CN100370622C - 半导体场效应晶体管器件及其形成方法 - Google Patents

半导体场效应晶体管器件及其形成方法 Download PDF

Info

Publication number
CN100370622C
CN100370622C CNB2004100929851A CN200410092985A CN100370622C CN 100370622 C CN100370622 C CN 100370622C CN B2004100929851 A CNB2004100929851 A CN B2004100929851A CN 200410092985 A CN200410092985 A CN 200410092985A CN 100370622 C CN100370622 C CN 100370622C
Authority
CN
China
Prior art keywords
impurity
dislocation
semiconductor
locking
fet device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2004100929851A
Other languages
English (en)
Other versions
CN1619834A (zh
Inventor
史蒂文·J.·科斯特
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
International Business Machines Corp
Original Assignee
International Business Machines Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by International Business Machines Corp filed Critical International Business Machines Corp
Publication of CN1619834A publication Critical patent/CN1619834A/zh
Application granted granted Critical
Publication of CN100370622C publication Critical patent/CN100370622C/zh
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/26Bombardment with radiation
    • H01L21/263Bombardment with radiation with high-energy radiation
    • H01L21/265Bombardment with radiation with high-energy radiation producing ion implantation
    • H01L21/26506Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors
    • H01L21/26513Bombardment with radiation with high-energy radiation producing ion implantation in group IV semiconductors of electrically active species
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1041Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a non-uniform doping structure in the channel region surface
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/02Semiconductor bodies ; Multistep manufacturing processes therefor
    • H01L29/06Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
    • H01L29/10Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions with semiconductor regions connected to an electrode not carrying current to be rectified, amplified or switched and such electrode being part of a semiconductor device which comprises three or more electrodes
    • H01L29/1025Channel region of field-effect devices
    • H01L29/1029Channel region of field-effect devices of field-effect transistors
    • H01L29/1033Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure
    • H01L29/1054Channel region of field-effect devices of field-effect transistors with insulated gate, e.g. characterised by the length, the width, the geometric contour or the doping structure with a variation of the composition, e.g. channel with strained layer for increasing the mobility
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/66Types of semiconductor device ; Multistep manufacturing processes therefor
    • H01L29/68Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
    • H01L29/76Unipolar devices, e.g. field effect transistors
    • H01L29/772Field effect transistors
    • H01L29/78Field effect transistors with field effect produced by an insulated gate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/517Insulating materials associated therewith the insulating material comprising a metallic compound, e.g. metal oxide, metal silicate
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/51Insulating materials associated therewith
    • H01L29/518Insulating materials associated therewith the insulating material containing nitrogen, e.g. nitride, oxynitride, nitrogen-doped material

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Ceramic Engineering (AREA)
  • Health & Medical Sciences (AREA)
  • Toxicology (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)

Abstract

本发明涉及减少应变层场效应晶体管中位错导致的泄漏的方法。本发明提供了一种制造半导体场效应晶体管比如应变Si n-MOSFET的结构和方法,其中,跨越源极和漏极的位错或者晶体缺陷被重p型掺杂剂部分占据。最好,该应变层n-MOSFET包括Si、SiGe或者SiGeC多层结构,该多层结构在源极和漏极之间的区域包括优先占据位错位置的杂质原子,以防止源极和漏极因为沿着位错的掺杂剂扩散而短接。用本发明形成的器件不受与位错相关的缺陷的故障的影响,因此对于工艺和材料的变化更有鲁棒性。从而,本发明放松了降低SiGe缓冲层中的线形位错浓度的要求,因为所述器件可以不管有限数量的位错的存在而仍能工作。

