CN100350686C - 双室气体放电激光系统的时序控制 - Google Patents

双室气体放电激光系统的时序控制 Download PDF

Info

Publication number
CN100350686C
CN100350686C CNB028238710A CN02823871A CN100350686C CN 100350686 C CN100350686 C CN 100350686C CN B028238710 A CNB028238710 A CN B028238710A CN 02823871 A CN02823871 A CN 02823871A CN 100350686 C CN100350686 C CN 100350686C
Authority
CN
China
Prior art keywords
laser
discharge
pulse
laser system
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
CNB028238710A
Other languages
English (en)
Other versions
CN1596492A (zh
Inventor
A·I·厄肖夫
R·M·奈斯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Cymer LLC
Original Assignee
Cymer Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/012,002 external-priority patent/US6625191B2/en
Application filed by Cymer Inc filed Critical Cymer Inc
Publication of CN1596492A publication Critical patent/CN1596492A/zh
Application granted granted Critical
Publication of CN100350686C publication Critical patent/CN100350686C/zh
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0385Shape
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09705Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser with particular means for stabilising the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2366Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media comprising a gas as the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0943Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a gas laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09702Details of the driver electronics and electric discharge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/134Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/2207Noble gas ions, e.g. Ar+>, Kr+>
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2251ArF, i.e. argon fluoride is comprised for lasing around 193 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2256KrF, i.e. krypton fluoride is comprised for lasing around 248 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2258F2, i.e. molecular fluoride is comprised for lasing around 157 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

用于注射下种式模块化气体放电激光器(11)的反馈时序控制设备和方法。一优选的实施例是一种能够在脉冲频率约为4,000Hz或更大且脉冲能量约为5至10mJ或更大时产生集成输出约为20至40瓦或更大的高质量脉冲激光束的系统。反馈时序控制经程序化以使得在某些情况下能够对放电进行定时,致使系统不会输出显著的激光能量。使用这种技术允许进行猝发模式操作,在该操作中猝发的第一放电是无输出放电,使得两室各自的时序参数能在猝发的第一激光输出脉冲之前被监测到。提供了两个分离的放电室,其中一室是主振荡器的一部分,主振荡器产生带宽非常窄的种子束,然后经第二放电室放大。可以单独控制各室,以使主振荡器的波长参数以及放大室的脉冲能量参数最优化。

