CH698311B1 - Inspektionssonde für eine Bohrung. - Google Patents
Inspektionssonde für eine Bohrung. Download PDFInfo
- Publication number
- CH698311B1 CH698311B1 CH00611/06A CH6112006A CH698311B1 CH 698311 B1 CH698311 B1 CH 698311B1 CH 00611/06 A CH00611/06 A CH 00611/06A CH 6112006 A CH6112006 A CH 6112006A CH 698311 B1 CH698311 B1 CH 698311B1
- Authority
- CH
- Switzerland
- Prior art keywords
- sensor
- bore
- probe
- housing
- sensor arm
- Prior art date
Links
- 239000000523 sample Substances 0.000 title claims abstract description 71
- 238000007689 inspection Methods 0.000 title description 17
- 230000000087 stabilizing effect Effects 0.000 claims abstract description 35
- 239000003381 stabilizer Substances 0.000 claims abstract description 23
- 238000003780 insertion Methods 0.000 claims abstract description 10
- 230000037431 insertion Effects 0.000 claims abstract description 10
- 238000005259 measurement Methods 0.000 claims description 6
- 230000008878 coupling Effects 0.000 description 18
- 238000010168 coupling process Methods 0.000 description 18
- 238000005859 coupling reaction Methods 0.000 description 18
- 238000012546 transfer Methods 0.000 description 3
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 3
- 230000007797 corrosion Effects 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 238000005336 cracking Methods 0.000 description 2
- 230000007547 defect Effects 0.000 description 2
- 238000011835 investigation Methods 0.000 description 2
- 230000014759 maintenance of location Effects 0.000 description 2
- 238000009835 boiling Methods 0.000 description 1
- 238000002485 combustion reaction Methods 0.000 description 1
- 238000004891 communication Methods 0.000 description 1
- 238000013461 design Methods 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 239000000463 material Substances 0.000 description 1
- 230000013011 mating Effects 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- 238000012544 monitoring process Methods 0.000 description 1
- 230000002093 peripheral effect Effects 0.000 description 1
- 230000036316 preload Effects 0.000 description 1
- 230000020347 spindle assembly Effects 0.000 description 1
- 230000006641 stabilisation Effects 0.000 description 1
- 238000011105 stabilization Methods 0.000 description 1
- 238000009827 uniform distribution Methods 0.000 description 1
- 238000003466 welding Methods 0.000 description 1
Classifications
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/09—Locating or determining the position of objects in boreholes or wells, e.g. the position of an extending arm; Identifying the free or blocked portions of pipes
-
- E—FIXED CONSTRUCTIONS
- E21—EARTH OR ROCK DRILLING; MINING
- E21B—EARTH OR ROCK DRILLING; OBTAINING OIL, GAS, WATER, SOLUBLE OR MELTABLE MATERIALS OR A SLURRY OF MINERALS FROM WELLS
- E21B47/00—Survey of boreholes or wells
- E21B47/01—Devices for supporting measuring instruments on drill bits, pipes, rods or wirelines; Protecting measuring instruments in boreholes against heat, shock, pressure or the like
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F16—ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
- F16L—PIPES; JOINTS OR FITTINGS FOR PIPES; SUPPORTS FOR PIPES, CABLES OR PROTECTIVE TUBING; MEANS FOR THERMAL INSULATION IN GENERAL
- F16L2101/00—Uses or applications of pigs or moles
- F16L2101/30—Inspecting, measuring or testing
Landscapes
- Geology (AREA)
- Physics & Mathematics (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Mining & Mineral Resources (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Fluid Mechanics (AREA)
- Environmental & Geological Engineering (AREA)
- Geophysics (AREA)
- Geochemistry & Mineralogy (AREA)
- Investigating Or Analyzing Materials By The Use Of Magnetic Means (AREA)
- Testing Or Calibration Of Command Recording Devices (AREA)
- Testing Of Devices, Machine Parts, Or Other Structures Thereof (AREA)
- Investigating Materials By The Use Of Optical Means Adapted For Particular Applications (AREA)
- Monitoring And Testing Of Nuclear Reactors (AREA)
- A Measuring Device Byusing Mechanical Method (AREA)
- Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)
- Length Measuring Devices With Unspecified Measuring Means (AREA)
Abstract
Eine Sonde (100) zum Inspizieren einer Bohrung weist ein Gehäuse auf, das zum Einführen in die Bohrung abgemessen ist, sowie mehrere Stabilisierungsbeine (112), die ein erstes Ende (106), das an dem Gehäuse (101) angeordnet ist, und ein zweites Ende (108) aufweisen, das aus dem Gehäuse (101) ausfahrbar ist. Die Stabilisierungsbeine (112) sind dazu konfiguriert, in Kontakt mit der Innenfläche der Bohrung zu gelangen. Mehrere Sensorarme (116) sind von dem Gehäuse (101) ausfahrbar und relativ zu den Stabilisierungsbeinen (112) rotierbar. Ein Motor 111 sieht das Rotieren der Sensorarme (116) relativ zu den Stabilisierungsbeinen (112) vor.
Description
Gebiet der Erfindung [0001] Die vorliegende Erfindung betrifft eine Vorrichtung zum Inspizieren des Inneren einer Bohrung und insbesondere eine Sonde zum Inspizieren des Inneren einer Bohrung. Allgemeiner Stand der Technik [0002] Bohrungen wie z.B. Rohre oder zylinderförmige Ausrüstung sind oft aus Abschnitten gebildet, die Belastung oder Abnutzung ausgesetzt sind. So ist es oft notwendig, während der Wartungsvorgänge die Innenfläche der Bohrung auf Risse und die Festigkeit einer Schweissnahtverbindung zu untersuchen. Beispielsweise weist ein Reaktordruckbehälter (RDB) eines Siedewasserreaktors (SWR) üblicherweise Bohrungen auf, die innere Schweissnähte aufweisen, die während der Wartungsgänge inspiziert werden müssen. Hohle röhrenförmige Strahlpumpen mit internen Bohrungen sind innerhalb eines Rings angeordnet, um den benötigten Reaktorkernwasserfluss bereitzustellen. Die Strahlpumpen weisen einen oberen Abschnitt auf, der als der Einlassmischer bekannt ist, und einen unteren Abschnitt, der als der Diffusor bekannt ist. Der Einlassmischer und der Diffusor werden aufgrund ihrer Grösse ausgebildet, indem mehrere zylindrische und konische Abschnitte zusammengeschweisst werden. Genauer ausgedrückt, werden die jeweiligen Enden von benachbarten zylindrischen Abschnitten an einer Umfangsschweissnaht miteinander verbunden. Während des Reaktorbetriebs können an den Umfangsschweissnähten in Zonen, die von der Schweisshitze beeinflusst sind, IGSCC (inter-granular stress corrosion cracking - interkristalline Spannungsrisskorrosion) und IASCC (irradiation assisted stress corosion cracking - strahlungsinduzierte Spannungsrisskorrosion) auftreten, was die strukturelle Sicherheit der Strahlpumpe senken kann. [0003] Es ist wichtig, die Schweissnähte des Strahlpumpeneinlassmischers und -diffusors regelmässig zu untersuchen, um festzustellen, ob Risse aufgetreten sind. Obwohl Untersuchungen im Ring oder in dem Bereich zwischen einer Brennkammer und einem Druckbehälter durchführbar sind, ist es wahrscheinlich, dass es sich hierbei aufgrund von Zugangsbeschränkungen in der Ringregion des Reaktors nur um Teilinspektionen handelt. So erfolgt die Untersuchung der Schweissnähte durch ein Inspektionswerkzeug, das