Description

半导体场效应晶体管器件及其形成方法
技术领域
本发明涉及半导体和晶体管,尤其涉及Si/SiGe应变层场效应晶体管(Si/SiGe strained-layer field-effect transistors)。
背景技术
使用应变Si制造的半导体Si/SiGe应变层MOSFET由于在应变Si层中具有更高的载流子迁移率而有提高性能的潜能。Si中的应变一般是这样形成的:首先形成一个松弛的SiGe层,然后在顶部外延生长Si层。由于SiGe的晶格常数比Si大,Si会处在拉伸应变状态下。下面的松弛的SiGe层可以以多种方式形成,但是一般是通过在Si衬底上生长分级Ge含量的SiGe层,接着生长一个厚的成份恒定SiGe层形成的。SiGe的松弛是通过在初始生长界面附近的位错形成,并具有相当高密度(浓度)(约106cm-2-108cm-2数量级)的线形位错(threading dislocation)延伸到样本表面。这些线形位错在生长应变Si盖层之后继续延伸到样本表面,在高温处理期间,如果线形位错沿着松弛SiGe层和应变Si层的界面滑移,则可以形成另外的错配位错(misfit dislocation)。线形和错配位错会在在这些层上制造的短沟道MOSFET中导致器件故障,尤其是如果位错从源极注入区一直延伸到漏极注入区的话。在这种情况下,来自源极和漏极的掺杂剂会沿着位错析出,形成从源极到漏极的直接“管道”,导致器件泄漏。这对于n-MOSFET尤其如此,因为源极和漏极中的n型掺杂剂原子(一般是P和As)要比阱区中的p型掺杂剂原子(通常是B)大。由于较大的原子会优先占据位错位置,n-MOSFET更倾向于受到上述类型的与位错相关的缺陷(故障)的影响。
图1(a)和1(b)是位错导致的泄漏的机制的示意图。具体地,图1(a)图示了形成在两个介电隔离区12a、12b之间的松弛SiGe上应变Sin-MOSFET器件10。由于是用现有技术中已知的技术制造的,该n-MOSFET包括p型掺杂的松弛SiGe衬底层15,其包括在松弛SiGe层上形成的应变Si沟道层18,在相应的n型漏极和源极区12a、12b之间形成Si/SiGe界面22。在生长的应变Si层的顶部形成一个栅极介电层28(例如氧化物比如二氧化硅)以及在其上形成的栅极30。如图1所示,n-MOSFET可以形成从衬底15向上突出的线形位错25,其沿着Si/SiGe界面22滑移,然后终止于表面。如上所述,SiGe的松弛是通过在初始生长面22附近的错配位错的形成,并有相当高密度的线形位错延伸到样本表面。这些线形位错在生长应变Si盖层之后继续延伸到样本表面,在高温处理期间,如果线形位错沿着松弛SiGe层25和应变Si层18的界面滑移,则可以形成另外的错配位错。
在退火处理之后,来自源极和漏极20a、20b的n型掺杂剂会沿着位错析出。如果栅极长度足够短,所述掺杂剂就会汇合而在源极和漏极之间形成泄漏路径,如图1(b)所示。图2图示了对于具有位错导致的泄漏的应变Sin-MOSFET,漏极电漏Id对栅极电压Vg的曲线50。该数据表明,直接从源极到漏极(不是从源极到本体或者从漏极到本体,Ib)发生了泄漏,导致关断性能不好以及亚阈值区(subthreshold region)中的高泄漏(Vgs<0)。
