KR20040058350A - 2챔버를 갖는 가스 방전 레이저 시스템을 위한 타이밍 제어 - Google Patents

2챔버를 갖는 가스 방전 레이저 시스템을 위한 타이밍 제어 Download PDF

Info

Publication number
KR20040058350A
KR20040058350A KR10-2004-7008173A KR20047008173A KR20040058350A KR 20040058350 A KR20040058350 A KR 20040058350A KR 20047008173 A KR20047008173 A KR 20047008173A KR 20040058350 A KR20040058350 A KR 20040058350A
Authority
KR
South Korea
Prior art keywords
discharge
laser
repetition rate
pulse
high repetition
Prior art date
Application number
KR10-2004-7008173A
Other languages
English (en)
Other versions
KR100598552B1 (ko
Inventor
어쇼프알렉산더아이.
네스리차드엠.
Original Assignee
사이머 인코포레이티드
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US10/012,002 external-priority patent/US6625191B2/en
Application filed by 사이머 인코포레이티드 filed Critical 사이머 인코포레이티드
Publication of KR20040058350A publication Critical patent/KR20040058350A/ko
Application granted granted Critical
Publication of KR100598552B1 publication Critical patent/KR100598552B1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • H01S3/0385Shape
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70025Production of exposure light, i.e. light sources by lasers
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70008Production of exposure light, i.e. light sources
    • G03F7/70041Production of exposure light, i.e. light sources by pulsed sources, e.g. multiplexing, pulse duration, interval control or intensity control
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F7/00Photomechanical, e.g. photolithographic, production of textured or patterned surfaces, e.g. printing surfaces; Materials therefor, e.g. comprising photoresists; Apparatus specially adapted therefor
    • G03F7/70Microphotolithographic exposure; Apparatus therefor
    • G03F7/70483Information management; Active and passive control; Testing; Wafer monitoring, e.g. pattern monitoring
    • G03F7/7055Exposure light control in all parts of the microlithographic apparatus, e.g. pulse length control or light interruption
    • G03F7/70575Wavelength control, e.g. control of bandwidth, multiple wavelength, selection of wavelength or matching of optical components to wavelength
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/036Means for obtaining or maintaining the desired gas pressure within the tube, e.g. by gettering, replenishing; Means for circulating the gas, e.g. for equalising the pressure within the tube
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09705Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser with particular means for stabilising the discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0971Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser transversely excited
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2366Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media comprising a gas as the active medium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/005Optical devices external to the laser cavity, specially adapted for lasers, e.g. for homogenisation of the beam or for manipulating laser pulses, e.g. pulse shaping
    • H01S3/0057Temporal shaping, e.g. pulse compression, frequency chirping
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/03Constructional details of gas laser discharge tubes
    • H01S3/038Electrodes, e.g. special shape, configuration or composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/02Constructional details
    • H01S3/04Arrangements for thermal management
    • H01S3/041Arrangements for thermal management for gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/05Construction or shape of optical resonators; Accommodation of active medium therein; Shape of active medium
    • H01S3/08Construction or shape of optical resonators or components thereof
    • H01S3/08004Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection
    • H01S3/08009Construction or shape of optical resonators or components thereof incorporating a dispersive element, e.g. a prism for wavelength selection using a diffraction grating
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/091Processes or apparatus for excitation, e.g. pumping using optical pumping
    • H01S3/094Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light
    • H01S3/0943Processes or apparatus for excitation, e.g. pumping using optical pumping by coherent light of a gas laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/09702Details of the driver electronics and electric discharge circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/09Processes or apparatus for excitation, e.g. pumping
    • H01S3/097Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser
    • H01S3/0975Processes or apparatus for excitation, e.g. pumping by gas discharge of a gas laser using inductive or capacitive excitation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/131Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation
    • H01S3/134Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the active medium, e.g. by controlling the processes or apparatus for excitation in gas lasers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/10Controlling the intensity, frequency, phase, polarisation or direction of the emitted radiation, e.g. switching, gating, modulating or demodulating
    • H01S3/13Stabilisation of laser output parameters, e.g. frequency or amplitude
    • H01S3/139Stabilisation of laser output parameters, e.g. frequency or amplitude by controlling the mutual position or the reflecting properties of the reflectors of the cavity, e.g. by controlling the cavity length
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/2207Noble gas ions, e.g. Ar+>, Kr+>
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2251ArF, i.e. argon fluoride is comprised for lasing around 193 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2256KrF, i.e. krypton fluoride is comprised for lasing around 248 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/14Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range characterised by the material used as the active medium
    • H01S3/22Gases
    • H01S3/223Gases the active gas being polyatomic, i.e. containing two or more atoms
    • H01S3/225Gases the active gas being polyatomic, i.e. containing two or more atoms comprising an excimer or exciplex
    • H01S3/2258F2, i.e. molecular fluoride is comprised for lasing around 157 nm
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01SDEVICES USING THE PROCESS OF LIGHT AMPLIFICATION BY STIMULATED EMISSION OF RADIATION [LASER] TO AMPLIFY OR GENERATE LIGHT; DEVICES USING STIMULATED EMISSION OF ELECTROMAGNETIC RADIATION IN WAVE RANGES OTHER THAN OPTICAL
    • H01S3/00Lasers, i.e. devices using stimulated emission of electromagnetic radiation in the infrared, visible or ultraviolet wave range
    • H01S3/23Arrangements of two or more lasers not provided for in groups H01S3/02 - H01S3/22, e.g. tandem arrangements of separate active media
    • H01S3/2308Amplifier arrangements, e.g. MOPA
    • H01S3/2325Multi-pass amplifiers, e.g. regenerative amplifiers
    • H01S3/2333Double-pass amplifiers

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Lasers (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

주입 시딩된 모듈러 가스 방전 레이저(11)를 위한 피드백 타이밍 제어 장비 및 그 방법이 개시되었다. 바람직한 실시예는 20 내지 40 와트이상의 집적 출력을 위해 약 4,000Hz이상의 펄스율과 약 5 내지 10 mJ이상의 펄스에너지로 고품질의 펄스된 레이저빔을 산출할 수 있는 시스템이다. 피드백 타이밍 제어는 어떠한 큰레이저 에너지도 시스템으로부터 출력되지 않도록 방전시간이 정해질 수 있도록 시간이 정해진다. 이러한 기술로 두 개의 챔버의 각각에 대한 타이밍 파라미터가 버스트의 제1 레이저 출력 펄스 이전에 모니터링될 수 있도록, 버스트의 제1 방전이 어떠한 출력 방전이 아닌 버스트 모드 동작이 될 수 있게 한다. 두 개의 방전챔버 가 제공되고, 하나는 제2 방전 챔버에서 증폭되는, 초협대역 시드 빔을 산출하는 마스터 오실레이터의 일부분이다. 챔버는 챔버 증폭에서 펄스 에너지 파라미터의 최적화 및 마스터 오실레이터에서 파장 파라미터의 개별 최적화를 개별적으로 허용하도록 제어된다.