im Inneren des Strahlpumpeneinlassmischers und des Strahlpumpendiffusors angeordnet ist. Ein solches Inspektionswerkzeug führt Ultraschall- und/oder Wirbelstromuntersuchungen der Strahlpumpenschweissnähte im Inneren des Strahlpumpeneinlassmischers und -diffusors in einem Kernreaktor durch. [0004] Üblicherweise bedient Betriebspersonal, das sich auf einer Beladungsbrücke befindet, die über der Wasserfläche des Beckens angeordnet ist, ein Werkzeugeinbringsystem, das zum Einführen einer Sonde mit einem Strahlpumpeneinlass verbunden wird. Die lange zylindrische Sonde wird durch die enge Öffnung des Strahlpumpeneinlasses eingeführt und wird arretiert und von einem Führungskabel vertikal in der Strahlpumpe angeordnet. Einmal eingeführt, wird die Inspektionssonde derart aktiviert, dass Arme, die Sensoren aufweisen, an dem langen zylindrischen Körper der Inspektionssonde ausgefahren werden. Die Sensorarme der Inspektionssonde werden von einem Motor an der Inspektionssonde rotiert, um eine radiale Abtastung der Innenflächen der Strahlpumpe bereitzustellen. Die Inspektionssonde weist oft ein Stabilisierungsgewicht auf, um die Sonde in der Bohrung zu stabilisieren. Kurzfassung der Erfindung [0005] Die Erfinder haben festgestellt, dass übliche Sonden nicht die Rotation von nicht messenden Abschnitten des Sondenkörpers verhindern, und dass deshalb die Rotationsposition der Sensoren nicht verfolgt oder bestimmt werden kann. Auch sind Sonden dieser Art üblicherweise nur in einer im Wesentlichen vertikalen Bohrung benutzbar, wo die Sensorarme selbst die Sonde innerhalb der Bohrung zentrieren, indem sie mit der Innenfläche der Bohrung in Kontakt gelangen, während sie rotieren. Dies ergibt sich teilweise aus der aufgehängten Koppelung der Inspektionssonde in der vertikalen Bohrung der Strahlpumpe und der Unmöglichkeit, die Bewegung zu beschränken oder eine radiale Referenzposition in der Bohrung zu ermitteln. Die Erfinder haben erfolgreich eine Inspektionssonde zum Einführen in das Innere einer Bohrung und zum Inspizieren derselben entwickelt, wobei es sich nicht um eine vertikal angeordnete Bohrung handeln muss. Durch Stabilisieren eines Abschnitts der Probe in der Bohrung kann die vorliegende Erfindung auch das Bestimmen und Verfolgen der Rotationsposition der Sensorelemente bereitstellen, weshalb die Sensorelemente zu einer Rotationsposition in Bezug gesetzt werden können, welche die Lokalisierung jedes ermittelten Defekts ermöglicht. [0006] Gemäss der Erfindung weist eine Sonde zum Inspizieren einer Bohrung ein Gehäuse auf, das zum Einführen in die Bohrung abgemessen ist, sowie mehrere Stabilisierungsbeine, deren erstes Ende an dem Gehäuse angeordnet ist und deren zweites Ende aus dem Gehäuse ausfahrbar ist. Die Stabilisierungsbeine sind dazu konfiguriert, in Kontakt mit der Innenfläche zu gelangen. Mehrere Sensorarme sind aus dem Gehäuse ausfahrbar und sind relativ zu den Stabilisierungsbeinen rotierbar. Ein Motor sieht das Rotieren der Sensorarme relativ zu den Stabilisierungsbeinen vor. [0007] Gemäss der Erfindung weist eine Bohrungsinspektionssonde ein Gehäuse auf, das zum Einführen in die Bohrung abgemessen ist, und das einen ersten Abschnitt und einen zweiten Abschnitt aufweist. Die Sonde weist wenigstens ein flexibles Gelenk auf, das den ersten und den zweiten Abschnitt verbindet, und eine Drehspindel zum drehbaren Verbinden des ersten Abschnitts mit dem zweiten Abschnitt. Mehrere Stabilisierungsbeine weisen ein erstes Ende auf, das am ersten Abschnitt des Gehäuses angeordnet ist, und ein zweites Ende, das aus dem Gehäuse ausfahrbar ist. Die Stabilisierungsbeine sind dazu konfiguriert, in Kontakt mit den Innenflächen der Bohrung zu gelangen. Ein Vorspannungselement sieht ein Zurückhalten der Stabilisierungsbeine in dem Gehäuse vor, und ein Stabilisierungsbein-Stellglied ist. dazu konfiguriert, das zweite Ende der Stabilisierungsbeine aus dem Gehäuse auszufahren. Die Sonde weist ausserdem mehrere Sensorarme auf, wobei jeder Sensorarm ein erstes Ende aufweist, das an dem zweiten Abschnitt angeordnet ist, und ein zweites Ende, das aus dem zweiten Abschnitt ausfahrbar ist und einen Sensor aufweist. Wenigstens ein Armstellglied sieht das Ausfahren des zweiten Endes der Sensorarme aus dem Gehäuse in eine ausgefahrene Messposition vor. Ein Motor sieht das Rotieren des zweiten Abschnitts relativ zu dem ersten Abschnitt vor. [0008] Gemäss der Erfindung weist eine Sonde zum Inspizieren einer Innenfläche einer Bohrung ein Gehäuse auf, das zum Einführen in die Bohrung abgemessen ist, und das einen ersten Abschnitt und einen zweiten Abschnitt sowie wenigstens ein flexibles Gelenk aufweist, das den ersten und den zweiten Abschnitt verbindet. Eine Drehspindel sieht das drehbare Verbinden des ersten Abschnitts und des zweiten Abschnitts vor. Mehrere Stabilisierungsbeine weisen ein erstes Ende auf, das an dem ersten Abschnitt des Gehäuses angeordnet ist, und ein zweites Ende, das aus dem Gehäuse ausfahrbar ist, wobei jedes Bein dazu konfiguriert ist, in Kontakt mit der Innenfläche der Bohrung zu gelangen. Die Sonde weist ausserdem ein Stabilisierungsbein-Stellglied auf, das dazu konfiguriert ist, das zweite Ende der Stabilisierungsbeine aus dem Gehäuse auszufahren, sowie mehrere Sensorarme, wobei jeder der Sensorarme ein erstes Ende aufweist, das an dem zweiten Abschnitt angeordnet ist, und ein zweites Ende, das aus dem zweiten Abschnitt ausfahrbar ist. Jedes zweite Ende weist einen Sensor auf. Die Sonde weist wenigstens ein Armstellglied zum Ausfahren des zweiten Endes der Sensorarme aus dem Gehäuse in eine ausgefahrene Messposition auf. Ein Motor sieht die Rotation des zweiten Abschnitts relativ zu dem ersten Abschnitt vor. [0009] Gemäss der Erfindung weist eine Sonde zum Inspizieren einer Innenfläche einer Bohrung ein Gehäuse auf, das zum Einführen in die Bohrung abgemessen ist, wobei das Gehäuse einen ersten Abschnitt und einen zweiten Abschnitt aufweist. Mehrere Stabilisierungsbeine sind dazu konfiguriert, in Kontakt mit der Innenfläche der Bohrung zu gelangen. Jedes Stabilisierungsbein weist ein erstes Ende auf, das an dem Gehäuse angeordnet ist, und ein zweites Ende, das aus dem Gehäuse ausfahrbar ist. Die Sonde weist ein Mittel zum Ausfahren jedes Stabilisierungsbeins von einer Position innerhalb des Gehäuses in eine Position auf, wobei das zweite Ende in Kontakt mit der Innenfläche der Bohrung gelangt. Die Sonde weist ausserdem mehrere Sensorarme auf, wobei jeder Sensorarm ein erstes Ende aufweist, das an dem zweiten Abschnitt angeordnet ist, sowie ein zweites Ende, das aus dem zweiten Abschnitt ausfahrbar ist und einen Sensor aufweist. Die Sonde weist ausserdem ein Mittel zum Ausfahren jedes Sensorarms von einer Position in dem Gehäuse in eine Position auf, welche den Sensor benachbart zu der Innenfläche der Bohrung anordnet, sowie ein Mittel zum Rotieren der Sensorarme relativ zu den Stabilisierungsbeinen. [0010] Man wird verstehen, dass die genaue Beschreibung und die Figuren, während sie bestimmte Ausführungsbeispiele der Erfindung darstellen, zu Erläuterungszwecken bestimmt sind und nicht als