CN108766967B - 一种平面复合应变Si/SiGe CMOS器件及制备方法 - Google Patents

一种平面复合应变Si/SiGe CMOS器件及制备方法 Download PDF

Info

Publication number
CN108766967B
CN108766967B CN201810498879.5A CN201810498879A CN108766967B CN 108766967 B CN108766967 B CN 108766967B CN 201810498879 A CN201810498879 A CN 201810498879A CN 108766967 B CN108766967 B CN 108766967B
Authority
CN
China
Prior art keywords
layer
photoetching
nmos
sige
strained
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN201810498879.5A
Other languages
English (en)
Other versions
CN108766967A (zh
Inventor
周春宇
钟宇霄
王冠宇
蒋巍
马明
董希言
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shenzhen Chengxin Micro Technology Co.,Ltd.
Original Assignee
Yanshan University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yanshan University filed Critical Yanshan University
Priority to CN201810498879.5A priority Critical patent/CN108766967B/zh
Publication of CN108766967A publication Critical patent/CN108766967A/zh
Application granted granted Critical
Publication of CN108766967B publication Critical patent/CN108766967B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823807Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the channel structures, e.g. channel implants, halo or pocket implants, or channel materials

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)

Abstract

一种平面复合应变Si/SiGe CMOS器件及制备方法,选取晶向为100的N掺杂的单晶Si衬底;在衬底上外延一层Ge组分渐变的SiGe层;在SiGe层表面外延一层Si0.85Ge0.15层;光刻Si0.85Ge0.15虚拟衬底右侧区域,赝晶生长一层应变Si0.69Ge0.30C0.01层;光刻应变Si0.69Ge0.30C0.01层,在两端嵌入Si0.5Ge0.5层,采用CMP技术将器件表面平面化;赝晶生长一层应变Si层;在器件中部形成STI结构;光刻并进行离子注入形成P阱和N阱;淀积栅氧化层和NMOS多晶硅层并光刻形成NMOS栅结构;在NMOS的两端形成嵌入SiC层,进行离子注入形成源/漏区;淀积PMOS多晶硅栅,光刻多晶硅栅,利用自对准工艺形成PMOS的源/漏区。本发明在NMOS和PMOS沟道区同时采用单轴和双轴复合应变,大幅度提高载流子的移率和器件工作速度,整个器件均采用平面工艺,和已有的硅工艺兼容,可实现大规模集成。

