CN100369193C - 形成半导体器件的电容器的方法 - Google Patents

形成半导体器件的电容器的方法 Download PDF

Info

Publication number
CN100369193C
CN100369193C CNB2005100778926A CN200510077892A CN100369193C CN 100369193 C CN100369193 C CN 100369193C CN B2005100778926 A CNB2005100778926 A CN B2005100778926A CN 200510077892 A CN200510077892 A CN 200510077892A CN 100369193 C CN100369193 C CN 100369193C
Authority
CN
China
Prior art keywords
film
latbo
source gas
deposition
bottom electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
CNB2005100778926A
Other languages
English (en)
Other versions
CN1716534A (zh
Inventor
李起正
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
SK Hynix Inc
Original Assignee
Hynix Semiconductor Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hynix Semiconductor Inc filed Critical Hynix Semiconductor Inc
Publication of CN1716534A publication Critical patent/CN1716534A/zh
Application granted granted Critical
Publication of CN100369193C publication Critical patent/CN100369193C/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02192Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing at least one rare earth metal element, e.g. oxides of lanthanides, scandium or yttrium
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02175Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal
    • H01L21/02194Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides characterised by the metal the material containing more than one metal element
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/02274Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition in the presence of a plasma [PECVD]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02299Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment
    • H01L21/02301Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer pre-treatment in-situ cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02296Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer
    • H01L21/02318Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment
    • H01L21/02356Forming insulating materials on a substrate characterised by the treatment performed before or after the formation of the layer post-treatment treatment to change the morphology of the insulating layer, e.g. transformation of an amorphous layer into a crystalline layer
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/31Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to form insulating layers thereon, e.g. for masking or by using photolithographic techniques; After treatment of these layers; Selection of materials for these layers
    • H01L21/314Inorganic layers
    • H01L21/316Inorganic layers composed of oxides or glassy oxides or oxide based glass
    • H01L21/31604Deposition from a gas or vapour
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L28/00Passive two-terminal components without a potential-jump or surface barrier for integrated circuits; Details thereof; Multistep manufacturing processes therefor
    • H01L28/40Capacitors
    • H01L28/60Electrodes
    • H01L28/82Electrodes with an enlarged surface, e.g. formed by texturisation
    • H01L28/90Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions
    • H01L28/91Electrodes with an enlarged surface, e.g. formed by texturisation having vertical extensions made by depositing layers, e.g. by depositing alternating conductive and insulating layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/033Making the capacitor or connections thereto the capacitor extending over the transistor
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/30DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
    • H10B12/31DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor
    • H10B12/318DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells having a storage electrode stacked over the transistor the storage electrode having multiple segments
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02109Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates
    • H01L21/02112Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer
    • H01L21/02172Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides
    • H01L21/02197Forming insulating materials on a substrate characterised by the type of layer, e.g. type of material, porous/non-porous, pre-cursors, mixtures or laminates characterised by the material of the layer the material containing at least one metal element, e.g. metal oxides, metal nitrides, metal oxynitrides or metal carbides the material having a perovskite structure, e.g. BaTiO3
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02104Forming layers
    • H01L21/02107Forming insulating materials on a substrate
    • H01L21/02225Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer
    • H01L21/0226Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process
    • H01L21/02263Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase
    • H01L21/02271Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition
    • H01L21/0228Forming insulating materials on a substrate characterised by the process for the formation of the insulating layer formation by a deposition process deposition from the gas or vapour phase deposition by decomposition or reaction of gaseous or vapour phase compounds, i.e. chemical vapour deposition deposition by cyclic CVD, e.g. ALD, ALE, pulsed CVD

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plasma & Fusion (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)

Abstract

本发明涉及形成半导体器件的电容器的方法,能确保该电容器具有所需的漏电流特性及充电电容。本发明方法包括以下步骤:在具有存储节接触的半导体衬底上形成一下电极,该下电极连接着存储节点接触;等离子体-氮化下电极以在下电极的表面形成第一氮化膜;在包括第一氮化膜的下电极上形成一La2O3电介质膜;等离子体氮化La2O3电介质膜以在La2O3电介质膜的表面形成第二氮化膜;以及,在包括第二氮化膜的La2O3电介质膜上形成一上电极。

