and of operation of such a turbomachine component
US20040151587A1 (en) Microcircuit cooling for a turbine blade tip
US20030059305A1 (en) Air cooled aerofoil
US20100221121A1 (en) Turbine airfoil cooling system with near wall pin fin cooling chambers
US20150152736A1 (en) Turbine endwall with micro-circuit cooling
JP2000345803A (ja) インピンジメント冷却エーロフォイル先端
CN101004143A (zh) 冷却改进的涡轮机翼型件
US20120301319A1 (en) Curved Passages for a Turbine Component
US20180142559A1 (en) Cooling structure for a turbine component
JP4433139B2 (ja) タービンブレード壁の冷却装置及び製造方法
CN210289846U (zh) 一种带冠有冷涡轮转子叶片前缘冷却结构
JP4521720B2 (ja) メッシュ及びインピンジメント冷却を備えた高温ガス流路部品
JP5182931B2 (ja) タービン用翼
CN109083689B (zh) 凹部、冷却结构、冷却组件和形成凹部的方法
KR101866900B1 (ko) 가스 터빈용 블레이드

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080116

Termination date: 20111119