Description

一种平面复合应变Si/SiGe CMOS器件及制备方法
技术领域
本发明涉及半导体集成电路技术领域,尤其涉及一种平面复合应变Si/SiGe CMOS器件及其制备方法。
背景技术
随着微电子技术的高速发展,硅基集成电路的速度及性能已接近其工艺技术、材料与器件物理的极限。为支撑摩尔定理的持续发展,一种新技术—应变硅技术应运而生,应变硅器件及电路以其速度快,性能高等特点,已成为高速/高性能集成电路研究、应用的前沿与发展方向,以集成电路为代表的微电子技术已进入应变技术新时代。
目前国际上在小尺寸MOS器件中采用的成熟应变硅技术是局部应变,即单轴应变技术。局部应力的引入主要通过两种方法:一种方法是通过器件表面淀积SiN薄膜在MOSFET沟道形成应变Si的DSL(Dual Stress Liner,双应力衬垫);另一种是采用源漏区嵌入SiGe而形成应变Si沟道。然而采用该方法引入的应力,受到工艺条件的制约,应力的大小受到了很大限制,使得载流子的迁移率及器件的频率特性提高幅度只有10%左右。因此,从工艺技术的角度考虑,完全可以将全局应变,即双轴应力引入到小尺寸MOS器件结构中,进而可以通过合理改变器件的能带结构与材料物理参数,进一步提高器件的高频特性。该方法完全和已有的硅工艺兼容,同时兼顾工艺成本,可以满足高频SOC系统对器件性能的要求。
发明内容
本发明目的在于提供一种大幅度提高载流子迁移率、提高器件工作速度的可工作于高频的平面复合应变Si/SiGe CMOS器件及制备方法。
为实现上述目的,采用了以下技术方案:本发明所述器件选取晶向为100的N掺杂的单晶Si衬底;在N掺杂的单晶Si衬底上外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;在渐变SiGe层表面外延一层Si0.85Ge0.15层作为虚拟衬底;光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,采用CMP技术对所形成的器件表面平面化;接着赝晶生长一层应变Si层;在器件中部形成STI结构;光刻并进行离子注入分别形成P阱和N阱;淀积栅氧化层和NMOS多晶硅层并光刻,形成NMOS栅结构;采用自对准工艺及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
进一步的,在NMOS器件中采用嵌入式SiC工艺,结合SiGe虚拟衬底赝晶生长的应变Si层,在沟道中同时引入了双轴和单轴的复合应变,因此进一步提高了电子的迁移率,提高了NMOS器件的频率特性;
进一步的,PMOS器件中两端,采用嵌入SiGe工艺及在SiGe虚拟衬底上赝晶生长Si0.69Ge0.30C0.01层,在埋沟层中同时引入了单轴和双轴压应变。同时,1%组分C的引入可以保证应变Si0.69Ge0.30C0.01的晶格完整性,降低载流子的传输散射,提高载流子迁移率,提高PMOS的速度及其频率特性。
一种平面复合应变Si/SiGe CMOS器件制备方法,步骤如下:
步骤1,选取单晶硅掺杂浓度为1015cm-3晶向为100的N型Si为初始材料,作为衬底;
步骤2,在N掺杂的单晶Si衬底上的外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;
步骤3,在渐变SiGe层表面外延一层Ge组分固定为15%的Si0.85Ge0.15层作为虚拟衬底;
步骤4,光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;
步骤5,光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,并采用CMP技术,将所形成的器件表面平面化;
步骤6,在步骤5形成的器件表面,赝晶生长一层应变Si层;
步骤7,在器件中部形成STI结构,以实现NMOS和PMOS的隔离;
步骤8,光刻并进行离子注入形成P阱;
步骤9,光刻并进行离子注入形成N阱;
步骤10,淀积栅氧化层;
步骤11,淀积NMOS多晶硅栅,并光刻形成NMOS栅结构;
步骤12,采用自对准工艺以及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;
步骤13,淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
与现有技术相比,本发明具有如下优点:将成熟的CMOS工艺以及“硅基应变技术”这二者有机结合,通过在NMOS和PMOS的沟道区域同时引入单轴和双轴应力来形成一种新的平面复合应变Si/SiGe CMOS新结构,沟道区复合应力的引入均可以大幅提高载流子的迁移率,从而提高器件的高频特性;尤其在PMOS沟道区,采用埋沟结构以及应变Si0.69Ge0.30C0.01层,1%C的引入可以提高晶格完整性,降低载流子的传输散射,进一步提高空穴迁移率,提高PMOS的速度及其频率特性。
附图说明