Description

形成半导体器件的电容器的方法
技术领域
本发明关于一种形成半导体器件的电容器的方法,特别是关于一种形成半导体器件的能确保电容器的耐久性及所需的充电电容的电容器的方法。
背景技术
近来,随着存储产品的高度集成因半导体制造技术的发展而加速,单位单元区大大地缩小,且操作电压亦降低。然而,尽管单元区缩减,但是仍然要求操作存储器件所需的充电电容充分高,且不小于25fF/单元,以足以防止软差错的发生及更新时间的减少。
因此,虽然具有半球形电极表面的立体储存电极已经被用于动态随机存取存储器(DRAM)的氧化氮(NO)电容器,该电容器使用当前用二氯甲硅烷(DCS)沉积为电介质的Si3N4膜,但是NO电容器的高度仍持续增高,以确保足够的电容。
本领域公知,电容的充电电容与电极的表面积和电介质材料的介电常数成正比,与电极间的间隔(即电介质的厚度)成反比。
而且,NO电容器在确保下一代动态随机存取存储器(不小于256Mbit)所需的充电电容上受到限制;因此,为了确保足够的充电电容,使用例如Al2O3或HfO2的电介质膜作为电介质材料的电容器的发展已有显著进步。
然而,由于Al2O3电介质膜的介电常数(ε=9)只是SiO2(ε=3.9)的两倍,并不够高,所以其在确保充电电容方面有限制。此外,HfO2电介质膜及LaO2电介质膜的介电常数分别为约20和约27,从确保充电电容的观点看来,比Al2O3电介质膜更具优势;然而,如果电容器的等价氧化膜Tox的介电厚度减少至约15埃,则漏电流增加且击穿电压的强度大大缩减,于是电介质膜造成电容器耐久性的衰退,从而电容器由于反复的电冲击而变差。
因此,目前Al2O3膜、HfO2膜及La2O3膜皆难以实际作为能在确保所需充电电容的同时确保电容器的耐久性的电介质膜。
发明内容
因此,作出本发明以解决现有技术中出现的前述问题,且本发明的一目的在于提供一种形成半导体器件的电容器的方法,其能确保该电容器具有足够的耐久性及所需的充电电容。
为了达成上述目的,提供一种形成半导体器件的电容器的方法,包括步骤:在一具有接触插塞的半导体衬底上形成一下电极,从而该下电极连接接触插塞;在下电极上形成LaTbO电介质膜;及在LaTbO电介质膜上形成一上电极。
本发明的形成半导体器件的电容器的方法,在形成上电极的步骤之后,又包含形成厚度大约为200至1000埃的氮化硅膜或掺杂多晶硅构成的保护膜的步骤。
在此,下电极由掺杂多晶硅或选自包含TiN、TaN、W、WN、WSi、Ru、RuO2、Ir、IrO2及Pt的组的金属所形成。
当下电极由掺杂多晶硅形成时,在形成LaTbO电介质膜前进行使用HF混合液的清洗,且在进行使用HF混合液的清洗之前或之后进行使用NH4OH或H2SO4的清洗。
当下电极由掺杂多晶硅形成时,下电极的表面被氮化,以形成SiNx防止扩散膜。氮化经由自包括RTP(快速热处理)、炉管处理及等离子体处理的组中选出的任一种在NH3气氛下进行。
形成LaTbO电介质膜的步骤可包括步骤:沉积非晶LaTbO膜,及在常态或减压状态在N2环境下进行炉管退火或RTP,其中温度在500至800℃,且其中O2/N2不超过0.1,从而LaTbO膜包含的杂质被移除,并且引发结晶。
非晶LaTbO膜被沉积至厚度不超过100埃,其中通过使用自La(CH3)3、La(iPr-AMD)3、La(C2H5)3及其他包含La的有机金属化合物构成的组中选出的任何一种作为La组元的源气体,使用Tb(OC2H5)3或Tb(CH3)3作为Tb组元的源气体,及使用自O3、O2及H2O蒸气选出的任何一种作为反应气体,进行非晶LaTbO膜的沉积。
沉积LaTbO膜的步骤经由自原子层沉积法(ALD)、脉冲化学气相沉积法(pulsed-CVD)及低压化学气相沉积法(LPCVD)构成的组中选出的任一种进行。