den Umfang der Erfindung begrenzend betrachtet werden sollen. Kurze Beschreibung der Figuren [0011] <tb>Fig. 1<sep>ist eine perspektivische Ansicht einer Bohrungssonde in einer eingefahrenen Position gemäss einem Ausführungsbeispiel der Erfindung. <tb>Fig. 2<sep>ist eine perspektivische Ansicht einer Bohrungssonde in einer radial ausgefahrenen Position gemäss einem Ausführungsbeispiel der Erfindung. <tb>Fig. 3<sep>ist eine perspektivische Ansicht einer Drehspindelanordnung für eine Bohrungssonde gemäss einem Ausführungsbeispiel der Erfindung. <tb>Fig. 4<sep>ist eine perspektivische Ansicht einer Spindelachse zum Benutzen in einer Bohrungssonde gemäss einem Ausführungsbeispiel der Erfindung. <tb>Fig. 5<sep>ist eine perspektivische Ansicht eines Sensorarms mit einer vorgespannten und kardanisch aufgehängten Messspitze zum Benutzen in einer Bohrung gemäss einem Ausführungsbeispiel der Erfindung. <tb>Fig. 6<sep>ist eine Seitenansicht eines Sensorarms, der an ein Sensorarmstellglied gekoppelt ist, und der ein passives Vorspannelement aufweist, gemäss einem Ausführungsbeispiel der Erfindung. <tb>Fig. 7<sep>ist eine Seitenansicht eines Sensorsegments mit einem ausgefahrenen Sensorarm, wobei jeder ein passives Vorspannelement aufweist, gemäss einem Ausführungsbeispiel der Erfindung. <tb>Fig. 8<sep>ist eine Ansicht eines Sensorsegments mit drei Sensorarmen und drei Luftzylinder-Sensorarmstellgliedern gemäss einem Ausführungsbeispiel der Erfindung. <tb>Fig. 9<sep>ist eine Ansicht einer Luftsammelleitung zum Koordinieren der Betätigung der drei Luftzylinder-Sensorarmstellglieder gemäss einem anderen Ausführungsbeispiel der Erfindung. [0012] Gleiche Bezugszeichen weisen auf gleiche Elemente oder Merkmale in allen Figuren hin. Genauere Beschreibung der Ausführungsbeispiele [0013] Die folgende Beschreibung ist lediglich beispielhafter Natur und soll die Erfindung, ihre Anwendung oder ihre Nutzung in keiner Weise begrenzen. Wie erwähnt, weisen gleiche Bezugszeichen der verschiedenen Figuren auf gleiche Elemente oder Merkmale in allen Figuren hin. Deshalb wird die Beschreibung der gemeinsamen Elemente, Merkmale oder Bauteile von zuvor erläuterten Figuren nicht wiederholt. [0014] In einer Ausführungsform der Erfindung weist eine Sonde zum Inspizieren eines inneren Abschnitts einer Bohrung ein Gehäuse auf, das zum Einführen in die Bohrung abgemessen ist, sowie mehrere Stabilisierungsbeine, die ein erstes Ende aufweisen, das an dem Gehäuse angeordnet ist, und ein zweites Ende, das aus dem Gehäuse ausfahrbar ist. Die Stabilisierungsbeine sind dazu konfiguriert, in Kontakt mit der Innenfläche der Bohrung zu gelangen. Mehrere Sensorarme sind aus dem Gehäuse ausfahrbar und sind relativ zu den Stabilisierungsbeinen rotierbar. Ein Motor sieht das Rotieren der Sensorarme relativ zu den Stabilisierungsbeinen vor. [0015] Ein Beispiel für eine solche Sonde ist in Fig. 1 dargestellt. Wie erwähnt, weist die Sonde 100 ein Gehäuse 101 mit einem ersten Segment oder Abschnitt 102 und einem zweiten Segment oder Abschnitt 104 auf, sowie ein erstes Ende 106 und ein zweites Ende 108. Obwohl die Sonde 100 und/oder das Gehäuse 101 viele Formen und Grössen aufweisen können, weist die Sonde 100 in vielen Ausführungsformen eine bevorzugte lange und zylindrische Form auf, wobei der Aussenumfang geringer ist als der Innenumfang der Bohrung, in die die Sonde eingeführt werden soll und in der sie bedient werden soll. Das erste Segment 102 weist eine oder mehrere Kammern oder Hohlräume 110 auf, die dazu abgemessen sind, mehrere Stabilisierungsbeine 112 aufzunehmen und zurückzuhalten. Fig. 1zeigt die Stabilisierungsbeine 112 in einer eingefahrenen Position in den Beinhohlräumen 110, und Fig. 2 zeigt die Stabilisierungsbeine in einer radial ausgefahrenen Position. Wie dargestellt, weist jedes Stabilisierungsbein 112 in diesem Ausführungsbeispiel ein Ende auf, das rotierbar an dem ersten Segment 102 angeordnet ist, sowie ein zweites Ende, das radial aus dem Grundkörperabschnitt des ersten Segments 102 ausfahrbar ist. Ebenso weist das zweite Segment 104 eine oder mehrere Kammern oder Hohlräume 114 auf, die dazu abgemessen sind, mehrere Sensorarme 116 in sich einzufahren und zurückzuhalten. Fig. 1 zeigt die Sensorarme 116 in einer eingefahrenen Position in den Sensorarmhohlräumen 114, und Fig. 2 zeigt die Sensorarme 116 in einer radial ausgefahrenen Position. Wie dargestellt, weist jeder Sensorarm in diesem Ausführungsbeispiel ein Ende auf, das rotierbar an dem zweiten Segment 104 angeordnet ist, und ein zweites Ende, das radial aus dem Grundkörperabschnitt des zweiten Segments 104 ausgefahren wird. Obwohl Fig.1und 2 das erste Segment 102 als ein oberes Segment und das zweite Segment 104 als ein unteres Segment darstellen, kann diese Position in anderen Ausführungsformen der Erfindung umgekehrt sein. [0016] Das erste Segment 102 ist über ein flexibles Gelenk oder eine Kupplung 118, das oder die eine Leitungsschnur zwischen den zwei Segmenten bereitstellt und so das Einführen der Sonde 100 in eine Bohrung mit beschränkter Zugänglichkeit ermöglicht, flexibel an das zweite Segment 104 gekoppelt. Zusätzlich sieht eine Rotationskupplung 120 die Rotation des zweiten Segments 104 relativ zu dem ersten Segment 102 vor. Die Rotationskupplung 120 weist einen Motor auf (nicht dargestellt) und kann andere Komponenten aufweisen, darunter beispielsweise ein Lager, ein Getriebe, eine Drehspindel und eine Achse (nicht dargestellt). [0017] Üblicherweise ist die Sonde 100 über ein Sicherungskabel (nicht dargestellt), das an dem ersten Ende 106 angeordnet ist, gesichert oder zur Bedienung eingeschaltet. Zusätzlich können eine oder mehrere Bedienungsleitungen 122, wie weiter unten behandelt werden soll, durch einen Hohlraum 127 oder eine Mündung des ersten Endes 106 in die Sonde eingeführt sein. [0018] Sobald die Sonde 100 in eine Bohrung eingelassen ist, werden die Stabilisierungsbeine 112 radial aus dem Beinhohlraum 110 ausgefahren, wie in Fig. 2gezeigt. Bei der beispielhaften Sonde 100 kann jedes Stabilisierungsbein 112 von einer oder mehreren Stützen oder Führungen 124 radial ausgefahren werden und kann an einem Ende ein Reibungselement 113 aufweisen. Die Führungen 124 können die Stabilisierungsbeine 112 mit Hilfe von einem oder mehreren Stellgliedern (nicht dargestellt) ausfahren. Die Reibungselemente 113 können dazu konfiguriert sein, mit der Innenfläche oder der Wand einer Bohrung mit einem bestimmten Reibungsgrad in Kontakt oder in Eingriff zu gelangen. Die Reibungselemente 113 können aus jeder Art von Material ausgebildet sein, z.B. Gummi, oder können ein gezacktes oder anderes Merkmal an dem Ende des Stabilisierungsbeins 112 sein, das den Reibungskontakt des Stabilisierungsbeins 112 an der Innenfläche der Bohrung erhöhen kann. [0019] Zusätzlich können eine oder mehrere der Führungen 124 oder die Stellglieder von einem Vorspannelement 115, wie z.B. einer Feder, vorgespannt sein, um die Stabilisierungsbeine 112 in einer normal geöffneten oder normal geschlossenen Position anzuordnen. In einer bevorzugten Ausführungsform können eine oder mehrere Federn (nicht