CN108766967B - 一种平面复合应变Si/SiGe CMOS器件及制备方法 - Google Patents
一种平面复合应变Si/SiGe CMOS器件及制备方法 Download PDFInfo
- Publication number
- CN108766967B CN108766967B CN201810498879.5A CN201810498879A CN108766967B CN 108766967 B CN108766967 B CN 108766967B CN 201810498879 A CN201810498879 A CN 201810498879A CN 108766967 B CN108766967 B CN 108766967B
- Authority
- CN
- China
- Prior art keywords
- layer
- photoetching
- nmos
- sige
- strained
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 229910000577 Silicon-germanium Inorganic materials 0.000 title claims abstract description 35
- 239000002131 composite material Substances 0.000 title claims abstract description 20
- 238000002360 preparation method Methods 0.000 title abstract description 5
- 238000000034 method Methods 0.000 claims abstract description 40
- 238000001259 photo etching Methods 0.000 claims abstract description 30
- 238000005468 ion implantation Methods 0.000 claims abstract description 23
- 229910021420 polycrystalline silicon Inorganic materials 0.000 claims abstract description 23
- 239000000758 substrate Substances 0.000 claims abstract description 21
- 229920005591 polysilicon Polymers 0.000 claims abstract description 19
- 238000000151 deposition Methods 0.000 claims abstract description 18
- 239000013078 crystal Substances 0.000 claims abstract description 11
- 229910021421 monocrystalline silicon Inorganic materials 0.000 claims abstract description 10
- 238000005516 engineering process Methods 0.000 claims description 18
- 239000000463 material Substances 0.000 claims description 4
- 238000002955 isolation Methods 0.000 claims description 3
- 229910021419 crystalline silicon Inorganic materials 0.000 claims 1
- XUIMIQQOPSSXEZ-UHFFFAOYSA-N Silicon Chemical compound [Si] XUIMIQQOPSSXEZ-UHFFFAOYSA-N 0.000 abstract description 7
- 229910052710 silicon Inorganic materials 0.000 abstract description 7
- 239000010703 silicon Substances 0.000 abstract description 7
- 239000000969 carrier Substances 0.000 abstract description 3
- 230000010354 integration Effects 0.000 abstract 1
- 230000005540 biological transmission Effects 0.000 description 3
- 229910006939 Si0.5Ge0.5 Inorganic materials 0.000 description 2
- 238000004377 microelectronic Methods 0.000 description 2
- 238000000206 photolithography Methods 0.000 description 2
- 101100269850 Caenorhabditis elegans mask-1 gene Proteins 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 230000009977 dual effect Effects 0.000 description 1
- 238000012986 modification Methods 0.000 description 1
- 230000004048 modification Effects 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
- 239000007858 starting material Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L27/00—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
- H01L27/02—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