Description

2챔버를 갖는 가스 방전 레이저 시스템을 위한 타이밍 제어{TIMING CONTROL FOR TWO-CHAMBER GAS DISCHARGE LASER SYSTEM}
전기 방전 가스 레이저
전기 방전 가스 레이저는 공지되어 잇고 1960년대에 레이저가 발명된 이후 줄곧 이용되어 왔다. 두 전극간의 고전압 방전은 가스형태 이득 매체를 산출하도록 레이저 가스를 여기시킨다. 이득 매체를 함유하는 공진 캐비티는 레이저 빔의 형태로 캐비티로부터 추출되는 광의 스티뮬레이트된 증폭을 허용한다. 이들 전기 방전 가스 레이저의 대부분은 펄스 모드로 동작된다.
엑시머 레이저
엑시머 레이저는 전기 방전 가스 레이저의의 특정 유형이고 1970년대 중반 이후 알려져 왔다. 집적회로 리소그래피에 유용한 엑시머 레이저에 대한 설명은 발명의 명칭이 "컴팩트 엑시머 레이저"이고 1991년 6월 11일 특허허여된 미국 특허 제 5,023,884호에 설명되어있다. 이 특허는 본원인의 고용자에게 양도되었고 본 명세서에 참조문헌으로 통합되어 있다. '884호에 설명된 엑시머 레이저는 고 반복율 펄스 레이저이다. 엑시머 레이저는, 집적회로 리소그래피에 유용한 경우, 통상적으로 시간당 수천개의 귀중한 집적회로를 생산하는 "시계방향 구동" 집적회로 제조라인에서 동작하고, 따라서, 다운-타임은 매우 고비용이 들 수 있다. 따라서 대부분의 컴포넌트는 수분안에 대치될 수 있는 모듈들로 구성된다. 리소그래피에 사용되는 엑시머 레이저는 피코초의 수분의 일로 대역폭이 감소된 그 출력빔을 가져야만 한다. 이 "라인-협소화"는 레이저의 공진 캐비티의 후방을 형성하는 라인 협소화 모듈("라인 협소화 패키지" 또는 "LNP")에서 달성된다. 이 LNP는 프리즘, 미러 및 회절격자를 포함하는 민감한 광학 요소들로 이루어 진다. '884호에 설명된 전기 방전 가스 레이저의 유형은 두 전극간에 전기 방전을 일으키는 전기 펄스 전력시스템을 이용한다. 이 종래 시스템에서, 직류 전력은 각각의 펄스에 대해 "충전 전압"으로 칭하는 소정의 제어 전압까지 "충전 커패시터" 또는 "C0"로 칭하는 커패시터 뱅크에 전하를 공급한다. 이 충전 전압의 크기는 이들 종래 유닛에선 500 내지 1000 볼트의 범위이다. C0가 소정 전압으로 충전된 후, 고체상태 스위치는 클로우즈되어 C0에 저장된 전기 에너지가 일련의 자기압축회로와 전압 변압기를 통하여 초고속으로 링될 수 있게하여 약 20 내지 50 ns 지속하는 방전을 일으키는 전극에 걸쳐 약 16,000 볼트(또는 그 이상)의 범위로 고전압전위를 산출할 수 있게 한다.
리소그래피 광원에서의 주요한 발전
'884호에 설명된 엑시머 레이저는 1989 내지 2001년사이에 집적회로 리소그래피를 위한 주 광원이 되어왔다. 이들 레이저의 1000개 이상이 대부분의 현대 집적회로 제조 공장에서 사용된다. 이들 레이저의 대부분은 '884호에 설명된 기본 설계 특징을 갖는다.
그것은:
(1) 초당 100 내지 2500 펄스의 펄스율로 전극에 걸쳐 전기 펄스를 공급하는 단일, 펄스 전력 시스템;
(2) 프리즘 빔 확대기, 조정 미러 및 회절격자로 이루어 진 라인 협소화 유닛 및 부분 반사 미러형 출력 커플러로 구성된 단일 공진 캐비티;
(3) 펄스간의 방전 영역을 소거시키기에 충분한 고속으로 두 전극간에 레이저 가스를 순환시키는 탄젠셜 팬, 두 개의 신장된 전극 및 레이저 가스(KrF 또는 ArF)를 함유하는 단일 방전 챔버; 및
(4) 펄스-펄스 기준에 의한 펄스 에너지, 에너지 도우즈 및 파장을 제어하는 피드백 제어 시스템으로 출력 펄스의 대역폭 및 파장 및 펄스 에너지를 모니터링하는 빔 모니터이다.
1989-2001년 동안, 이들 레이저의 출력 전력은 점진적으로 증대되어왔고 펄스 에너지 안정도, 파장 안정도 및 대역폭을 위한 빔 퀄리티 규격도 점점 엄격해져 왔다. 집적회로 제조에 널리 이용되는 리소그래피 레이저 모델을 위한 동작 파라미터는 8mJ의 펄스 에너지, 초당 2,500 펄스(최대 약 20와트의 평균 빔 파워를 제공), 약 0.5pm의 대역폭(FWHM) 및 +/-0.35%의 펄스 에너지 안정도를 포함한다.
이들 빔 파라미터에 추가의 개선점이 요구된다. 집적회로 제조자는 펄스 에너지에 대한 더욱 정밀한 제어로 파장, 대역폭 및 고 빔 파워에 대한 양호한 제어를 소망한다. 몇몇 개선점이 '884 특허에 설명된 기본 디자인에 제공될 수 있지만 기본 디자인에 의한 주요 개선은 실행붕가능할 수 있다. 예로서, 펄스 에너지의 단일 방전 챔버 정밀 제어는 파장 및/또는 대역폭에 역영향을 미치고 역으로 초고속 펄스 반복율에 역영향을 미칠 수 있다.
주입 시딩
가스 방전 레이저 시스템(엑시머 레이저 시스템을 포함하는)의 대역폭을 감소시키기 위한 공지된 기술은 이득 매체에 협대역 "시드" 빔의 주입을 포함한다. 이러한 한 시스템에서, "마스터 오실레이터"로 불리는 시드 빔을 산출하는 레이저는 제1 이득 매체에 초 협소화 빔을 제공하고, 이 빔이 제2 이득 매체에 시드 빔으로서 사용되도록 설계된다. 제2 이득 매체가 전력 증폭기로서 기능하는 경우, 시스템은 마스터 오실레이터, 전력 증폭기(MOPA;master oscillator, power amplifier) 시스템으로 참조된다. 제2 이득 매체가 공진 캐비티(레이저 발진이 일어나는)를 갖는 경우, 시스템은 주입 시딩된 오실레이터(ISO) 시스템 또는 마스터 오실레이터, 파워 오실레이터(MOPO;master oscillator, power oscillator) 시스템으로 참조되고 이 경우 시드 레이저는 마스터 오실레이터로 참조되고 다운스트림 시스템은 파워 오실레이터로 참조된다. 두 개별 시스템으로 구성된 레이저 시스템은 단일 챔버 레이저 시스템 보다 실질적으로 고가이고, 더욱 대형이고 복잡하게되는 경향이 있다. 그러므로, 이들 두 챔버 시스템의 상업적 응용은 한정적으로 되어 왔다.
지터 문제
상기한 유형의 가스 방전 레이저에서, 전기 방전의 지속시간은 전형적으로 약 20 ns 내지 50ns(10억분의 20 내지 50 초)인 매우 짧은 지속시간이다. 더우기, 방전에 의해 생성된 밀도 반전은 초고속으로 공핍되어 밀도 반전은 방전 동안에만 지속한다. 두 레이저 시스템에서, 다운스트림 레이저에서의 밀도는 업스트림 레이저로부터의 빔이 제2 레이저에 도달될 때 반전되어야 한다. 그러므로, 두 레이저의 방전은 레이저 시스템의 적절한 동작을 위해 적절하게 동기화되어야 한다. 이것은 통상적인 펄스 파워 시스템내에서 방전 타이밍시에 여러 타이밍 변동 문제가 있기 때문에 문제가 될 수 있다. 타이밍 변동에서 가장 중요한 두 원인은 펄스 파워 회로에서 사용된 포화 인덕터에서의 전압 변동 및 온도 변동이다. 소망하는 값으로 방전의 타이밍을 정규화하기 위해 지연회로롸 측정으로부터의 데이터를 이용하는 것 및 인덕터 온도와 펄스 파워 충전 전압을 모니터하는 것이 공지되어 있다. 그러한 종래기술의 한 예가 본원에 참조문헌으로 통합된 미국특허 제 6,016,325호에 설명되어 있다. 이와같이 종래기술에서, 타이밍 에러는 감소될 수 있지만 제거될 수는 없었다. 최종 결과로 되는 이들 에러는 "지터"로 칭해진다.
2 챔버 레이저 시스템이 연속적으로 동작하는 경우 지터 문제는 바로 이전의 펄스와 같은 이전 펄스에 대한 측정된 타이밍 값에 기초하여 후속 펄스를 위한 피드백 신호를 제공함으로써 그리고 각각의 챔버에 대한 광아웃과 트리거링간의 시간을 측정함으로써 취급될 수 있다. 이 기술은 잘 적용되지 않지만, 유휴 주기를 뒤따르는 제1 펄스는 전기 컴포넌트의 온도가 유휴 주기 동안 표류하는 경향이 있으므로 컴포넌트의 타이밍 특성을 변경시킨다.
필요로 되는 것은 지터문제를 다루는 더 좋은 방법이다.
본 발명은 초협대역이고 두 개의 챔버를 갖는 가스 방전 레이저 시스템에 관한 것으로 특히 이러한 시스템을 위한 방전 타이밍 제어에 관한 것이다.
도 1 및 1a는 본 발명의 바람직한 실시예를 나타낸 도.
도 2 및 도 2a는 챔버 특징을 나타낸 도.
도 3a, 3b, 3c1, 3c2, 3c3, 및 3d는 추가의 펄스 전력 특징을 나타낸 도.
도 4, 4a, 4b 및 4c는 바람직한 펄스 파워 시스템의 특징을 나타낸 도.
도 5는 MO 및 PA의 방전 타이밍의 함수로서 레이저 출력 에너지를 나타낸 도.
도 6, 6a, 7 및 7a는 어떠한 출력도 없는 제1 펄스를 산출하기 위한 프로세스를 나타낸 흐름도.
발명의 요약
본 발명은 주입 시딩된 모듈러 가스 방전 레이저를 위한 피드백 타이밍 제어 장비 및 그 방법을 제공하는 것이다. 바람직한 실시에는 약 20 내지 40 와트이상의 집적 출력을 위한 약 5 내지 10 mJ의 펄스 에너지 및 4,000 Hz 이상의 펄스율의 고 품질 펄싱된 레이저 빔을 산출할 수 있는 시스템이다. 피드백 타이밍 제어는 어떤 환경에서 어떠한 큰 레이저 에너지도 시스템으로부터 출력되지 않도록 방전시간이 정해질 수 있도록 프로그래밍된다. 이러한 기술의 사용은 두 개의 챔버의 각각에 대한 타이밍 파라미터가 버스트의 제1 레이저 출력 펄스 이전에 모니터링될 수 있도록, 버스트의 제1 방전이 어떠한 출력 방전이 아닌 버스트 모드 동작이 될 수 있게 한다. 두 개의 개별 방전 챔버가 제공되는 데, 하나는 제2 방전 챔버에서 증폭되는 초 협대역 시드 빔을 산출하는 마스터 오실레이터의 부분이다. 챔버들은 증폭 챔버에서의 펄스 에너지 파라미터의 최적화와 마스터 오실레이터의 최적화를 허용하여 개별적으로 달성될 수 있다. 바람직한 실시예는 MOPA로서 구성된 ArF 엑시머 레이저 시스템이고 상세히는 집적회로 리소그래피에서 광원으로서 사용되도록설계된다. 본 바람직한 실시예에서, 두 챔버 및 레이저 광학기기는 레이저 인클로우저내의 수직 광학 테이블에 장착된다. 바람직한 MOPA 실시예에서, 각각의 챔버는, 펄스간에 약 0.25 밀리초 보다 작은 시간에 방전영역으로부터의 잔해를 제거시킴으로써 4000Hz 이상의 펄스율로 동작할 수 있도록하기에 충분한 가스 흐름을 제공하는 단일 탄젠셜 팬을 포함한다. 마스터 오실레이터는 4000Hz 이상의 반복율에서 펄스-펄스 기준으로 중심라인 파장을 제어할 수 있는 초고속 조정 미러를 가지며 0.2pm 미만의 대역폭(FWHM)을 제공하는 라인 협소화 패키지가 구비된다. 본 바람직한 실시예는 또한 리소그래피 광학기기의 열화율을 상당히 감소시키기 위해 전력 증폭기로부터의 각각의 펄스를 2 또는 4 펄스로 분주하는 펄스 체배 모듈을 포함한다. 기타 바람직한 실시예는 KrF, 또는 F2MOPA 레이저 시스템으로서 구성된다.
본 발명의 바람직한 실시예가 첨부도면을 참조하여 설명된다.
바람직한 레이아웃
도 1은 마스터 오실레이터 전력 증폭기(MOPA)로서 구성된 2-챔버 ArF 방전 레이저 시스템의 바람직한 개괄 레이아웃이다. 이 시스템은 2001년 11월 30일 출원된 미국특허출원 제10/012,002호에 상세히 설명된 하기의 특징들을 포함한다. 특징들은 다음과 같다.
(1) 두 챔버 및 레이저 광학기기가 레이저 캐비닛(4)내부에 역학적으로 장착된(다음 절에 설명되는 바와 같이) 수직 광학 테이블(11)상에 장착된다. 챔버는 광학 테이블에 볼트결합된 급경사의 캔틸레버 아암상에 지지된다. 이 설계에서 마스터 오실레이터(10)는 전력 증폭기(12) 위에 장착된다.
(2) 고 전압 전력 공급부(6b)는 레이저 캐비닛(4)내부에 포함된다. 이 두 챔버-ArF 4000 Hz 시스템은 단일 1200 볼트 전력 공급부만을 필요로 한다. 이것은 4000Hz KrF 시스템에 대해서도 그렇다. 레이저 캐비닛에는 두 챔버, 6000 Hz, F2레이저 시스템을 위해 필요로 되는 두 개의 추가 고 전압 전력 공급부를 위한 공간이 구비된다. 하나의 추가 HVPS 가 6000 Hz ArF 시스템을 위해 이용된다.
(3) 두 레이저 챔버의 각각 및 챔버를 위한 펄스 전력 공급부는 본 명세서에 참조문헌으로 통합된 미국특허 출원 제 09/854,097호에 설명된 4000Hz 단일 챔버 레이저 시스템에 이용된 챔버 및 펄스 전력 공급부와 실질적으로 동일하다.
(4) 광학 테이블(11) 뒤에 위치된 펄스 체배기 모듈(13)은 전력 증폭기를 빠져나가는 펄스의 지속시간을 늘이기 위해 본 실시예에서 포함된다.
(5) 마스터 오실레이터 빔 출력 광학기기(14A)는 MO로부터 전력 증폭기 입력-출력 광학기기(14B)로 출력 빔을 지향시키고 전력 증폭기 후방 광학기기(14C)를 통해 전력 증폭기(12)를 통하는 두 패스를 위한 것이다. 아래에 설명되는 바와 같이, 제1 패스는 전극에 대해 작은 각을 이루고 제2 패스는 전극과 정렬된다. 펄스 스트레처를 포함하는 레이저 시스템을 통하는 전체 빔 경로는 진공 컴패터블 인클로우저(도시되지 않음)에 봉입되고 이 인클로우저는 질소 또는 헬륨으로 퍼지된다.
마스터 오실레이터
도 1에 도시된 마스터 오실레이터(10)는 상기한 '884호 특허 및 US 제6,128,323호에 설명된 종래기술의 ArF 레이저와 여러면에서 유사하고 출력 펄스 에너지가 약 5mJ 대신 약 0.1mJ인 것을 제외하곤 미국 특허출원 09/854,097호에 설명된 것과 실질적으로 등가물이다. 그러나, '323 레이저에 대한 주요 개선점은 4000Hz 이상으로 동작할 수 있도록 하는 것이다. 마스터 오실레이터는 대역폭 제어를 포함한 스펙트럼 성능에 대해 최적화되었다. 이 결과는 더욱 좁은 대역폭 및개선된 대역폭 안정성이다. 마스터 오실레이터는 각각이 50cm길이이고 약 0.5 인치 이격된, 한 쌍의 신장된 전극((10A-2) 및 (10A-4))이 위치된 도 2 및 2a에 도시된 바와 같이 방전 챔버(10A)를 포함한다. 아노드(10A-4)는 아노드 지지 바(10A-6)를 형성하는 플로우상에 장착된다. 4개의 개별적인 핀형상 수냉식 열교환기 유닛(10A-8)이 제공된다. 탄젠셜 팬(10A-10)은 전극간에 약 80m/s의 속도로 레이저 가스 흐름을 공급하기 위해 두 개의 모터(도시되지 않음)에 의해 구동된다. 챔버는 레이저 빔에 대해 약 45°로 위치된 CaF2윈도우를 갖춘 윈도우 유닛(도시되지 않음)을 포함한다. 챔버의 중앙에 흡입부를 갖는 정전 필터 유닛은 도2의 11로 지시된 가스 흐름의 작은 부분을 필터링하고 세정된 가스는 윈도우로부터 잔해를 방출시키기 위해 미국특허 제5,359,629호(본원에 참조 통합됨)에 설명된 방식으로 윈도우 유닛에 보내진다. 마스터 오실레이터의 이득 영역은 본 실시예에서 약 3% 아르곤, 0.1%의 F2및 나머지는 네온으로 된 레이저 가스를 통해 전극간의 방전에 의해 생성된다. 가스 흐름은 다음 펄스 이전에 방전 영역으로부터 각각의 방전의 잔해를 제거한다. 공진 캐비티는 빔 방향에 수직으로 장착되고 193nm의 광의 약 30%를 반사하고 193nm의 광의 약70%를 통과시키도록 코팅된 CaF2미러로 구성된 출력 커플러에 의해 출력측에 생성된다. 공진 캐비티의 대향측 경계는 미국특허 제6,128,323호에 설명된 라인 협소화 유닛과 유사한 도1에 도시된 바와 같은 라인 협소화 유닛(10C)이다. LNP는 도 16,16a,16b1,16b2에 도시된 바와 같이 하기에 설명된다. 이 라인 협소화 유닛에서 주요 개선은 45배 정도 수평방향의 빔을 확대시키기 위한 4개의 CaF 빔 확대 프리즘과 상대적으로 큰 피벗을 위한 스테퍼 모터에 의해 제어된 조정 미러와 약 300pm 폭 ArF 고유 스펙트럼으로부터 선택된 UV광의 초협대역을 반사하는 리트로우 구성으로 장착된 mm당 약 80 패싯을 갖는 미러에쉘격자(10C3)의 초미세 조정을 제공하는 압전 드라이버를 포함한다. 마스터 오실레이터는 종래 리소그래피 광원에 사용되는 것 보다 더욱 낮은 F2농도로 동작된다. 이것은 대역폭 보다 상당한 감소를 가져온다. 다른 개선은 오실레이터 빔의 단면을 수평방향에서 1.1mm 및 수직방향에서 7mm로 제한하는 좁은 후방 애퍼어처이다.
