CH500132A - Verfahren zur reduktiven Umwandlung von Schwefeldioxyd in Schwefelwasserstoff - Google Patents

Verfahren zur reduktiven Umwandlung von Schwefeldioxyd in Schwefelwasserstoff

Info

Publication number
CH500132A
CH500132A CH293668A CH293668A CH500132A CH 500132 A CH500132 A CH 500132A CH 293668 A CH293668 A CH 293668A CH 293668 A CH293668 A CH 293668A CH 500132 A CH500132 A CH 500132A
Authority
CH
Switzerland
Prior art keywords
gas
catalyst
sulfur dioxide
reduction
dependent
Prior art date
Application number
CH293668A
Other languages
English (en)
Inventor
Antonius Van Helden H Johannes
Original Assignee
Shell Int Research
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shell Int Research filed Critical Shell Int Research
Publication of CH500132A publication Critical patent/CH500132A/de

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/70Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper
    • B01J23/76Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36
    • B01J23/84Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of the iron group metals or copper combined with metals, oxides or hydroxides provided for in groups B01J23/02 - B01J23/36 with arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/889Manganese, technetium or rhenium
    • B01J23/8898Manganese, technetium or rhenium containing also molybdenum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/74General processes for purification of waste gases; Apparatus or devices specially adapted therefor
    • B01D53/86Catalytic processes
    • B01D53/8603Removing sulfur compounds
    • B01D53/8609Sulfur oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J23/00Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00
    • B01J23/16Catalysts comprising metals or metal oxides or hydroxides, not provided for in group B01J21/00 of arsenic, antimony, bismuth, vanadium, niobium, tantalum, polonium, chromium, molybdenum, tungsten, manganese, technetium or rhenium
    • B01J23/20Vanadium, niobium or tantalum
    • B01J23/22Vanadium
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0404Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process
    • C01B17/0426Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by processes comprising a dry catalytic conversion of hydrogen sulfide-containing gases, e.g. the Claus process characterised by the catalytic conversion
    • C01B17/0434Catalyst compositions
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0473Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide
    • C01B17/0478Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide with hydrocarbons or mixtures containing them
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/02Preparation of sulfur; Purification
    • C01B17/04Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides
    • C01B17/0473Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide
    • C01B17/0491Preparation of sulfur; Purification from gaseous sulfur compounds including gaseous sulfides by reaction of sulfur dioxide or sulfur trioxide containing gases with reducing agents other than hydrogen sulfide with hydrogen or hydrogen-containing mixtures, e.g. synthesis gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/16Hydrogen sulfides
    • C01B17/164Preparation by reduction of oxidic sulfur compounds
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/48Sulfur dioxide; Sulfurous acid
    • C01B17/50Preparation of sulfur dioxide
    • C01B17/60Isolation of sulfur dioxide from gases

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Environmental & Geological Engineering (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Catalysts (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Air Bags (AREA)

Description


  
 



  Verfahren zur reduktiven Umwandlung von Schwefeldioxyd in Schwefelwasserstoff
Die vorliegende Erfindung betrifft ein Verfahren zur reduktiven Umwandlung von Schwefeldioxyd in Schwe   felwasserstoff.   



   Schwefeldioxyd, welches in industriellen Verfahren im grossen Massstab als Gas gehandhabt werden muss, stellt in vielen Fällen eine wertvolle Verbindung dar.



  Beispielsweise fällt Schwefeldioxyd beim Abrösten von Erzen an und kann dann als Ausgangsmaterial zur Herstellung wertvoller Produkte verwendet werden, beispielsweise zur Gewinnung von Schwefelsäure.



   In anderen Fällen stellt Schwefeldioxyd aber nur ein Abfallprodukt dar, welches beispielsweise in den Abgasen vorkommt, die sich beim Verbrennen von schwefelhaltigen Brennstoffen bilden. In den letzten Jahren hat die Industrialisierung grosse Fortschritte gemacht, und dementsprechend ist der Verbrauch an schwefelhaltigen Brennstoffen angestiegen, so dass die Verhütung einer Verseuchung der Luft durch Schwefeldioxyd ein Problem mit stetig wachsender Bedeutung geworden ist. Es sind daher Untersuchungen für entsprechende Verfahren durchgeführt worden, mittels deren sich beispielsweise Schwefeldioxyd aus Abgasen entfernen lässt. Bei einem dieser Verfahren wird das Schwefeldioxyd aus den Gasen entfernt, indem man das Gas durch einen festen Akzeptor aufnehmen lässt, welcher ein Metall oder eine Metallverbindung enthält.