到目前为止,试图克服位错导致的泄漏问题的主要方法是要降低松弛SiGe材料中初始位错的浓度,并确保应变Si层的厚度小于热力学稳定性的临界厚度。这些方法在减少位错导致的泄漏方面是成功的,但是非常难以完全消除线形位错以及工艺导致的错配位错。随着Ge的含量的增加,与缺陷相关的问题被加剧了,因为具有较高Ge含量的松弛SiGe层倾向于具有较高的线形位错密度,要求较薄的Si盖层来防止错配的形成。因此,即使改善衬底材料可以减少因为位错导致的故障的数量,但是对于需要非常高的集成度的应用来说,这样的改进并不够。在集成度高的应用中,即使非常少量的器件具有位错导致的泄漏也是不可容忍的.
掺杂剂原子与位错的相互作用已经得到了广泛的研究。目前已经发现,重掺杂剂原子,比如In,可以析出到Si中的位错范围的端部,这比如在Noda et al.,J.Appl.Phys.88,4980(2000)中有描述。向Si中注入重中性杂质比如Sn的效果例如在C.Claeys et al.,J Electrochem.Soc.148,G738(2001)中进行了研究,发现Sn可以作为空穴吸收剂。这些结果因而表明:Sn也可以用作位错吸收剂。Kaplan et al.,Phys.Rev.B 58,12865(1998)也注意到了析出到Si中的位错处的Ga杂质可以构成量子线导电通路。但是,还没有提出这样的结构或者方法:可以用掺杂剂和/或中性杂质原子来有意地占据位错附近的区域,以在应变层MOSFET中防止位错导致的泄漏。
因而,非常希望提供一种减少应变层MOSFET中的泄漏同时不需要消除缺陷本身的方法和结构。
发明内容
本发明的一个目的是提供一种减少应变层MOSFET中的泄漏同时不需要消除缺陷本身的方法和结构。
本发明涉及在位错附近引入优先占据位错位置或者区域的掺杂剂种类,从而防止沿着位错扩散而桥接源极和漏极的掺杂剂导致的泄漏。
根据本发明的第一方面,提供了一种半导体场效应晶体管器件,包括:用第一种掺杂剂掺杂的第一半导体材料层;注入了第二种相反类型的掺杂剂的源极区和漏极区;用介电区与所述第一半导体材料层隔开,并位于所述源极和漏极之间的栅极;所述第一半导体材料层具有一个或者多个位错缺陷从源极区连续地延伸到漏极区,注入闭锁杂质(blockingimpurity)掺杂剂材料而部分地或者全部地占据位错缺陷,其中,所述闭锁杂质掺杂剂材料基本上抑制了注入的源极和漏极掺杂剂沿着所述位错缺陷扩散。
根据本发明的第二方面,提供了一种形成半导体场效应晶体管器件的方法,包括下列步骤:a)形成第一半导体结构,其包括具有非零数量的线形位错、用第一种掺杂剂掺杂的材料;b)在所述半导体结构中注入闭锁杂质;c)热处理所述半导体结构,使得所述闭锁杂质析出到现有的线形位错,当所述热处理产生新的位错时,所述热处理还使得所述闭锁杂质析出到新产生的位错处;d)在所述半导体结构的顶部形成一个介电层,形成一个栅极区,并在该栅极区上形成一个栅极,所述半导体结构的紧邻该栅极在该栅极下方的一部分形成一个沟道区,所述半导体结构的在所述沟道区下方的一部分形成一个阱区;以及e)在所述半导体结构中在所述栅极区的相对两侧注入杂质,形成源极区和漏极区,使得所述源极区和漏极区在每一侧与所述沟道区和阱区相接,其中,位错缺陷从源极区连续地延伸到漏极区,所述位错缺陷的紧挨的附近区域基本上被所述闭锁杂质掺杂剂占据。