바람직한 실시예에서 마스터 오실레이터 및 전력 증폭기를 위한 주 충전 커패시터 뱅크는 지터 문제를 감소시키기 위해 나란히 충전된다. 이것은 두 펄스 파워 시스템의 펄스 압축회로에서의 펄스 압축을 위한 시간이 충전 커패시터의 충전 레벨에 의해 좌우되므로 바람직하다. 펄스 에너지 출력은 충전 전압의 조정에 의해 펄스-펄스 기준으로 제어된다. 이것은 마스터 오실레이터의 빔 파라미터를 제어하기 위해 전압의 사용을 약간 제한한다. 그러나, 레이저 가스 압력 및 F2농도는 광범위 펄스 에너지 증가 및 레이저 가스 압력에 대한 소망하는 빔 파라미터를 달성하기 위해 용이하게 제어될 수 있다. 대역폭은 레이저 가스 압력 및 F2농도를 감소시킨다. 이들 제어 특징은 하기에 설명된 LNP 제어에 부가된다. (마스터 오실레이터를 위해 방전과 광-아웃간의 시간은 F2농도(1ns/kPa)의 함수이고, 따라서F2농도는 타이밍을 변동시키도록 변경될 수 있다.)
전력 증폭기
바람직한 실시예의 전력 증폭기는 대응하는 마스터 오실레이터 방전 챔버에 유사한 레이저 챔버로 구성된다. 두 개별적인 챔버를 갖는 것은 펄스 에너지와 일련의 펄스(도우즈라 칭함)의 집적 에너지가 파장과 대역폭과 별개로, 큰 정도로, 제어될 수 있게 한다. 이것은 양호한 도우즈 안정성이 될 수 있게 한다. 챔버의 모든 컴포넌트는 동일하고 제조 프로세스 동안 상호변경가능하다. 그러나, 동작시에, 가스 압력은 PA에 비해 MO에서 상당히 낮다. 전력 증폭기의 압축헤드는 본 실시예에서 압축헤드와 유사하고 압축헤드의 컴포넌트는 제조 프로세스 동안 상호변경가능하다. 한 차이점은 압축헤드 커패시터 뱅크의 커패시터는 PA에 비해 상당히 높은 인덕턴스를 산출하기 위해 MO에 대해 더욱 널리 위치된다. 펄스 전력 증폭기의 전기 컴포넌트와 챔버의 밀접한 동질성은 펄스 형성 회로의 타이밍 특성은 지터 문제가 최소화되도록 실질적으로 동일한 것을 보장한다.
전력 증폭기는 전력 증폭기 방전 챔버의 방전 영역을 통한 두 개의 빔 통로를 위해 구성된다. 충전 전압은 소망 펄스 및 도우즈 에너지를 유지하기 위해 펄스-펄스 기반으로 선택된다. F2농도 및 레이저 가스 압력은 소망하는 충전 전압 범위를 공급하기 위해 조정될 수 있다. 이 소망 범위는 dE/dV의 소망값을 산출하도록 선택될 수 있는 데 이는 전압에 의한 에너지의 변화가 F2농도 및 레이저 가스 압력의 함수이기 때문이다. 주입 타이밍은 충전 전압에 기초한다. 주입 빈도는 상태를 비교적 일정하게 유지하고 연속적일 수 있고 거의 연속적일 수 있다. 이들 실시예의 몇몇 사용자들은 F2주입간에 더욱 큰 지속시간(2시간 정도와 같은)을 선호할 수 있다.
펄스 파워 회로
도 1에 도시된 실시예에서, 기본 펄스 파워 회로는 종래의 리소그래피를 위한 엑시머 레이저 광원의 펄스 파워 회로와 유사하다. 그러나, 출력 커패시터의 개별 펄스 파워 회로 다운스트림은 각각의 방전 챔버를 위해 제공된다. 바람직하게 단일 공진 충전기는 두 충전 커패시터 뱅크가 정밀하게 동일 전압으로 충전되는 것을 보장하기 위해 병렬로 연결된 두 충전 커패시터 뱅크를 충전한다. 주요한 개선은 펄스 파워 회로의 컴포넌트의 온도를 조절하도록 제공된다. 바람직한 실시예에서, 포화 인덕터의 자기 코어의 온도는 모니터링되고 온도 신호는 두 챔버의 상대적 방전 타이밍을 조절하기 위해 피드백 회로에 이용된다. 도 3a, 3b는 MO를 위해 사용되는 기본 펄스 파워 회로의 주 요소를 도시한다. 동일 기본 회로는 PA를 위해서도 사용된다.
공진 충전기
도 3b에 바람직한 공진 충전기 시스템이 도시되어 있다. 주 회로 요소는:
I1 - 정 DC 전류 출력을 구비한 3-위상 파워 공급부(300).
C-1 - 도 3a에 도시된 C0커패시터(42) 보다 큰 크기 정도의 소스 커패시터(302).
Q1, Q2 및 Q3 - C0상에 조절 전압을 충전 및 유지하기 위한 전류 흐름을 제어하는 스위치.
D1, D2 및 D3 - 전류 단일 방향 흐름을 제공한다.
R1 및 R2 - 제어 회로에 전압 피드백을 제공한다.
R3 - 작은 초과 충전인 경우에 C0상에 전압의 고속 방전을 허용한다.
L1 - 전류 흐름 및 셋업 충전 전송 타이밍을 제한하기 위해 C0커패시터 뱅크(42)와 C-1 커패시터(302)간의 공진 인덕터.
제어 보드(304) - Q1, Q2 Q3가 회로 피드백 파라미터에 기초하여 개방 및 폐쇄하도록 명령함.
이 회로는 드-칭(De-Qing)으로 알려진 스위치와 함께, 다이오드(D3) 및 스위치(Q2)를 포함한다. 이 스위치는 공진 충전 프로세스 동안 제어 유닛이 인덕터를 단락시킬 수 있도록 함으로써 회로의 조절을 개선시킨다. 이 "드-칭"은 충전 인덕터(L1)의 전류에 저장된 에너지가 커패시터(C0)로 전송되는 것을 방지한다.
레이저 펄스를 위한 필요 이전에 C-1상의 전압은 약 1500 볼트로 충전되고 스위치(Q1-Q3)는 개방된다. 레이저로부터의 명령시, Q1는 폐쇄된다. 이 시점에서 전류는 충전 인덕터(L1)를 통하여 C-1으로부터 C0로 흐른다. 이전 단락에서 설명한 바와 같이, 제어보드상의 캘큐레이터는 레이저로부터의 명령 전압 셋트 포인트에 대한 L1에 흐르는 전류 및 C0상의 전압을 평가하게 된다. Q1은 CO 커패시터 뱅크상의 전압과 인덕터(L1)에 저장된 등가 에너지를 더한 것이 소망 커맨드 전압과 같을 경우 개방한다. 그 계산은:
Vf= [ VC0s 2+ ((L1* ILIs 2) / C0) ]0.5이고
여기서,
Vf= Q1 개방 후 C0상의 전압과 L1의 전류는 제로로 간다.
VC0s= Q1 개방 경우 C0상의 전압.
ILIs= Q1 개방 경우 L1을 통해 흐르는 전류.
Q1 개방 후 L1에 저장된 전류는 CO 커패시터 뱅크상의 전압이 코맨드 전압과 대략 동일할 때 까지 D2를 통해 CO 커패시터 뱅크에 전송되기 시작한다. 이 시점에 Q2는 폐쇄되고 CO로의 전류 흐름은 중지되고 D3를 통해 보내진다. "드-칭" 회로에 추가하여, 블리드다운 회로로부터의 R3 및 Q3는 CO상에서 추가의 미세 조정을 허용한다.
블리드다운 회로(216)의 스위치(Q3)는 인덕터(L1)를 통해 흐르는 전류가 중지되는 경우 제어 보드에 의해 폐쇄되도록 명령되고 C0상의 전압은 소망 제어 전압으로 블리드다운되고; 그후 스위치(Q3)는 개방된다. 커패시터(C0) 및 레지스터(R3)의 시간상수는 전체 전하량의 인시가능한 양이 되지 않고 커패시터(C0)를 코맨드으로 블리드다운시키기에 충분한 고속이어야 한다.
결과적으로, 공진 충전기는 조절 제어의 3레벨로 구성될 수 있다. 몇몇 거친 조절이 충전 사이클 동안 스위치(Q1)의 개방 및 에너지 캘큐레이터에 의해 제공된다. CO 커패시터 뱅크상의 전압이 타겟값에 근접함에 따라, 드-칭 스위치는 폐쇄되고, C0상의 전압이 타겟값 또는 악간 그 이상인 경우 공진 충전을 중지시킨다. 바람직한 실시예에서, 스위치(Q1) 및 드-칭 스위치는 +/-0.1% 보다 양호한 정확도를 갖춘 조절을 제공하기 위해 사용된다. 추가 조절이 필요로 되는 경우, 전압 조절에 대한 3 제어가 이용될 수 있다. 이것은 CO들을 정밀한 타겟값으로 방전다운시키는 R3(도 5b에 216으로 도시된) 및 스위치(Q3)로 된 블리드다운 회로이다.
CO's의 다운스트림에 대한 개선
상기한 바와 같이, 본발명의 PA 및 MO의 펄스 파워 시스템은 각각의 종래기술의 시스템에 사용된 바와 같은 동일 기본 설계(도 3a)를 이용한다. 그러나, 기본 설계에서의 주요 개선은 매우 증가된 반복율에 의한 결과인 열 로드에서의 3 증가 인수에 필요로 된다.
정류자 및 압축 헤드에 대한 상세한 설명
본 단락에서, 정류자 및 압축 헤드에 대해 상세히 설명된다.
고채상태 스위치
고채상태 스위치(46)는 펜실베이니아 영우드 소재의 Powerex, Inc.사에 의해 제공된 P/N CM 800 HA-34H IGBT이다. 실시예에서, 그러한 두 스위치가 병렬로 사용된다.
인덕터
인덕터(64)는 1:25 승압 펄스 변압기(56)의 인덕션 유닛의 하나의 C1커패시터 뱅크(52)의 측에 있는 미국특허 제5,448,580호 및 5,315,611호에 설명된 종래 시스템의 그것들과 유사한 포화 인덕터이다.
커패시터
도 5에 도시된 커패시터 뱅크(42,52,62 및 82)(즉, C0, C1, Cp-1,및 Cp)는 모두 병렬로 연결된 오프-더-셀프 커패시터의 뱅크로 구성된다. 커패시터(42 및 52)는 독일의 비마 또는 노쓰 캐롤라이나의 스테이츠빌 소재의 비샤이 로에더스타인과 같은 공급자로부터 구입가능한 필름형이다. 커패시터 뱅크(62 및 64)는 일본의 TDK 및 무라타과 같은 판매자로부터의 고전압 세라믹 커패시터의 병렬 어레이로 구성된다. 이 ArF 레이저에서의 사용을 위한 실시예에서 커패시터 뱅크(82; 즉 Cp)는 9.9nF 커패시턴스를 위한 33개의 0.3nF 커패시터의 뱅크로 구성되고; Cp-1는 전체 9.6nF 커패시턴스를 위한 24개의 0.40nF 커패시터의 뱅크로 구성되고; C1는 5.7㎌ 커패시터 뱅크이고 C0는 5.3㎌커패시터 뱅크이다.
펄스 변압기
펄스 변압기(56)는 미국특허 제5,448,580호 및 제5,313,481호에 설명된 펄스 변압기와 유사하다. 그러나 본 실시예의 펄스 변압기는 제2 권선부에서 단일 권선을 갖고 승압 비 1:24를 위해 제1 권선부의 1/24와 등가인 24 인덕션 유닛을 갖는다. 변압기의 제2권선은 PTFE(Teflon)으로 된 기밀 피팅 절연 튜브 내부에 장착된 단일한 OD 스테인리스강 로드이다. 변압기는 1:25인 승압비를 제공한다. 따라서, 인덕션 유닛의 +와 - 단자간의 -1400볼트는 제2 측상에 약 -35,000 볼트를 산출한다. 이 단일 권선 제2 권선부 설계는 초고속 출력 상승 시간을 허용하는 초저 누설 인덕턴스를 제공한다.
레이저 챔버 전기 컴포넌트의 상세사항
Cp 커패시터(82)는 챔버 압력 베셀의 상부에 장착된 33개 0.3nf 커패시터의 뱅크로 구성된다. (통상적으로 ArF 레이저는 3.5% 아르곤, 0.1% 플루오르 및 나머지는 네온인 레이징 가스로 동작된다) 전극은 0.5 내지 1.0 인치 바람직하게는 5/8 인치로 분리된 약 28인치 길이이다. 본 실시예에서, 최상부 전극은 캐소드로 칭해지고 최하부 전극은 아노드로 칭해지고 도 5에 지시된 바와 같이 접지연결된다.
방전 타이밍
ArF, KrF 및 F2전기 방전 레이저에서, 전기 방전은 약 50ns(즉, 1초의 10억분의 50) 지속한다. 이 방전은 레이징 작용에 필요한 밀집 반전을 생성하지만 이 반전은 방전 시간 동안만 존재한다. 그러므로, 주입 시딩된 ArF, KrF 및 F2레이저를 위한 주요 필요조건은 마스터 오실레이터로부터의 시드 빔은, 밀집이 레이저 가스에서 반전되는 경우 10억분의 50초 동안 전력 증폭기의 방전 영역을 통과하고 따라서 시드 빔의 증폭이 발생한다. 방전의 정밀 타이밍에 대한 주요 장해는 약 40-50ns만 지속하는 방전의 시작과 클로우즈되도록 트리거링된 시간 스위치(42)(도 5에 도시된 바와 같은)간에 약 5 마이크로초의 지연이 있다는 사실이다. C0들과 전극간의 회로를 통해 링시키기 위해 펄스에 대해 약 5 마이크로초의 시간간격이 걸린다. 이 시간 간격은 충전 전압과 회로의 인덕터의 온도의 크기에 따라 상당히 변동한다.
본 명세서에 설명된 바람직한 실시예에도 불구하고, 본원인은 약 2ns(즉, 일초의 10억분의 2) 미만의 상대 정확도로 두 방전 챔버의 방전에 대한 타이밍 제어를 제공하는 전기 펄스 파워 회로를 개발하였다. 두 회로의 블록도가 도 4에 도시되어 있다.
본원인은 타이밍이 약 5-10ns/볼트만큼 충전 전압으로 변동하는 테스트를 핸하였다. 이것은 충전 커패시터를 충전하는 고전압 전력 공급부의 정확도 및 반복가능성에 대한 엄격한 필요조건을 제시한다. 예로서, 5ns의 타이밍 제어가 소망되는 경우, 볼트당 10ns의 시프트 민감도로, 레졸루션 정확도는 0.5 볼트가 될 것이다. 1000V의 정격 충전 전압에 대해, 이것은 커패시터가 초당 4000회 특정값으로 충전되어야만 하는 경우 달성하기가 매우 곤란한 0.05%의 충전 정확도를 필요로 한다.
이 문제에 대한 본원인의 해결책은 상기한 바와 같이 및 도1 및 4에 지시된 바와 같이 단일 공진 충전기(7)로부터 병렬로 MO 및 PA의 충전 커패시터를 충전시키는 것이다. 또한 시간 지연 대 충전 전압 곡선은 도 4a에 도시된 바와 매칭되도록 두 시스템에 대해 2 펄스 압축/증폭 회로를 설계하는 것이 중요하다. 이것은 각각의 회로에 어느정도 가능한 동일 컴포넌트를 이용하여 용이하게 행해질 수 있다.
따라서, 본 실시예의 타이밍 변동(지터로서 참조된 변동)을 최소화하기 위해, 본원인은 유사한 컴포넌트를 갖춘 방전 챔버를 위한 펄스 전력 컴포넌트를 설계하고 시간 지연 대 전압 곡선이 도 4a에 지시된 바와 같이 서로 추적한다는 사실을 확인하였다. 본원인은 충전 전압의 정규 동작 범위에 걸쳐, 전압에 따른 시간 지연의 상당한 변화 및 전압에 따른 변화가 두 회로 모두에 대해 거의 동일함을 확인하였다. 따라서, 병렬 충전된 두 충전 커패시터로 충전 전압은 방전의 상대 타이밍의 변화없이 넓은 동작 범위에서 변동될 수 있다.
펄스 전력 시스템에서의 전기 컴포넌트의 온도 제어는 온도 변동이 펄스 압축 타이밍(특히, 포화 인덕터에서의 온도 변화)에 영향을 미칠 수 있으므로 또한 중요하다. 그러므로, 설계목표는 온도 변동을 최소화하는 것이고 다른 연구법은 온도 감지 컴포넌트의 온도를 모니터하는 것이고 트리거 보상하기 위해 트리거 타이밍을 조정하는 피드백 제어를 사용하는 것이다. 공지된 동작 이력으로 과거 타이밍 변동에 관한 이력 데이터에 기초한 조정을 하기 위해 인식 알고리즘으로 프로그래밍된 프로세서에 제어가 구비될 수 있다. 이력 데이터는 그후 레이저 시스템의 현재 동작에 기초하여 타이밍 변화를 예상하기 위해 적용된다.
트리거 제어