图1是本发明CMOS器件的剖面示意图。
图2a—图2l为本发明CMOS器件的制备方法示意图。
附图标号:100-N型Si衬底、101-渐变SiGe层、102-Si0.85Ge0.15虚拟衬底、103-应变Si0.69Ge0.30C0.01层、104-嵌入Si0.5Ge0.5层、105-应变Si层、106-STI结构、107-P阱、108-N阱、109-栅氧化层、110-NMOS多晶硅栅、111-嵌入SiC层、112-PMOS多晶硅栅、113-PMOS源/漏区。
具体实施方式
下面结合附图对本发明做进一步说明:
如图1所示,本发明所述晶体管选取晶向为(100)的N掺杂的单晶Si衬底;在所述的N掺杂的单晶Si衬底上的外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;在渐变SiGe层表面外延一层Si0.85Ge0.15层作为虚拟衬底;光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,并采用CMP技术,将器件表面平面化;接着赝晶生长一层应变Si层;在器件中部形成STI结构;光刻并进行离子注入分别形成P阱和N阱;淀积栅氧化层和NMOS多晶硅层并光刻形成NMOS栅结构;采用自对准工艺以及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
一种平面复合应变Si/SiGeCMOS器件制备方法,制备步骤如下:
步骤1,N掺杂的Si衬底100,如图2a所示;选取单晶硅掺杂浓度为1015cm-3晶向为(100)的N型Si为初始材料,作为衬底;
步骤2,在N掺杂的单晶Si衬底上的外延一层Ge组分渐变的SiGe层101,如图2b所示,顶层的Ge组分为15%;
步骤3,在渐变SiGe层表面外延一层Ge组分固定为15%的Si0.85Ge0.15层102作为虚拟衬底,如图2c所示;
步骤4,采用Mask1,光刻Si0.85Ge0.15虚拟衬底102右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层103,如图2d所示;
赝晶生长的Si0.69Ge0.30C0.01层103,其晶格常数和Si0.85Ge0.15虚拟衬底102的晶格常数保持一致,因此在Si0.69Ge0.30C0.01层103中引入了压应变,压应变的引入使得空穴的有效质量降低、迁移率提高,因此可以提高PMOS的速度及其频率特性;同时,1%组分C的引入可以保证应变Si0.69Ge0.30C0.01的晶格完整性,降低载流子的传输散射,提高载流子迁移率。
步骤5,采用Mask2,光刻应变Si0.69Ge0.30C0.01层103,采用嵌入式SiGe技术,在应变Si0.69Ge0.30C0.01层103的两端嵌入Si0.5Ge0.5层104,并采用CMP技术,将器件表面平面化,如图2e所示;
由于Si0.5Ge0.5和Si0.69Ge0.30C0.01晶格常数和热膨胀系数的差异,沿着PMOS沟道方向,引入了单轴压应力;这样就在应变应变Si0.69Ge0.30C0.01层103中形成了沿着沟道方向的复合压应变;复合应变的引入,进一步提高了空穴的迁移率和PMOS器件的工作速度;
步骤6,在步骤5形成的器件表面,赝晶生长一层应变Si层105,如图2f所示;
由于Si和SiGe的晶格差异,通过控制工艺条件,赝晶生长的Si层和底层的SiGe层晶格常数一致,因此在Si层中引入了张应变;张应变的引入,降低了电子的有效质量,提高了电子的迁移率,所以可以提高NMOS器件的工作速度;
步骤7,采用Mask3和Mask4,在器件中部形成STI结构106,如图2g所示,该结构用于NMOS和PMOS的隔离;
步骤8,采用Mask5,光刻并进行离子注入形成P阱107,如图2h所示;
步骤9,采用Mask5,光刻并进行离子注入形成N阱108,如图2i所示;
步骤10,淀积栅氧化层109,如图2j所示;
步骤11,淀积NMOS多晶硅栅110,并采用Mask6,光刻形成NMOS栅结构,如图2k所示;
步骤12,采用自对准工艺以及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层111,如图2l所示,同时进行离子注入形成源/漏区,;
由于SiC和Si晶格的差异,在Si沟道引入了沿着沟道方向的单轴张应变;这样就在NMOS的应变Si层形成了复合应变结构;复合张应变的引入,进一步提高了电子的迁移率,进而提高了NMOS器件的频率特性;
步骤13,淀积PMOS多晶硅栅112,采用Mask6,光刻多晶硅栅112,并利用自对准工艺,进行离子注入形成PMOS的源/漏区113,如图1所示。
以上所述的实施例仅仅是对本发明的优选实施方式进行描述,并非对本发明的范围进行限定,在不脱离本发明设计精神的前提下,本领域普通技术人员对本发明的技术方案做出的各种变形和改进,均应落入本发明权利要求书确定的保护范围内。