  Während dieser Aufnahme bildet das Schwefeldioxyd mit dem im Akzeptor vorliegenden Metall bzw. der Metallverbindung und dem im Abgas vorhandenen Sauerstoff ein Metallsulfat.



  Dieses   Metailsulfat    wird anschliessend mittels eines reduzierend wirkenden Gases in einer Regenerierungsstufe wieder zersetzt, wodurch man ein Gas erhält, welches wesentlich mehr Schwefeldioxyd als das Abgas enthält.



  Dieses an Schwefeldioxyd reiche Gas kann als Ausgangsmaterial für die Herstellung von elementarem Schwefel eingesetzt werden, wie nachstehend noch näher erläutert wird.



   In der französischen Patentschrift   Nr. 1 448 396    wird ein kupferoxydhaltiger fester Akzeptor für die Entfernung von Schwefeldioxyd aus Abgasen beschrieben.



  Die Aufnahme des Schwefeldioxyds wird bei einer Temperatur zwischen 325 und 4250 C durchgeführt, und das während der Aufnahme gebildete Kupfersulfat wird in der Regenerierungsstufe durch Anwendung eines   Über-    schusses an reduzierend wirkendem Gas wieder zersetzt.



  Diese Regenerierung wird bei der gleichen oder einer nur wenig höher liegenden Temperatur als die Aufnahme durchgeführt. Nach der Regenerierung des beladenen Akzeptors erhält man ein Gas, welches in der Hauptsache aus Schwefeldioxyd und den nichtumgewandelten Anteilen des reduzierend wirkenden Gases besteht, beispielsweise Methan, und eine Temperatur zwischen 350 und 4500 C aufweist. Dieses Gas kann beispielsweise zur Erzeugung von elementarem Schwefel eingesetzt werden, indem man es mit einem schwefelwasserstoffhaltigen Gas zur Reaktion bringt.



   Es wäre daher von Vorteil, wenn man durch Reduktion Schwefeldioxyd, welches in einem Gas mit einer Temperatur im vorstehend genannten Bereich von 350 bis 4500 C als Komponente vorhanden ist, in ein schwefelwasserstoffhaltiges Gas umwandeln könnte.



   An sich ist die katalytische Reduktion von Schwefeldioxyd in Schwefelwasserstoff ein bekannter Vorgang.



  Bei Anwendung von Methan verläuft die Reduktion gemäss der nachstehenden Gleichung:    4502    +   3 CHB    4H2S +   3 C02      +      2H2O   
Ein für diese Reaktion geeigneter Katalysator ist Mangansulfid. Bei Anwendung dieses Katalysators verläuft die reduktive Umwandlung von Schwefeldioxyd bei Einsatz von Kohlenwasserstoffen sehr befriedigend bei Temperaturen oberhalb 7000 C.



   Ein weiterer für die Reduktion von Schwefeldioxyd mittels Methan geeigneter Katalysator ist Kobaltmolybdat. Aber auch dieser Katalysator macht die Anwendung hoher Temperaturen für die Reduktion erforderlich, und er wird vorzugsweise in einem Bereich zwischen 593 und 7050 C eingesetzt. Darüber hinaus wird die Reduktion vorteilhaft bei geringen Raumgeschwindigkeiten von 50  bis 500 Volumteilen Ausgangsmaterial je Volumteil Katalysator je Stunde durchgeführt.



   Das Verfahren gemäss der Erfindung bietet nun den Vorteil, dass die Reduktion bei relativ niedriger Temperatur und hoher Raumgeschwindigkeit durchgeführt werden kann. Ausserdem eignen sich die so gewonnenen Gase sehr gut zur Gewinnung von Elementarschwefel.



  Weiterhin ist erfindungsgemäss die Durchführung eines kombinierten Verfahrens zur Entfernung von Schwefeldioxyd aus Abgasen mittels eines festen Akzeptors, Regenerierung des beladenen Akzeptors mittels eines reduzierend wirkenden Gases und weitere Aufarbeitung des so gewonnenen Schwefeldioxyds zu elementarem Schwefel möglich.



   Das erfindungsgemässe   Verfahren    zur reduktiven Umwandlung von Schwefeldioxyd in Schwefelwasserstoff ist dadurch gekennzeichnet, dass eine Gasmischung, welche sowohl Schwefeldioxyd als auch einen   reduzie-    rend wirkenden Gas anteil in Form von freiem oder in gebundener Form vorliegendem Wasserstoff enthält, mit einem Katalysator in Berührung gebracht wird, der auf einem aktiven Trägermaterial aus Bauxit, synthetischem Aluminiumoxyd und/oder Kieselsäure-Aluminiumoxyd   Mischoxyd    ein Vanadiumoxyd enthält.