- H01L27/04—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
- H01L27/08—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
- H01L27/085—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
- H01L27/088—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
- H01L27/092—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
- H01L27/0928—Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/77—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
- H01L21/78—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
- H01L21/82—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
- H01L21/822—Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
- H01L21/8232—Field-effect technology
- H01L21/8234—MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
- H01L21/8238—Complementary field-effect transistors, e.g. CMOS
- H01L21/823807—Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials
Landscapes
- Engineering & Computer Science (AREA)
- Power Engineering (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Manufacturing & Machinery (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Abstract
一种平面复合应变Si/SiGe CMOS器件及制备方法,选取晶向为100的N掺杂的单晶Si衬底;在衬底上外延一层Ge组分渐变的SiGe层;在SiGe层表面外延一层Si0.85Ge0.15层;光刻Si0.85Ge0.15虚拟衬底右侧区域,赝晶生长一层应变Si0.69Ge0.30C0.01层;光刻应变Si0.69Ge0.30C0.01层,在两端嵌入Si0.5Ge0.5层,采用CMP技术将器件表面平面化;赝晶生长一层应变Si层;在器件中部形成STI结构;光刻并进行离子注入形成P阱和N阱;淀积栅氧化层和NMOS多晶硅层并光刻形成NMOS栅结构;在NMOS的两端形成嵌入SiC层,进行离子注入形成源/漏区;淀积PMOS多晶硅栅,光刻多晶硅栅,利用自对准工艺形成PMOS的源/漏区。本发明在NMOS和PMOS沟道区同时采用单轴和双轴复合应变,大幅度提高载流子的移率和器件工作速度,整个器件均采用平面工艺,和已有的硅工艺兼容,可实现大规模集成。
Description
技术领域
本发明涉及半导体集成电路技术领域,尤其涉及一种平面复合应变Si/SiGe CMOS器件及其制备方法。
背景技术
随着微电子技术的高速发展,硅基集成电路的速度及性能已接近其工艺技术、材料与器件物理的极限。为支撑摩尔定理的持续发展,一种新技术—应变硅技术应运而生,应变硅器件及电路以其速度快,性能高等特点,已成为高速/高性能集成电路研究、应用的前沿与发展方向,以集成电路为代表的微电子技术已进入应变技术新时代。
目前国际上在小尺寸MOS器件中采用的成熟应变硅技术是局部应变,即单轴应变技术。局部应力的引入主要通过两种方法:一种方法是通过器件表面淀积SiN薄膜在MOSFET沟道形成应变Si的DSL(Dual Stress Liner,双应力衬垫);另一种是采用源漏区嵌入SiGe而形成应变Si沟道。然而采用该方法引入的应力,受到工艺条件的制约,应力的大小受到了很大限制,使得载流子的迁移率及器件的频率特性提高幅度只有10%左右。因此,从工艺技术的角度考虑,完全可以将全局应变,即双轴应力引入到小尺寸MOS器件结构中,进而可以通过合理改变器件的能带结构与材料物理参数,进一步提高器件的高频特性。该方法完全和已有的硅工艺兼容,同时兼顾工艺成本,可以满足高频SOC系统对器件性能的要求。
发明内容
本发明目的在于提供一种大幅度提高载流子迁移率、提高器件工作速度的可工作于高频的平面复合应变Si/SiGe CMOS器件及制备方法。
为实现上述目的,采用了以下技术方案:本发明所述器件选取晶向为100的N掺杂的单晶Si衬底;在N掺杂的单晶Si衬底上外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;在渐变SiGe层表面外延一层Si0.85Ge0.15层作为虚拟衬底;光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,采用CMP技术对所形成的器件表面平面化;接着赝晶生长一层应变Si层;在器件中部形成STI结构;光刻并进行离子注入分别形成P阱和N阱;淀积栅氧化层和NMOS多晶硅层并光刻,形成NMOS栅结构;采用自对准工艺及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
进一步的,在NMOS器件中采用嵌入式SiC工艺,结合SiGe虚拟衬底赝晶生长的应变Si层,在沟道中同时引入了双轴和单轴的复合应变,因此进一步提高了电子的迁移率,提高了NMOS器件的频率特性;
进一步的,PMOS器件中两端,采用嵌入SiGe工艺及在SiGe虚拟衬底上赝晶生长Si0.69Ge0.30C0.01层,在埋沟层中同时引入了单轴和双轴压应变。同时,1%组分C的引入可以保证应变Si0.69Ge0.30C0.01的晶格完整性,降低载流子的传输散射,提高载流子迁移率,提高PMOS的速度及其频率特性。
一种平面复合应变Si/SiGe CMOS器件制备方法,步骤如下:
步骤1,选取单晶硅掺杂浓度为1015cm-3晶向为100的N型Si为初始材料,作为衬底;