使用原子层沉积法或脉冲化学气相沉积法来进行LaTbO膜的沉积,可以下列方式进行:以9∶1或更小的比例重复包含La源气体流动步骤、净化步骤、反应气体流动步骤及净化步骤的LaO2膜沉积循环,及包含Tb源气体流动步骤、净化步骤、反应气体流动步骤及净化步骤的TbxOy膜沉积循环;或以另一种方式进行:在包含La源气体流动步骤、净化步骤、Tb源气体流动步骤、反应气体流动步骤和净化步骤的循环中,在以9∶1或更小的比例控制Tb源气体流动步骤的次数的同时进行Tb源气体流动步骤。
使用低压化学气相沉积工艺的LaTbO膜的沉积按以下方式进行:通过流量控制器以9∶1或更小的比例控制La和Tb的有机金属化合物,以固定量将有机金属化合物中的每个供应至被维持在150℃至300℃范围内的一恒定温度的蒸发器或蒸发管,藉此将该有机金属化合物蒸发,然后分别将La组元源气体和Tb组元源气体引入250℃至500℃的低压化学气相沉积室。
当上电极由掺杂多晶硅形成时,LaTbO电介质膜的表面在掺杂多晶硅形成前被氮化,藉此形成SiNx防止扩散膜。
为达成上述目的,还提供一种形成半导体器件的电容器的方法,该方法包括步骤:在具有接触插塞的半导体衬底上形成下电极,从而该下电极连接接触插塞;氮化下电极的表面以形成第一防止扩散膜;在该第一防止扩散膜上形成LaTbO电介质膜;氮化LaTbO电介质膜的表面以形成第二防止扩散膜;及形成包含掺杂多晶硅的上电极。
附图说明
本发明前述及其他目标、特征及优点,在以下结合附图的详细描述中将更显而易见,其中:
图1至图3是横截面图,示出根据本发明一实施例的形成电容器的方法;以及
图4为示意图,用于说明运用原子层沉积法或脉冲化学气相沉积法沉积LaTbO膜的方法。
具体实施方式
以下,将参照附图说明本发明的优选实施例。
首先,涉及本发明的技术原理,本发明使用LaTbO膜,该LaTbO膜由含有约5%镧系元素铽的La2O3膜形成。这样的LaTbO电介质膜能够根据Tb的含量而将介电常数控制在30至50的范围内,且能够限定漏电流电平特性和击穿电压特性。
因此,由于根据电荷储存电极的类型和电容器的规格通过沉积LaTbO电介质膜的工艺可控制介电特性,所以本发明能有效改进现有Al2O3或HfO2电介质膜带来的介电性能的限制、及泄漏电流问题,藉此提升存储器件产品的容量和可靠性。
以下,将参照图1至图3说明根据本发明一优选实施例的形成电容器的方法。
参照图1,层间电介质膜2形成于形成有包括晶体管和位线的底图案(未示出)的半导体衬底1的整个表面,从而覆盖底图案。然后,层间电介质膜2被蚀刻,从而形成至少一个接触孔,用以暴露衬底接合区或落着插塞多晶硅(landing plug poly:LPP),接着一导电膜被嵌于接触孔3内,用以形成接触插塞4。接着,电荷储存电极,即下电极10,形成为与接触插塞4相连接。
在此,下电极10由掺杂多晶硅或自包括TiN、TaN、W、WN、WSi、Ru、RuO2、Ir、IrO2或Pt的组中选出的金属性材料形成。
此外,虽然附图显示下电极10形成为圆筒结构,但是电极10可被形成为简单平板结构或凹面结构。
此外,当下电极10由掺杂多晶硅形成时,为了确保更大的充电电容,可以在下电极10的表面上形成半球状的晶粒。
参照图2,非晶LaTbO膜在包含下电极10的层间电介质膜2上形成。接着,在常压或减压状态在N2环境下进行炉管退火或RTP,其温度介于500℃至800℃的范围内,且其中O2/N2不超过0.1,以经由去除包含于非晶LaTbO膜中的碳杂质来强化介电性能并引发La2O3电介质膜20的晶化,从而LaTbO电介质膜20形成,其使得漏电流不超过0.5fF/单元,且击穿电压特性不小于7MV/cm。
在此,在沉积LaTbO膜时,La(CH3)3或La(iPr-AMD)3被用作La组元的源气体,或者La(C2H5)3或其它含有La的有机金属化合物被用作源气体的前体,及O3(浓度:200±50g/m3,100至1000cc)、O2(100至1000cc)或H2O蒸气被用作反应气体。此外,在沉积LaTbO时,Tb(OC2H5)3或其它含有Tb的有机金属化合物-例如Tb(CH3)3-被用作Tb组元的源气体的前体,O3(浓度:200±20g/m3)、等离子体O2或H2O蒸气被用作反应气体。