두 챔버의 각각의 방전의 트리거링은 미국특허 제6,016,325호에 설명된 것과 같은 트리거 회로를 위해 개별적으로 이용하여 달성된다. 이들 회로는 트리거와 방전간의 시간이 가능한한 일정하게 유지되도록 펄스 전력의 전기 컴포넌트에서의 온도 변화와 충전 전압에서의 변동을 보정하기 위해 타이밍 지연을 추가한다. 상기한 바와 같이, 두 회로는 기본적으로 동일하므로, 보정 후의 변동은 거의 동일하다(즉, 서로에 대해 약 2ns 이내이다).
방전 타이밍을 제어하기 위한 기술
방전의 상대적 타이밍은 빔 품질에 중요 영향을 미칠 수 있으므로, 추가 단계들이 방전 타이밍을 제어하기 위해 정당화될 수 있다. 예로서, 레이저 동작의 몇몇 모드는 충전 전압에서의 넓은 스윙 또는 인덕터 온도에서의 넓은 스윙이 되는결과로 된다. 이들 넓은 스윙은 방전 타이밍 제어를 정교하게 할 수 있다.
모니터 타이밍
방전의 타이밍은 펄스-펄스 기준으로 모니터될 수 있고 시간 차는 스위치(42)를 닫는 트리거 신호의 타이밍을 조절하기 위해 피드백 제어 시스템에 사용될 수 있다. 바람직하게, PA 방전은 어떠한 레이저 빔도 PA에서 산출되지 않는다면 매우 열악한 타이밍이 될 수 있으므로 레이저 펄스 보단 방전 형광(ASE로 칭함)를 준수하기 위해 광전셀을 사용하여 모니터된다. MO를 위해 ASE 또는 시드 레이저 펄스가 사용될 수 있다.
바이어스 전압 조정
펄스 타이밍은 도 3a에 도시된 바와 같이 인덕터(48,54 및 64)를 위한 바이어스를 제공하는 인덕터(LB1,LB2및 LB3)를 통하는 바이어스 전류를 조정함으로써 증가 또는 감소될 수 있다. 기타 기술이 이들 인덕터를 포화시키는 데에 필요한 시간을 증가시키는 데에 사용될 수 있다. 예로서, 코어 재료는 펄스 타이밍 모니터로부터의 피드백 신호에 기초하여 제어된 피드백일 수 있는 초고속 응답 PZT 요소와 기계적으로 분리될 수 있다.
조정가능한 기생 로드
조정가능한 기생 로드는 CO들의 펄스 파워 회로 다운스트림중의 하나 또는 모두에 추가될 수 있다.
추가의 피드백 제어
충전 전압 및 인덕터 온도 신호는 펄스 모니터 신호에 추가하여, 상기한 트리거 타이밍의 조정에 추가하여 상기한 바이어스 전압 또는 코어 기계적 분리를 조정하기 위해 피드백 제어에 사용될 수 있다.
대안 펄스 파워 회로
제2 바람직한 펄스 파워 회로는 도 5c1, 5c2 및 5c3에 도시되어 있다. 이 회로는 C0를 높은값으로 충전시키기 위한 고전압 파워 공급부를 이용하지만 상기 설명된 것과 유사한다. 상기한 바람직한 실시예에서, 공장전력 230 또는 460 볼트 AC로 동작하는 고전압 펄스 파워 공급 유닛은 상기한 고속 충전 공진 충전기이고 4000 내지 6000 Hz의 주파수로 두 개의 2.17㎌를 약 1100V 내지 2500V 범위의 전압으로 정밀하게 충전되도록 설계되었다. 마스터 오실레이터를 위한 정류자와 압축헤드의 전기 컴포넌트는 전력 증폭기의 대응 컴포넌트에 실행가능하도록 동일하다. 이것은 시간 응답을 두 회로에 유지하도록 실행할 수 있을 정도로 동일하게 행해진다. 스위치(46)는 각각이 병렬로 배열되고 3300V로 정격되어 있는 두 개의 IGBT 스위치의 뱅크이다. C0커패시터 뱅크(42)는 2.17㎌ C0뱅크를 제공하기 위해 64 병렬 레그로 배열된 128개 0.068㎌ 1600V 커패시터로 구성된다. C1커패시터 뱅크(52)는 2.33㎌의 뱅크 커패시턴스를 제공하기 위해 68개 병렬 레그로 배열된 136개 0.068㎌ 1600V 커패시터로 구성된다. Cp및 Cp-1커패시터 뱅크는 도 5를 참조하여 설명된 것과 동일하다. 54개 포화 인덕터는 4.9인치 OD 및 3.8인치 ID를 갖춘 0.5인치 두께 50%-50% Ni-Fe로 구성된 5개 코어를 갖춘 약 3.3nH의 포화 인덕턴스를 제공하는 단일 권선 인덕터들이다. 64개 포화 인덕터는 각각이 5인치 OD 및 2.28인치 ID를 갖춘 0.5인치 두께이고 80%-20% Ni-Fe로 구성된 5개 코어를 갖춘 약 38nH의 포화 인덕턴스를 제공하는 두 권선 인덕터들이다. 트리거 회로에는 2 나노초의 타이밍 정확도를 갖춘 폐쇄 IGBT(46)가 제공된다. 마스터 오실레이터는 전력 증폭기를 위해 IGBT(46)의 트리거링 이전에 약 40ns 트리거링된다. 그러나, 정밀한 타이밍은 마스터 오실레이터의 출력과 전력 증폭기 방전의 타이밍을 측정하는 센서로부터 피드백 신호에 의해 결정된다.
타이밍 제어를 위한 대안 기술
상기한 바와 같이, 펄싱된 파워 시스템의 자기 펄스 압축의 스루풋 타이밍은 재료 온도의 기능등이 될 수 있는 자기재료 특성에 좌우된다. 정밀한 타이밍을 유지하기 위해, 이들 재료 특성을 직간접적으로 모니터 및/또는 예측하는 것이 매우 중요하다. 상기한 한 방법은 타이밍을 예측하기 위해 이전에 수집된 데이터(온도의 함수로서 지연 시간)와 함께 온도 모니터를 이용한다.
대안 연구법은 마그네틱스가 펄스간에(또는 제1 펄스 이전에) 역 바이어싱되는 바와 같이 자기특성(포화 시간)을 정확하게 측정하기 위해 자기 스위치 바이어스 전류를 이용한다. 바이어스 회로는 레이저 타이밍이 정확하게 제어되도록 동일 시간 측정 포화 시간에 그리고 재료를 역 바이어싱시키기 위해 자기 스위치에 충분한 전압을 공급한다. 스위치를 역 바이어싱시키는 데에 이용된 볼트-초 곱은 순방향에서의 정규 방전 동작 동안 필요로 되는 것과 등가이어야 하고 펄싱된 파워 시스템의 스루풋 지연시간은 업커밍 펄스의 동작전압을 알도록 용이하게 계산될 수 있다.
도 5d에 제안된 연구법이 도시되어 있다. 초기 동작은 자기 스위치(L1)는 이미 순방향으로 포화되어있고, 두 개의 바이어스 인덕터, L바이어스, 및 스위치(S4)를 통해 전력 공급부(BT1)에 의해 제공된다. 이 전류는 ~100V를, ~30ns후에 펄스하는 자기 스위치(L1)에 인가하는 개방 S4 및 폐쇄 S2에 의해 인터럽트된다. 타이머는 S2를 폐쇄하는 경우 트리거링되고 전류 프로브가 L1의 포화를 탐지하는 경우 카운팅을 중지하고, 따라서 인가된 전압 100V에 대해 L1의 포화 타이밍을 계산한다. L1은 이제 역 바이어싱되고 잔여 전압이 S3 및 기타 컴포넌트에 의해 회로로부터 누출되면 주요 펄스 바전 시퀀스에 대해 준비상태에 있다.
버스트 유형 동작
타이밍의 피드백 제어는 레이저가 연속적 기준으로 동작하는 경우 비교적 용이하고 효과적이다. 그러나, 리소그래피 레이저는 다수의 웨이퍼의 각각상에 20영역을 프로세싱하기 위해 다음과 같은 버스트 모드에서 동작한다.
웨이퍼를 제위치로 이동시키기 위해 1.2분 동안 오프상태에 둠.
영역 1을 조명하기 위해 0.2초 동안 4000Hz로 함.
영역 2로 이동시키기 위해 0.3초 동안 오프상태에 둠.
영역 2를 조명하기 위해 0.2초 동안 4000Hz로 함.
영역 3으로 이동시키기 위해 0.3초 동안 오프상태에 둠.
영역 3을 조명하기 위해 0.2초 동안 4000Hz로 함.
................
영역 199를 조명하기 위해 0.2초 동안 4000Hz로 함.
영역 200으로 이동시키기 위해 0.3초 동안 오프상태에 둠.
영역 200을 조명하기 위해 0.2초 동안 4000Hz로 함.
웨이퍼를 변경하기 위해 1분 동안 오프상태에 둠.
다음 웨이퍼상의 영역 1을 조명하기 위해 0.2초 동안 4000Hz로 함.
이 프로세스는 수 시간 동안 반복될 수 있지만, 1.2분 보다 긴 주기에 대해 시간-시간으로부터 인터럽트될 수 있다.
다운 시간의 길이는 MO 및 PA의 펄스 파워 시스템간의 상대 타이밍에 영향을 미치고 조정은 MO로부터의 시드빔이 소망 위치에 있는 경우 PA에서 방전이 일어나는 것을 보장하도록 트리거 제어에 필요로 될 수 있다. 각각의 챔버로부터 나오는광의 타이밍 및 방전을 모니터링함으로써 레이저 동작은 최선의 성능을 달성하기 위해 트리거 타이밍(약 2ns 내로 정확한)을 조정할 수 있다.
바람직하게 레이저 제어 프로세서는 타이밍 및 빔 품질을 모니터링하고 최선의 성능을 위한 타이밍을 조정하도록 프로그래밍된다. 다양한 동작 모드 셋트에 적용가능한 빈 값의 셋트를 발전시키는 타이밍 알고리즘은 본발명의 실시예에서 이용된다. 이들 알고리즘은 전류 펄스를 위한 타이밍 값이 하나이상의 이전 펄스(바로 이전 펄스와 같은)를 위해 수집된 피드백 데이터에 기초하여 설정되는 경우 연속 동작 동안 피드백 제어로 스위칭되도록 설계된다.
어떠한 출력 방전도 없음
상기한 바와 같은 타이밍 알고리즘은 연속 및 규칙적 반복 동작을 위해 잘 동작된다. 그러나, 타이밍의 정확도는 레이저가 5분과 같은 비통상적 시간 주기 동안 오프된 후에 제1 펄스와 같은 비통상적 상황에 좋지 않을 수 있다. 몇몇 상황에서 버스트의 제1 하나 또는 두 펄스를 위한 비정밀 타이밍은 문제를 일으키지 않는다. 바람직한 기술은 MO로부터의 시드 빔의 증폭이 불가능하도록 일 또는 이 펄스 동안 MO 및 PA의 방전이 의도적으로 시퀀스를 벗어나도록 레이저를 프리프로그래밍하는 것이다. 예로서, 레이저는 MO의 트리거 이전에 PA 110ns의 방전을 트리거하도록 프로그래밍될 수 있다. 이 경우, 레이저로부터 중요한 출력은 없지만 레이저 도량학 센서는 타이밍 파라미터를 결정할 수 있어서 제1 출력 펄스를 위한 타이밍 파라미터는 정밀하게 된다.
출원인에 의한 테스트
출원인은 마스터 오실레이터 및 전력 증폭기의 방전의 상대 타이밍의 충격을 측저하는 주의깊은 실험을 행하였다. 이들 테스트는 라인 협소화된 출력(밀리주울로)과 전력 증폭기의 출력(밀리주울로)으로부터 증폭 자극된 출력(ASE;amplified stimulated emission)의 펄스 에너지를 플롯으로 나타내어진 도 5에 요약되어있다. 두 플롯은 전력 증폭기의 방전의 시작과 마스터 오실레이터의 방전의 시작간의 지연의 함수로서 나타내었다. ASE의 에너지 스케일은 라인 협소화된 광 출력의 그것보다 더 작다. 리소그래피 고객 규격상세사항은 ASE가 라인 협소화된 레이저 출력의 작은 부분일 것을 요구한다. 대표적 규격상세사항은 ASE가 30 펄스 윈도우를 위한 라인 협소화된 에너지의 5X10-4배 작아야 한다. 도 5에 도시된 바와 같이, ASE는 협대역 펄스가 최대일 때 실질적으로 제로이고, 즉, 이 경우 MO 방전이 PA 방전 보다 25 내지 40ns 만큼 앞선더. 그렇지않으면, ASE는 상당하게 된다.
상기한 바와 같이, MO 및 PA 펄스 파워 회로는 두 개의 펄스 파워 회로의 응답에 관한 양호한 피드백 정보로 액 2ns 의 타이밍 정확도로 트리거링될 수 있고, MO 및 PA는 라인 협소화된 펄스 에너지가 최대로 되고 ASE는 상당하지 않은 범위내오 방전될 수 있다. 그러므로, 양호한 피드백 제어에 의한 연속 동작을 위해, 두 시스템의 제어는 상대적으로 용이하다. 그러나, 이들 레이저의 대표적 동작은 상기한 바와 같이 버스트 모드 동작이다. 그러므로, 버스트의 제1 펄스는 나쁜 결과를 산출할 가능성있는 데 이는 임의의 피드백 데이터가 구식으로되고 전기 컴포넌트에서의 온도 변화가 그들의 응답에 영향을 미칠 수 있게 된다.
한 해결책은 최신 타이밍 데이터가 획득될 수 있도록 각 버스트 이전에 테스트 버스트를 개시시키는 것이다. 이 해결책은 셔터의 개방 및 폐쇄와 연관된 지연을 포함하는 여러 이유로 인해 바람직하지 못하다.
양호한 해결책은 상기한 바와 같이 MO의 출력에 대한 어떠한 증폭도 있을 수 없도록 선택된 상대시간에 두 챔버에서 방전이 일어나도록 하는 것이다. 이것은, 도 5의 데이터의 주제인 시스템의 경우에, MO는 PA가 방전된 후 약 40ns 후에 방전되어야 하거나 MO는 PA가 방전되기 이전 약 110ns 일찍 방전되어야 한다. 도 6 및 7은 이들 두 지터 제어 기술을 설명한다.
도 6에서 이전 펄스로 인해 1분 이상 경과한다면 PA는 MO가 방전된 후 110ns에서 방전된다. 그렇지않으면 소망 펄스 에너지를 산출하기 위해 PA는 MO가 방전된 후 30ns에서 방전된다. 이 기술은 타이밍 데이터 수집을 요구하며, 트리거와 방전간의 타이밍의 임의의 변화에 대해 피드백 제어가 행해진다. 이 방전은 MO 및 PA 모두에서 방전 산출된 ASE 광을 검출하는 광전셀에 의해 검출된다.
도 7에서 이전 펄스로 인해 1분 이상 경과한다면 MO는 PA 가 방전된 후 40ns에서 방전된다. 이전과 같이, 타이밍 데이터는 수집되어 방전이 최대 협대역 출력 및 최소 ASE를 산출하여야 하는 경우 제1 펄스에 후속하여 방전이 일어나는 것을 보장하는 데에 사용된다.
따라서, 1분 이상의 유휴 시간 후 각각의 버스트의 제1 펄스는 ASE의 매우 작은 작은양으로 실질적으로 제로 라인 협소화된 출력을 산출한다. 출원인은 적어도 30 펄스의 펄스 윈도우를 위해 ASE는 집적된 협대역 에너지의 2X10-4보다 작게된다. 바람직한 레이저의 펄스는 초당 4000 펄스율에 있으므로 펄스의 버스트의 시작에서 단일 펄스의 손실은 레이저 사용자에게 커다란 문제를 일으키는 것으로 예상되지 않는다.
변형예
마찬가지 결과를 달성하기 위해 다양한 수정이 도 6 및 7의 개괄된 프로시저에 대해 행해진다. 도시된 30초 타겟과 같은 시간값은 최선 결과를 제공하도록 선택되어야 한다. 1분은 수 밀리초 만큼 작을 수 있어서 각각의 버스트의 펄스는 사라진다. 도 5의 데이터를 기초로 한 도 6의 상황에서, 110ns 시간 주기는 약 70ns 만큼 짧아지고 도 7의 상황에서 40ns 시간 주기는 약 20ns 만큼 짧아진다. 프로그램은 각각의 버스트의 시작에서 또는 확장된 유휴 기간에 뒤이어지는 각각의 버스트의 시작에서 두 개 또는 여러 어떠한 출력 방전도 없도록 수정될 수 있었다. P-셀 출력 임계치 이외의 파라미터는 방전의 시작 시간들을 결정하는 데에 사용될 수 있었다. 예를들어, 피킹 커패시터 전압이 모니터링될 수 있었다. 방전 시작 직후 전압의 급작스런 강하는 방전의 시작 시간으로서 사용될 수 있었다.
-----------------------------------------------------------------------
본 발명이 다양한 실시예의 관점에서 설명되었을 지라도 당업자는 다양한 변형이 본발명의 범위를 벗어나지 않고 행해질 수 있는 것을 인식하게 될 것이다. 예로서, 추가 데이터가 타이밍 정밀도를 개선시킬 수 있도록 추가 피드백 정보를 제공하도록 수집될 수 있다. 전기 컴포넌트의 온도는 타이밍에 영향을 미칠 수 있어서 컴포넌트의 온도는 모니터될 수 있고 수집된 데이터는 온도의 함수로서 수집된 이력 타이밍 데이터와 상관될 수 있고 적절한 보정이 도 6 및 7에 도시된 알고리즘에 포함될 수 있다. 기타 기술도 펄스 파워 컴포넌트의 타이밍 응답을 결정하는 데에 사용될 수 있다. 예로서, 펄스 파워 회로의 포화 인덕터는 대부분의 타이밍 변동을 산출한다. 테스트 전압은 그 응답을 결정하기 위해 이들 리액터에 걸쳐 인가될 수 있고 수집된 데이터는 방전 타이밍을 보정하는 데에 사용될 수 있다. 따라서, 상기한 발명의 개시는 본발명의 범위를 제한하려는 의도가 아니며 첨부된 청구항 및 그 법적 등가물에 의해 결정되어야 한다.