本发明的器件和制造方法有利地放松了降低SiGe缓冲层中的线形位错浓度的要求,因为所述器件可以不管有限数量的位错的存在而仍能工作。
附图说明
结合下面的说明、权利要求和附图可以更好地理解本发明的设备和方法的其它特征和优点。附图中:
图1(a)是松弛SiGe上应变Sin-MOSFET的示意剖面图;
图1(b)是带有线形和错配位错的松弛SiGe上应变Sin-MOSFET的示意剖面图,其中源极和漏极掺杂剂已经沿着位错析出,形成源极和漏极之间的泄漏路径;
图2是试验数据的曲线图,图解了短沟道松弛SiGe上应变Sin-MOSFET中的位错导致的泄漏;
图3是本发明的第一实施例的剖面图,其中图示了在应变Sin-MOSFET中,跨越源极和漏极的缺陷被重p型掺杂剂部分占据;
图4是本发明的第二实施例的剖面图,其中图示了在应变Sip-MOSFET中,跨越源极和漏极的缺陷被重n型掺杂剂部分占据;
图5是本发明的第三实施例的剖面图,其中图示了在应变SiMOSFET中,跨越源极和漏极的缺陷被中性杂质部分占据;
图6(a)-6(h)图解了改善应变层MOSFET中的位错导致的泄漏的工艺流程。
具体实施方式
图3是本发明的第一实施例的剖面图,其中图示了在应变Sin-MOSFET中,跨越源极和漏极的缺陷被重p型掺杂剂部分占据。应变层n-MOSFET最好包括由Si、SiGe或者SiGeC构成的多层结构,在源极和漏极之间的区域中有杂质原子,这些杂质原子优先占据位错位置,以防止源极和漏极由于沿着位错的掺杂剂扩散而短接。作为有益效果,作为本发明的结果而形成的器件不受与位错有关的缺陷(故障)的影响,因此对处理工艺和材料的变化更具鲁棒性。本发明放松了降低SiGe缓冲层中的线形位错浓度的要求,因为所述器件可以不管有限数量的位错的存在而仍能工作。
在示于图3的应变Sin-MOSFET的优选实施例中,用铟(In)作为防止As或者P或者二者沿着跨越源极和漏极的位错而扩散的闭锁材料。应变Sin-MOSFET层结构包括一个SiGe松弛衬底110和一个应变Si盖层120。该SiGe松弛衬底110具有伸出到晶片表面的有限浓度的线形位错130。该层结构还可能具有沿着Si/SiGe界面22延伸的有限数量的错配位错140,这些错配位错的末端由线形位错结束。该器件具有沟槽隔离区150以及由介电材料形成的绝缘栅电介质160,所述介电材料比如是硅的氧化物、氮化物、氮氧化物,Hf、Al、Zr、La、Y、Ta的氧化物和硅化物中的任何一种或者它们的组合,该器件还具有栅极170,栅极170的一部分可以包括多晶硅、多晶硅锗(polysilicongermanium)、金属Mo、Pt、Ir、W、Pd、Al、Au、Ni、Cu、Ti和Co、它们的硅化物以及锗硅化物(germanosilicide)中的任何一种或者它们的组合。在优选实施例中,用P或As或者这两种掺杂剂的组合对源极和漏极180进行n型掺杂。对松弛SiGe衬底100在源极区和漏极区之间和下方的区域进行p型掺杂。所述源极和漏极之间的位错区被In原子190部分占据,In原子用于阻止源极和漏极掺杂剂原子沿着位错的离析,从而防止源极和漏极之间的短路。