Description

双室气体放电激光系统的时序控制
本发明要求以下申请的优先权:2001年11月30日提出申请的序列号为10/012,002的申请;2001年8月29日提出申请的序列号为09/943,343的申请;以及2001年5月3日提出申请的序列号为09/848,043的申请,这些申请各通过引用结合于此。本发明涉及窄带双室气体放电激光系统,尤其涉及此类系统的放电时序控制。
背景技术
放电气体激光器
二十世纪六十年代发明激光器后,旋即制造出放电气体激光器。现在,放电气体激光器已众所周知。两个电极之间的高压放电会激发激光气体产生气态增益媒质。包含增益媒质的共振腔使光能够受激放大,然后即可从共振腔中提取激光束形式的光。许多放电气体激光器都以脉冲模式操作。
受激准分子激光器
受激准分子激光器是一种特殊类型的放电气体激光器,自二十世纪七十年代中叶始为人知。1991年6月11日发布的名称为“Compact Excimer Laser”(小型受激准分子激光器)的第5,023,884号美国专利描述了一种用于集成电路光刻的受激准分子激光器。这项专利已让渡给申请人的雇主,其内容通过引用结合于此。专利‘884中描述的受激准分子激光器是一种高重复率脉冲激光器。当用于集成电路光刻,这种受激准分子激光器通常是在集成电路制造流水线上二十四小时工作,而流水线每小时都要生产成千上万的高价值集成电路,因此,停工时间的代价可能非常高昂。为此缘故,大多数组件都是组织成模块,以便能在几分钟之内完成模块更换。用于光刻的受激准分子激光器通常必须将其输出束的带宽减小至一皮米的若干分之一。这种“谱线窄化”(line-narrowing)通常是在谱线窄化模块(称为“谱线窄化包”或者“LNP”)中完成,谱线窄化模块形成激光器共振腔的背部。LNP由精密光学元件组成,包括棱镜、反射镜和光栅等。专利‘884所述类型的放电气体激光器使用电脉冲功率系统在两电极间产生放电。在这类现有技术系统中,对于每一脉冲,直流电源将称为“充电电容器”或者“C0”的电容器组充电到预定的受控电压,称为“充电电压”。在这些现有技术单元中,此充电电压的大小可以在约500到1000伏的范围内。C0被充电到预定电压后,一固态开关即闭合,使得C0上存储的电能能够非常快地通过一系列磁压缩电路与一变压器而形成环路,以在电极两端产生约16,000伏(或者更大)范围内的高压电位,使电极产生持续约20到50ns的放电。
光刻光源的主要进展
自1989至2001年间,象专利‘884所描述的这类受激准分子激光器已成为集成电路光刻的主要光源。在最现代化的集成电路制造工厂中,目前已有超过1000台的激光器投入使用。几乎所有这些激光器都具有专利‘884所说明的基本设计特征。
这些特征是:
(1)单一脉冲功率系统,用于以每秒约100到2500脉冲的脉冲频率提供电极上的电脉冲;
(2)单一共振腔,由部分反射镜式输出耦合器和谱线窄化单元组成,谱线窄化单元包括棱镜束扩展器、调谐镜和光栅;
(3)单一放电室,包含有激光气体(KrF或者ArF)、两个细长型电极和用于循环两个电极间的激光气体的切向风扇,它使气体的流动速度快到足以清洁脉冲之间的放电区域;以及
(4)激光束监测器,用于监测输出脉冲的脉冲能量、波长和带宽,激光束监测器带有反馈控制系统,用于逐脉冲地控制脉冲能量、能量剂量和波长。
在1989至2001年间,这种激光器的输出功率逐渐增大,而关于脉冲能量稳定性、波长稳定性和带宽的激光束质量规范也越来越严格。集成电路制造中广泛使用的一种普及型光刻激光器的操作参数包括:脉冲能量为8mJ,脉冲频率为每秒2,500脉冲(提供平均高达约20瓦的激光束功率),带宽约为0.5pm(FWHM),以及脉冲能量稳定性为+/-0.35%。
这些激光束参数需要进一步改善。集成电路制造厂商希望更好地控制波长、带宽,需要更高的激光束功率并对脉冲能量进行更精确的控制。利用专利‘884中说明的基本设计可以得到某些改进,但是若要得到重大的改进,该基本设计则并不可行。例如,因为仅有单一放电室,所以对脉冲能量的精确控制可能会对波长和/或带宽造成不利影响,反之亦然,特别是在脉冲重复率极高时更是如此。
注入种光源(Injection Seeding)
一种用于减小气体放电激光系统(包括受激准分子激光系统)带宽的众所周知的技术涉及到把窄带“种子”束注入增益媒质中。在这类系统中,产生种子束的称为“主振荡器”的激光器被设计成在第一增益媒质中产生带宽非常窄的激光束,然后把该激光束用作第二增益媒质中的种子束。如果第二增益媒质起功率放大器的作用,则可把该系统称为主振荡器—功率放大器(MOPA)系统。如果第二增益媒质本身含有共振腔(在其中发生激光振荡),则可把该系统称为注入种光源式振荡器(ISO:injection seeded oscillator)系统或者主振荡器—功率振荡器(MOPO)系统。对于后者,种子激光器称为主振荡器,而下游系统称为功率振荡器。由两种独立系统组成的激光系统往往比可比拟的单室激光系统昂贵很多、更大且更复杂。因此,这种双室激光系统的商业应用受到了限制。
抖动问题
在上述类型的气体放电激光器中,放电持续时间非常短,通常约为20到50ns(1秒的十亿分之20到50)。此外,放电产生的粒子数反转很快便衰竭,以致粒子数反转仅能在放电期间有效存在。在这种双激光系统中,当来自上游激光器的激光束到达下游激光器时,第二激光器中的粒子数必须反转。因此,为使激光系统正确操作,这两个激光器的放电必须适当地同步。这可能会成为问题,因为典型的脉冲功率系统中存在若干能够引起放电时序变化的潜在原因。最重要的两个时序变化原因是脉冲功率电路所用的饱和电感器的电压变化和温度变化。已经知道,监测脉冲功率充电电压和电感器温度并利用这些测量数据与延迟电路,可以把放电时序正常化为所需的值。美国专利第6,016,325号说明了一个现有技术例子,该专利通过引用结合于此。因此,现有技术只能减小时序误差,而无法消除误差。最终产生的这些误差称为“抖动”。
双室激光系统在连续操作时,抖动问题可以通过测量各室的触发与熄灭之间的时间并基于测得的先前脉冲(例如紧接着的前一脉冲)时序值为随后的脉冲提供反馈信号来解决。但是,这项技术并不能很好地处理闲置周期之后的第一脉冲,因为在闲置周期期间,电气组件的温度往往会漂移,从而改变组件的时序特征。
因此,需要更好的方法来处理抖动问题。
发明内容
本发明提供用于注入种光源式模块化气体放电激光器的反馈时序控制设备和方法。一优选的实施例是一种能够在脉冲频率约为4,000Hz或更大且脉冲能量约为5至10mJ或更大时产生集成输出约为20至40瓦或更大的高质量脉冲激光束的系统。反馈时序控制经程序化以使得在某些情况下能够对放电进行定时,致使系统不会输出显著的激光能量。使用这种技术允许进行猝发模式操作,操作中猝发的第一放电是无输出放电,使得两室各自的时序参数能在猝发的第一激光输出脉冲之前被监测到。提供两个分离的放电室,其中一室是主振荡器的一部分,主振荡器产生带宽非常窄的种子束,然后经第二放电室放大。可以单独控制各室,以使主振荡器的波长参数以及放大室的脉冲能量参数最优化。一优选实施例是配置为MOPA的ArF受激准分子激光系统,该系统经特别设计而用作集成电路光刻的光源。在这项优选实施例中,两放电室与激光光学构件均安装在激光器外壳内的垂直光学台上。在该优选MOPA实施例中,各放电室都包括一个切向风扇,风扇能够提供充足的气流,以在脉冲间不到约0.25毫秒的时间内清除来自放电区域的碎片,从而允许以4000Hz或者更大的脉冲频率操作。主振荡器配备有谱线窄化包,后者具有能够以4000Hz或者更大的重复率逐脉冲地控制中心线波长并提供小于0.2pm(FWHM)的带宽的极快调谐镜。这项实施例还包括脉冲倍增模块,用于把来自功率放大器的各脉冲分成二个或者四个脉冲,从而在实质上减小光刻光学构件的劣化率。其它优选实施例是配置为KrF或者F2 MOPA激光系统。
附图说明
图1与1A显示本发明的一优选实施例。
图2与2A显示放电室特征。
图3A、3B、3C1、3C2、3C3与3D显示附加的脉冲功率特征。
图4、4A、4B与4C显示优选脉冲功率系统的特征。
图5显示激光输出能量作为MO和PA放电时序的函数的曲线图。
图6、6A、7、7A是显示产生无输出第一脉冲的方法的流程设计图。
具体实施方式
可以参考附图来说明本发明的优选实施例。
较佳布局
图1是配置成主振荡器—功率放大器(MOPA)系统的双室ArF放电激光系统的较佳总体布局。该系统包括下列特征,2001年11月30日提出申请的美国专利申请第10/012,002号对这些特征有更为详细描述。所包括的特征是:
(1)两室与激光光学构件均安装在垂直光学台11上,而光学台11被可运动地安装在激光器箱4中。双室由通过螺栓与光学台连接的刚性悬臂支撑。在该设计中,主振荡器10被安装在功率放大器12之上。
(2)激光器箱4中含有高压电源6B。这个双室-ArF 4000Hz系统只需要单一1200伏电源。4000Hz KrF系统同样如此。但是激光器箱为双室6000Hz,F2激光系统所需要的两个附加的高压电源留下了空间。6000Hz ArF系统会利用一个附加的高压电源(HVPS)。
(3)双激光室的每一个室和用于这两个室的脉冲电源实质上与美国专利申请第09/854,097号中说明的4000Hz单室激光系统所利用的室和脉冲电源相同,该专利申请通过引用结合于此。
(4)这项实施例中,脉冲倍增器模块13位于光学台11后方,以便延长脱离功率放大器的脉冲的持续时间。
(5)主振荡器激光束输出光学构件14A把输出束从MO导向功率放大器输入—输出光学构件14B,并且两次经由功率放大器后部光学构件14C通过功率放大器12。第一次与电极成一很小的角度,第二次与电极对齐。通过包括脉冲延长器在内的该激光系统的整个激光束路径都被真空相容外壳(未示出)包围,外壳用氮或者氦净化。
主振荡器
图1所示主振荡器10在许多方面与诸如专利‘884和美国专利第6,128,323号所述的现有技术ArF激光器相似,并且除了输出脉冲能量约为0.1mJ而非约5mJ之外,实质上等同于美国专利申请第09/854,097号所述的ArF激光器。本发明相对于‘323有重大改进,从而允许以4000Hz或更大频率操作。主振荡器的频谱性能,包括带宽控制,得到了最优化。其结果是窄得多的带宽和改进的带宽稳定性。主振荡器包括图2和图2A所示的放电室,一对细长电极10A-2和10A-4位于室中,电极各约50cm长,其间隔开约0.5英寸。阳极10A-4安装在流成形阳极支撑棒10A-6上。室中设置四个独立的有翅水冷热交换器单元10A-8。两个马达(未示出)驱动切向风扇10A-10,从而在电极间提供速度约为80m/s的激光气体流。所述马达可以是水冷马达。室包括窗口单元(未示出),CaF2窗口与激光束成约45°定位。在室中心处具有入口的静电过滤器单元过滤气流的一小部分,如图2的数字11所示,然后以美国专利第5,359,620号(通过引用结合于此)所说明的方式把经净化的气体导入窗口单元中,以使放电碎片远离窗口。主振荡器的增益区域由电极间的放电穿过激光气体而产生;这项实施例中,激光气体包括约3%的氩、0.1%的F2,其余为氖。气流在下一脉冲之前清除放电区域中各次放电的碎片。共振腔由输出耦合器在输出侧创建,输出耦合器由CaF2镜组成,CaF2镜被安装成与激光束方向垂直,并且涂有涂层,从而反射约30%的193nm光,而让70%的193nm光透过。共振腔的相对边界是图1所示的谱线窄化单元10C,后者与美国专利第6,128,323所述的现有技术谱线窄化单元相似。对此谱线窄化包的重要改进包括四个CaF激光束扩展棱镜以及一调谐镜,扩展棱镜用于把水平方向上的激光束扩展45倍,调谐镜受步进器马达的控制以进行相对较大的旋转且受压电传动器的控制以进行极其精细的调谐。具有约每毫米80棱面的中阶梯光栅(Echelle grating)10C3被以Litrow配置安装,用于反射从约300pm宽ArF自然光谱中选择的极窄频带的UV光。较佳地,主振荡器以比现有技术光刻光源中通常使用的F2浓度低得多的浓度操作。这将导致带宽的实质减小。另一重要改进是一窄后部孔径,该孔径把振荡器激光束的截面在水平方向上限制为1.1mm,在垂直方向上限制为7mm。