Claims (27)

  1. 타이밍 제어 특징부를 갖춘 초 협대역이고 2 챔버를 갖는 고 반복율 가스 방전 레이저 시스템에 있어서,
    A) 1) a) 제1 레이저 가스와, b) 제1 방전 영역을 정의하는 제1 쌍의 신장되고 이격된 전극을 포함하는, 제1 방전 챔버,
    2) 초당 4,000 펄스 이상의 범위의 반복율로 동작하는 경우, 각각의 펄스에 뒤이어지는, 다음 펄스 이전에 실질적으로 모든 방전 산출된 이온을 상기 제1 방전 영역으로부터 클리어시키기에 충분한 상기 제1 레이저 가스의 속도를 상기 제1 방전 영역에 발생시키기 위한 제1 팬,
    3) 상기 제 1 레이저 가스로부터 적어도 16kw의 열 에너지를 제거할 수 있는 제1 열 교환기 시스템, 및
    4) 상기 제1 레이저 방전 챔버에 산출된 광 펄스의 스펙트럼 대역폭을 협소화하기 위한 라인 협소화 유닛을 포함하는,
    제1 레이저 유닛;
    B) 1) a) 제2 레이저 가스와, b) 제2 방전 영역을 정의하는 제2 쌍의 신장되고 이격된 전극을 포함하는, 제2 방전 챔버,
    2) 초당 4,000 펄스 이상의 범위의 반복율로 동작하는 경우, 각각의 펄스에 뒤이어지는, 다음 펄스 이전에 실질적으로 모든 방전 산출된 이온을 상기 제2 방전 영역으로부터 클리어시키기에 충분한 상기 제2 레이저 가스의 속도를 상기제2 방전 영역에 발생시키기 위한 제2 팬, 및
    3) 상기 제 2 레이저 가스로부터 적어도 16kw의 열 에너지를 제거할 수 있는 제2 열 교환기 시스템을 포함하는,
    제2 레이저 유닛;
    C) 약 5mJ을 초과하는 정밀하게 제어된 펄스 에너지로 초당 약 4,000펄스의 반복율로 레이저 펄스를 생성하기에 충분한 상기 제2 쌍의 전극과 상기 제1 쌍의 전극에 전기 펄스를 공급하도록 구성된 펄스 파워 시스템;
    D) 상기 2 챔버 레이저 시스템에 의해 산출된 레이저 출력 펄스의 펄스 에너지, 파장 및 대역폭을 측정하고 상기 레이저 출력 펄스를 피드백 제어 장치에서 제어하기 위한 레이저 빔 측정 및 제어 시스템; 및
    E) 피드백 타이밍 제어를 제공하는 알고리즘으로 프로그래밍된 프로세서를 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  2. 제1 항에 있어서, 상기 제1 레이저 유닛은 마스터 오실레이터로서 구성되고 상기 제2 레이저 유닛은 전력 증폭기로서 구성되는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  3. 제2 항에 있어서, 상기 레이저 가스는 아르곤, 플루오라이드 및 네온으로 이루어지는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  4. 제2 항에 있어서, 상기 레이저 가스는 크립톤, 플루오르 및 네온으로 이루어 지는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  5. 제2 항에 있어서, 상기 레이저 가스는 네온, 헬륨 또는 네온과 헬륨의 혼합물로 구성된 군으로부터 선택된 버퍼 가스 및 플루오르로 이루어 지는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  6. 제1 항에 있어서, 상기 제 1 팬 및 상기 제 2 팬은 각각 탄젠셜 팬이고 각각은 두 개의 브러시리스 DC 모터에 의해 구동되는 축을 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  7. 제6 항에 있어서, 상기 모터는 수냉식 모터인 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  8. 제1 항에 있어서, 상기 펄스 파워 시스템은 수냉식 전기 컴포넌트를 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  9. 제8 항에 있어서, 상기 수냉식 전기 컴포넌트의 적어도 하나는 12,000볼트를 초과하는 고전압으로 동작되는 컴포넌트인 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  10. 제9 항에 있어서, 상기 고전압은 냉각수의 흐름이 관통하는 인덕터를 이용하여 접지로부터 절연되는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  11. 제1 항에 있어서, 상기 펄스 파워 시스템은 충전 커패시터를 정밀하게 제어된 전압으로 충전시키는 공진 충전 시스템을 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  12. 제1 항에 있어서, 상기 시스템은 최소한의 수정으로, KrF 레이저 시스템, ArF 레이저 시스템 또는 F2레이저 시스템중의 하나를 동작시키도록 구성된 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  13. 제1 항에 있어서, 실질적으로 모든 컴포넌트가 레이저 인클로우저에 포함되지만 상기 시스템은 인클로우저로부터 물리적으로 분리된 AC/DC 모듈을 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  14. 제1 항에 있어서, 상기 펄스 파워 시스템은 커패시터 뱅크를 충전하는 마스터 오실레이터와 커패시터 뱅크를 충전하는 전력 증폭기와 두 충전 커패시터 뱅크를 동시에 충전하도록 구성된 공진 충전기를 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  15. 제14 항에 있어서, 상기 펄스 파워 시스템은 적어도 2000V를 상기 공진 충전기에 공급하도록 구성된 전력 공급부를 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  16. 제1 항에 있어서, 마스터 오실레이터 빔 파라미터를 제어하기 위해 상기 레이저 가스내의 F2농도를 제어하기 위한 가스 제어 시스템을 더 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  17. 제1 항에 있어서, 마스터 오실레이터 빔 파라미터를 제어하기 위해 상기 레이저 가스내의 레이저 가스 압력을 제어하기 위한 가스 제어 시스템을 더 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  18. 제2 항에 있어서, 상기 마스터 오실레이터에서의 방전 후 20 ns 내지 60ns 사이에 발생하도록 상기 전력 증폭기내의 방전을 트리거링시키기 위한 방전 타이밍 컨트롤러를 더 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  19. 제2 항에 있어서, 몇몇 주위환경하에서 임의의 커다란 출력 펄스 에너지를방지하도록 정해진 타이밍으로 방전이 일어나도록 프로그램된 방전 컨트롤러를 더 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  20. 제19 항에 있어서, 상기 컨트롤러는 어떤 환경에서, 상기 마스터 오실레이터에서의 방전 이전의 적어도 20 ns에서 상기 전력 증폭기에서의 방전을 일으키도록 프로그램된 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  21. 제19 항에 있어서, 상기 컨트롤러는 어떤 환경에서, 상기 마스터 오실레이터에서의 방전 이후의 적어도 70 ns에서 상기 전력 증폭기에서의 방전을 일으키도록 프로그램된 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  22. 제20 항에 있어서, 상기 적어도 20 ns는 40 ns인 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  23. 제21 항에 있어서, 상기 적어도 70 ns는 110 ns인 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  24. 제1 항에 있어서, 상기 레이저는 상기 제1 및 제2 챔버의 각각에서의 방전의 ASE를 측정하기 위한 P-셀을 포함하는 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  25. 제24 항에 있어서, 상기 컨트롤러는 상기 P-셀로부터의 신호를 사용하여 방전을 지시하도록 프로그램된 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  26. 제21 항에 있어서, 상기 컨트롤러는 커패시터 전압의 측정에 기초하여 방전을 결정하도록 프로그램된 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
  27. MOPA 레이저 시스템에 의해 산출된 펄스의 버스트의 방전 타이밍을 제어하기 위한 프로세스로서 피드백 방전 타이밍 신호에 기초하여 상기 펄스의 버스트의 펄스를 산출하기 위해 방전 타이밍을 결정하는 단계를 포함하고 상기 펄스의 버스트의 시작에서 적어도 제1 셋트의 방전은 방전의 결과로서 어떠한 상당한 레이징도 발생되지 않도록 상대적인 시간으로 발생되도록 프로그램된 것을 특징으로 하는 고 반복율 가스 방전 레이저 시스템.
KR1020047008173A 2001-11-30 2002-10-23 2챔버를 갖는 가스 방전 레이저 시스템을 위한 타이밍 제어 KR100598552B1 (ko)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US10/012,002 2001-11-30
US10/012,002 US6625191B2 (en) 1999-12-10 2001-11-30 Very narrow band, two chamber, high rep rate gas discharge laser system
US10/036,727 US6865210B2 (en) 2001-05-03 2001-12-21 Timing control for two-chamber gas discharge laser system
US10/036,727 2001-12-21
PCT/US2002/034045 WO2003049241A1 (en) 2001-11-30 2002-10-23 Timing control for two-chamber gas discharge laser system