dargestellt) dazu konfiguriert sein, die Führungen 124 so vorzuspannen, dass sie normalerweise die Stabilisierungsbeine 112 in die Beinhohlräume 110 einfahren. Ein Stellglied 125, wie z.B. ein Luft- oder Hydraulikzylinder, kann eine Kraft entgegen der normalen Spannung des Vorspannungselements 115 ausüben, um die Führungen 124 aufwärtszubewegen und um ein Ende jeder Führung 124 nach aussen auskragen zu lassen. Auf diese Weise wird ein nicht befestigtes Ende jedes Stabilisierungsbeins 112, das das Reibungselement 113 aufweisen kann, radial ausgefahren, um in Kontakt mit der Innenfläche der umgebenden Bohrung zu gelangen. Die Menge der äusseren Kraft, die von dem Stellglied 125 auf die Stabilisierungsbeine 112 und die Reibungselemente 113 ausgeübt wird, kann angepasst und überwacht werden, um die richtige Stabilität der Stabilisierungsbeine 112 im Verhältnis zu der Bohrung bereitzustellen. [0020] Einige Ausführungsformen können ausserdem eine im Wesentlichen gleiche Streck- oder Auswärtskraft für jedes Stabilisierungsbein 112 vorsehen, was dazu führen kann, dass die Beine (beispielhaft als drei Beine gezeigt) die Sonde 100 in der Bohrung zentrieren. Zusätzlich kann, da die Stabilisierungsbeine 112 für eine eingefahrene Position vorgespannt sind, die Sonde 100 leichter aus einer Bohrung herausgezogen werden, wenn ein Fehler der Sonde 100 auftritt, wie z. B. der Verlust oder Ausfall einer Bedienungsleitung oder eines Signals. [0021] Die Sensorarme 116 können ebenfalls durch ein oder mehrere Sensorarmstellglieder 126 radial aus dem Armhohlraum 114 ausgefahren werden. In dem Ausführungsbeispiel aus Fig. 2 kann jeder Sensorarm 116, der an einem Ende einen Sensor 117 aufweist, auch ein Armstellglied 126 aufweisen, das dem Sensorarm 116 zugeordnet ist, um den Sensorarm 116 in der gewünschten Position anzuordnen. Üblicherweise befinden sich die Sensorarme 116 als Ausgangsposition in einer eingefahrenen Position in den Armhohlräumen 114. So können ein oder mehrere Vorspannelemente (nicht dargestellt) benutzt werden, um jeden Sensorarm 116 einzufahren. Jedes Armstellglied 126 fährt, wenn es die notwendige Betätigungseingabe oder das notwendige Betätigungssignal empfängt, wenigstens einen Abschnitt des zugeordneten Sensorarms 116 aus dem Armhohlraum 114 nach aussen, wie in Fig. 2 gezeigt. Das Ausfahrmass der Sensorarme 116 kann während des Betriebs basierend auf den jeweiligen Anforderungen angepasst werden. Beispielsweise kann der Sensorarm 116 ausgefahren werden, um mit der Innenfläche der Bohrungswände in Kontakt zu gelangen, wenn der Sensor 117 oder die Messoperation einen Kontakt erforderlich macht. Wenn nicht, kann der Sensorarm 116 nur teilweise zwischen den Sensorkörper und die Bohrungswände ausgefahren werden. Der vorliegende Aufbau ermöglicht diese besondere Anordnung, da die Sonde von den Stabilisierungsbeinen 112, die von den Sensorarmen 116 getrennt sind, in der Bohrung zentriert und stabilisiert werden kann. [0022] Wie dargestellt, weist ein Ende des Sensorarms 116 einen Sensor 117 auf. Der Sensor 117 kann jede Art von Sensor sein, und es kann mehr als ein Sensor pro Sensorarm 116 vorgesehen sein. Zusätzlich kann der Sensor 117 mit Hilfe eines Kardanrings oder Gelenks an das Ende des Sensorarms 116 angebracht sein und kann ein Vorspannelement aufweisen. Der Sensorkardanring kann eine Ausrichtung des Sensors 117 zu einer Innenfläche der Bohrung vorsehen. Das Vorspannelement kann den Sensor 117 oder die Messspitze während des normalen Betriebs in einer Ebene mit dem Sensorarm 116 halten, um es der Messspitze ebenfalls zu ermöglichen, in den Sensorhohlraum 114 einzufahren. Der Kardanring und das Vorspannelement können es dem Sensor trotzdem ermöglichen, sich nach Bedarf an die Messfläche der Bohrung anzupassen oder sich zu dieser auszurichten, wenn die Sensorarme 116 sich in der ausgefahrenen Position befinden. [0023] Ein Motor 111 kann in dem ersten Segment 102 oder dem zweiten Segment 104 vorgesehen sein und eine Rotationskraft zum Rotieren der Sensorarme 116 relativ zu den Stabilisierungsbeinen 112 bereitstellen. Wie in Fig. 2beispielhaft gezeigt, kann der Motor 111 in dem unteren Abschnitt des ersten Segments 102 benachbart zu und möglicherweise in der Rotationskupplung 120 aufgenommen sein. Fachleute werden allerdings verstehen, dass andere Positionen und Anordnungen des Motors 111 möglich sind und immer noch im Umfang dieser Erfindung liegen. [0024] Fig. 2 stellt ausserdem eine flexible Kupplung 128 benachbart zu dem ersten Ende 106 dar, um eine flexible Verbindung zu einem externen Sicherungskabel (nicht dargestellt) bereitzustellen. Auch Bedienungsleitungen 122 wie z.B. 130 (Stromleitung), 132 (Betätigungsleitung) und 134 (Sensorleitung) stellen eine operative Verbindung zu externen Steuer- oder Bedienungssystemen (nicht dargestellt) bereit. Dies können eine Stromleitung 130 für ein oder mehrere Sondensysteme einschliesslich des Betriebs von Motor 111, eine Betätigungsleitung zum Zuführen von Luft oder einem anderen hydraulischen Fluid zum Betätigen von einem oder mehreren Beinstellgliedern 125 und Armstellgliedern 126, und eine Sensorleitung 134 zum Übermitteln eines gemessenen Signals oder einer Messkennlinie von Sensoren der Sonde an ein externes Bedienungssystem sein. Zusätzlich kann in einigen Ausführungsformen ein Drehmelder 136 vorgesehen sein, um die Radialposition der Sensorarme 116 relativ zu den Stabilisierungsbeinen 112 zu verfolgen oder zu bestimmen. Der Drehmelder 136 erzeugt ein Signal, das die Radialposition oder die radialen Koordinaten von den Sensorarmen 116 oder den Stabilisierungsbeinen 112 oder beiden, oder des zweiten Segments 104 oder des ersten Segments 102, an die sie jeweils gekoppelt sind, anzeigt. In dem Ausführungsbeispiel aus Fig. 2 ist der Drehmelder 136 als an oder nahe dem unteren Abschnitt des zweiten Segments 104 angeordnet dargestellt. Allerdings wird es für Fachleute offensichtlich sein, dass der Drehmelder 136 an verschiedenen anderen Positionen an der Sonde 100 angeordnet sein und trotzdem die Bestimmung der relativen Radialposition bereitstellen kann. In einer zusätzlichen Ausführungsform kann die Sonde 100 eine oder mehrere Messvorrichtungen, wie z.B. einen Videosensor oder eine Videokamera (nicht dargestellt), aufweisen. Beispielsweise kann in einigen Ausführungsformen eine Videokamera an dem oberen Segment 102 angeordnet sein, um das untere Segment 104 zu erfassen, und/oder um den Einsatz der Stabilisierungsbeine 112 oder der Sensorarme 116 zu erfassen. Das Videosignal kann zurück an ein Hilfssystem oder einen Bildschirm übermittelt werden, der von einem Bediener betrachtet wird, um die Überwachung von einer oder mehreren Operationen der Sensorarme, wie z.B. ihre Rotation, zu ermöglichen. In anderen Ausführungsformen kann eine Videokamera auch angeordnet sein, um einen Bereich zu erfassen, der von den Sensoren 117 gemessen wird. [0025] Bezugnehmend auf Fig. 3, ist hier eine Rotationskupplung 120 zum Verbinden des ersten Segments 102 und des zweiten Segments 104 gemäss einem Ausführungsbeispiel dargestellt. In diesem Beispiel ist die Rotationskupplung 