图4是本发明的第二实施例的剖面图,其中图示了在应变Sip-MOSFET器件200中,跨越源极和漏极的缺陷被重n型掺杂剂部分占据。该器件具有与图3中相同的结构,不同之处在于,源极和漏极220例如用硼B进行p型掺杂,源极和漏极区之间的区域210被进行n型掺杂。在示于图4的应变Sip-MOSFET的实施例中,用锑Sb用作阻止硼B沿着位错扩散的闭锁材料。也就是,源极区和漏极区之间的位错区被Sb原子230部分占据,Sb原子用于阻止源极和漏极掺杂剂原子沿着位错离析,从而防止源极和漏极之间的短路。
图5是本发明的第三实施例的剖面图,其中图示了与图3或者图4的器件结构相同的应变Sip-MOSFET器件300。在第三实施例中,跨越源极和漏极的位错缺陷位置被中性种类的掺杂剂部分占据。所述中性种类的掺杂剂阻止源极和漏极掺杂剂原子沿着位错离析,从而防止源极和漏极注入区之间的短路。中性杂质的优点是不容易影响器件的电学性能,因此可以使用较高的剂量以更有效地使器件钝化。另外,对于nFET和pFET可以使用相同的掺杂剂类型进行钝化。用作中性杂质钝化剂的优选的候选者是IV族杂质比如C、Sn或者Pb,或者它们的组合。注入的类型也可以与半导体中已有的杂质比如C或者O形成复合体(合成物,complex)。
本发明还提供了一种改善应变层MOSFET中的与位错相关的泄漏的方法。在图6(a)到6(h)图解了这样一种方法的工艺流程。在优选实施例中,开始的衬底包括松弛SiGe400和应变Si表面层410,如图6(a)所示。该衬底具有有限数量的线形位错420,在Si/SiGe界面22上可以具有有限数量的错配位错430。如图6(b)所示,通过离子注入引入阱掺杂440。
对于n-MOSFET,该掺杂剂可以是p型,对于p-MOSFET,掺杂剂是n型。
接下来,如图6(c)所示,通过离子注入引入闭锁杂质450,使得峰值浓度大致对应于容易形成另外的错配位错的Si/SiGe界面。最好,注入闭锁杂质的能量使得峰值闭锁杂质浓度大致与Si/SiGe界面一致。例如,在一个实施例中,对于SiGe上的20nm应变Si层,优选的离子注入能量对于In、Sn或者Sb闭锁杂质一般是20-30KeV。有效地使位错钝化所需的闭锁原子的浓度取决于工艺的细节,尤其取决于随后的热处理。最好,闭锁原子的浓度在1017cm3-1019cm3之间,确切的量由核素的扩散能力以及有效地使位错钝化所需的预期原子数决定。在退火步骤之后,闭锁核素优先占据位错位置470,如图6(d)所示。接下来,如图6(e)到6(g)所示,形成隔离区480、栅极氧化物490以及栅极500图案。最后,如图6(h)所示,注入源极漏极掺杂剂510,并通过退火激活之。由于在源极和漏极掺杂剂之前注入闭锁掺杂剂,因此闭锁掺杂剂已经占据了位错附近的区域,源极和漏极掺杂剂需要取代闭锁核素以沿着位错离析,从而降低位错导致的泄漏的可能性。
尽管上面对本发明的图示和说明是针对图示的优选实施例进行的,但是本领域的普通技术人员了解,在不脱离本发明的由所附权利要求的范围所限定的实质范围的前提下,可以从形式和细节上进行前述的以及其它的变化。