Claims (4)

1.一种平面复合应变Si/SiGe CMOS器件,其特征在于:所述器件选取晶向为100的N掺杂的单晶Si衬底;在N掺杂的单晶Si衬底上外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;在渐变SiGe层表面外延一层Si0.85Ge0.15层作为虚拟衬底;光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,采用CMP技术对所形成的器件表面平面化;接着赝晶生长一层应变Si层;在器件中部形成STI结构;光刻并进行离子注入分别形成P阱和N阱;淀积栅氧化层和NMOS多晶硅层并光刻,形成NMOS栅结构;采用自对准工艺及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
2.根据权利要求1所述的平面复合应变Si/SiGe CMOS器件,其特征在于:在NMOS器件中采用嵌入式SiC工艺,结合SiGe虚拟衬底赝晶生长的应变Si层,在沟道中同时引入了双轴和单轴的复合应变。
3.根据权利要求1所述的平面复合应变Si/SiGe CMOS器件,其特征在于:在PMOS器件中两端,采用嵌入SiGe工艺及在SiGe虚拟衬底上赝晶生长Si0.69Ge0.30C0.01层,在埋沟层中同时引入了单轴和双轴压应变。
4.一种平面复合应变Si/SiGe CMOS器件制备方法,其特征在于,所述制备步骤如下:
步骤1,选取单晶硅掺杂浓度为1015cm-3晶向为100的N型Si为初始材料,作为衬底;
步骤2,在N掺杂的单晶Si衬底上的外延一层Ge组分渐变的SiGe层,顶层的Ge组分为15%;
步骤3,在渐变SiGe层表面外延一层Ge组分固定为15%的Si0.85Ge0.15层作为虚拟衬底;
步骤4,光刻Si0.85Ge0.15虚拟衬底右侧区域,并赝晶生长一层应变Si0.69Ge0.30C0.01层;
步骤5,光刻应变Si0.69Ge0.30C0.01层,在应变Si0.69Ge0.30C0.01层的两端嵌入Si0.5Ge0.5层,并采用CMP技术,将所形成的器件表面平面化;
步骤6,在步骤5形成的器件表面,赝晶生长一层应变Si层;
步骤7,在器件中部形成STI结构,以实现NMOS和PMOS的隔离;
步骤8,光刻并进行离子注入形成P阱;
步骤9,光刻并进行离子注入形成N阱;
步骤10,淀积栅氧化层;
步骤11,淀积NMOS多晶硅栅,并光刻形成NMOS栅结构;
步骤12,采用自对准工艺以及嵌入式SiC技术,在NMOS的两端形成嵌入SiC层,同时进行离子注入形成源/漏区;
步骤13,淀积PMOS多晶硅栅,并光刻多晶硅栅,利用自对准工艺,进行离子注入形成PMOS的源/漏区。
CN201810498879.5A 2018-05-23 2018-05-23 一种平面复合应变Si/SiGe CMOS器件及制备方法 Active CN108766967B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201810498879.5A CN108766967B (zh) 2018-05-23 2018-05-23 一种平面复合应变Si/SiGe CMOS器件及制备方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN201810498879.5A CN108766967B (zh) 2018-05-23 2018-05-23 一种平面复合应变Si/SiGe CMOS器件及制备方法

Publications (2)

Publication Number Publication Date
CN108766967A CN108766967A (zh) 2018-11-06
CN108766967B true CN108766967B (zh) 2021-05-28

Family

ID=64004869

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201810498879.5A Active CN108766967B (zh) 2018-05-23 2018-05-23 一种平面复合应变Si/SiGe CMOS器件及制备方法

Country Status (1)