120 als dem ersten Segment 102 zugeordnet dargestellt. Allerdings können in anderen Ausführungsformen die Komponente oder die Komponenten der Rotationskupplung 120 dem zweiten Segment 104 zugeordnet sein. In dem Ausführungsbeispiel von Fig. 3endet das erste Segment an einem Ende mit einer Spindelplatte 302. Der Motor 111 kann in dem Grundkörper des ersten Segments 102 angeordnet sein und ist wirksam mit einem Motorantrieb 304 verbunden, der sich über die Spindelplatte 302 hinaus erstreckt. Ein Transferantrieb 306 empfängt von dem Motorantrieb 304 Rotationsenergie. Die Spindelplatte 302 kann ausserdem eine oder mehrere Durchgänge 308 aufweisen, die eine oder mehrere Bedienungsleitungen (nicht dargestellt) aufnehmen können, welche eine Verbindung zwischen dem ersten Segment 102 und dem zweiten Segment 104 herstellen. [0026] Eine Spindelachse (nicht dargestellt) kann über der Spindelplatte angeordnet sein und eine Rotationsverbindung zwischen den zwei Segmenten 102 und 104 vorsehen. In der dargestellten Ausführungsform von Fig. 3weist die Spindelachse 310 ausserdem an ihrer Basis einen Durchgang 308 auf, der eine oder mehrere Bedienungsleitungen 122 aufnimmt. Da allerdings die Rotationskupplung 120 eine Rotation zwischen dem ersten Segment 102 und dem zweiten Segment 104 vorsieht, weist die Spindelachse 310 einen zentralen Durchgang 312 zum fortlaufenden Durchführen der Bedienungsleitungen 122 auf. Auf diese Weise werden die Bedienungsleitungen während der Rotationsbetätigung der Rotationskupplung 120 nicht verdreht. Ein Ringgetriebe 314 wird von dem Transferantrieb 306 angetrieben, um die Rotation des zweiten Segments 104 anzutreiben. Ein Lager 316 kann vorgesehen sein, um eine verbesserte Rotation der Rotationskupplung 120 bereitzustellen. Eine Spindelkupplung (nicht dargestellt) kann über den anderen Komponenten der Rotationskupplung angeordnet sein. Die Spindelkupplung kann an ihrer Innenfläche (nicht dargestellt) einen Gegenradmechanismus zum Erhalten von Rotationsenergie von dem Ringgetriebe 314 aufweisen. Die Spindelkupplung kann ein oder mehrere Gegenradmerkmale aufweisen, welche die Kopplung der Rotationskupplung 120 an eine andere Komponente, wie z.B. die Leitungsschnurkupplung 118, bereitstellen. [0027] Fig. 4 zeigt eine genauere perspektivische Ansicht der Spindelachse 310 gemäss einem Ausführungsbeispiel der Erfindung. Wie dargestellt, kann die Spindelachse 310 einen Flansch 402, eine Welle 404, und ein Wellenende 406, und ein Kupplungsende 408 aufweisen. Zusätzlich kann der Flansch 402 eine oder mehrere Halterungen oder Halterungsmittel, wie z.B. Montagebohrungen, aufweisen. [0028] Wie erwähnt, können ein oder mehrere Sensorarme 116 dazu konfiguriert sein, einen oder mehrere Sensoren 117 aufzuweisen. Fig. 5 zeigt ein Ausführungsbeispiel eines Messendes oder einer Messspitze eines Sensorarms 116. In diesem Beispiel weist der Sensorarm 116 ein kardanisch aufgehängtes Ende 502 auf, das mit einem Scharnier 504 oder einer ähnlichen flexiblen Vorrichtung an dem Sensorarm 116 angebracht ist. Ein Sensor 117 ist an dem kardanisch aufgehängten Ende 502 angebracht und zum optimalen Messen eines Merkmals der zu inspizierenden Bohrung angeordnet. Zusätzlich kann eine Feder 506 (in Fig. 5nicht dargestellt) eine Vorspannung für das kardanisch aufgehängte Ende 502 vorsehen, so dass das kardanisch aufgehängte Ende 502 normalerweise an derselben Stelle wie der Sensorarm 116 angeordnet ist. Auf diese Weise ist das kardanisch aufgehängte Ende 502 so angeordnet, dass es in den Grundkörper des zweiten Segments 104 aufgenommen ist, wenn der Sensorarm 116 in den Armhohlraum 114 eingefahren ist. Wenn die Sensorarme 116 jedoch ausgefahren sind und in Kontakt mit einer Innenfläche der Bohrung gelangen, rotiert das kardanisch aufgehängte Ende um Scharnier 504, so dass der Sensor 117 optimal zu der Ebene der Innenfläche der Bohrung ausgerichtet wird. [0029] Bezug nehmend auf Fig. 6ist ein Sensorarm 116 über ein Scharnier 602 oder ein ähnliches flexibles Gelenk an das Armstellglied 126 gekoppelt. In einigen Ausführungsformen kann jeder Sensorarm auch ein passives Vorspannelement 604 aufweisen. Das passive Vorspannelement 604 kann beispielsweise einen Keil, eine Abschrägung oder eine gekrümmte Fläche aufweisen. Das passive Vorspannelement 604 des Sensorarms 116 kann mit einem oder mehreren Merkmalen des Grundkörpers des Segments 104 zusammenwirken, um eine anfängliche Auswärtsvorspannung der Sensorarme 116 bereitzustellen, wenn das Sensorarmstellglied 126 beginnt, sich von der eingefahrenen Position in die ausgefahrene Position zu bewegen. Wie in Fig. 7dargestellt, kann auch ein zweites passives Vorspannelement 702 ein Keil, eine Abschrägung, eine gekrümmte Fläche oder ein Flansch sein, der oder die, wenn in Kontakt mit einem passiven Vorspannelement 604 zur Aufwärtsbewegung gebracht, einen Auswärtsdruck auf den Sensorarm 116 ausübt, um wenigstens einen Abschnitt des Sensorarms dazu zu veranlassen, radial aus dem Armhohlraum 114 auszufahren. In einer Ausführungsform sind beide passiven Vorspannelemente 604 und 702 Keile. Während der Sensorarm 116 radial ausfährt, rotieren die Armstellglieder 126 nach aussen und stellen das benötigte radiale Ausfahren der Sensorarme 116 bereit. Wie in Fig. 7 gezeigt, ist ein zweites Ende 802 jedes Armstellglieds 126 über ein Scharnier, eine Welle oder ein ähnliches flexibles oder rotierendes Element an den Grundkörper des zweiten Segments 104 gekoppelt. Wie oben erwähnt, kann jedes Armstellglied 126 jede Art von Stellglied sein, einschliesslich eines Hydraulikzylinders, eines Motors oder einer Schneckenantriebsanordnung oder einer ähnlichen Betätigungsanordnung. [0030] Wie in Fig. 8 gezeigt, ist ausserdem jedes Armstellglied 126 ein Luftzylinder, der an einer rotierbaren Kupplung 804 angeordnet ist und eine Lufteinlassmündung 806 zur bedienbaren Steuerung des Armstellglieds 126 aufweist. Obwohl weniger als ein oder mehrere Armstellglieder 126 jedem Sensorarm 116 zugeordnet sein können, sind in einer bevorzugten Ausführungsform drei Sensorarme vorgesehen, wobei jeder ein zugeordnetes Luftzylinder-Armstellglied 126 aufweist. Um den Ausgleich der Ausfahrung jedes Sensorarms 116 und der Druckmenge, die von dem Sensorarm 116 auf die Innenfläche der Bohrung ausgeübt wird, zu erreichen, kann eine Koordinationsvorrichtung, wie z.B. eine Luftsammelleitung 902, vorgesehen sein, wie in Fig. 9 dargestellt. Die Luftsammelleitung 902 kann mehrere Lufteinlassmündungen und -auslassmündungen 904 aufweisen, um eine koordinierte Luftzufuhr für die verschiedenen Armstellglieder 126 bereitzustellen. Wenn die Sonde 100 beispielsweise drei Sensorarme 116 und drei Armstellglieder 126 aufweist, kann die Luftsammelleitung 902 eine einzelne Einlassmündung 904 und drei Auslassmündungen 904 aufweisen. Eine Ausführungsform der Luftsammelleitung 902 weist eine interne Luftkammer (nicht dargestellt) auf, die Betätigungsluft von der einzelnen Einlassmündung 904 erhält und eine gleichmässige Verteilung an jede der drei Auslassmündungen 904 vorsieht. Auf diese Weise erhält jedes Armstellglied 126 eine im