步骤2,在N掺杂的单晶Si衬底上的外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;
步骤3,在渐变SiGe层表面外延一层Ge组分固定为15%的Si0.85Ge0.15层作为虚拟衬底;
步骤4,光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;
步骤5,光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,并采用CMP技术,将所形成的器件表面平面化;
步骤6,在步骤5形成的器件表面,赝晶生长一层应变Si层;
步骤7,在器件中部形成STI结构,以实现NMOS和PMOS的隔离;
步骤8,光刻并进行离子注入形成P阱;
步骤9,光刻并进行离子注入形成N阱;
步骤10,淀积栅氧化层;
步骤11,淀积NMOS多晶硅栅,并光刻形成NMOS栅结构;
步骤12,采用自对准工艺以及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;
步骤13,淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
与现有技术相比,本发明具有如下优点:将成熟的CMOS工艺以及“硅基应变技术”这二者有机结合,通过在NMOS和PMOS的沟道区域同时引入单轴和双轴应力来形成一种新的平面复合应变Si/SiGe CMOS新结构,沟道区复合应力的引入均可以大幅提高载流子的迁移率,从而提高器件的高频特性;尤其在PMOS沟道区,采用埋沟结构以及应变Si0.69Ge0.30C0.01层,1%C的引入可以提高晶格完整性,降低载流子的传输散射,进一步提高空穴迁移率,提高PMOS的速度及其频率特性。
附图说明
图1是本发明CMOS器件的剖面示意图。
图2a—图2l为本发明CMOS器件的制备方法示意图。
附图标号:100-N型Si衬底、101-渐变SiGe层、102-Si0.85Ge0.15虚拟衬底、103-应变Si0.69Ge0.30C0.01层、104-嵌入Si0.5Ge0.5层、105-应变Si层、106-STI结构、107-P阱、108-N阱、109-栅氧化层、110-NMOS多晶硅栅、111-嵌入SiC层、112-PMOS多晶硅栅、113-PMOS源/漏区。
具体实施方式
下面结合附图对本发明做进一步说明:
如图1所示,本发明所述晶体管选取晶向为(100)的N掺杂的单晶Si衬底;在所述的N掺杂的单晶Si衬底上的外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;在渐变SiGe层表面外延一层Si0.85Ge0.15层作为虚拟衬底;光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,并采用CMP技术,将器件表面平面化;接着赝晶生长一层应变Si层;在器件中部形成STI结构;光刻并进行离子注入分别形成P阱和N阱;淀积栅氧化层和NMOS多晶硅层并光刻形成NMOS栅结构;采用自对准工艺以及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
一种平面复合应变Si/SiGeCMOS器件制备方法,制备步骤如下:
步骤1,N掺杂的Si衬底100,如图2a所示;选取单晶硅掺杂浓度为1015cm-3晶向为(100)的N型Si为初始材料,作为衬底;
步骤2,在N掺杂的单晶Si衬底上的外延一层Ge组分渐变的SiGe层101,如图2b所示,顶层的Ge组分为15%;
步骤3,在渐变SiGe层表面外延一层Ge组分固定为15%的Si0.85Ge0.15层102作为虚拟衬底,如图2c所示;
步骤4,采用Mask1,光刻Si0.85Ge0.15虚拟衬底102右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层103,如图2d所示;
赝晶生长的Si0.69Ge0.30C0.01层103,其晶格常数和Si0.85Ge0.15虚拟衬底102的晶格常数保持一致,因此在Si0.69Ge0.30C0.01层103中引入了压应变,压应变的引入使得空穴的有效质量降低、迁移率提高,因此可以提高PMOS的速度及其频率特性;同时,1%组分C的引入可以保证应变Si0.69Ge0.30C0.01的晶格完整性,降低载流子的传输散射,提高载流子迁移率。
步骤5,采用Mask2,光刻应变Si0.69Ge0.30C0.01层103,采用嵌入式SiGe技术,在应变Si0.69Ge0.30C0.01层103的两端嵌入Si0.5Ge0.5层104,并采用CMP技术,将器件表面平面化,如图2e所示;
由于Si0.5Ge0.5和Si0.69Ge0.30C0.01晶格常数和热膨胀系数的差异,沿着PMOS沟道方向,引入了单轴压应力;这样就在应变应变Si0.69Ge0.30C0.01层103中形成了沿着沟道方向的复合压应变;复合应变的引入,进一步提高了空穴的迁移率和PMOS器件的工作速度;
步骤6,在步骤5形成的器件表面,赝晶生长一层应变Si层105,如图2f所示;
由于Si和SiGe的晶格差异,通过控制工艺条件,赝晶生长的Si层和底层的SiGe层晶格常数一致,因此在Si层中引入了张应变;张应变的引入,降低了电子的有效质量,提高了电子的迁移率,所以可以提高NMOS器件的工作速度;
步骤7,采用Mask3和Mask4,在器件中部形成STI结构106,如图2g所示,该结构用于NMOS和PMOS的隔离;
步骤8,采用Mask5,光刻并进行离子注入形成P阱107,如图2h所示;
步骤9,采用Mask5,光刻并进行离子注入形成N阱108,如图2i所示;
步骤10,淀积栅氧化层109,如图2j所示;
步骤11,淀积NMOS多晶硅栅110,并采用Mask6,光刻形成NMOS栅结构,如图2k所示;
步骤12,采用自对准工艺以及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层111,如图2l所示,同时进行离子注入形成源/漏区,;
由于SiC和Si晶格的差异,在Si沟道引入了沿着沟道方向的单轴张应变;这样就在NMOS的应变Si层形成了复合应变结构;复合张应变的引入,进一步提高了电子的迁移率,进而提高了NMOS器件的频率特性;
步骤13,淀积PMOS多晶硅栅112,采用Mask6,光刻多晶硅栅112,并利用自对准工艺,进行离子注入形成PMOS的源/漏区113,如图1所示。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。
Claims (4)