Related Child Applications (1)

Application Number Title Priority Date Filing Date
KR1020067003552A Division KR100850447B1 (ko) 2001-11-30 2002-10-23 2챔버를 갖는 가스 방전 레이저 시스템을 위한 타이밍 제어방법

Publications (2)

Publication Number Publication Date
KR20040058350A true KR20040058350A (ko) 2004-07-03
KR100598552B1 KR100598552B1 (ko) 2006-07-07

Family

ID=26683031

Family Applications (2)

Application Number Title Priority Date Filing Date
KR1020067003552A KR100850447B1 (ko) 2001-11-30 2002-10-23 2챔버를 갖는 가스 방전 레이저 시스템을 위한 타이밍 제어방법
KR1020047008173A KR100598552B1 (ko) 2001-11-30 2002-10-23 2챔버를 갖는 가스 방전 레이저 시스템을 위한 타이밍 제어

Family Applications Before (1)

Application Number Title Priority Date Filing Date
KR1020067003552A KR100850447B1 (ko) 2001-11-30 2002-10-23 2챔버를 갖는 가스 방전 레이저 시스템을 위한 타이밍 제어방법

Country Status (10)

Country Link
US (3) US6865210B2 (ko)
EP (1) EP1449284B1 (ko)
JP (1) JP3971385B2 (ko)
KR (2) KR100850447B1 (ko)
CN (1) CN100350686C (ko)
AT (1) ATE443358T1 (ko)
AU (1) AU2002353869A1 (ko)
DE (1) DE60233746D1 (ko)
IL (1) IL161818A0 (ko)
WO (1) WO2003049241A1 (ko)