优选实施例中,对用于主振荡器和功率放大器的主要充电电容器组并联充电,从而减轻抖动问题。这合乎需要,因为双脉冲功率系统的脉冲压缩电路中的脉冲压缩时间取决于充电电容器的充电水平。较佳地,通过调整充电电压逐脉冲地控制脉冲能量输出。这就把电压的作用稍限制于控制主振荡器的激光束参数。但是,可以容易地控制激光气体压力和F2浓度以在脉冲能量增加和激光气体压力的广泛范围内达到理想的激光束参数。带宽随着F2浓度和激光气体压力的减小而减小。这些控制功能是除LNP控制以外的控制功能。(对于主振荡器,放电与熄灭之间的时间是F2浓度(1ns/kPa)的函数,因此可以通过改变F2浓度来改变时序。)
功率放大器
优选实施例中,功率放大器由一激光室组成,该激光室与相应的主振荡器放电室非常相似。具有两个分离的室使得脉冲能量和一系列脉冲的集成能量(称为剂量)能够在很大程度由波长和带宽来分别控制。这使得剂量更稳定。室的全部组件都相同,在制造过程中可以互换。但是在操作中,MO中的气体压力优选比PA中低很多。这项实施例中功率放大器的压缩头实质上也与主振荡器的压缩头相同,并且在制造过程中压缩头组件也可以互换。一个不同点是MO的压缩头电容器组的电容器定位更宽,从而产生比PA高很多的电感。这种双室及脉冲功率系统电气组件的密切一致性有助于保证脉冲形成电路的时序特征相同或者实质上相同,从而使抖动问题最小化。
功率放大器被配置成允许两束激光穿过功率放大器放电室的放电区域。较佳地,充电电压在逐脉冲的基础上进行选择以维持理想的脉冲和剂量能量。可以调整F2浓度和激光气体压力以提供理想的充电电压操作范围。能量随电压的变化是F2浓度和激光气体压力的函数,所以可以选择此理想范围以产生的理想的dE/dV值。注入时序较佳的是以充电电压为基础。较佳地,注入频率要高以使条件相对恒定,并且可以是连续的或者近似连续的。使用这些实施例的某些人可能希望F2注入间的时间间隔大一些(如2小时等)。
脉冲功率电路
在图1所示的优选实施例中,基本脉冲功率电路与用于光刻的现有技术受激准分子激光光源中的脉冲功率电路相似。但是在各放电室的充电电容器下游提供有分离的脉冲功率电路。较佳地,单一共振充电器对并联连接的两个充电电容器组进行充电,以便保证把这两个充电电容器组充电到完全相同的电压。在调节脉冲功率电路组件的温度方面也进行了重要的改进。优选实施例中,对饱和电感器磁芯的温度进行监测,并把温度信号用于反馈电路以调整两室中放电的相对时序。图3A和3B显示用于MO的较佳基本脉冲功率电路的重要元件。同样的基本电路也用于PA。
共振充电器
图3B显示一较佳的共振充电器系统。主要电路元件有:
I1-带有恒定直流电流输出的三相电源300。
C-1-源电容器302,比图3A所示的C0电容器42大一个数量级或更多。
Q1、Q2和Q3-开关,用以控制用于充电和维持C0上的经调节电压的电流。
D1、D2和D3-提供电流单向流动。
R1和R2-向控制电路提供电压反馈。
R3-在出现较小的过度充电时使C0上的电压能够快速放电。
L1-C-1电容器302与C0电容器库42之间的共振电感器,用以限制电流和设置充电转移时序。
控制板304-根据电路反馈参数,命令Q1、Q2和Q3断开、闭合。
这个电路包括开关Q2和二极管D3,二者一起构成一减小Q值的(De-Qing)开关。这个开关通过使控制单元能够在共振充电过程中短路电感器来改进电路调节。这个“减小Q值的”开关防止充电电感器L1的电流中存储的附加能量转移到电容器C0。
在需要激光脉冲之前,C-1上的电压被充电到约1500伏,并且开关Q1至Q3断开。接到来自激光器的命令后,Q1将闭合。此时,电流将从C-1经由充电电感器L1流向C0。如上一节所述,控制板上的计算器将相对于激光器的命令电压设定点来估算C0上的电压和L1中的电流。当C0电容器库上的电压加上电感器L1中存储的等效能量等于所需的命令电压时,Q1将断开。计算式如下:
Vf=[VC0s2+((L1*ILIs2)/C0)]0.5
式中:
Vf=Q1断开且L1中的电流降为零后C0上的电压。
VC0s=Q1断开时C0上的电压。
ILIs=Q1断开时流经L1的电流。
Q1断开后,L1中存储的能量便开始经由D2转移到CO电容器组上,直到CO电容器组上的电压大约等于命令电压为止。此时,Q2闭合,电流停止流向CO而被导向通过D3。除了“减小Q值的”电路以外,泄放电路(bleed-downcircuit)中的Q3和R3使得能够对CO上的电压进行附加的精细调整。
当流经电感器L1的电流停止,控制板将命令泄放电路216的开关Q3闭合,C0上的电压将被泄放到所需的控制电压;然后,开关Q3断开。电容器C0和电阻器R3的时间常数应足够快,以使电容器C0能够在总充电周期的不明显时间量内泄放到命令电压。
其结果是,共振充电器可以配置为三种级别的调整控制。充电周期过程中能量计算器和开关Q1的断开提供稍显粗糙的调整。随着CO电容器组上的电压接近目标值,减小Q值的开关闭合,当C0上的电压等于或者略微高于目标值时,停止共振充电。一优选实施例中,开关Q1和减小Q值的开关用于提供精度超过+/-0.1%的调整。如果需要附加的调整,则可利用对电压调整的第三控制。这就是开关Q3和R3组成的泄放电路(如图3B中216所示),用于把CO上的电压放电到精确的目标值。
CO下游的改进
如上所示,本发明MO和PA的脉冲功率系统各利用与现有技术系统相同的基本脉冲功率设计(图3A)。但是,因为重复率大大增加导致热负荷提高约3倍,所以需要作一些变更。
换向器和压缩头的详细说明
本节将详细说明换向器和压缩头的制造。
固态开关
固态开关46是位于美国宾夕法尼亚州Youngwood市的Powerex公司提供的P/N CM 800 HA-34H IGBT开关。一优选实施例并联使用两个这种开关。
电感器
电感器54和64是饱和电感器,与美国专利5,448,580和5,315,611所述的现有系统中使用的电感器相似。C1电容器组52一侧。
1∶25递升脉冲变压器56的电感单元之一。外壳545与单元56的接地引线连接。
电容器
图3A所示电容器组42、52、62和82(即C0、C1、Cp-1和Cp)都由现货供应的电容器并联而成的组组成的。电容器42和52是薄膜型电容器,可以从位于美国南卡罗莱纳州Statesville市或德国魏玛的Vishay Roederstein等供应商处获得。电容器组62和82通常是由高压陶瓷电容器的并联阵列构成,高压陶瓷电容器的销售商包括日本的村田(Murata)和TDK等。在这个ArF激光器上使用的一优选实施例中,电容器组82(即Cp)由33个0.3nF电容器组成,总电容为9.9nF;Cp-1由24个0.40nF电容器组成,总电容为9.6nF;C1为5.7μF电容器组,而C0为5.3μF电容器组。
脉冲变压器
脉冲变压器56也与美国专利第5,448,580号和第5,313,481号所述的脉冲变压器相似;但是本实施例的脉冲变压器在次级绕组中仅具有一单一线匝,并且具有24个等效于单一初级线匝的1/24的电感单元,从而等效电压提升比为1∶24。变压器的次级是安装在紧密配合的绝缘PTFE(Teflon)管上的单一OD不锈钢棒。该变压器提供的电压提升比为1∶25。因此,约1400伏的输入脉冲将在第二侧产生约35,000伏的脉冲。这种单线匝次级绕组设计的泄漏电感非常低,从而使输出上升时间极快。
激光室电气组件的详细说明
Cp电容器82由33个安装在室压力容器之上的0.3nf电容器组成。(ArF激光器操作的激光气体通常含有3.5%的氩、0.1%的氟,其余为氖。)电极约28英寸长,电极间隔开约0.5到1.0英寸,较佳的约为5/8英寸。下文将说明较佳的电极。这项实施例中,顶部电极称为阴极,底部电极连接到图5所示的接地,称为阳极。
放电时序
在ArF、KrF和F2放电激光器中,放电仅持续约50ns(即1秒的十亿分之50)。放电产生发射激光动作所必需的粒子数反转,但反转仅在放电时间中存在。因此,注入种光源式ArF、KrF或F2激光器的一重要要求是保证来自主振荡器的种子束在激光气体中发生粒子数反转的约十亿分之50秒的时间中穿过功率放大器的放电区域,从而使种子束能被放大。对放电进行精确定时的一重要障碍是在时间开关46(如图3A所示)被触发闭合与放电开始(放电仅持续40到50ns)之间存在约5微秒的延迟这一事实。脉冲需要这大约5微秒的时间间隔以通过C0与电极之间的电路形成环路。此时间间隔随着充电电压大小和电路中电感器温度的不同而发生相当大的变化。
不过在本文说明的本发明的优选实施例中,申请人已开发出能够对两放电室放电进行时序控制的电脉冲功率电路,控制的相对精度为小于约2ns(即1秒的十亿分之2)。图4显示这两个电路的框图。
申请人进行的试验显示,定时随充电电压的变化率大约为5-10毫微秒/伏。这就对充电电容器的高压电源的精度和可重复性提出了苛刻的要求。例如,如果需要5ns的时序控制,而偏移灵敏度为每伏10ns,则分辨率精度为0.5伏。对于1000V的标称充电电压,这将要求充电精度为0.05%,这个精度非常难以达到,特别是当电容器必须以每秒4000次的频率充电到那些特定值时更是如此。
申请人对这个问题的优选解决方案是如图1和图4所示并如上所述,以单一共振充电器7兼对MO和PA的充电电容器进行并联充电。同样重要的是为这两个系统设计两个脉冲压缩/放大电路,以使时间延迟对充电电压的曲线相匹配,如图4A所示。达到这一目标的最简单方法是在各电路中尽可能地使用相同的组件。
因此,为使这项优选实施例中的时序变化(称这种变化为抖动)最小化,申请人已经使用相似的组件来设计这两个放电室的脉冲功率组件,并且已经证实二者的时间延迟对电压曲线确实互相跟随,如图4A所示。申请人已经证实,在充电电压的正常操作范围内,时间延迟随电压的变化相当大,但这两个电路中随电压的变化几乎相同。因此,由于两个充电电容器是并联充电的,充电电压可以在宽广的操作范围内变化而不会改变放电的相对时序。