1.一种平面复合应变Si/SiGe CMOS器件,其特征在于:所述器件选取晶向为100的N掺杂的单晶Si衬底;在N掺杂的单晶Si衬底上外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;在渐变SiGe层表面外延一层Si0.85Ge0.15层作为虚拟衬底;光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,采用CMP技术对所形成的器件表面平面化;接着赝晶生长一层应变Si层;在器件中部形成STI结构;光刻并进行离子注入分别形成P阱和N阱;淀积栅氧化层和NMOS多晶硅层并光刻,形成NMOS栅结构;采用自对准工艺及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
2.根据权利要求1所述的平面复合应变Si/SiGe CMOS器件,其特征在于:在NMOS器件中采用嵌入式SiC工艺,结合SiGe虚拟衬底赝晶生长的应变Si层,在沟道中同时引入了双轴和单轴的复合应变。
3.根据权利要求1所述的平面复合应变Si/SiGe CMOS器件,其特征在于:在PMOS器件中两端,采用嵌入SiGe工艺及在SiGe虚拟衬底上赝晶生长Si0.69Ge0.30C0.01层,在埋沟层中同时引入了单轴和双轴压应变。
4.一种平面复合应变Si/SiGe CMOS器件制备方法,其特征在于,所述制备步骤如下:
步骤1,选取单晶硅掺杂浓度为1015cm-3晶向为100的N型Si为初始材料,作为衬底;
步骤2,在N掺杂的单晶Si衬底上的外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;
步骤3,在渐变SiGe层表面外延一层Ge组分固定为15%的Si0.85Ge0.15层作为虚拟衬底;
步骤4,光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;
步骤5,光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,并采用CMP技术,将所形成的器件表面平面化;
步骤6,在步骤5形成的器件表面,赝晶生长一层应变Si层;
步骤7,在器件中部形成STI结构,以实现NMOS和PMOS的隔离;
步骤8,光刻并进行离子注入形成P阱;
步骤9,光刻并进行离子注入形成N阱;
步骤10,淀积栅氧化层;
步骤11,淀积NMOS多晶硅栅,并光刻形成NMOS栅结构;
步骤12,采用自对准工艺以及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;
步骤13,淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810498879.5A CN108766967B (zh) | 2018-05-23 | 2018-05-23 | 一种平面复合应变Si/SiGe CMOS器件及制备方法 |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201810498879.5A CN108766967B (zh) | 2018-05-23 | 2018-05-23 | 一种平面复合应变Si/SiGe CMOS器件及制备方法 |
Publications (2)
Publication Number | Publication Date |
---|---|
CN108766967A CN108766967A (zh) | 2018-11-06 |
CN108766967B true CN108766967B (zh) | 2021-05-28 |
Family
ID=64004869
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CN201810498879.5A Active CN108766967B (zh) | 2018-05-23 | 2018-05-23 | 一种平面复合应变Si/SiGe CMOS器件及制备方法 |
Country Status (1)
Country | Link |
---|---|
CN (1) | CN108766967B (zh) |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112736167B (zh) * | 2020-12-29 | 2022-02-01 | 济南晶正电子科技有限公司 | 一种复合衬底、复合薄膜及其制备方法,及射频滤波器 |
CN112992898A (zh) * | 2021-02-05 | 2021-06-18 | 重庆邮电大学 | 一种SiGe BiCMOS晶体管集成结构及其实现方法 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1193193A (zh) * | 1997-02-19 | 1998-09-16 | 国际商业机器公司 | 硅/锗硅垂直结型场效应晶体管 |
CN1619834A (zh) * | 2003-11-19 | 2005-05-25 | 国际商业机器公司 | 减少应变层场效应晶体管中位错导致的泄漏的方法 |
CN1716570A (zh) * | 1999-03-30 | 2006-01-04 | 株式会社日立制作所 | 半导体器件制造方法及其半导体器件 |
CN101359685A (zh) * | 2007-07-31 | 2009-02-04 | 国际商业机器公司 | 半导体器件及制作方法 |
CN102201335A (zh) * | 2011-06-01 | 2011-09-28 | 电子科技大学 | 一种应力稳定的mos晶体管的栅的制造方法 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6399970B2 (en) * | 1996-09-17 | 2002-06-04 | Matsushita Electric Industrial Co., Ltd. | FET having a Si/SiGeC heterojunction channel |
US6900521B2 (en) * | 2002-06-10 | 2005-05-31 | Micron Technology, Inc. | Vertical transistors and output prediction logic circuits containing same |
-
2018