Families Citing this family (70)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6865210B2 (en) * 2001-05-03 2005-03-08 Cymer, Inc. Timing control for two-chamber gas discharge laser system
US6801560B2 (en) * 1999-05-10 2004-10-05 Cymer, Inc. Line selected F2 two chamber laser system
US6914919B2 (en) * 2000-06-19 2005-07-05 Cymer, Inc. Six to ten KHz, or greater gas discharge laser system
US6912052B2 (en) * 2000-11-17 2005-06-28 Cymer, Inc. Gas discharge MOPA laser spectral analysis module
US7061959B2 (en) * 2001-04-18 2006-06-13 Tcz Gmbh Laser thin film poly-silicon annealing system
US7009140B2 (en) 2001-04-18 2006-03-07 Cymer, Inc. Laser thin film poly-silicon annealing optical system
US7167499B2 (en) * 2001-04-18 2007-01-23 Tcz Pte. Ltd. Very high energy, high stability gas discharge laser surface treatment system
US20050259709A1 (en) * 2002-05-07 2005-11-24 Cymer, Inc. Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
US7830934B2 (en) * 2001-08-29 2010-11-09 Cymer, Inc. Multi-chamber gas discharge laser bandwidth control through discharge timing
US6963595B2 (en) * 2001-08-29 2005-11-08 Cymer, Inc. Automatic gas control system for a gas discharge laser
US20030219094A1 (en) * 2002-05-21 2003-11-27 Basting Dirk L. Excimer or molecular fluorine laser system with multiple discharge units
US20040202220A1 (en) * 2002-11-05 2004-10-14 Gongxue Hua Master oscillator-power amplifier excimer laser system
US7308013B2 (en) 2002-11-05 2007-12-11 Lambda Physik Ag Excimer or molecular fluorine laser system with precision timing
US7741639B2 (en) * 2003-01-31 2010-06-22 Cymer, Inc. Multi-chambered excimer or molecular fluorine gas discharge laser fluorine injection control
US6987790B2 (en) * 2003-02-14 2006-01-17 Lambda Physik Ag Excimer or molecular fluorine laser with several discharge chambers
US7277188B2 (en) * 2003-04-29 2007-10-02 Cymer, Inc. Systems and methods for implementing an interaction between a laser shaped as a line beam and a film deposited on a substrate
US7366213B2 (en) * 2003-05-19 2008-04-29 Lambda Physik Ag MOPA excimer or molecular fluorine laser system with improved synchronization
US7209507B2 (en) * 2003-07-30 2007-04-24 Cymer, Inc. Method and apparatus for controlling the output of a gas discharge MOPA laser system
US6873418B1 (en) 2003-09-30 2005-03-29 Cymer, Inc. Optical mountings for gas discharge MOPA laser spectral analysis module
US6894785B2 (en) 2003-09-30 2005-05-17 Cymer, Inc. Gas discharge MOPA laser spectral analysis module
US20060146906A1 (en) * 2004-02-18 2006-07-06 Cymer, Inc. LLP EUV drive laser
US7035012B2 (en) * 2004-03-01 2006-04-25 Coherent, Inc. Optical pulse duration extender
US20050286599A1 (en) * 2004-06-29 2005-12-29 Rafac Robert J Method and apparatus for gas discharge laser output light coherency reduction
JP4012216B2 (ja) * 2005-06-08 2007-11-21 ファナック株式会社 レーザ発振器
US7317536B2 (en) 2005-06-27 2008-01-08 Cymer, Inc. Spectral bandwidth metrology for high repetition rate gas discharge lasers
US7653095B2 (en) * 2005-06-30 2010-01-26 Cymer, Inc. Active bandwidth control for a laser
US7679029B2 (en) * 2005-10-28 2010-03-16 Cymer, Inc. Systems and methods to shape laser light as a line beam for interaction with a substrate having surface variations
US7317179B2 (en) * 2005-10-28 2008-01-08 Cymer, Inc. Systems and methods to shape laser light as a homogeneous line beam for interaction with a film deposited on a substrate
US7471455B2 (en) 2005-10-28 2008-12-30 Cymer, Inc. Systems and methods for generating laser light shaped as a line beam
US7920616B2 (en) * 2005-11-01 2011-04-05 Cymer, Inc. Laser system
US7885309B2 (en) 2005-11-01 2011-02-08 Cymer, Inc. Laser system
US7999915B2 (en) * 2005-11-01 2011-08-16 Cymer, Inc. Laser system
KR101194231B1 (ko) * 2005-11-01 2012-10-29 사이머 인코포레이티드 레이저 시스템
US7746913B2 (en) 2005-11-01 2010-06-29 Cymer, Inc. Laser system
US7643529B2 (en) 2005-11-01 2010-01-05 Cymer, Inc. Laser system
US7630424B2 (en) * 2005-11-01 2009-12-08 Cymer, Inc. Laser system
US7715459B2 (en) * 2005-11-01 2010-05-11 Cymer, Inc. Laser system
US20090296755A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
US7778302B2 (en) * 2005-11-01 2010-08-17 Cymer, Inc. Laser system
US20090296758A1 (en) * 2005-11-01 2009-12-03 Cymer, Inc. Laser system
US7307237B2 (en) * 2005-12-29 2007-12-11 Honeywell International, Inc. Hand-held laser welding wand nozzle assembly including laser and feeder extension tips
US8803027B2 (en) * 2006-06-05 2014-08-12 Cymer, Llc Device and method to create a low divergence, high power laser beam for material processing applications
EP2025419B1 (de) 2007-07-20 2011-09-07 Renate Fourné Verfahren und Vorrichtung zum Entlacken von Bauteilen
US7830942B2 (en) * 2007-09-11 2010-11-09 Cymer, Inc. Ultraviolet laser light source pulse energy control system
JP2009246345A (ja) * 2008-03-12 2009-10-22 Komatsu Ltd レーザシステム
US7819945B2 (en) * 2008-10-30 2010-10-26 Cymer, Inc. Metal fluoride trap
JP5844536B2 (ja) * 2011-03-28 2016-01-20 ギガフォトン株式会社 レーザシステムおよびレーザ生成方法
JP5815987B2 (ja) * 2011-05-20 2015-11-17 キヤノン株式会社 露光装置およびデバイス製造方法
KR20130034474A (ko) * 2011-09-28 2013-04-05 참엔지니어링(주) 레이저 출력 조정 장치 및 그 방법
US8681832B2 (en) 2011-09-30 2014-03-25 Cymer, Inc. System and method for high accuracy gas inject in a two chamber gas discharge laser system
CN102810810A (zh) * 2012-03-02 2012-12-05 中国科学院光电研究院 单腔双电极放电腔及准分子激光器
CN102931569B (zh) * 2012-11-08 2014-07-30 中国科学院光电研究院 准分子激光器的自动温控系统
JP6328268B2 (ja) * 2014-01-06 2018-05-23 サウディ ベーシック インダストリーズ コーポレイション エチレン反応における触媒活性化のための改変された予備形成方法
KR20170017883A (ko) 2014-06-09 2017-02-15 기가포톤 가부시키가이샤 레이저 시스템
CN104820137B (zh) * 2015-04-14 2017-10-31 中国科学院光电研究院 高频高压快脉冲时序采集装置和方法
CN104836102B (zh) * 2015-04-14 2018-03-23 中国科学院光电研究院 一种高重频双腔准分子激光器放电同步控制系统和方法
US9785050B2 (en) 2015-06-26 2017-10-10 Cymer, Llc Pulsed light beam spectral feature control
CN107851957B (zh) * 2015-09-14 2020-09-18 极光先进雷射株式会社 激光系统
US9819136B2 (en) * 2016-01-08 2017-11-14 Cymer, Llc Gas mixture control in a gas discharge light source
US9634455B1 (en) * 2016-02-16 2017-04-25 Cymer, Llc Gas optimization in a gas discharge light source
WO2017158694A1 (ja) 2016-03-14 2017-09-21 ギガフォトン株式会社 レーザ装置及び極端紫外光生成システム
FR3052563B1 (fr) * 2016-06-13 2018-08-24 Universite De Rennes 1 Module d'affinement spectral, dispositif a raie spectrale affinee et procede afferent
US9989866B2 (en) 2016-10-17 2018-06-05 Cymer, Llc Wafer-based light source parameter control
US10416471B2 (en) 2016-10-17 2019-09-17 Cymer, Llc Spectral feature control apparatus
US9997888B2 (en) 2016-10-17 2018-06-12 Cymer, Llc Control of a spectral feature of a pulsed light beam
US9835959B1 (en) 2016-10-17 2017-12-05 Cymer, Llc Controlling for wafer stage vibration
US9966725B1 (en) * 2017-03-24 2018-05-08 Cymer, Llc Pulsed light beam spectral feature control
CN108964487B (zh) * 2018-07-19 2019-08-16 中国科学院合肥物质科学研究院 一种用于磁压缩等离子体聚变的电源系统
GB201905126D0 (en) * 2019-04-11 2019-05-29 Perlemax Ltd Fluidic oscilators
CN111146678B (zh) * 2019-05-06 2021-04-23 南京瑞贻电子科技有限公司 大功率光纤激光器线性补偿的动态耦合控制装置及方法