脉冲功率电路中电气组件的温度控制也很重要,因为温度变化可能影响脉冲压缩时序(特别是饱和电感器的温度变化)。因此,设计目的是使温度变化最小化,且第二方法是监测温度敏感组件的温度并使用反馈控制调整触发时序来补偿。可以使用以学习算法编制程序的处理器来提供控制,从而根据与具有已知操作历史的过去时序变化相关的历史数据作出调整。然后根据激光系统的当前操作,应用此历史数据来预估时序变化。
触发控制
对于每一电路,使用诸如美国专利第6,016,325号中说明的触发电路来分别实现两室各自的放电触发。这些电路会增加时序延迟,从而校正脉冲功率电气组件的充电电压变化和温度变化,使得触发与放电之间的时间尽量保持恒定。如上所示,两电路基本上相同,所以校正后的变化几乎相等(即相互之间的差异在约2ns内)。
控制放电时序的技术
因为放电的相对时序可能对激光束质量造成重要影响,所以需要附加的步骤来控制放电时序。例如,某些模式的激光操作可能导致充电电压具有很宽的摆幅,或者导致电感器温度具有很宽的摆幅。这些宽摆幅会使放电时序控制复杂化。
监测时序
可以在逐脉冲的基础上监测放电时序,并且可以将时间差用于反馈控制系统来调整使开关42闭合的触发信号时序。较佳地,PA放电是利用光电管观察放电荧光(称为ASE)而非激光脉冲来监测,因为如果PA中没有产生激光束,则可能产生非常差的时序。对于MO,ASE或种子激光脉冲均可使用。
偏压调整
通过调整流经电感器LB1、LB2和LB3的偏流可以增大或减小脉冲时序,电感器LB1、LB2和LB3为电感器48、54和64提供偏置,如图3A所示。可以使用其它技术来增加使这些电感器饱和所需的时间。例如,可以利用反应非常快的PZT元件把核心材料机械性分离,而PZT元件可以根据来自脉冲时序监测器的反馈信号来进行反馈控制。
可调寄生负载
两脉冲功率电路任一者或二者均可以在CO下游处增加可调寄生负载。
附加反馈控制
除上述触发时序调整外,充电电压和电感器温度信号(此外还有脉冲时序监测器信号)也可以用于反馈控制来调整上述偏压或核心机械分离。
交替脉冲功率电路
图3C1、3C2和3C3显示第二较佳脉冲功率电路。这个电路与上述电路相似,但使用电压更高的电源以把C0充电到更高值。如同上述实施例,以230或460伏交流出厂电源操作的高压脉冲电源单元作为上述快速充电共振充电器的电源,被设计成以4000到6000Hz的频率把两个2.17μF电容器精确充电到约1100V到2250V范围内的电压。主振荡器的换向器和压缩头中的电气组件尽量与功率放大器中的相应组件相同。这样做是为了保持两电路中的时间反应尽量相同。开关46是由两个IGBT开关并联而成的开关组,各开关额定值为3300V。C0电容器组42由排列在64个并联肢中的128个0.068μF、1600V电容器组成,以提供2.17μF C0组。C1电容器组52由排列在68个并联肢中的136个0.068μF、1600V电容器组成,以提供2.33μF的组电容。Cp-1和Cp电容器组与以上参考图5所述相同。54个饱和电感器为单线匝(single turn)电感器,提供约3.3nH的饱和电感,并具有5个由0.5英寸厚50%-50%Ni-Fe组成的核心,核心的外径为4.9英寸,内径为3.8英寸。64个饱和电感器为双线匝电感器,提供约38nH的饱和电感,各电感器均由5个0.5英寸厚80%-20%Ni-Fe核心组成,核心的外径为5英寸,内径为2.28英寸。还提供了触发电路用于使IGBT 46闭合,时序精度为2纳秒。主振荡器通常是在功率放大器的IGBT 46触发前约40ns时触发。但是,精确的时序优选是由来自测量主振荡器和功率放大器放电输出时序的传感器的反馈信号来确定。
时序控制的替代技术
如较早所述,脉冲功率系统中磁脉冲压缩的输出时序取决于磁性材料性质,而这些性质可能为材料温度等的函数。因此,为维持精确的时序,直接或间接地监测和/或预测这些材料性质极其重要。先前所述的一种方法利用温度监测器以及先前收集的数据(延迟时间作为温度的函数)来预测时序。
由于在脉冲之间(或第一脉冲之前)磁性材料是是反偏的,故替代方法是利用磁性开关偏置电路来实际测量磁性性质(饱和时间)。偏置电路将对磁性开关施加足够的电压以反向偏置磁性材料,与此同时测量饱和时间,从而可以精确地控制激光时序。因为反向偏置开关所利用的伏—秒乘积应等于正向正常放电操作所需的伏—秒乘积,所以知道即将到来的脉冲的操作电压后,可以容易地计算脉冲功率系统的输出延迟时间。
图3D是显示所提出方法的示意图。初始操作假定磁性开关L1已经正向饱和,饱和电压由电源BT1经由二个偏置绝缘电感器Lbias和开关S4提供。然后断开S4并闭合S2使电流中断,这就会在磁性开关L1上施加约100V的电压,约30μs后磁性开关L1饱和。S2闭合时将触发一计时器,而当电流探针探测到L1饱和时计时器停止计时,从而计算L1在施加有100V电压时的饱和时间。一旦电路中的残余电压已被S3和其它组件泄漏掉,L1即反向偏置,为主脉冲放电序列做好准备。
猝发型操作
当激光器连续操作时,时序(timing)的反馈控制相对较容易且较有效。然而,光刻激光器一般以如下所述的猝发模式操作,处理许多晶片的每一晶片上的20个区域:
关闭1.2分钟,将晶片就位
以4000Hz照射区域1 0.2秒
关闭0.3秒,移至区域2
以4000Hz照射区域2 0.2秒
关闭0.3秒,移至区域3
以4000Hz照射区域3 0.2秒
以4000Hz照射区域199 0.2秒
关闭0.3秒,移至区域200
以4000Hz照射区域200 0.2秒
关闭1分钟,更换晶片
以4000Hz照射下一晶片上的区域10.2秒,等等
这个过程可能重复数小时,但会被不时中断,中断时间或长于或短于1.2分钟。
停工时间长度将影响MO与PA的脉冲功率系统之间的相对时序,所以可能需要在触发控制中进行调整,以保证当来自MO的种子束处于理想位置时PA中始发生放电。通过监测放电以及各室的熄灭时序,激光器操作员可以调整触发时序(精度到约2ns内)以达到最佳性能。
较佳的是将激光控制处理器程序化,使之监测时序和激光束质量并自动调整时序以达到最佳性能。本发明的优选实施例中使用时序算法产生适用于各种操作模式集合的档值(bin value)集合。优选实施例中,这些算法被设计成在连续操作中切换到反馈控制,其中当前脉冲的时序值是根据所收集的一个或者多个先前脉冲(如紧接着的前一脉冲)的反馈数据来设置。
无输出放电
诸如上述的时序算法在连续或定期重复的操作中能发挥非常好的作用。但是在异常情况下,例如激光器关闭以更换晶片之后的第一脉冲或激光器关闭较长时间(如5分钟等)之后的第一脉冲,时序精度可能不佳。某些情况下,猝发的前一个或两个脉冲的时序不精确不会造成问题。一较佳技术是将激光器预程序化,故意使MO和PA的放电脱序一个或者两个脉冲,从而来自MO的种子束不可能被放大。例如,可以将激光器程序化,使之在MO触发前110ns触发PA放电。这样,激光器将不会有显著的输出,但激光计量传感器却可以确定时序参数,使得第一输出脉冲的时序参数是精确的。
申请人的试验
申请人已进行仔细的实验来测量主振荡器与功率放大器的放电相对时序的影响。图5总结了这些实验,图中申请人画出了来自功率放大器输出的放大受激发射(ASE)的脉冲能量(单位毫焦)图和谱线窄化输出图(单位也是毫焦)。两图均是作为主振荡器放电开始与功率放大器放电开始之间的延迟的函数来描绘。读者应注意,ASE的能量刻度小于谱线窄化光输出的能量刻度。
光刻用户规范要求ASE为谱线窄化激光输出的极小部分。对于一30脉冲窗口,典型的规范要求ASE小于谱线窄化能量的5×10-4。如图5所示,当窄带脉冲最大时,即当MO放电先于PA放电约25到40ns时,ASE实质上为零。否则,ASE将很显著。
如上所述,MO和PA脉冲功率电路能够在约2ns的时序精度内被触发,故而利用关于这两个脉冲功率电路的良好反馈信息,MO和PA能够在谱线窄化脉冲能量为最大而ASE不显著的范围内放电。因此,对于具有良好反馈控制的连续操作,对这两个系统的控制相对较容易。但是,这些激光器的典型操作是如上所述的猝发模式操作。因此,猝发的第一脉冲有可能产生不良结果,因为全部反馈数据已过时,并且电气组件的温度变化有可能影响其反应。
一种解决方案是在各猝发之前发出一测试脉冲(激光快门可能需要闭合),从而获得最新的时序数据。但这种解决方案并不理想,有几个原因,包括与闭合和打开快门相关的延迟在内。
更好的解决方案是上面简要提及的方法,即,使两室在经选择的相对时间放电,使得MO的输出能够不被放大。这意味着,对于具有图5所示数据的系统,MO放电必须迟于PA放电约40ns,或者MO放电必须早于PA放电110ns。图6和图7描述了这两种抖动控制技术。
在图6所示技术中,如果自前一脉冲起已过了一分钟,则PA将在MO放电后的110ns放电。否则PA是在MO放电后30ns放电,以产生所需的脉冲能量。这项技术要求收集时序数据,并在触发与放电之间对时序发生的任何变化进行反馈校正。放电由光电管来探测,光电管探测MO和PA中放电产生的ASE光。
在图7所示技术中,如果自前一脉冲起已过了一分钟,则MO将在PA放电后的40ns放电。与上述一样,要收集并利用时序数据来保证第一脉冲之后的放电发生在应该发生的时候,从而产生最大窄带输出和最小ASE。
因此,闲置时间超过一分钟后每一猝发的第一脉冲在极其微小的ASE量上产生实质上为零的谱线窄化输出。申请人估计,对于由至少30个脉冲组成的脉冲窗口,ASE将小于集成窄带能量的2×10-4。因为在这个较佳的激光器中脉冲的频率为每秒4000脉冲,所以在脉冲猝发开始时丢失一个脉冲对于激光器用户而言预计不会有问题。
变型
对图6和图7概括显示的程序可以进行许多修改以达到相似的结果。所示的30秒目标值等时间值的选择当然应能提供最佳的结果。1分钟可以缩短为数毫秒,从而摈弃每一猝发的第一脉冲。在基于图5数据的图6所示情况中,110ns可以缩短约为70ns,而在图7所示情况中,40ns周期可以缩短约为20ns。可以修改程序以在每一猝发开始时或经过较长闲置期后每一猝发开始时提供两次或数次无输出放电。除光电管输出阈值外,其它参数也可以用于确定放电开始时间。例如,可以监测峰化电容器电压。放电开始后立刻发生的电压突降可以用作放电开始时间。
虽然已经参考特定的实施例说明了本发明,但本领域的熟练技术人员将会认识到,在本发明的总体范围内,可以进行许多更改。例如,可以收集附加的数据以提供附加的反馈信息,从而有可能改进时序精度。已经知道,电气组件的温度会影响时序,所以可以监测组件的温度并利用所收集的作为温度函数的历史时序数据来校正收集的数据,并且图6和图7所示算法中可以包括适当的校正。也可以使用其它技术来确定脉冲功率组件的时序反应。例如,脉冲功率电路中的饱和电抗器会产生很大部分的时序变化。可以在这些电抗器两端施加测试电压以确定其反应,而收集的数据可以用于校正放电时序。因此,以上披露的内容并不试图限制本发明,权利要求书的范围应该由所附权利要求书及其合法的等效技术方案来确定。