Claims (21)

1.一种半导体场效应晶体管器件,包括:
用第一种掺杂剂掺杂的第一半导体材料层;
注入了第二种相反类型的掺杂剂的源极区和漏极区;
用介电区与所述第一半导体材料层隔开,并位于所述源极和漏极之间的栅极;
所述第一半导体材料层具有一个或者多个位错缺陷从源极区连续地延伸到漏极区,以及
闭锁杂质掺杂剂材料,其部分地或者全部地占据所述位错缺陷,其中,所述闭锁杂质掺杂剂材料抑制所述注入的源极和漏极掺杂剂沿着所述位错缺陷扩散。
2.如权利要求1所述的半导体场效应晶体管器件,其中,所述第一半导体材料层包括从Si、SiGe、SiGeC或者Ge中选取的材料。
3.如权利要求1所述的半导体场效应晶体管器件,其中,所述第一半导体材料层包括一个多层结构,该多层结构包括从Si、SiGe、SiGeC或者Ge中选取的材料。
4.如权利要求1所述的半导体场效应晶体管器件,其中,所述第一半导体材料层包括SiGe松弛衬底。
5.如权利要求1所述的半导体场效应晶体管器件,其中,所述第二类型的所述源极和漏极掺杂剂包括单独的P、As或者Sb或者它们的组合,所述闭锁杂质为In。
6.如权利要求1所述的半导体场效应晶体管器件,其中,所述第二类型的所述源极和漏极掺杂剂包括单独的B或者In或者它们的组合,所述闭锁杂质为Sb。
7.如权利要求1所述的半导体场效应晶体管器件,其中,所述闭锁杂质为中性杂质。
8.如权利要求7所述的半导体场效应晶体管器件,其中,所述闭锁杂质为IV族杂质。
9.如权利要求7所述的半导体场效应晶体管器件,其中,所述闭锁杂质为单独的C、Sn或者Pb或者它们的组合。
10.一种形成半导体场效应晶体管器件的方法,包括下列步骤:
形成第一半导体结构,其包括用第一种掺杂剂掺杂的材料,使得所述半导体结构包括非零数量的线形位错;
在所述半导体结构中注入闭锁杂质;
热处理所述半导体结构,使得所述闭锁杂质析出到现有的线形位错处,当所述热处理产生新的位错时,所述热处理还使得所述闭锁杂质析出到新产生的位错处;
在所述半导体结构的顶部形成一个介电层,以形成一个栅极区,并在该栅极区上形成一个栅极,所述半导体结构的紧邻该栅极在该栅极下方的一部分形成一个沟道区,所述半导体结构的在所述沟道区下方的一部分形成一个阱区;以及
在所述半导体结构中在所述栅极区的相对两侧注入掺杂剂,以形成源极区和漏极区,使得所述源极区和漏极区在每一侧与所述沟道区和阱区相接,
其中,位错缺陷从所述源极区连续地延伸到漏极区,所述位错缺陷的紧挨的附近区域被所述闭锁杂质掺杂剂占据。
11.如权利要求10所述的形成半导体场效应晶体管器件的方法,其中,所述第一半导体材料层包括从Si、SiGe、SiGeC或者Ge中选取的材料。
12.如权利要求10所述的形成半导体场效应晶体管器件的方法,其中,形成所述第一半导体结构的步骤包括形成一个多层结构,该多层结构包括从Si、SiGe、SiGeC或者Ge中选取的材料。
13.如权利要求10所述的形成半导体场效应晶体管器件的方法,其中,所述第一半导体结构包括SiGe松弛衬底。
14.如权利要求10所述的形成半导体场效应晶体管器件的方法,其中,在所述半导体结构中注入闭锁杂质的步骤包括注入浓度范围在1017-1019个原子每立方厘米之间的闭锁杂质。
15.如权利要求10所述的形成半导体场效应晶体管器件的方法,其中,在所述半导体结构中注入闭锁杂质的步骤包括:以使得峰值闭锁杂质浓度与Si/SiGe界面一致的能量注入闭锁杂质。
16.如权利要求10所述的形成半导体场效应晶体管器件的方法,其中,所述热处理所述半导体结构的步骤包括:在600摄氏度到1200摄氏度的退火温度范围进行的热退火步骤。
17.如权利要求10所述的形成半导体场效应晶体管器件的方法,其中,形成所述源极区和漏极区的掺杂剂包括单独的P、As或者Sb或者它们的组合,所述闭锁杂质为In。
18.如权利要求10所述的形成半导体场效应晶体管器件的方法,其中,形成所述源极区和漏极区的掺杂剂包括单独的B或者In或者它们的组合,所述闭锁杂质为Sb。
19.如权利要求10所述的形成半导体场效应晶体管器件的方法,其中,所述闭锁杂质为中性杂质。
20.如权利要求18所述的形成半导体场效应晶体管器件的方法,其中,所述闭锁杂质为IV族杂质。
21.如权利要求18所述的形成半导体场效应晶体管器件的方法,其中,所述闭锁杂质为单独的C、Sn或者Pb或者它们的组合。
CNB2004100929851A 2003-11-19 2004-11-12 半导体场效应晶体管器件及其形成方法 Expired - Fee Related CN100370622C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US10/717,279 US20050104092A1 (en) 2003-11-19 2003-11-19 Method of reducing dislocation-induced leakage in a strained-layer field-effect transistor
US10/717,279 2003-11-19