- 2018-05-23 CN CN201810498879.5A patent/CN108766967B/zh active Active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1193193A (zh) * | 1997-02-19 | 1998-09-16 | 国际商业机器公司 | 硅/锗硅垂直结型场效应晶体管 |
CN1716570A (zh) * | 1999-03-30 | 2006-01-04 | 株式会社日立制作所 | 半导体器件制造方法及其半导体器件 |
CN1619834A (zh) * | 2003-11-19 | 2005-05-25 | 国际商业机器公司 | 减少应变层场效应晶体管中位错导致的泄漏的方法 |
CN101359685A (zh) * | 2007-07-31 | 2009-02-04 | 国际商业机器公司 | 半导体器件及制作方法 |
CN102201335A (zh) * | 2011-06-01 | 2011-09-28 | 电子科技大学 | 一种应力稳定的mos晶体管的栅的制造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN108766967A (zh) | 2018-11-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US10693003B2 (en) | Integrated circuit transistor structure with high germanium concentration SiGe stressor | |
US7247534B2 (en) | Silicon device on Si:C-OI and SGOI and method of manufacture | |
JP4130652B2 (ja) | 半導体構造およびその製造方法 | |
US7211458B2 (en) | Methods of fabricating strained semiconductor-on-insulator field-effect transistors and related devices | |
TWI352433B (en) | Stressed field effect transistors on hybrid orient | |
JP5043314B2 (ja) | 勾配付き組み込みシリコン−ゲルマニウムのソース−ドレイン及び/又は延長部をもつ、歪みp型mosfetを製造する方法 | |
US7436005B2 (en) | Process for fabricating a heterostructure-channel insulated-gate field-effect transistor, and the corresponding transistor | |
TW200807572A (en) | Silicon/silcion germaninum/silicon body device with embedded carbon dopant | |
WO2004006341A1 (en) | Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys | |
US9793296B2 (en) | Method for fabricating substrate of semiconductor device including epitaxial layer and silicon layer having same crystalline orientation | |
CN108766967B (zh) | 一种平面复合应变Si/SiGe CMOS器件及制备方法 | |
US9263345B2 (en) | SOI transistors with improved source/drain structures with enhanced strain | |
US9112030B2 (en) | Epitaxial structure and process thereof for non-planar transistor | |
CN102820252B (zh) | 一种基于键合工艺的高迁移率双沟道材料的制备方法 | |
Mooney | Improved CMOS performance via enhanced carrier mobility | |
US20100200896A1 (en) | Embedded stress elements on surface thin direct silicon bond substrates | |
Mooney | Improved CMOS performance via enhanced carrier mobility |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PB01 | Publication | ||
PB01 | Publication | ||
SE01 | Entry into force of request for substantive examination | ||
SE01 | Entry into force of request for substantive examination | ||
GR01 | Patent grant | ||
GR01 | Patent grant | ||
TR01 | Transfer of patent right |
Effective date of registration: 20220307 Address after: 518112 Room 601, building A3, No. 31, Bulan Road, xialilang community, Nanwan street, Longgang District, Shenzhen, Guangdong Province Patentee after: Shenzhen Chengxin Micro Technology Co.,Ltd. Address before: 066004 No. 438 west section of Hebei Avenue, seaport District, Hebei, Qinhuangdao Patentee before: Yanshan University |
|
TR01 | Transfer of patent right |