LaTbO膜的沉积用ALD、脉冲化学气相沉积法或LPCVD进行。
如果使用ALD或脉冲化学气相沉积法,则以9∶1或更小的比率反复进行La2O3膜沉积循环“La源气体流入->净化->反应气体流入->净化”和TbxOy膜沉积循环“Tb源气体流入->净化->反应气体流入->净化”,或以9∶1或更小的比率控制Tb源气体流入的次数,从而沉积不超过100埃的非晶LaTbO膜,然后进行500℃至800℃的退火处理,用以去除非晶LaTbO膜中包含的杂质并诱发晶化作用,从而形成具有混合相的合成LaTbO电介质膜20。
如果使用LPCVD,则如上所述的La的有机金属化合物和Tb的有机金属化合物(前体)经由例如质量流控制器(MFC)的流量控制器而受到控制,以至于La与Tb的比例为9∶1或更小,接着以恒定量将每种有机金属化合物供给到被维持在150至300℃范围内的一恒定温度的蒸发器或蒸发管,使得这些有机金属化合物被蒸发,然后将La组元的源气体及Tb组元的源气体分别注入250至500℃的LPCVD室,用以初步沉积不超过100埃的非晶LaTbO膜,然后进行500至800℃的退火处理以提高介电性能并诱发晶化作用、且去除该膜中包含的碳杂质,藉此形成合成LaTbO电介质膜20。
同时,在下电极10由掺杂多晶硅形成的情况下,在形成该LaTbO 20前,该电极的表面用如H2O+HF或NH4F+HF的HF混合液清洗,以便在去除由掺杂多晶硅形成的下电极上的自然氧化膜同时氢化端接下电极的表面,接着下电极的表面被氮化,从而在下电极的表面上形成防止扩散膜。
此外,在使用HF混合液进行该清洗之前或之后,电极的表面使用例如NH4OH+H2O2+H2O的NH4OH,或例如H2SO4+H2O2或H2SO4+H2O的H2SO4混合溶液进行清洗,从而去除掺杂多晶硅形成的下电极的表面上的无机或有机粒子及其他异物。
在此,当下电极由掺杂多晶硅形成时,为了防止硅或掺杂剂渗入LaTbO电介质膜20,形成SiNx防止扩散膜;用于形成这样的SiNx防止扩散膜的氮化以自RTP、炉管处理及等离子体处理组成的组中选出的任一方法,在NH3气氛下进行。
参照图3,通过依据公知工艺在LaTbO电介质膜20上形成一极板电极,即上电极30,完成本发明的电容器40。之后,硅氮化膜或掺杂多晶硅沉积在包括上电极30的所得衬底上至约200至1000埃的厚度,从而形成保护膜50,以提高电容器40的抵抗湿气、温度或电影响的结构稳定性。
在此,和下电极10类似,上电极30由掺杂多晶硅或自包括TiN、TaN、W、WN、WSi、Ru、RuO2、Ir、IrO2及Pt的组中选出的金属性材料形成。此时,当上电极30由掺杂多晶硅形成时,一SiNx防止扩散膜在LaTbO电介质膜20形成之后,通过使用自RTP、炉管处理及等离子体处理构成的组中选出的任一方法进行氮化,而在LaTbO电介质膜20的表面形成,从而该SiNx防止扩散膜防止硅或掺杂剂渗入LaTbO电介质膜20。
如上所述,根据本发明,通过运用LaTbO电介质膜作为电容器电介质,可以获得比Al2O3、HfO2或La2O3更大的充电电容,同时获得约10±5埃的等价氧化膜厚度。
此外,根据本发明,经由运用LaTbO电介质膜,与运用HfO2或La2O3电介质膜构造电容器的情形相比,可以获得低泄漏电流特性和强击穿电压特性。
另外,由于LaTbO电介质膜比HfO2电介质膜具有更佳的热稳定性,所以即使在电容器形成后进行整合工艺中无可避免地要使用的高温热处理,也不会造成电特性的损害。因此,根据本发明,可以同时提高256Mbit或更大的半导体存储器件中电容器的耐久性和可靠性,其中对该器件应用具100纳米或更小线宽的金属布线工艺。
虽然本发明优选实施例主要作为说明用,但是本领域技术人员将察觉到各种修改、增加及替换,而没有偏离揭示于所附权利要求中的范围和精神,均有其可能性。