Claims (23)

1.一种具有时序控制功能的频带极窄的双室高重复率气体放电激光系统,其特征在于,所述系统包括:
A)第一种子激光单元,它包括:
1)第一放电室,它包含有:
a)第一激光气体,
b)第一对间隔开的细长电极,它们形成第一放电区域,
2)第一风扇,用于在所述第一放电区域中产生所述第一激光气体的足够快的气体速度,以在以每秒4000脉冲或更大的重复率操作时,在每一脉冲后、下一脉冲前从所述第一放电区域中清除大抵所有放电产生的离子,
3)第一热交换器系统,它从所述第一激光气体中除去热能,
4)谱线窄化单元,用于窄化所述第一放电室中产生的光脉冲的频谱带宽,
所述第一激光单元提供第一激光单元输出种子脉冲激光束,
B)第二放大增益媒质激光单元,它包括:
1)第二放电室,它包含有:
a)第二激光气体,
b)第二对间隔开的细长电极,它们形成第二放电室,
2)第二风扇,用于在所述第二放电区域中产生所述第二激光气体的足够快的气体速度,以在以每秒4000脉冲或更大的重复率操作时,在每一脉冲后、下一脉冲前从所述第二放电区域中清除大抵所有放电产生的离子,3)第二热交换器系统,它从所述第二激光气体中除去热能,
C)脉冲功率系统,配置成向所述第一对电极和所述第二对电极提供足以产生激光系统输出脉冲的电脉冲,该激光系统输出脉冲包含频率约为每秒4000脉冲、具有超过约5mJ的精确受控脉冲能量的放大的第一激光单元输出种子脉冲,
D)激光束测量和控制系统,用于测量所述双室激光系统产生的激光系统输出脉冲的脉冲能量、波长和带宽并且在反馈控制配置中控制所述激光系统输出脉冲,以及
E)处理器,它用提供反馈时序控制的算法进行程序化,由此选择用于由所述激光系统输出的猝发脉冲内的至少第一脉冲的所述第一放电区域和所述第二放电区域内的放电定时,导致在所述第二放电区域内的放电期间,所述第一放电区域的输出实质上没有放大。
2.如权利要求1所述的激光系统,其特征在于,所述第一激光单元被配置为主振荡器,而所述第二激光单元被配置为功率放大器。
3.如权利要求2所述的激光系统,其特征在于,所述激光气体包括氩、氟和氖。
4.如权利要求2所述的激光系统,其特征在于,所述激光气体包括氪、氟和氖。
5.如权利要求2所述的激光系统,其特征在于,所述激光气体包括氟和从由氖、氦或者氖和氦的混合物所组成的一组气体中选取的缓冲气体。
6.如权利要求1所述的激光系统,其特征在于,所述第一风扇和所述第二风扇各自均为切向风扇,并且各自均包括由两个无刷直流马达驱动的轴。
7.如权利要求6所述的激光系统,其特征在于,所述马达为水冷马达。
8.如权利要求1所述的激光系统,其特征在于,所述脉冲功率系统包括水冷电气组件。
9.如权利要求8所述的激光系统,其特征在于,高压利用冷却水流经其中的电感器与接地绝缘。
10.如权利要求1所述的激光系统,其特征在于,所述脉冲功率系统包括共振充电系统,用以把充电电容器充电到精确控制的电压。
11.如权利要求1所述的激光系统,其特征在于,所述系统被配置成可以操作为KrF激光系统、ArF激光系统或F2激光系统。
12.如权利要求1所述的激光系统,其特征在于,所述系统包括与所述外壳物理上分离的直流/交流模块。
13.如权利要求1所述的激光系统,其特征在于,所述脉冲功率系统包括主振荡器充电电容器组、功率放大器充电电容器组、以及用于对所述两个充电电容器组进行并联充电的共振充电器。
14.如权利要求1所述的激光系统,其特征在于,所述第一激光气体中的F2浓度是可控制的,以控制主振荡器激光束参数。
15.如权利要求1所述的激光系统,其特征在于,所述第一激光气体中的激光气体压力是可控制的,以控制主振荡器激光束参数。
16.如权利要求2所述的激光系统,其特征在于,所述激光系统还包括一放电控制器,所述控制器被赋予程序以使所述功率放大器在所述主振荡器放电前至少20ns发生放电。
17.如权利要求2所述的激光系统,其特征在于,所述激光系统还包括一放电控制器,所述控制器被赋予程序以使所述功率放大器在所述主振荡器放电后至少70ns发生放电。
18.如权利要求16所述的激光系统,其特征在于,所述至少20ns是约40ns。
19.如权利要求17所述的激光系统,其特征在于,所述至少70ns是约110ns。
20.如权利要求1所述的激光系统,其特征在于,所述激光器还包括光电管,用于检测所述第一室和第二室各室中的放电的发生。
21.如权利要求20所述的激光器,其特征在于,一控制器被赋予程序以利用来自所述光电管的信号来指示放电。
22.如权利要求17所述的激光系统,其特征在于,所述控制器被赋予程序以根据对电容器电压的测量来确定放电。
23.一种用于控制主振荡器和放大器增益媒质激光系统产生的猝发脉冲的放电时序的方法,该激光系统包括种子激光器和放大来自该种子激光器的激光的放大增益媒质激光器,其特征在于,该方法包括:
确定所述放电时序,以根据反馈放电时序信号分别在所述种子激光器和所述放大增益媒质激光器内产生所述脉冲,其中在所述猝发脉冲开始时,至少第一放电集合被程序化为在相对时间发生,以致所述放电不会产生显著的激光发射。
CNB028238710A 2001-11-30 2002-10-23 双室气体放电激光系统的时序控制 Expired - Lifetime CN100350686C (zh)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/012,002 US6625191B2 (en) 1999-12-10 2001-11-30 Very narrow band, two chamber, high rep rate gas discharge laser system
US10/012,002 2001-11-30
US10/036,727 2001-12-21
US10/036,727 US6865210B2 (en) 2001-05-03 2001-12-21 Timing control for two-chamber gas discharge laser system
PCT/US2002/034045 WO2003049241A1 (en) 2001-11-30 2002-10-23 Timing control for two-chamber gas discharge laser system

Publications (2)

Publication Number Publication Date
CN1596492A CN1596492A (zh) 2005-03-16
CN100350686C true CN100350686C (zh) 2007-11-21

Family

ID=26683031

Family Applications (1)