Wesentlichen gleiche Menge von Betätigungsluft. Zusätzlich kann dies die Anzahl von Bedienungsleitungen 122 reduzieren, die zum Ausfahren der Sensorarme 116 benötigt werden. [0031] Die hier beschriebenen verschiedenen Ausführungsbeispiele der Inspektionssonde 100 können eine verbesserte Inspektion einer inneren Bohrung bereitstellen. Die Stabilisierungsbeine 112 können die Sonde in der Bohrung zentrieren und stabilisieren und ermöglichen es den Sensorarmen so, optimal in der Bohrung positioniert zu werden, um eine Inspektions- oder Messoperation durchzuführen. Zusätzlich kann die radiale Stabilisierung des ersten Segments 102 der Sonde 100 eine verbesserte Bestimmung und Verfolgung der Rotationsposition jedes Sensors 117 in der Bohrung bereitstellen. So können die Messkennlinien von dem Sensor 117 genauer einer bestimmten Umfangsposition in der Bohrung zugeordnet werden, so dass das Bedienungspersonal leichter die gemessenen Defekte identifizieren und beheben kann. Einige dieser Verbesserungen und Vorteile werden, zusätzlich zu anderen, von den verschiedenen Ausführungsformen der Erfindung bereitgestellt. [0032] Bei der Beschreibung der Elemente und Merkmale der vorliegenden Erfindung oder der Ausführungsformen derselben sollen die benutzten bestimmten und unbestimmten Artikel bedeuten, dass ein oder mehrere Elemente oder Merkmale vorhanden sind. Die Begriffe "aufweisen", "enthalten" und "umfassen" sind umfassend zu verstehen und bedeuten, dass auch zusätzliche Elemente und Merkmale jenseits der im Einzelnen beschriebenen vorhanden sein können. [0033] Fachleute werden erkennen, dass verschiedene Veränderungen an den oben beschriebenen Ausführungsbeispielen und Implementierungen vorgenommen werden können, ohne den Umfang der Erfindung zu verlassen. Entsprechend sind alle Gegenstände der oben gegebenen Beschreibung oder der begleitenden Figuren als erläuternd zu verstehen, und nicht in einem eingrenzenden Sinn. [0034] Ferner versteht sich, dass für die hier beschriebenen Verfahren oder Schritte nicht vorgesehen ist, dass ihre Ausführung notwendigerweise in der jeweils beschriebenen Reihenfolge erfolgen muss. Bezugszeichenliste [0035] <tb>100<sep>Sonde <tb>101<sep>Gehäuse <tb>102<sep>Erster Abschnitt oder erstes Segment <tb>104<sep>Zweites Segment <tb>106<sep>Erstes Ende <tb>108<sep>Zweites Ende <tb>110<sep>Ausnehmungen <tb>111<sep>Motor <tb>112<sep>Stabilisierungsbeine <tb>113<sep>Reibungselement <tb>114<sep>Sensorarmhohlraum <tb>115<sep>Vorspannelement <tb>116<sep>Sensorarm <tb>117<sep>Sensor <tb>118<sep>Flexibles Gelenk oder flexible Kupplung <tb>120<sep>Rotationskupplung <tb>122<sep>Bedienungsleitungen <tb>124<sep>Stützen oder Führungen <tb>125<sep>Stellglied <tb>126<sep>Armstellglied <tb>127<sep>Hohlraum <tb>128<sep>Flexible Kupplung <tb>130<sep>Stromleitung <tb>132<sep>Betätigungsleitung <tb>134<sep>Sensorleitung <tb>136<sep>Drehgeber <tb><sep> <tb>302<sep>Spindelplatte <tb>304<sep>Motorantrieb <tb>306<sep>Transferantrieb <tb>308<sep>Durchgänge <tb>310<sep>Spindelachse <tb>312<sep>Durchgang <tb>314<sep>Ringgetriebe <tb>316<sep>Lager <tb><sep> <tb>402<sep>Flansch <tb>404<sep>Welle <tb>406<sep>Wellenende <tb>408<sep>Kupplungsende <tb><sep> <tb>502<sep>Kardanisch aufgehängtes Ende <tb>504<sep>Scharnier <tb>506<sep>Feder <tb><sep> <tb>602<sep>Scharnier <tb>604<sep>Passives Vorspannelement <tb><sep> <tb>702<sep>Passives Vorspannelement <tb>704<sep>Zweites passives Vorspannelement <tb><sep> <tb>802<sep>Zweites Ende des Arms <tb>804<sep>Rotationskupplung <tb>806<sep>Lufteinlass <tb><sep> <tb>902<sep>Luftsammelleitung <tb>904<sep>Einlass-/Auslassmündungen
Claims (10)
1. Sonde (100) zum Inspizieren einer Bohrung, die Folgendes umfasst:
ein Gehäuse (101), das zum Einführen in die Bohrung abgemessen ist;
mehrere Stabilisierungsbeine (112) , die ein erstes Ende aufweisen, das an dem Gehäuse (101) angeordnet ist, und ein zweites Ende das aus dem Gehäuse (101) ausfährt und dazu konfiguriert ist, in Kontakt mit der Innenfläche der Bohrung zu gelangen;
mehrere Sensorarme (116), die aus dem Gehäuse (101) ausfahrbar und relativ zu den Stabilisierungsbeinen (112) rotierbar sind; und
einen Motor (111) zum Rotieren der Sensorarme (116) relativ zu den Stabilisierungsbeinen (112).
2. Sonde (100) nach Anspruch 1, wobei das Gehäuse einen ersten Abschnitt (102) und einen zweiten Abschnitt (104) aufweist, wobei die Stabilisierungsbeine (112) an den ersten Abschnitt (102) und die Sensorarme (116) an den zweiten Abschnitt (104) gekoppelt sind, wobei der Motor (111) den zweiten Abschnitt (104) einschliesslich der Sensorarme (116) relativ zu dem ersten Abschnitt (102) rotiert.
3. Sonde (100) nach Anspruch 1, die ferner ein Vorspannelement (115) zum Zurückhalten der Stabilisierungsbeine (112) in dem Gehäuse (101) sowie ein Stabilisierungsbein-Stellglied (125) umfasst, das dazu konfiguriert ist, das zweite Ende (108) der Stabilisierungsbeine (112) aus der eingefahrenen Position in dem Gehäuse (101) in eine ausgefahrene Position in Kontakt mit der Innenfläche der Bohrung auszufahren.
4. Sonde (100) nach Anspruch 1, die ferner mehrere Sensorarmstellglieder (126) umfasst, die dazu konfiguriert sind, die Sensorarme (116) aus einer Position in dem Gehäuse (101) in eine ausgefahrene Messposition auszufahren, wobei ein als Sensorende vorgesehenes Ende des Sensorarms (116) benachbart zu der Innenfläche der Bohrung anordenbar ist, wobei jeder Sensorarm (116) ein zugeordnetes Sensorarmstellglied (126) aufweist.
5. Sonde (100) nach Anspruch 4, die ferner eine Sensorarm-Betätigungsvorrichtung (902) umfasst, die dazu konfiguriert ist, die Steuerung der Sensorarmstellglieder (126) zu koordinieren, wobei die Sensorarm-Betätigungsvorrichtung (902) eine Luftsammelleitung (902) aufweist und jedes Sensorarmstellglied (126) ein Luftzylinder ist, wobei die Luftsammelleitung (902) dazu konfiguriert ist, eine Luftzufuhr zu erhalten und jedem Sensorarm-Luftzylinder (126) Betätigungsluft zuzuführen.
6. Sonde (100) nach Anspruch 4, die ferner ein oder mehrere passive Vorspannelemente (702) umfasst, die jedem Sensorarm (116) zugeordnet sind, wobei die passiven Vorspannelemente (702) abgemessen und angeordnet sind, um das radiale Ausfahren der Sensorarme (116) aus der Position in dem Gehäuse (101) zu unterstützen.
7. Sonde (100) nach Anspruch 1, wobei jeder Sensorarm (116) einen Sensor (117) aufweist, der dazu konfiguriert ist, ein Merkmal der Innenfläche der Bohrung zu erfassen, und wobei jeder Sensorarm (116) ein erstes Ende aufweist, das an dem Gehäuse (101) angeordnet ist, und ein zweites Ende, das aus dem Gehäuse (101) ausfahrbar ist und dazu konfiguriert ist, in Kontakt mit der Innenfläche der Bohrung zu gelangen, und wobei jeder Sensor (117) benachbart zu dem zweiten Ende angeordnet ist.
8. Sonde (100) nach Anspruch 7, wobei jeder Sensorarm (116) einen kardanisch aufgehängten Abschnitt (502) an dem zweiten Ende aufweist, der vorgespannt ist, um normalerweise entlang einer Ebene des Sensorarms (116) angeordnet zu sein, und der relativ zu einer Ebene der Innenfläche der Bohrung rotierbar ist, wenn er in Kontakt mit der Innenfläche der Bohrung gelangt.