Claims (29)

1.一种形成半导体器件的电容器的方法,包括步骤:
在具有接触插塞的半导体衬底上形成下电极,从而该下电极与该接触插塞相连;
于该下电极上形成LaTbO电介质膜;以及
于该LaTbO电介质膜上形成上电极。
2.如权利要求1的方法,其中该下电极由掺杂多晶硅或自包含TiN、TaN、W、WN、WSi、Ru、RuO2、Ir、IrO2及Pt的组中选出的金属形成。
3.如权利要求2的方法,其中当该下电极由掺杂多晶硅形成时,在形成该LaTbO电介质膜之前,进行使用HF混合液的清洗。
4.如权利要求3的方法,其中在进行该使用HF混合液的清洗之前或之后,进行使用NH4OH或H2SO4的清洗。
5.如权利要求2的方法,其中当该下电极由掺杂多晶硅形成时,该下电极的表面被氮化,从而形成SiNx防止扩散膜。
6.如权利要求5的方法,其中该氮化经由自包括快速热处理、炉管处理及等离子体处理的组中选出的任一方法,在NH3气体环境下进行。
7.如权利要求1的方法,其中形成LaTbO电介质膜的步骤包括下列步骤:
沉积非晶LaTbO膜,以及
在N2环境下在常态或减压状态进行炉管退火或快速热处理,其温度为500至800℃,且其中O2/N2不超过0.1,因此该LaTbO膜中包含的杂质被移除,且晶化被引发。
8.如权利要求7的方法,其中该非晶LaTbO膜被沉积至100埃或更小的厚度。
9.如权利要求7的方法,其中该非晶LaTbO膜的沉积,经由使用自包括La(CH3)3、La(iPr-AMD)3、La(C2H5)3及其他包含La的有机金属化合物的组中选出的任一种作为La组元的源气体,使用Tb(OC2H5)3或Tb(CH3)3作为Tb组元的源气体,及使用自O3、O2及H2O蒸气中选出的任一种作为反应气体来进行。
10.如权利要求9的方法,其中该LaTbO膜经由自包括原子层沉积、脉冲化学气相沉积及低压化学气相沉积的组中选出的任一种沉积。
11.如权利要求10的方法,其中使用原子层沉积或脉冲化学气相沉积的LaTbO膜的沉积以下列方式进行:以9∶1或更小的比例重复包含La源气体流入步骤、净化步骤、反应气体流入步骤及净化步骤的La2O3膜沉积循环、及包含Tb源气体流入步骤、净化步骤、反应气体流入步骤、及净化步骤的TbxOy膜沉积循环。
12.如权利要求10的方法,其中使用原子层沉积或脉冲化学气相沉积的LaTbO膜的沉积以下列方式进行:在包含La源气体流入步骤、净化步骤、Tb源气体流入步骤、反应气体流入步骤和净化步骤的循环中,在以9∶1或更小的比例控制Tb源气体流入步骤的次数的同时,进行Tb源气体流入步骤。
13.如权利要求10的方法,其中使用低压化学气相沉积的LaTbO膜的沉积以下列方式进行:通过流量控制器以9∶1或更小的比例控制La和Tb的有机金属化合物,以恒定量将每种有机金属化合物供给至维持在150℃至300℃范围内的一恒定温度的蒸发器或蒸发管,从而将该有机金属化合物蒸发,然后将La组元源气体和Tb组元源气体每一个引入250℃至500℃的一低压化学气相沉积室。
14.如权利要求11的方法,其中该上电极由掺杂多晶硅或自包括TiN、TaN、W、WN、WSi、Ru、RuO2、Ir、IrO2及Pt的组中选出的金属形成。
15.如权利要求14的方法,其中当该上电极由掺杂多晶硅形成时,LaTbO电介质膜的表面在掺杂多晶硅被形成前被氮化,从而形成SiNx防止扩散膜。
16.如权利要求15的方法,其中该氮化经由自快速热处理、炉管处理及等离子体处理中选出的一种方法,在NH3气体环境下进行。
17.如权利要求1的方法,其中在形成该上电极的步骤之后,该方法还包含形成保护膜的步骤,该保护膜包括约200至1000埃厚的氮化硅膜或掺杂多晶硅。