Application Number Title Priority Date Filing Date
CNB028238710A Expired - Lifetime CN100350686C (zh) 2001-11-30 2002-10-23 双室气体放电激光系统的时序控制

Country Status (10)

Country Link
US (3) US6865210B2 (zh)
EP (1) EP1449284B1 (zh)
JP (1) JP3971385B2 (zh)
KR (2) KR100598552B1 (zh)
CN (1) CN100350686C (zh)
AT (1) ATE443358T1 (zh)
AU (1) AU2002353869A1 (zh)
DE (1) DE60233746D1 (zh)
IL (1) IL161818A0 (zh)
WO (1) WO2003049241A1 (zh)

Families Citing this family (72)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6801560B2 (en) * 1999-05-10 2004-10-05 Cymer, Inc. Line selected F2 two chamber laser system
US6865210B2 (en) * 2001-05-03 2005-03-08 Cymer, Inc. Timing control for two-chamber gas discharge laser system
US6914919B2 (en) * 2000-06-19 2005-07-05 Cymer, Inc. Six to ten KHz, or greater gas discharge laser system
US6912052B2 (en) * 2000-11-17 2005-06-28 Cymer, Inc. Gas discharge MOPA laser spectral analysis module
US7061959B2 (en) * 2001-04-18 2006-06-13 Tcz Gmbh Laser thin film poly-silicon annealing system
US7167499B2 (en) * 2001-04-18 2007-01-23 Tcz Pte. Ltd. Very high energy, high stability gas discharge laser surface treatment system
US7009140B2 (en) 2001-04-18 2006-03-07 Cymer, Inc. Laser thin film poly-silicon annealing optical system
US20050259709A1 (en) * 2002-05-07 2005-11-24 Cymer, Inc. Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
US6963595B2 (en) * 2001-08-29 2005-11-08 Cymer, Inc. Automatic gas control system for a gas discharge laser
US7830934B2 (en) * 2001-08-29 2010-11-09 Cymer, Inc. Multi-chamber gas discharge laser bandwidth control through discharge timing
US20030219094A1 (en) * 2002-05-21 2003-11-27 Basting Dirk L. Excimer or molecular fluorine laser system with multiple discharge units
US7308013B2 (en) 2002-11-05 2007-12-11 Lambda Physik Ag Excimer or molecular fluorine laser system with precision timing
US20040202220A1 (en) * 2002-11-05 2004-10-14 Gongxue Hua Master oscillator-power amplifier excimer laser system
US7741639B2 (en) * 2003-01-31 2010-06-22 Cymer, Inc. Multi-chambered excimer or molecular fluorine gas discharge laser fluorine injection control
US6987790B2 (en) * 2003-02-14 2006-01-17 Lambda Physik Ag Excimer or molecular fluorine laser with several discharge chambers
US7277188B2 (en) * 2003-04-29 2007-10-02 Cymer, Inc. Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
US7366213B2 (en) * 2003-05-19 2008-04-29 Lambda Physik Ag MOPA excimer or molecular fluorine laser system with improved synchronization
US7209507B2 (en) * 2003-07-30 2007-04-24 Cymer, Inc. Method and apparatus for controlling the output of a gas discharge MOPA laser system
US6873418B1 (en) 2003-09-30 2005-03-29 Cymer, Inc. Optical mountings for gas discharge MOPA laser spectral analysis module
US6894785B2 (en) 2003-09-30 2005-05-17 Cymer, Inc. Gas discharge MOPA laser spectral analysis module
US20060146906A1 (en) * 2004-02-18 2006-07-06 Cymer, Inc. LLP EUV drive laser
US7035012B2 (en) * 2004-03-01 2006-04-25 Coherent, Inc. Optical pulse duration extender
US20050286599A1 (en) * 2004-06-29 2005-12-29 Rafac Robert J Method and apparatus for gas discharge laser output light coherency reduction
JP4012216B2 (ja) * 2005-06-08 2007-11-21 ファナック株式会社 レーザ発振器
US7317536B2 (en) 2005-06-27 2008-01-08 Cymer, Inc. Spectral bandwidth metrology for high repetition rate gas discharge lasers
US7653095B2 (en) * 2005-06-30 2010-01-26 Cymer, Inc. Active bandwidth control for a laser
US7317179B2 (en) * 2005-10-28 2008-01-08 Cymer, Inc. Systems and methods to shape laser light as a homogeneous line beam for interaction with a film deposited on a substrate
US7471455B2 (en) 2005-10-28 2008-12-30 Cymer, Inc. Systems and methods for generating laser light shaped as a line beam
US7679029B2 (en) * 2005-10-28 2010-03-16 Cymer, Inc. Systems and methods to shape laser light as a line beam for interaction with a substrate having surface variations
US7643529B2 (en) * 2005-11-01 2010-01-05 Cymer, Inc. Laser system
US7999915B2 (en) * 2005-11-01 2011-08-16 Cymer, Inc. Laser system
US7715459B2 (en) * 2005-11-01 2010-05-11 Cymer, Inc. Laser system
US7630424B2 (en) * 2005-11-01 2009-12-08 Cymer, Inc. Laser system
US7778302B2 (en) * 2005-11-01 2010-08-17 Cymer, Inc. Laser system
US7885309B2 (en) 2005-11-01 2011-02-08 Cymer, Inc. Laser system
US7746913B2 (en) 2005-11-01 2010-06-29 Cymer, Inc. Laser system
US20090296758A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
JP5506194B2 (ja) * 2005-11-01 2014-05-28 サイマー インコーポレイテッド レーザシステム
US7920616B2 (en) * 2005-11-01 2011-04-05 Cymer, Inc. Laser system
US20090296755A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
US7307237B2 (en) * 2005-12-29 2007-12-11 Honeywell International, Inc. Hand-held laser welding wand nozzle assembly including laser and feeder extension tips
US8803027B2 (en) * 2006-06-05 2014-08-12 Cymer, Llc Device and method to create a low divergence, high power laser beam for material processing applications
EP2025419B1 (de) 2007-07-20 2011-09-07 Renate Fourné Verfahren und Vorrichtung zum Entlacken von Bauteilen
US7830942B2 (en) * 2007-09-11 2010-11-09 Cymer, Inc. Ultraviolet laser light source pulse energy control system
JP2009246345A (ja) * 2008-03-12 2009-10-22 Komatsu Ltd レーザシステム
US7819945B2 (en) * 2008-10-30 2010-10-26 Cymer, Inc. Metal fluoride trap
JP5844536B2 (ja) * 2011-03-28 2016-01-20 ギガフォトン株式会社 レーザシステムおよびレーザ生成方法
JP5815987B2 (ja) * 2011-05-20 2015-11-17 キヤノン株式会社 露光装置およびデバイス製造方法
KR20130034474A (ko) * 2011-09-28 2013-04-05 참엔지니어링(주) 레이저 출력 조정 장치 및 그 방법
US8681832B2 (en) * 2011-09-30 2014-03-25 Cymer, Inc. System and method for high accuracy gas inject in a two chamber gas discharge laser system
CN102810810A (zh) * 2012-03-02 2012-12-05 中国科学院光电研究院 单腔双电极放电腔及准分子激光器
CN102931569B (zh) * 2012-11-08 2014-07-30 中国科学院光电研究院 准分子激光器的自动温控系统
RU2647238C2 (ru) * 2014-01-06 2018-03-14 Сауди Бейсик Индастриз Корпорейшн Модифицированный способ предварительного образования для активации катализатора при реакциях этилена
WO2015189895A1 (ja) 2014-06-09 2015-12-17 ギガフォトン株式会社 レーザシステム
CN104836102B (zh) * 2015-04-14 2018-03-23 中国科学院光电研究院 一种高重频双腔准分子激光器放电同步控制系统和方法
CN104820137B (zh) * 2015-04-14 2017-10-31 中国科学院光电研究院 高频高压快脉冲时序采集装置和方法
US9785050B2 (en) 2015-06-26 2017-10-10 Cymer, Llc Pulsed light beam spectral feature control
WO2017046844A1 (ja) * 2015-09-14 2017-03-23 ギガフォトン株式会社 レーザシステム
US9819136B2 (en) * 2016-01-08 2017-11-14 Cymer, Llc Gas mixture control in a gas discharge light source
US9634455B1 (en) * 2016-02-16 2017-04-25 Cymer, Llc Gas optimization in a gas discharge light source
WO2017158694A1 (ja) 2016-03-14 2017-09-21 ギガフォトン株式会社 レーザ装置及び極端紫外光生成システム
FR3052563B1 (fr) * 2016-06-13 2018-08-24 Universite De Rennes 1 Module d'affinement spectral, dispositif a raie spectrale affinee et procede afferent
US9989866B2 (en) 2016-10-17 2018-06-05 Cymer, Llc Wafer-based light source parameter control
US10416471B2 (en) 2016-10-17 2019-09-17 Cymer, Llc Spectral feature control apparatus
US9997888B2 (en) 2016-10-17 2018-06-12 Cymer, Llc Control of a spectral feature of a pulsed light beam
US9835959B1 (en) 2016-10-17 2017-12-05 Cymer, Llc Controlling for wafer stage vibration
US9966725B1 (en) * 2017-03-24 2018-05-08 Cymer, Llc Pulsed light beam spectral feature control
CN108964487B (zh) * 2018-07-19 2019-08-16 中国科学院合肥物质科学研究院 一种用于磁压缩等离子体聚变的电源系统
GB201905126D0 (en) * 2019-04-11 2019-05-29 Perlemax Ltd Fluidic oscilators
CN110086074B (zh) * 2019-05-06 2020-01-24 南京瑞贻电子科技有限公司 一种大功率光纤激光器线性补偿的动态耦合控制装置及控制方法
US20230051665A1 (en) * 2020-03-16 2023-02-16 Mitsubishi Electric Corporation Laser amplification device and extreme ultraviolet light generation apparatus
CN117543324A (zh) * 2022-12-27 2024-02-09 北京科益虹源光电技术有限公司 双腔准分子激光器的同步控制方法、控制设备及激光器