   Bei Anwendung des neuen vanadiumhaltigen Katalysators ist es möglich, die Reduktion des Schwefeldioxyds im gleichen Temperaturbereich durchzuführen, bei   wei-    chem das Schwefeldioxyd und   nichqumgesetzte    reduzierend wirkende Gase enthaltende Ausgangsmaterial anfällt. Ein weiterer Vorteil des erfindungsgemässen Katalysators besteht darin, dass hohe   Raumgeschwindigkei-    ten verwendet werden können, so dass ein Reaktor von kleiner Abmessung eingesetzt werden kann. Ausserdem lässt sich sehr leicht das gesamte in der Gasmischung vorhandene   Schnvefeldioxyd    reduzieren, so dass nicht zu einem unerwünschten   Zeitpunkt    das nichtumgesetzte Schwefeldioxyd mit dem erzeugten Schwefelwasserstoff elementaren Schwefel bildet.

  Ausserdem hat sich gezeigt, dass gegebenenfalls in der Gasmischung vorhandenes Wasser und Kohlendioxyd den Katalysator nicht desaktivieren. Weiterhin zeigt der erfindungsgemäss einzusetzende Katalysator eine sehr gute Stabilität.



   Das erfindungsgemässe Verfahren lässt sich mit jedem beliebigen Vanadiumoxyd oder einer Mischung solcher   Vanadinmoxyde    auf dem vorstehend genannten Trägermaterial durchführen. Bevorzugt werden Vanadiumpentoxyd und/oder Vanadiumtrioxyd angewendet.



   Bereits ein Katalysator mit einem Vanadiumgehalt unterhalb   1 S    übt einen günstigen Einfluss auf die Reduktion aus, doch beträgt der   Vanadiumgehalt    vorzugsweise 1 bis 20 Gew.%, bezogen auf das Trägermaterial.



  Es können auch Vanadiumgehalte über 20   Gew.%    verwendet werden, obwohl sich hierdurch keine wesentlichen zusätzlichen Vorteile ergeben. Die   Kataly & tor-    aktivität ist am höchsten, wenn der Katalysator 5 bis 20   Gew.,O    Vanadium enthält, so dass auch dieser Bereich im Rahmen der Erfindung bevorzugt ist.



   Als wasserstoffhaltiges reduzierend wirkendes Gas kann freier Wasserstoff oder irgend ein freien Wasserstoff enthaltendes Gas eingesetzt werden, beispielsweise Gasmischungen, welche bei der Teilverbrennung von Kohlenstoff und Wasserstoff   enthaltenden    Ausgangsmaterialien anfallen. Gemäss einer sehr vorteilhaften Ausführungsform der Erfindung wird ein Kohlenwasserstoff als   wasserstoflhaltiges    reduzierend wirkendes Gas eingesetzt. Kohlenwasserstoffhaltige Gase sind leicht zugänglich, beispielsweise in   Erdölraffinerien    und in Form von Erdgas.

  Da Methan sehr oft der Hauptbestandteil   solcher    Gase ist, wird Methan auch bevorzugt als   Koh-    lenwasserstoff angewendet, obwohl selbstverständlich auch Athan, Propan,   Butan    sowie leichte Kopfprodukte und ungesättigte Kohlenwasserstoffe für den gleichen   Zweck    eingesetzt werden können.



   Drei wesentliche veränderliche Betriebsgrössen bei dem erfindungsgemässen Verfahren sind das Verhältnis der   Paftialdruclçe    von reduzierend wirkender Verbindung und Schwefeldioxyd in der Gasmischung, welche mit dem Katalysator in Berührung gebracht wird, sowie die Raumgeschwindigkeit dieser Gasmischung und die   Temperatur,    bei welcher die Reduktion abläuft.



   Das Verhältnis der Partialdrucke zwischen dem re   reduzierend    wirkenden Gas und dem Schwefeldioxyd in der mit dem Katalysator in Berührung zu bringenden Gasmischung liegt vorteilhaft unterhalb 20. Zwar kann das Verhältnis der Partialdrucke auch einen Wert über 20 aufweisen, doch ergeben sich dadurch keine zusätzlichen Vorteile. Der Mindestwert für dieses Verhältnis der Partialdrucke bestimmt sich selbstverständlich durch dasjenige Verhältnis, welches für eine vollständige Reduktion stöchiometrisch   erforderlich    ist.