Publications (2)

Publication Number Publication Date
CN1619834A CN1619834A (zh) 2005-05-25
CN100370622C true CN100370622C (zh) 2008-02-20

Family

ID=34574568

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2004100929851A Expired - Fee Related CN100370622C (zh) 2003-11-19 2004-11-12 半导体场效应晶体管器件及其形成方法

Country Status (2)

Country Link
US (2) US20050104092A1 (zh)
CN (1) CN100370622C (zh)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050104092A1 (en) * 2003-11-19 2005-05-19 International Business Machiness Corportion Method of reducing dislocation-induced leakage in a strained-layer field-effect transistor
JP4654710B2 (ja) * 2005-02-24 2011-03-23 信越半導体株式会社 半導体ウェーハの製造方法
KR100837280B1 (ko) * 2007-03-12 2008-06-11 삼성전자주식회사 게터링 영역을 포함하는 반도체 소자 및 그 형성 방법
JP2009158853A (ja) * 2007-12-27 2009-07-16 Toshiba Corp 半導体装置
US8017489B2 (en) * 2008-03-13 2011-09-13 International Business Machines Corporation Field effect structure including carbon alloyed channel region and source/drain region not carbon alloyed
US8828138B2 (en) * 2010-05-17 2014-09-09 International Business Machines Corporation FET nanopore sensor
US8518829B2 (en) 2011-04-22 2013-08-27 International Business Machines Corporation Self-sealed fluidic channels for nanopore array
US20130200455A1 (en) * 2012-02-08 2013-08-08 Taiwan Semiconductor Manufacturing Company, Ltd. Dislocation smt for finfet device
US8866235B2 (en) * 2012-11-09 2014-10-21 Taiwan Semiconductor Manufacturing Company, Ltd. Source and drain dislocation fabrication in FinFETs
US9293466B2 (en) * 2013-06-19 2016-03-22 Taiwan Semiconductor Manufacturing Company, Ltd. Embedded SRAM and methods of forming the same
US9853055B2 (en) 2016-03-30 2017-12-26 Globalfoundries Inc. Method to improve crystalline regrowth
CN108766967B (zh) * 2018-05-23 2021-05-28 燕山大学 一种平面复合应变Si/SiGe CMOS器件及制备方法
JP7424141B2 (ja) * 2020-03-19 2024-01-30 三菱電機株式会社 炭化珪素半導体装置及びその製造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190975B1 (en) * 1996-09-17 2001-02-20 Matsushita Electric Industrial Co., Ltd. Method of forming HCMOS devices with a silicon-germanium-carbon compound semiconductor layer
JP2002083819A (ja) * 2000-06-20 2002-03-22 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US6515335B1 (en) * 2002-01-04 2003-02-04 International Business Machines Corporation Method for fabrication of relaxed SiGe buffer layers on silicon-on-insulators and structures containing the same

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5134447A (en) * 1989-09-22 1992-07-28 At&T Bell Laboratories Neutral impurities to increase lifetime of operation of semiconductor devices
US5245208A (en) * 1991-04-22 1993-09-14 Mitsubishi Denki Kabushiki Kaisha Semiconductor device and manufacturing method thereof
US5770485A (en) * 1997-03-04 1998-06-23 Advanced Micro Devices, Inc. MOSFET device with an amorphized source and fabrication method thereof
JP3314683B2 (ja) 1997-09-12 2002-08-12 松下電器産業株式会社 半導体装置の製造方法
US6432802B1 (en) * 1999-09-17 2002-08-13 Matsushita Electronics Corporation Method for fabricating semiconductor device
WO2001093338A1 (en) * 2000-05-26 2001-12-06 Amberwave Systems Corporation Buried channel strained silicon fet using an ion implanted doped layer
US7064399B2 (en) * 2000-09-15 2006-06-20 Texas Instruments Incorporated Advanced CMOS using super steep retrograde wells
WO2002052652A1 (fr) * 2000-12-26 2002-07-04 Matsushita Electric Industrial Co., Ltd. Composant a semi-conducteur et son procede de fabrication
US6756276B1 (en) * 2002-09-30 2004-06-29 Advanced Micro Devices, Inc. Strained silicon MOSFET having improved source/drain extension dopant diffusion resistance and method for its fabrication
EP2267762A3 (en) * 2002-08-23 2012-08-22 Taiwan Semiconductor Manufacturing Co., Ltd. Semiconductor heterostructures having reduced dislocation pile-ups and related methods
CN1286157C (zh) * 2002-10-10 2006-11-22 松下电器产业株式会社 半导体装置及其制造方法
US6936505B2 (en) * 2003-05-20 2005-08-30 Intel Corporation Method of forming a shallow junction
US6849527B1 (en) * 2003-10-14 2005-02-01 Advanced Micro Devices Strained silicon MOSFET having improved carrier mobility, strained silicon CMOS device, and methods of their formation
US20050104092A1 (en) 2003-11-19 2005-05-19 International Business Machiness Corportion Method of reducing dislocation-induced leakage in a strained-layer field-effect transistor