Family Cites Families (91)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1458066A (en) 1922-06-14 1923-06-05 Compte Edward P Le Coat adjuster
US2740963A (en) * 1951-01-29 1956-04-03 Gilfillan Bros Inc Automatic amplitude cancellation in moving target indicator
US4009391A (en) * 1974-06-25 1977-02-22 Jersey Nuclear-Avco Isotopes, Inc. Suppression of unwanted lasing in laser isotope separation
US4223279A (en) 1977-07-18 1980-09-16 Mathematical Sciences Northwest, Inc. Pulsed electric discharge laser utilizing water dielectric blumlein transmission line
US4329664A (en) * 1980-06-09 1982-05-11 Ali Javan Generation of stable frequency radiation at an optical frequency
US4550408A (en) 1981-02-27 1985-10-29 Heinrich Karning Method and apparatus for operating a gas laser
US4455658A (en) 1982-04-20 1984-06-19 Sutter Jr Leroy V Coupling circuit for use with a transversely excited gas laser
US4891820A (en) 1985-12-19 1990-01-02 Rofin-Sinar, Inc. Fast axial flow laser circulating system
US5315611A (en) 1986-09-25 1994-05-24 The United States Of America As Represented By The United States Department Of Energy High average power magnetic modulator for metal vapor lasers
US5189678A (en) 1986-09-29 1993-02-23 The United States Of America As Represented By The United States Department Of Energy Coupling apparatus for a metal vapor laser
JPS63141381A (ja) 1986-12-04 1988-06-13 Toshiba Corp 金属蒸気レ−ザ装置
US4959840A (en) 1988-01-15 1990-09-25 Cymer Laser Technologies Compact excimer laser including an electrode mounted in insulating relationship to wall of the laser
US5023884A (en) 1988-01-15 1991-06-11 Cymer Laser Technologies Compact excimer laser
WO1989007353A1 (en) * 1988-01-27 1989-08-10 Kabushiki Kaisha Komatsu Seisakusho Method and apparatus for controlling narrow-band oscillation excimer laser
US5025446A (en) 1988-04-01 1991-06-18 Laserscope Intra-cavity beam relay for optical harmonic generation
US5005180A (en) 1989-09-01 1991-04-02 Schneider (Usa) Inc. Laser catheter system
US5022033A (en) * 1989-10-30 1991-06-04 The United States Of America As Represented By The United States Department Of Energy Ring laser having an output at a single frequency
US5025445A (en) 1989-11-22 1991-06-18 Cymer Laser Technologies System for, and method of, regulating the wavelength of a light beam
JPH0456374A (ja) 1990-06-26 1992-02-24 Matsushita Electric Ind Co Ltd 炭酸ガスレーザ制御方法およびその装置
JPH0483387A (ja) 1990-07-26 1992-03-17 Mitsubishi Electric Corp レーザ装置
US5181135A (en) * 1990-12-21 1993-01-19 Kaman Aerospace Corporation Optical underwater communications systems employing tunable and fixed frequency laser transmitters
US5091778A (en) * 1990-12-21 1992-02-25 Kaman Aerospace Corporation Imaging lidar systems and K-meters employing tunable and fixed frequency laser transmitters
US5471965A (en) 1990-12-24 1995-12-05 Kapich; Davorin D. Very high speed radial inflow hydraulic turbine
US5157684A (en) * 1991-10-23 1992-10-20 United Technologies Corporation Optically pulsed laser
US5425922A (en) * 1991-12-27 1995-06-20 Vicor Company Of Japan, Ltd. Apparatus for manufacturing microcrystal particles and manufacturing method for the microcrystal particles
JPH05335675A (ja) 1992-05-28 1993-12-17 Mitsubishi Electric Corp レーザ装置
US5463650A (en) * 1992-07-17 1995-10-31 Kabushiki Kaisha Komatsu Seisakusho Apparatus for controlling output of an excimer laser device
US5359620A (en) 1992-11-12 1994-10-25 Cymer Laser Technologies Apparatus for, and method of, maintaining a clean window in a laser
US5450436A (en) * 1992-11-20 1995-09-12 Kabushiki Kaisha Komatsu Seisakusho Laser gas replenishing apparatus and method in excimer laser system
US5534824A (en) * 1993-03-26 1996-07-09 The Boeing Company Pulsed-current electron beam method and apparatus for use in generating and amplifying electromagnetic energy
US5313481A (en) 1993-09-29 1994-05-17 The United States Of America As Represented By The United States Department Of Energy Copper laser modulator driving assembly including a magnetic compression laser
US5778016A (en) * 1994-04-01 1998-07-07 Imra America, Inc. Scanning temporal ultrafast delay methods and apparatuses therefor
US5434882A (en) * 1994-04-12 1995-07-18 The United States Of America As Represented By The United States Department Of Energy Injection-controlled laser resonator
US5448580A (en) 1994-07-05 1995-09-05 The United States Of America As Represented By The United States Department Of Energy Air and water cooled modulator
US5863017A (en) 1996-01-05 1999-01-26 Cymer, Inc. Stabilized laser platform and module interface
US5867305A (en) * 1996-01-19 1999-02-02 Sdl, Inc. Optical amplifier with high energy levels systems providing high peak powers
JPH10156558A (ja) 1996-11-27 1998-06-16 Ushio Inc レーザマーキング装置
US5982800A (en) 1997-04-23 1999-11-09 Cymer, Inc. Narrow band excimer laser
US5991324A (en) * 1998-03-11 1999-11-23 Cymer, Inc. Reliable. modular, production quality narrow-band KRF excimer laser
US6128323A (en) 1997-04-23 2000-10-03 Cymer, Inc. Reliable modular production quality narrow-band high REP rate excimer laser
US6192064B1 (en) 1997-07-01 2001-02-20 Cymer, Inc. Narrow band laser with fine wavelength control
US6094448A (en) 1997-07-01 2000-07-25 Cymer, Inc. Grating assembly with bi-directional bandwidth control
US6212217B1 (en) 1997-07-01 2001-04-03 Cymer, Inc. Smart laser with automated beam quality control
US6330261B1 (en) 1997-07-18 2001-12-11 Cymer, Inc. Reliable, modular, production quality narrow-band high rep rate ArF excimer laser
US6018537A (en) 1997-07-18 2000-01-25 Cymer, Inc. Reliable, modular, production quality narrow-band high rep rate F2 laser
USRE38054E1 (en) * 1997-07-18 2003-04-01 Cymer, Inc. Reliable, modular, production quality narrow-band high rep rate F2 laser
US5852621A (en) 1997-07-21 1998-12-22 Cymer, Inc. Pulse laser with pulse energy trimmer
US6757316B2 (en) 1999-12-27 2004-06-29 Cymer, Inc. Four KHz gas discharge laser
US6067306A (en) * 1997-08-08 2000-05-23 Cymer, Inc. Laser-illuminated stepper or scanner with energy sensor feedback
US5953360A (en) 1997-10-24 1999-09-14 Synrad, Inc. All metal electrode sealed gas laser
US6151346A (en) 1997-12-15 2000-11-21 Cymer, Inc. High pulse rate pulse power system with fast rise time and low current
US6240112B1 (en) 1997-12-15 2001-05-29 Cymer, Inc. High pulse rate pulse power system with liquid cooling
US5978406A (en) 1998-01-30 1999-11-02 Cymer, Inc. Fluorine control system for excimer lasers
US6240117B1 (en) 1998-01-30 2001-05-29 Cymer, Inc. Fluorine control system with fluorine monitor
US6151349A (en) 1998-03-04 2000-11-21 Cymer, Inc. Automatic fluorine control system
US6327286B1 (en) * 1998-04-27 2001-12-04 Cymer, Inc. High speed magnetic modulator voltage and temperature timing compensation circuit
US6016325A (en) 1998-04-27 2000-01-18 Cymer, Inc. Magnetic modulator voltage and temperature timing compensation circuit
US6477193B2 (en) 1998-07-18 2002-11-05 Cymer, Inc. Extreme repetition rate gas discharge laser with improved blower motor
US6208675B1 (en) 1998-08-27 2001-03-27 Cymer, Inc. Blower assembly for a pulsed laser system incorporating ceramic bearings
US6067311A (en) 1998-09-04 2000-05-23 Cymer, Inc. Excimer laser with pulse multiplier
US6567450B2 (en) * 1999-12-10 2003-05-20 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6778584B1 (en) 1999-11-30 2004-08-17 Cymer, Inc. High power gas discharge laser with helium purged line narrowing unit
US6208674B1 (en) 1998-09-18 2001-03-27 Cymer, Inc. Laser chamber with fully integrated electrode feedthrough main insulator
US6181719B1 (en) * 1998-11-24 2001-01-30 Universal Laser Systems, Inc. Gas laser RF power source apparatus and method
WO2000038286A1 (en) * 1998-12-15 2000-06-29 Cymer, Inc. ArF LASER WITH LOW PULSE ENERGY AND HIGH REP RATE
US6219368B1 (en) 1999-02-12 2001-04-17 Lambda Physik Gmbh Beam delivery system for molecular fluorine (F2) laser
US6243406B1 (en) 1999-03-12 2001-06-05 Peter Heist Gas performance control system for gas discharge lasers
US6104735A (en) 1999-04-13 2000-08-15 Cymer, Inc. Gas discharge laser with magnetic bearings and magnetic reluctance centering for fan drive assembly
US6164116A (en) 1999-05-06 2000-12-26 Cymer, Inc. Gas module valve automated test fixture
US6370174B1 (en) * 1999-10-20 2002-04-09 Cymer, Inc. Injection seeded F2 lithography laser
US6765945B2 (en) * 1999-09-27 2004-07-20 Cymer, Inc. Injection seeded F2 laser with pre-injection filter
US6625191B2 (en) * 1999-12-10 2003-09-23 Cymer, Inc. Very narrow band, two chamber, high rep rate gas discharge laser system
US6556600B2 (en) * 1999-09-27 2003-04-29 Cymer, Inc. Injection seeded F2 laser with centerline wavelength control
US6865210B2 (en) * 2001-05-03 2005-03-08 Cymer, Inc. Timing control for two-chamber gas discharge laser system
US6381257B1 (en) * 1999-09-27 2002-04-30 Cymer, Inc. Very narrow band injection seeded F2 lithography laser
US6801560B2 (en) * 1999-05-10 2004-10-05 Cymer, Inc. Line selected F2 two chamber laser system
US6549551B2 (en) * 1999-09-27 2003-04-15 Cymer, Inc. Injection seeded laser with precise timing control
US6414979B2 (en) 2000-06-09 2002-07-02 Cymer, Inc. Gas discharge laser with blade-dielectric electrode
US6281471B1 (en) * 1999-12-28 2001-08-28 Gsi Lumonics, Inc. Energy-efficient, laser-based method and system for processing target material
US6577663B2 (en) * 2000-06-19 2003-06-10 Lambda Physik Ag Narrow bandwidth oscillator-amplifier system
US6912052B2 (en) * 2000-11-17 2005-06-28 Cymer, Inc. Gas discharge MOPA laser spectral analysis module
US6704340B2 (en) * 2001-01-29 2004-03-09 Cymer, Inc. Lithography laser system with in-place alignment tool
US6777645B2 (en) * 2001-03-29 2004-08-17 Gsi Lumonics Corporation High-speed, precision, laser-based method and system for processing material of one or more targets within a field
US7079564B2 (en) * 2001-04-09 2006-07-18 Cymer, Inc. Control system for a two chamber gas discharge laser
US6690704B2 (en) * 2001-04-09 2004-02-10 Cymer, Inc. Control system for a two chamber gas discharge laser
US7167499B2 (en) * 2001-04-18 2007-01-23 Tcz Pte. Ltd. Very high energy, high stability gas discharge laser surface treatment system
US6798812B2 (en) * 2002-01-23 2004-09-28 Cymer, Inc. Two chamber F2 laser system with F2 pressure based line selection
US6711187B2 (en) * 2002-04-22 2004-03-23 Evans & Sutherland Computer Corporation Rapidly oscillating laser light source
US7158553B2 (en) * 2003-02-14 2007-01-02 Lambda Physik Ag Master oscillator/power amplifier excimer laser system with pulse energy and pointing control
US7052757B2 (en) 2003-10-03 2006-05-30 Hewlett-Packard Development Company, L.P. Capping layer for enhanced performance media
US8281471B2 (en) * 2009-03-04 2012-10-09 Aire Technologies, Inc. Ceiling radiation damper fusible link tool

Also Published As

Publication number Publication date
JP2005512333A (ja) 2005-04-28
EP1449284B1 (en) 2009-09-16
EP1449284A4 (en) 2006-03-08
US20030099269A1 (en) 2003-05-29
CN1596492A (zh) 2005-03-16
DE60233746D1 (de) 2009-10-29
US20060251135A1 (en) 2006-11-09
EP1449284A1 (en) 2004-08-25
IL161818A0 (en) 2005-11-20
US7203216B2 (en) 2007-04-10
KR100850447B1 (ko) 2008-08-07
WO2003049241A1 (en) 2003-06-12
CN100350686C (zh) 2007-11-21
KR20060025234A (ko) 2006-03-20
US20050018739A1 (en) 2005-01-27
ATE443358T1 (de) 2009-10-15
US7852899B2 (en) 2010-12-14
AU2002353869A1 (en) 2003-06-17
KR100598552B1 (ko) 2006-07-07
JP3971385B2 (ja) 2007-09-05
US6865210B2 (en) 2005-03-08

Similar Documents

Publication Publication Date Title
KR100598552B1 (ko) 2챔버를 갖는 가스 방전 레이저 시스템을 위한 타이밍 제어
US7596164B2 (en) Control system for a two chamber gas discharge laser
US6690704B2 (en) Control system for a two chamber gas discharge laser
US7039086B2 (en) Control system for a two chamber gas discharge laser
KR100907299B1 (ko) 초협대역이고 2챔버를 갖는 고반복율 가스 방전 레이저시스템
JP3204949B2 (ja) 高信頼性、モジュラ、プロダクションクオリティ狭帯域化KrFエキシマレーザ
JP2006295225A (ja) 2室放電ガスレーザ用制御システム
KR100997399B1 (ko) 가스 방전 레이저를 위한 자동 가스 제어 시스템
US7382816B2 (en) Two-stage laser pulse energy control device and two-stage laser system
US7308013B2 (en) Excimer or molecular fluorine laser system with precision timing
US20040240507A1 (en) MOPA excimer or molecular fluorine laser system with improved synchronization
JP2005252147A (ja) 高精度同期制御機能を備えた2ステージレーザ装置
JP2005150526A (ja) 電源装置および高電圧パルス発生装置並びに放電励起式ガスレーザ装置
JP2004342964A (ja) 高精度同期制御機能を備えた2ステージレーザ装置

Legal Events

Date Code Title Description
A201 Request for examination
E902 Notification of reason for refusal
A107 Divisional application of patent
E701 Decision to grant or registration of patent right
GRNT Written decision to grant
FPAY Annual fee payment

Payment date: 20130624

Year of fee payment: 8

FPAY Annual fee payment

Payment date: 20140702

Year of fee payment: 9

FPAY Annual fee payment

Payment date: 20150626

Year of fee payment: 10

FPAY Annual fee payment

Payment date: 20160628

Year of fee payment: 11

FPAY Annual fee payment

Payment date: 20170623

Year of fee payment: 12