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5005180A (en) * 1989-09-01 1991-04-02 Schneider (Usa) Inc. Laser catheter system
US5023884A (en) * 1988-01-15 1991-06-11 Cymer Laser Technologies Compact excimer laser
WO2000038286A1 (en) * 1998-12-15 2000-06-29 Cymer, Inc. ArF LASER WITH LOW PULSE ENERGY AND HIGH REP RATE
US6128323A (en) * 1997-04-23 2000-10-03 Cymer, Inc. Reliable modular production quality narrow-band high REP rate excimer laser
WO2001024327A1 (en) * 1999-09-27 2001-04-05 Cymer, Inc. Very narrow band injection seeded f2 lithography laser
WO2001047073A1 (en) * 1999-12-21 2001-06-28 Cymer, Inc. High speed magnetic modulator voltage and temperature timing compensation circuit

Family Cites Families (85)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1458066A (en) 1922-06-14 1923-06-05 Compte Edward P Le Coat adjuster
US2740963A (en) * 1951-01-29 1956-04-03 Gilfillan Bros Inc Automatic amplitude cancellation in moving target indicator
US4009391A (en) * 1974-06-25 1977-02-22 Jersey Nuclear-Avco Isotopes, Inc. Suppression of unwanted lasing in laser isotope separation
US4223279A (en) 1977-07-18 1980-09-16 Mathematical Sciences Northwest, Inc. Pulsed electric discharge laser utilizing water dielectric blumlein transmission line
US4329664A (en) * 1980-06-09 1982-05-11 Ali Javan Generation of stable frequency radiation at an optical frequency
US4550408A (en) 1981-02-27 1985-10-29 Heinrich Karning Method and apparatus for operating a gas laser
US4455658A (en) 1982-04-20 1984-06-19 Sutter Jr Leroy V Coupling circuit for use with a transversely excited gas laser
US4891820A (en) 1985-12-19 1990-01-02 Rofin-Sinar, Inc. Fast axial flow laser circulating system
US5315611A (en) 1986-09-25 1994-05-24 The United States Of America As Represented By The United States Department Of Energy High average power magnetic modulator for metal vapor lasers
US5189678A (en) 1986-09-29 1993-02-23 The United States Of America As Represented By The United States Department Of Energy Coupling apparatus for a metal vapor laser
JPS63141381A (ja) 1986-12-04 1988-06-13 Toshiba Corp 金属蒸気レ−ザ装置
US4959840A (en) 1988-01-15 1990-09-25 Cymer Laser Technologies Compact excimer laser including an electrode mounted in insulating relationship to wall of the laser
WO1989007353A1 (en) * 1988-01-27 1989-08-10 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for controlling narrow-band oscillation excimer laser
US5025446A (en) 1988-04-01 1991-06-18 Laserscope Intra-cavity beam relay for optical harmonic generation
US5022033A (en) * 1989-10-30 1991-06-04 The United States Of America As Represented By The United States Department Of Energy Ring laser having an output at a single frequency
US5025445A (en) 1989-11-22 1991-06-18 Cymer Laser Technologies System for, and method of, regulating the wavelength of a light beam
JPH0456374A (ja) 1990-06-26 1992-02-24 Matsushita Electric Ind Co Ltd 炭酸ガスレーザ制御方法およびその装置
JPH0483387A (ja) 1990-07-26 1992-03-17 Mitsubishi Electric Corp レーザ装置
US5091778A (en) * 1990-12-21 1992-02-25 Kaman Aerospace Corporation Imaging lidar systems and K-meters employing tunable and fixed frequency laser transmitters
US5181135A (en) * 1990-12-21 1993-01-19 Kaman Aerospace Corporation Optical underwater communications systems employing tunable and fixed frequency laser transmitters
US5471965A (en) 1990-12-24 1995-12-05 Kapich; Davorin D. Very high speed radial inflow hydraulic turbine
US5157684A (en) * 1991-10-23 1992-10-20 United Technologies Corporation Optically pulsed laser
US5425922A (en) * 1991-12-27 1995-06-20 Vicor Company Of Japan, Ltd. Apparatus for manufacturing microcrystal particles and manufacturing method for the microcrystal particles
JPH05335675A (ja) 1992-05-28 1993-12-17 Mitsubishi Electric Corp レーザ装置
US5463650A (en) * 1992-07-17 1995-10-31 Kabushiki Kaisha Komatsu Seisakusho Apparatus for controlling output of an excimer laser device
US5359620A (en) 1992-11-12 1994-10-25 Cymer Laser Technologies Apparatus for, and method of, maintaining a clean window in a laser
US5450436A (en) * 1992-11-20 1995-09-12 Kabushiki Kaisha Komatsu Seisakusho Laser gas replenishing apparatus and method in excimer laser system
US5534824A (en) * 1993-03-26 1996-07-09 The Boeing Company Pulsed-current electron beam method and apparatus for use in generating and amplifying electromagnetic energy
US5313481A (en) 1993-09-29 1994-05-17 The United States Of America As Represented By The United States Department Of Energy Copper laser modulator driving assembly including a magnetic compression laser
US5778016A (en) * 1994-04-01 1998-07-07 Imra America, Inc. Scanning temporal ultrafast delay methods and apparatuses therefor
US5434882A (en) * 1994-04-12 1995-07-18 The United States Of America As Represented By The United States Department Of Energy Injection-controlled laser resonator
US5448580A (en) 1994-07-05 1995-09-05 The United States Of America As Represented By The United States Department Of Energy Air and water cooled modulator
US5863017A (en) 1996-01-05 1999-01-26 Cymer, Inc. Stabilized laser platform and module interface
US5867305A (en) * 1996-01-19 1999-02-02 Sdl, Inc. Optical amplifier with high energy levels systems providing high peak powers
JPH10156558A (ja) 1996-11-27 1998-06-16 Ushio Inc レーザマーキング装置
US5991324A (en) * 1998-03-11 1999-11-23 Cymer, Inc. Reliable. modular, production quality narrow-band KRF excimer laser
US5982800A (en) 1997-04-23 1999-11-09 Cymer, Inc. Narrow band excimer laser
US6094448A (en) 1997-07-01 2000-07-25 Cymer, Inc. Grating assembly with bi-directional bandwidth control
US6192064B1 (en) 1997-07-01 2001-02-20 Cymer, Inc. Narrow band laser with fine wavelength control
US6212217B1 (en) 1997-07-01 2001-04-03 Cymer, Inc. Smart laser with automated beam quality control
US6330261B1 (en) 1997-07-18 2001-12-11 Cymer, Inc. Reliable, modular, production quality narrow-band high rep rate ArF excimer laser
US6018537A (en) 1997-07-18 2000-01-25 Cymer, Inc. Reliable, modular, production quality narrow-band high rep rate F2 laser
USRE38054E1 (en) * 1997-07-18 2003-04-01 Cymer, Inc. Reliable, modular, production quality narrow-band high rep rate F2 laser
US5852621A (en) 1997-07-21 1998-12-22 Cymer, Inc. Pulse laser with pulse energy trimmer
US6757316B2 (en) 1999-12-27 2004-06-29 Cymer, Inc. Four KHz gas discharge laser
US6067306A (en) * 1997-08-08 2000-05-23 Cymer, Inc. Laser-illuminated stepper or scanner with energy sensor feedback
US5953360A (en) 1997-10-24 1999-09-14 Synrad, Inc. All metal electrode sealed gas laser
US6151346A (en) 1997-12-15 2000-11-21 Cymer, Inc. High pulse rate pulse power system with fast rise time and low current
US6240112B1 (en) 1997-12-15 2001-05-29 Cymer, Inc. High pulse rate pulse power system with liquid cooling
US5978406A (en) 1998-01-30 1999-11-02 Cymer, Inc. Fluorine control system for excimer lasers
US6240117B1 (en) 1998-01-30 2001-05-29 Cymer, Inc. Fluorine control system with fluorine monitor
US6151349A (en) 1998-03-04 2000-11-21 Cymer, Inc. Automatic fluorine control system
US6016325A (en) 1998-04-27 2000-01-18 Cymer, Inc. Magnetic modulator voltage and temperature timing compensation circuit
US6477193B2 (en) 1998-07-18 2002-11-05 Cymer, Inc. Extreme repetition rate gas discharge laser with improved blower motor
US6208675B1 (en) 1998-08-27 2001-03-27 Cymer, Inc. Blower assembly for a pulsed laser system incorporating ceramic bearings
US6067311A (en) 1998-09-04 2000-05-23 Cymer, Inc. Excimer laser with pulse multiplier
US6567450B2 (en) * 1999-12-10 2003-05-20 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6778584B1 (en) 1999-11-30 2004-08-17 Cymer, Inc. High power gas discharge laser with helium purged line narrowing unit
US6208674B1 (en) 1998-09-18 2001-03-27 Cymer, Inc. Laser chamber with fully integrated electrode feedthrough main insulator
US6181719B1 (en) * 1998-11-24 2001-01-30 Universal Laser Systems, Inc. Gas laser RF power source apparatus and method
US6219368B1 (en) 1999-02-12 2001-04-17 Lambda Physik Gmbh Beam delivery system for molecular fluorine (F2) laser
US6243406B1 (en) 1999-03-12 2001-06-05 Peter Heist Gas performance control system for gas discharge lasers
US6104735A (en) 1999-04-13 2000-08-15 Cymer, Inc. Gas discharge laser with magnetic bearings and magnetic reluctance centering for fan drive assembly
US6164116A (en) 1999-05-06 2000-12-26 Cymer, Inc. Gas module valve automated test fixture
US6801560B2 (en) * 1999-05-10 2004-10-05 Cymer, Inc. Line selected F2 two chamber laser system
US6370174B1 (en) * 1999-10-20 2002-04-09 Cymer, Inc. Injection seeded F2 lithography laser
US6765945B2 (en) * 1999-09-27 2004-07-20 Cymer, Inc. Injection seeded F2 laser with pre-injection filter
US6549551B2 (en) * 1999-09-27 2003-04-15 Cymer, Inc. Injection seeded laser with precise timing control
US6865210B2 (en) * 2001-05-03 2005-03-08 Cymer, Inc. Timing control for two-chamber gas discharge laser system
US6414979B2 (en) 2000-06-09 2002-07-02 Cymer, Inc. Gas discharge laser with blade-dielectric electrode
US6625191B2 (en) * 1999-12-10 2003-09-23 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6556600B2 (en) * 1999-09-27 2003-04-29 Cymer, Inc. Injection seeded F2 laser with centerline wavelength control
US6281471B1 (en) * 1999-12-28 2001-08-28 Gsi Lumonics, Inc. Energy-efficient, laser-based method and system for processing target material
US6577663B2 (en) * 2000-06-19 2003-06-10 Lambda Physik Ag Narrow bandwidth oscillator-amplifier system
US6912052B2 (en) * 2000-11-17 2005-06-28 Cymer, Inc. Gas discharge MOPA laser spectral analysis module
US6704340B2 (en) * 2001-01-29 2004-03-09 Cymer, Inc. Lithography laser system with in-place alignment tool
US6639177B2 (en) * 2001-03-29 2003-10-28 Gsi Lumonics Corporation Method and system for processing one or more microstructures of a multi-material device
US6690704B2 (en) * 2001-04-09 2004-02-10 Cymer, Inc. Control system for a two chamber gas discharge laser
US7079564B2 (en) * 2001-04-09 2006-07-18 Cymer, Inc. Control system for a two chamber gas discharge laser
US7167499B2 (en) * 2001-04-18 2007-01-23 Tcz Pte. Ltd. Very high energy, high stability gas discharge laser surface treatment system
US6798812B2 (en) * 2002-01-23 2004-09-28 Cymer, Inc. Two chamber F2 laser system with F2 pressure based line selection
US6711187B2 (en) * 2002-04-22 2004-03-23 Evans & Sutherland Computer Corporation Rapidly oscillating laser light source
US7158553B2 (en) * 2003-02-14 2007-01-02 Lambda Physik Ag Master oscillator/power amplifier excimer laser system with pulse energy and pointing control
US7052757B2 (en) 2003-10-03 2006-05-30 Hewlett-Packard Development Company, L.P. Capping layer for enhanced performance media
US8281471B2 (en) * 2009-03-04 2012-10-09 Aire Technologies, Inc. Ceiling radiation damper fusible link tool