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6190975B1 (en) * 1996-09-17 2001-02-20 Matsushita Electric Industrial Co., Ltd. Method of forming HCMOS devices with a silicon-germanium-carbon compound semiconductor layer
JP2002083819A (ja) * 2000-06-20 2002-03-22 Matsushita Electric Ind Co Ltd 半導体装置及びその製造方法
US6515335B1 (en) * 2002-01-04 2003-02-04 International Business Machines Corporation Method for fabrication of relaxed SiGe buffer layers on silicon-on-insulators and structures containing the same

Also Published As

Publication number Publication date
CN1619834A (zh) 2005-05-25
US8343838B2 (en) 2013-01-01
US20050104092A1 (en) 2005-05-19
US20090325358A1 (en) 2009-12-31

Similar Documents

Publication Publication Date Title
US8343838B2 (en) Method of reducing dislocation-induced leakage in a strained-layer field-effect transistor by implanting blocking impurity into the strained-layer
CN101114673B (zh) 半导体器件及其制造方法
Verdonckt-Vandebroek et al. High-mobility modulation-doped SiGe-channel p-MOSFETs
CN101523608B (zh) 包括双应力源的n沟道mosfet及其制造方法
CN1979787B (zh) 半导体器件及其形成方法
CN100479191C (zh) Mosfet器件及其制造方法
US8426858B2 (en) Strained NMOS transistor featuring deep carbon doped regions and raised donor doped source and drain
KR100633499B1 (ko) 고이동도 이종 접합 상보성 전계 효과 트랜지스터 및 그제조 방법
US8198673B2 (en) Asymmetric epitaxy and application thereof
US6403433B1 (en) Source/drain doping technique for ultra-thin-body SOI MOS transistors
CN105428228A (zh) 具有由金属源极/漏极和共形再生长源极/漏极导致的单轴应变的量子阱mosfet沟道
CN100353562C (zh) 制造高迁移率场效应晶体管的结构和方法
Mitard et al. High hole mobility in 65 nm strained Ge p-channel field effect transistors with HfO2 gate dielectric
Yeo et al. Electron mobility enhancement using ultrathin pure Ge on Si substrate
Claeys et al. Si versus Ge for future microelectronics
Ouyang et al. A novel Si/SiGe heterojunction pMOSFET with reduced short-channel effects and enhanced drive current
Verheyen et al. Demonstration of recessed SiGe S/D and inserted metal gate on HfO/sub 2/for high performance pFETs.
Su et al. Strained Si1− xGex graded channel PMOSFET grown by UHVCVD
US20040121567A1 (en) Doping method and semiconductor device fabricated using the method
CN105244275B (zh) 具有突变隧穿结的pnin/npip型绝缘层上张应变锗tfet及制备方法
Bera et al. Dopant-segregated Ni-silicide Schottky-source/drain CMOS on strained-Si/SiGe multiple quantum-well channel on bulk-Si
Cheng et al. Origins of flash lamp annealing induced p–n junction leakages in a 45 nm p-MOSFET with strained SiGe source/drain
Sultan et al. Effect of F on B penetration through gate oxide for BF/sub 2/implants used to obtain ultra-shallow junctions by RTA
Claeys et al. Defect Engineering and Stress Control in Advanced Devices on High-Mobility Substrates
Harame SiGe--materials, Processing, and Devices: Proceedings of the First International Symposium

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
C17 Cessation of patent right
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080220

Termination date: 20101112