18.一种形成半导体器件的电容器的方法,包括步骤:
在具有接触插塞的半导体衬底上形成下电极,从而该下电极与该接触插塞相连;
氮化该下电极的表面,从而形成第一防止扩散膜;在该第一防止扩散膜上形成LaTbO电介质膜;
氮化该LaTbO电介质膜的表面,从而形成第二防止扩散膜;以及
形成包含掺杂多晶硅的上电极。
19.如权利要求18的方法,其中在形成该下电极的步骤之后及在形成该第一防止扩散膜的步骤之前,该方法还包含使用HF混合液清洗的步骤。
20.如权利要求19的方法,其中在进行使用HF混合液的清洗之前或之后,进行使用NH4OH或H2SO4的清洗。
21.如权利要求21的方法,其中形成LaTbO电介质膜的步骤包括下列步骤:
沉积非晶LaTbO膜,以及
在N2环境下在常态或减压状态进行炉管退火或快速热处理,其温度为500至800℃,且其中O2/N2不超过0.1,从而该LaTbO膜中包含的杂质被移除,且晶化被引发。
22.如权利要求21的方法,其中该非晶LaTbO膜被沉积至不超过100埃的厚度。
23.如权利要求21的方法,其中该非晶LaTbO膜的沉积,经由使用自包括La(CH3)3、La(iPr-AMD)3、La(C2H5)3及其他包含La的有机金属化合物的组中选出的任一种作为La组元的源气体,使用Tb(OC2H5)3或Tb(CH3)3作为Tb组元的源气体,及使用自O3、O2及H2O蒸气中选出的任一种作为反应气体来进行。
24.如权利要求21的方法,其中该LaTbO膜经由自包括原子层沉积、脉冲化学气相沉积及低压化学气相沉积的组中选出的任一种沉积。
25.如权利要求24的方法,其中使用原子层沉积或脉冲化学气相沉积的LaTbO膜的沉积以下列方式进行:以9∶1或更小的比例重复包含La源气体流入步骤、净化步骤、反应气体流入步骤及净化步骤的La2O3膜沉积循环、及包含Tb源气体流入步骤、净化步骤、反应气体流入步骤、及净化步骤的TbxOy膜沉积循环。
26.如权利要求24的方法,其中使用原子层沉积或脉冲化学气相沉积的LaTbO膜的沉积以下列方式进行:在包含La源气体流入步骤、净化步骤、Tb源气体流入步骤、反应气体流入步骤和净化步骤的循环中,在以9∶1或更小的比例控制Tb源气体流入步骤的次数的同时,进行Tb源气体流入步骤。
27.如权利要求10的方法,其中使用低压化学气相沉积工艺的LaTbO膜的沉积以下列方式进行:通过流量控制器以9∶1或更小的比例控制La和Tb的有机金属化合物,以恒定量分别将有机金属化合物供给至维持在150℃至300℃范围内的一恒定温度的蒸发器或蒸发管,从而将该化合物蒸发,然后将La组元源气体和Tb组元源气体分别引入250℃至500℃的一低压化学气相沉积室。
28.如权利要求18的方法,其中用以形成该第一和第二防止扩散膜的该氮化经由自快速热处理、炉管处理及等离子体处理中选出的任一方法,在NH3气体环境下进行。
29.如权利要求18的方法,其中在形成该上电极的步骤之后,该方法还包含形成保护膜的步骤,该保护膜包括约200至1000埃厚的氮化硅膜或掺杂多晶硅。
CNB2005100778926A 2004-06-30 2005-06-13 形成半导体器件的电容器的方法 Expired - Fee Related CN100369193C (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR50064/04 2004-06-30
KR1020040050064A KR100557961B1 (ko) 2004-06-30 2004-06-30 반도체 소자의 캐패시터 형성방법