9. Sonde (100) nach Anspruch 1, die ferner Folgendes umfasst:
einen Drehgeber (136) zum Bereitstellen, eines Signals, das die Radialposition der Sensorarme (116) relativ zu den Stabilisierungsbeinen (112) anzeigt; und
einen Videosensor, der am ersten Abschnitt befestigt ist und dazu konfiguriert ist, wenigstens einen Sensorarm (116) zu erfassen, wobei jedes zweite Ende jedes Stabilisierungsbeins (112) ein Reibungselement (113) zum Herstellen eines Reibekontakts mit der Innenfläche der Bohrung aufweist.
10. Sonde (100) nach Anspruch 1, wobei der Motor (111) dazu konfiguriert ist, die Sensorarme (116) im Uhrzeigersinn um etwa 360 Grad zu rotieren und dann die Sensorarme (116) gegen den Uhrzeigersinn um etwa 360 Grad zu rotieren.
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US11/104,839 US7543512B2 (en) | 2005-04-13 | 2005-04-13 | Bore inspection probe |
Publications (1)
Publication Number | Publication Date |
---|---|
CH698311B1 true CH698311B1 (de) | 2009-07-15 |
Family
ID=37107178
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
CH00611/06A CH698311B1 (de) | 2005-04-13 | 2006-04-12 | Inspektionssonde für eine Bohrung. |
Country Status (5)
Country | Link |
---|---|
US (1) | US7543512B2 (de) |
JP (1) | JP4931461B2 (de) |
CH (1) | CH698311B1 (de) |
ES (1) | ES2321778B1 (de) |
TW (1) | TW200643980A (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021113965A1 (de) | 2021-05-31 | 2022-12-01 | Rwe Gas Storage West Gmbh | Messvorrichtung für eine Rohrtour einer Tiefenbohrung |
Families Citing this family (32)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20080087112A1 (en) * | 2006-01-04 | 2008-04-17 | General Electric Company | Senior Ultrasonic Miniature Air Gap Inspection Crawler |
US7543536B2 (en) * | 2006-10-31 | 2009-06-09 | The Boeing Company | Apparatus for transporting and positioning an inspection device within a walled cavity |
US7694564B2 (en) * | 2007-05-21 | 2010-04-13 | Alstom Technology Ltd. | Boiler tube inspection probe with centering mechanism and method of operating the same |
US8449443B2 (en) | 2008-10-06 | 2013-05-28 | Indiana University Research And Technology Corporation | Active or passive assistance in the circulatory system |
US8365822B2 (en) * | 2009-08-31 | 2013-02-05 | Schlumberger Technology Corporation | Interleaved arm system for logging a wellbore and method for using same |
EP2290190A1 (de) * | 2009-08-31 | 2011-03-02 | Services Petroliers Schlumberger | Verfahren und Vorrichtung für gesteuerte bidirektionale Bewegungen eines Ölfeldwerkzeugs in einer Bohrlochumgebung |
US8542790B2 (en) | 2010-08-06 | 2013-09-24 | Ge-Hitachi Nuclear Energy Americas Llc | Jet pump inspection apparatus |
US8485253B2 (en) * | 2010-08-30 | 2013-07-16 | Schlumberger Technology Corporation | Anti-locking device for use with an arm system for logging a wellbore and method for using same |
US8464791B2 (en) * | 2010-08-30 | 2013-06-18 | Schlumberger Technology Corporation | Arm system for logging a wellbore and method for using same |
US10074448B2 (en) | 2010-10-21 | 2018-09-11 | Westinghouse Electric Company Llc | Submersible machine structured to carry a tool to a limited access location within a nuclear containment |
JP5064554B2 (ja) * | 2010-12-10 | 2012-10-31 | 日立Geニュークリア・エナジー株式会社 | 原子炉圧力容器における溶接部の検査装置及び検査方法 |
US8833187B2 (en) * | 2011-02-23 | 2014-09-16 | Ut-Battelle, Llc | Stack sampling apparatus |
JP5591174B2 (ja) * | 2011-04-22 | 2014-09-17 | 原子燃料工業株式会社 | 制御棒案内シンブルの温度測定体、燃料集合体の温度測定装置および温度測定方法 |
CN104183289B (zh) * | 2013-05-24 | 2017-05-17 | 核动力运行研究所 | 一种蒸汽发生器接管焊缝检查装置 |
US9316617B2 (en) * | 2013-06-24 | 2016-04-19 | The Boeing Company | Apparatus and method for eddy current inspection of structures |
NO346708B1 (en) * | 2014-05-19 | 2022-11-28 | Halliburton Energy Services Inc | Downhole nuclear magnetic resonance sensors embedded in cement by using sensor arrays and a method for creating said system |
US10073062B2 (en) * | 2014-09-05 | 2018-09-11 | General Electric Company | System and method for inspecting flange connections |
CN104816301B (zh) * | 2015-03-20 | 2017-07-11 | 中国第一重型机械集团大连加氢反应器制造有限公司 | 一种基于3d成像的封闭空间清理装置及操作方法 |
WO2017056064A1 (en) | 2015-09-30 | 2017-04-06 | Celanese Sales Germany Gmbh | Low friction squeak free assembly |
EP3299130B1 (de) | 2016-09-26 | 2019-04-10 | Airbus Operations S.L. | Prüfungsvorrichtung und verfahren zur zerstörungsfreien prüfung eines befestigungsohres |
US11021947B2 (en) | 2017-06-20 | 2021-06-01 | Sondex Wireline Limited | Sensor bracket positioned on a movable arm system and method |
US10907467B2 (en) | 2017-06-20 | 2021-02-02 | Sondex Wireline Limited | Sensor deployment using a movable arm system and method |
GB2578551B (en) | 2017-06-20 | 2022-07-13 | Sondex Wireline Ltd | Sensor deployment system and method |
US10451521B2 (en) * | 2017-06-28 | 2019-10-22 | General Electric Company | Systems and methods for inspecting blades or vanes in turbomachinery |
WO2019040470A1 (en) * | 2017-08-22 | 2019-02-28 | Baker Hughes, A Ge Company, Llc | SYSTEM AND METHOD FOR TOOL POSITIONING FOR DRILLING WELLS |
CN107763220B (zh) * | 2017-12-07 | 2019-08-13 | 马鞍山市华科实业有限公司 | 一种高速油封结构 |
AR112371A1 (es) * | 2018-07-02 | 2019-10-23 | Ypf Sa | Herramienta para medir la corrosión en pozos petrolíferos y método de medición de la corrosión |
WO2020236142A1 (en) | 2019-05-17 | 2020-11-26 | Halliburton Energy Services, Inc. | Passive arm for bi-directional well logging instrument |
BR102019027785A2 (pt) * | 2019-12-23 | 2021-07-06 | Petróleo Brasileiro S.A. - Petrobras | dispositivo mecânico retrátil, método de limpeza e instalação de elementos sensores/transdutores na parede interna de estruturas tubulares |
USD1009088S1 (en) * | 2022-05-10 | 2023-12-26 | Kaldera, LLC | Wellbore tool with extendable arms |
CN115008276B (zh) * | 2022-07-27 | 2024-08-30 | 江苏扬阳化工设备制造有限公司 | 一种压力容器打磨装置 |
US12078045B1 (en) * | 2023-03-01 | 2024-09-03 | Weatherford Technology Holdings, Llc | Method for counting restrictions in a subterranean wellbore |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US2854758A (en) * | 1954-12-23 | 1958-10-07 | Phillips Petroleum Co | Double caliper for mud cake thickness determination |
US3636778A (en) * | 1970-06-05 | 1972-01-25 | Atomic Energy Commission | Method and means for dimensional inspection of tubing |
DE2154015C3 (de) * | 1971-10-29 | 1974-05-09 | Maschinenfabrik Augsburg-Nuernberg Ag, 8900 Augsburg | Einrichtung zum Durchführen von Untersuchungen und Wiederholungsprüfungen an den Innenflächen von oben offenen Druckbehältern |
BE791704A (fr) * | 1971-11-23 | 1973-05-22 | Westinghouse Electric Corp | Dispositif d'inspection en service d'une cuve de |
GB1516307A (en) * | 1974-09-09 | 1978-07-05 | Babcock & Wilcox Ltd | Apparatus for conveying a device for inspecting or performing operations on the interior of a tube |
DE2640055C3 (de) * | 1976-09-06 | 1979-07-19 | Kraftwerk Union Ag, 4330 Muelheim | Rohrkrfimmermanipulator, insbesondere zur Ultraschallprüfung bei Kernreaktoranlagen |