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5023884A (en) * 1988-01-15 1991-06-11 Cymer Laser Technologies Compact excimer laser
US5005180A (en) * 1989-09-01 1991-04-02 Schneider (Usa) Inc. Laser catheter system
US6128323A (en) * 1997-04-23 2000-10-03 Cymer, Inc. Reliable modular production quality narrow-band high REP rate excimer laser
WO2000038286A1 (en) * 1998-12-15 2000-06-29 Cymer, Inc. ArF LASER WITH LOW PULSE ENERGY AND HIGH REP RATE
WO2001024327A1 (en) * 1999-09-27 2001-04-05 Cymer, Inc. Very narrow band injection seeded f2 lithography laser
WO2001047073A1 (en) * 1999-12-21 2001-06-28 Cymer, Inc. High speed magnetic modulator voltage and temperature timing compensation circuit

Also Published As

Publication number Publication date
KR20060025234A (ko) 2006-03-20
AU2002353869A1 (en) 2003-06-17
KR100598552B1 (ko) 2006-07-07
CN1596492A (zh) 2005-03-16
US20050018739A1 (en) 2005-01-27
JP3971385B2 (ja) 2007-09-05
US7203216B2 (en) 2007-04-10
WO2003049241A1 (en) 2003-06-12
KR100850447B1 (ko) 2008-08-07
KR20040058350A (ko) 2004-07-03
EP1449284A4 (en) 2006-03-08
JP2005512333A (ja) 2005-04-28
US20030099269A1 (en) 2003-05-29
EP1449284A1 (en) 2004-08-25
ATE443358T1 (de) 2009-10-15
DE60233746D1 (de) 2009-10-29
US6865210B2 (en) 2005-03-08
US20060251135A1 (en) 2006-11-09
EP1449284B1 (en) 2009-09-16
IL161818A0 (en) 2005-11-20
US7852899B2 (en) 2010-12-14

Similar Documents

Publication Publication Date Title
CN100350686C (zh) 双室气体放电激光系统的时序控制
US7149234B2 (en) High repetition rate gas discharge laser with precise pulse timing control
JP3204949B2 (ja) 高信頼性、モジュラ、プロダクションクオリティ狭帯域化KrFエキシマレーザ
US6018537A (en) Reliable, modular, production quality narrow-band high rep rate F2 laser
WO2002003512A1 (en) High repetition rate gas discharge laser with precise pulse timing control
US20040182838A1 (en) Very high energy, high stability gas discharge laser surface treatment system
CN1365529A (zh) 带有气体添加物的窄带气体放电激光器
USRE38054E1 (en) Reliable, modular, production quality narrow-band high rep rate F2 laser
JP2006344988A (ja) 2室放電ガスレーザ用制御システム
JPH11289119A (ja) パルスレーザの発光タイミング制御装置
JP3864287B2 (ja) レーザ装置
JP2012191207A (ja) 超高エネルギ高安定性ガス放電レーザ表面処理システム
JP5371208B2 (ja) 2ステージレーザのパルスエネルギー制御装置
CN1295729A (zh) 可靠的、模块化的、制造质量的窄带KrF激子激光器
JP2005252147A (ja) 高精度同期制御機能を備えた2ステージレーザ装置
JP2004342964A (ja) 高精度同期制御機能を備えた2ステージレーザ装置
KR100731948B1 (ko) 엑시머 레이저 장치 및 엑시머 레이저용 가스
JP3724553B2 (ja) 紫外線を放出するガスレーザ装置
JP4080712B2 (ja) 正確なパルスタイミング制御を備えた高繰り返し数ガス放電レーザ
EP1821377A2 (en) Gas discharge laser system
JPH1174591A (ja) パルスガスレーザ発振装置およびそれを用いたレーザアニール装置
JPH05102578A (ja) 放電励起パルスレーザ装置
JP2008211081A (ja) ガスレーザ出力制御方法、ガスレーザ装置、及び該ガスレーザ装置を備えたレーザ加工装置

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
ASS Succession or assignment of patent right

Owner name: CYMER INC.

Free format text: FORMER OWNER: CYMER, INC.

Effective date: 20141219

C41 Transfer of patent application or patent right or utility model
TR01 Transfer of patent right

Effective date of registration: 20141219

Address after: California, USA

Patentee after: CYMER, LLC

Address before: California, USA

Patentee before: Cymer, Inc.

CX01 Expiry of patent term

Granted publication date: 20071121

CX01 Expiry of patent term