Publications (2)

Publication Number Publication Date
CN1716534A CN1716534A (zh) 2006-01-04
CN100369193C true CN100369193C (zh) 2008-02-13

Family

ID=35514540

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB2005100778926A Expired - Fee Related CN100369193C (zh) 2004-06-30 2005-06-13 形成半导体器件的电容器的方法

Country Status (4)

Country Link
US (1) US7199004B2 (zh)
KR (1) KR100557961B1 (zh)
CN (1) CN100369193C (zh)
TW (1) TWI257170B (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100464422C (zh) * 2006-01-18 2009-02-25 财团法人工业技术研究院 空心柱型电容器及其制造方法
CN104409324A (zh) * 2014-11-12 2015-03-11 吉林华微电子股份有限公司 能够避免沾污的多晶硅磷掺杂后处理清洗方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202012A (ja) * 1990-11-30 1992-07-22 Shin Etsu Chem Co Ltd 希土類酸化物の製造方法
JPH0717763A (ja) * 1993-06-15 1995-01-20 Tokin Corp 誘電体磁器材料
JPH09328363A (ja) * 1996-06-04 1997-12-22 Nippon Tungsten Co Ltd 高周波用誘電体磁器組成物
CN1314321A (zh) * 2000-02-09 2001-09-26 Tdk株式会社 介电陶瓷组合物、电子器件及其生产方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04202012A (ja) * 1990-11-30 1992-07-22 Shin Etsu Chem Co Ltd 希土類酸化物の製造方法
JPH0717763A (ja) * 1993-06-15 1995-01-20 Tokin Corp 誘電体磁器材料
JPH09328363A (ja) * 1996-06-04 1997-12-22 Nippon Tungsten Co Ltd 高周波用誘電体磁器組成物
CN1314321A (zh) * 2000-02-09 2001-09-26 Tdk株式会社 介电陶瓷组合物、电子器件及其生产方法

Also Published As

Publication number Publication date
CN1716534A (zh) 2006-01-04
TWI257170B (en) 2006-06-21
US7199004B2 (en) 2007-04-03
TW200601552A (en) 2006-01-01
US20060003538A1 (en) 2006-01-05
KR100557961B1 (ko) 2006-03-07
KR20060001047A (ko) 2006-01-06

Similar Documents

Publication Publication Date Title
CN1181529C (zh) 半导体装置的电容器的制造方法
US7713831B2 (en) Method for fabricating capacitor in semiconductor device
US6962845B2 (en) Method for manufacturing semiconductor capacitor having double dielectric layer therein
CN100452320C (zh) 形成半导体器件的电容器的方法
JP4035626B2 (ja) 半導体素子のキャパシタ製造方法
US6656788B2 (en) Method for manufacturing a capacitor for semiconductor devices
US7531422B2 (en) Method for fabricating capacitor in semiconductor device using hafnium terbium oxide dielectric layer
US6525364B1 (en) Capacitor for semiconductor memory device and method of manufacturing the same
CN100369193C (zh) 形成半导体器件的电容器的方法
KR20010008527A (ko) TaON박막을 갖는 커패시터 제조방법
KR20010008510A (ko) 반도체소자의 고정전용량 커패시터 형성방법
KR20010064415A (ko) 반도체장치의 고용량 커패시터 형성방법
JP4812164B2 (ja) 半導体素子のキャパシタ製造方法
JP4531935B2 (ja) 半導体メモリ素子のキャパシタ形成方法
JPH11145423A (ja) 半導体装置の製造方法
KR100882090B1 (ko) 반도체소자의 캐패시터 제조방법
KR100504434B1 (ko) 반도체장치의 커패시터 제조방법
KR100668832B1 (ko) 반도체 소자의 캐패시터 형성방법
KR100564433B1 (ko) 반도체 소자의 커패시터 제조 방법
KR101061169B1 (ko) 반도체 소자의 캐패시터 형성방법
KR20020018355A (ko) 반도체장치의 캐패시터 제조방법
KR100600286B1 (ko) 반도체 소자의 고유전체 커패시터 제조 방법
KR100881737B1 (ko) 반도체 장치의 캐패시터 및 그 제조방법
KR100474592B1 (ko) 캐패시터 형성 방법
KR20060033468A (ko) 반도체 소자의 캐패시터 형성방법

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20080213

Termination date: 20150613

EXPY Termination of patent right or utility model