US4302286A (en) * | 1979-04-24 | 1981-11-24 | Westinghouse Electric Corp. | Reactor vessel in-service inspection assembly and ultrasonic centering device |
US4304134A (en) * | 1980-05-08 | 1981-12-08 | Westinghouse Electric Corp. | Apparatus for ultrasonically inspecting circular bores |
US4581938A (en) * | 1984-07-30 | 1986-04-15 | Combustion Engineering, Inc. | Tool for scanning the inner surface of a large pipe |
US4581927A (en) * | 1984-12-26 | 1986-04-15 | Marathon Oil Company | Self-contained bore hole flow measurement system and method therefor |
FR2596527B1 (fr) * | 1986-04-01 | 1988-05-13 | Thomson Cgr | Dispositif d'exploration du volume interieur d'un cylindre et systeme d'investigation muni de ce dispositif |
US4843896A (en) * | 1988-02-26 | 1989-07-04 | Western Stress, Inc. | Probe for internal bore inspection |
US4876506A (en) * | 1988-06-13 | 1989-10-24 | Westinghouse Electric Corp. | Apparatus and method for inspecting the profile of the inner wall of a tube employing a wall follower and an eddy current probe |
FR2635189B1 (fr) * | 1988-08-05 | 1994-01-14 | Framatome | Dispositif de controle non destructif d'une soudure circulaire a l'interieur d'un tube de generateur de vapeur |
US5025215A (en) * | 1989-08-16 | 1991-06-18 | Westinghouse Electric Corp. | Support equipment for a combination eddy current and ultrasonic testing probe for inspection of steam generator tubing |
USH1006H (en) * | 1990-03-27 | 1991-12-03 | The United States Of America As Represented By The Secretary Of The Air Force | Multilevel classifier structure for gas turbine engines |
US5195392A (en) * | 1990-05-14 | 1993-03-23 | Niagara Mohawk Power Corporation | Internal pipe inspection system |
US5174165A (en) * | 1990-08-13 | 1992-12-29 | Westinghouse Electric Corp. | Flexible delivery system for a rotatable probe |
US5105881A (en) * | 1991-02-06 | 1992-04-21 | Agm, Inc. | Formation squeeze monitor apparatus |
US5156803A (en) * | 1991-02-25 | 1992-10-20 | Niagara Mohawk Power Corporation | Apparatus for inspection of a reactor vessel |
US5565633A (en) * | 1993-07-30 | 1996-10-15 | Wernicke; Timothy K. | Spiral tractor apparatus and method |
US5520245A (en) * | 1994-11-04 | 1996-05-28 | Wedge Wireline Inc | Device to determine free point |
JP3521239B2 (ja) | 1994-12-20 | 2004-04-19 | シャープ株式会社 | ディスクドライブ装置 |
US5586155A (en) * | 1995-02-14 | 1996-12-17 | General Electric Company | Narrow access scanning positioner for inspecting core shroud in boiling water reactor |
US5787137A (en) * | 1996-02-02 | 1998-07-28 | General Electric Company | Methods and apparatus for performing repairs and inspections in a reactor pressure vessel of a nuclear reactor |
US5878099A (en) * | 1996-08-22 | 1999-03-02 | General Electric Company | Apparatus for performing work in a nuclear reactor |
US5760306A (en) * | 1996-08-30 | 1998-06-02 | Framatome Technologies, Inc. | Probe head orientation indicator |
US5982839A (en) * | 1997-04-23 | 1999-11-09 | General Electric Company | Assemblies and methods for inspecting piping of a nuclear reactor |
US6076407A (en) * | 1998-05-15 | 2000-06-20 | Framatome Technologies, Inc. | Pipe inspection probe |
US6169776B1 (en) * | 1998-09-15 | 2001-01-02 | General Electric Company | Methods and apparatus for examining a nuclear reactor shroud |
JP2001159696A (ja) * | 1999-12-03 | 2001-06-12 | Toshiba Corp | ジェットポンプの検査補修方法および装置 |
JP2001281386A (ja) * | 2000-03-31 | 2001-10-10 | Toshiba Corp | 原子炉内機器に対する作業方法 |
US6526114B2 (en) * | 2000-12-27 | 2003-02-25 | General Electric Company | Remote automated nuclear reactor jet pump diffuser inspection tool |
JP4245489B2 (ja) * | 2003-01-31 | 2009-03-25 | 株式会社東芝 | 炉内作業方法及び装置 |
-
2005
- 2005-04-13 US US11/104,839 patent/US7543512B2/en not_active Expired - Fee Related
-
2006
- 2006-04-04 TW TW095111991A patent/TW200643980A/zh unknown
- 2006-04-11 ES ES200600930A patent/ES2321778B1/es not_active Withdrawn - After Issue
- 2006-04-12 JP JP2006109861A patent/JP4931461B2/ja active Active
- 2006-04-12 CH CH00611/06A patent/CH698311B1/de not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102021113965A1 (de) | 2021-05-31 | 2022-12-01 | Rwe Gas Storage West Gmbh | Messvorrichtung für eine Rohrtour einer Tiefenbohrung |
Also Published As
Publication number | Publication date |
---|---|
ES2321778B1 (es) | 2010-03-04 |
US20060230846A1 (en) | 2006-10-19 |
US7543512B2 (en) | 2009-06-09 |
JP2006349668A (ja) | 2006-12-28 |
TW200643980A (en) | 2006-12-16 |
ES2321778A1 (es) | 2009-06-10 |
JP4931461B2 (ja) | 2012-05-16 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CH698311B1 (de) | Inspektionssonde für eine Bohrung. | |
AT398235B (de) | Vorrichtung zur abdichtenden durchführung von wellen mit grossem rundlauffehler durch anschluss-stutzen von geschlossenen behältern | |
DE3841439C2 (de) | ||
DE102015006373A1 (de) | Vorrichtung, Verfahren und System zur Inline-Inspektion und -Behandlung einer Rohrleitung | |
EP3379237A1 (de) | Probenmanipulator zur rotierenden zug- oder druckbeanspruchung sowie entsprechendes verfahren | |
DE2640055A1 (de) | Rohrkruemmermanipulator, insbesondere zur ultraschallpruefung bei kernreaktoranlagen | |
DE102018206219B3 (de) | Dynamische Dichtung und Drehdurchführung mit einer solchen dynamischen Dichtung | |
DD287575A5 (de) | Einrichtung zum messen der bahnspannung einer warenbahn | |
DE102004004297A1 (de) | Bildgebendes Tomorgraphie-Gerät | |
DE102013100705B4 (de) | Vorrichtung und System zur Untersuchung eines Gegenstands | |
DE3244464A1 (de) | Werkstoff- und bauteil-pruefmaschine | |
DE69314252T2 (de) | Vorrichtung zum Nachweis von Fehlern | |
DE3318748A1 (de) | Verfahren zur ultraschallpruefung von auf wellen aufgeschrumpften scheibenkoerpern im bereich der schrumpfsitze und einrichtung zur durchfuehrung des verfahrens | |
DE69316310T2 (de) | Aufhängungsvorrichtung einer Sonde zur Detektion und Lokalisation von eventuellen Fehlern im Inneren einer Bohrung | |
DE2747167C2 (de) | ||
DE102018202757A1 (de) | Verfahren und Vorrichtung zur zerstörungsfreien Prüfung eines Bauteils | |
DE3881333T2 (de) | Fehlersuchgeraet durch ultraschall zum einfuegen. | |
DE3732547A1 (de) | Vorrichtung zur herstellung und kontrolle von wechselnden verbindungen zwischen jeweils zwei leitungen fuer fluessigkeiten und/oder gase | |
DE3619916C2 (de) | ||
EP2295960B1 (de) | Abtastvorrichtung zum Abtasten eines Körpers, insbesondere eines Bolzens | |
DE19747551A1 (de) | Prüfvorrichtung und -verfahren zur Zustandserkennung und Diagnose von Hohlräumen wie Rohre, Kanäle oder dergleichen | |
DE69011389T2 (de) | Anzeiger des Holzspäneniveaus mit einem Differentialtransformator. | |
EP1030289A2 (de) | Sensorhaltevorrichtung | |
DE19931350A1 (de) | Prüfvorrichtung für die Ultraschallprüfung von Stangenmaterial | |
WO2017140901A1 (de) | Verbindungselement |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PL | Patent ceased |