Country Link
CN (1) CN108766967B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112736167B (zh) * 2020-12-29 2022-02-01 济南晶正电子科技有限公司 一种复合衬底、复合薄膜及其制备方法,及射频滤波器
CN112992898A (zh) * 2021-02-05 2021-06-18 重庆邮电大学 一种SiGe BiCMOS晶体管集成结构及其实现方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193193A (zh) * 1997-02-19 1998-09-16 国际商业机器公司 硅/锗硅垂直结型场效应晶体管
CN1619834A (zh) * 2003-11-19 2005-05-25 国际商业机器公司 减少应变层场效应晶体管中位错导致的泄漏的方法
CN1716570A (zh) * 1999-03-30 2006-01-04 株式会社日立制作所 半导体器件制造方法及其半导体器件
CN101359685A (zh) * 2007-07-31 2009-02-04 国际商业机器公司 半导体器件及制作方法
CN102201335A (zh) * 2011-06-01 2011-09-28 电子科技大学 一种应力稳定的mos晶体管的栅的制造方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6399970B2 (en) * 1996-09-17 2002-06-04 Matsushita Electric Industrial Co., Ltd. FET having a Si/SiGeC heterojunction channel
US6900521B2 (en) * 2002-06-10 2005-05-31 Micron Technology, Inc. Vertical transistors and output prediction logic circuits containing same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1193193A (zh) * 1997-02-19 1998-09-16 国际商业机器公司 硅/锗硅垂直结型场效应晶体管
CN1716570A (zh) * 1999-03-30 2006-01-04 株式会社日立制作所 半导体器件制造方法及其半导体器件
CN1619834A (zh) * 2003-11-19 2005-05-25 国际商业机器公司 减少应变层场效应晶体管中位错导致的泄漏的方法
CN101359685A (zh) * 2007-07-31 2009-02-04 国际商业机器公司 半导体器件及制作方法
CN102201335A (zh) * 2011-06-01 2011-09-28 电子科技大学 一种应力稳定的mos晶体管的栅的制造方法

Also Published As

Publication number Publication date
CN108766967A (zh) 2018-11-06

Similar Documents

Publication Publication Date Title
US10693003B2 (en) Integrated circuit transistor structure with high germanium concentration SiGe stressor
US7247534B2 (en) Silicon device on Si:C-OI and SGOI and method of manufacture
JP4130652B2 (ja) 半導体構造およびその製造方法
US7211458B2 (en) Methods of fabricating strained semiconductor-on-insulator field-effect transistors and related devices
TWI352433B (en) Stressed field effect transistors on hybrid orient
JP5043314B2 (ja) 勾配付き組み込みシリコン−ゲルマニウムのソース−ドレイン及び/又は延長部をもつ、歪みp型mosfetを製造する方法
US7436005B2 (en) Process for fabricating a heterostructure-channel insulated-gate field-effect transistor, and the corresponding transistor
TW200807572A (en) Silicon/silcion germaninum/silicon body device with embedded carbon dopant
WO2004006341A1 (en) Heterojunction field effect transistors using silicon-germanium and silicon-carbon alloys
US9793296B2 (en) Method for fabricating substrate of semiconductor device including epitaxial layer and silicon layer having same crystalline orientation
CN108766967B (zh) 一种平面复合应变Si/SiGe CMOS器件及制备方法
US9263345B2 (en) SOI transistors with improved source/drain structures with enhanced strain
US9112030B2 (en) Epitaxial structure and process thereof for non-planar transistor
CN102820252B (zh) 一种基于键合工艺的高迁移率双沟道材料的制备方法
Mooney Improved CMOS performance via enhanced carrier mobility
US20100200896A1 (en) Embedded stress elements on surface thin direct silicon bond substrates
Mooney Improved CMOS performance via enhanced carrier mobility

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20220307

Address after: 518112 Room 601, building A3, No. 31, Bulan Road, xialilang community, Nanwan street, Longgang District, Shenzhen, Guangdong Province

Patentee after: Shenzhen Chengxin Micro Technology Co.,Ltd.

Address before: 066004 No. 438 west section of Hebei Avenue, seaport District, Hebei, Qinhuangdao

Patentee before: Yanshan University

TR01 Transfer of patent right