   Das erfindungsgemässe Verfahren kann innerhalb eines weiten Bereiches für die Raumgeschwindigkeit durchgeführt werden. Sehr zweckmässig wird die Reduktion des Schwefeldioxyds bei Raumgeschwindigkeiten zwischen 100 und 2000   Volumanteilen    der Gasmischung je Volumanteil Katalysator je Stunde durchgeführt. Es können auch Raumgeschwindigkeiten unterhalb 100 bzw. oberhalb 2000 zur Anwendung kommen, doch ergeben Raumgeschwindigkeiten unterhalb 100 im allgemeinen keine zusätzlichen Vorteile. Die Reduktion wird vorzugsweise im Bereich von 500 bis 1500 Volumanteilen der Gasmischung je   Volumanteil    Katalysator je   Stunde    durchgeführt, so dass ein Reaktor von verhältnismässig geringen Abmessungen ausreichend ist.



   Sehr wesentlich ist die Mindesttemperatur, d. h. diejenige Temperatur, unterhalb welcher bei vorgegebenen Werten der anderen Betriebsbedingungen eine vollständige Reduktion des Schwefeldioxyds nicht mehr stattfindet. Diese Mindesttemperatur nimmt ab, wenn das Verhältnis der Partialdrucke unter sonst gleichen Ver   fahreusbedingungen    zwischen dem reduzierend wirkenden Gas und dem Schwefeldioxyd erhöht wird. Bei konstanter Mindestbetriebstemperatur ermöglicht ein höheres Verhältnis dieser Partialdrucke die Anwendung einer höheren   Raumgeschwindigkeit.   



   Das erfindungsgemässe Verfahren lässt sich innerhalb eines weiten Temperaturbereiches durchführen, wobei Temperaturen zwischen 300 und 6000 C sehr geeignet sind. Es sind auch Temperaturen unterhalb 3000 C möglich, jedoch muss dann ein hohes Verhältnis der Partialdrucke von reduzierend wirkendem Gas zu Schwefeldioxyd und/oder eine sehr niedrige Raumgeschwindigkeit angewendet werden. Auch kann man die Reduktion bei Temperaturen oberhalb 6000 C durchführen, doch ist das nicht erforderlich, da auch bei Temperaturen unterhalb 6000 C die Reduktion praktisch vollständig und ausreichend rasch abläuft. Im Temperaturbereich zwischen 350 und 4500 C wird im allgemeinen eine vollständige Reduktion des Schwefeldioxyds erzielt.



   Die Mindestbetriebstemperatur hängt auch von der Art der reduzierend wirkenden Verbindung ab. Ein je höheres Molekulargewicht der eingesetzte Kohlenwasserstoff aufweist, eine desto niedrigere   Mindestbetriebs-    temperatur kann angewendet werden. Bei richtiger Wahl  der reduzierend wirkenden Verbindung, beispielsweise Butan oder leichte Kopfprodukte, sowie der anderen Verfahrensbedingungen ist es möglich, die Reduktion in dem unteren Bereich der Temperaturspanne zwischen   300-600     C oder sogar unterhalb dieser Temperaturspanne durchzuführen.



   Als Trägermaterialien eignen sich gegenüber hohen Temperaturen beständige Feststoffe, welche durch die Komponenten der Gasmischungen, welche mit dem Katalysator in Berührung gebracht werden, nicht angegriffen werden und welche ausserdem eine eigene Aktivität aufweisen. Derartige Trägerstoffe sind Bauxit, synthetisches   Aluminiumoxyd,    Kieselsäure und/oder Kiesel   säure-Aiuminiumoxyd.    Insbesondere y-Aluminiumoxyd ist ein sehr geeignetes Trägermaterial.



   Der Katalysator katalysiert die Reduktion schon bei einer spezifischen Oberfläche des Trägermaterials unterhalb 100 m2/g. Vorzugsweise hat jedoch das Trägermaterial eine relativ grosse spezifische Oberfläche von vorzugsweise mindestens 100 m2/g, insbesondere, wenn der Katalysator eine hohe Aktivität aufweisen soll.



   Das erfindungsgemässe Verfahren eignet sich insbesondere zur Gewinnung von elementarem Schwefel aus einer Gasmischung, welche Schwefeldioxyd enthält. In diesem Fall ist es sehr zweckmässig, das Schwefeldioxyd enthaltende Ausgangsgas in einen ersten Produktstrom, welcher etwa   1/3    des Ausgangsmaterials ausmacht, und einen zweiten Produktstrom   aufzuteilen,    welcher etwa   2/s    des Ausgangsgases ausmacht. Dieser zweite Produktstrom wird dann mit einem dritten Produktstrom aus   wasserstofihaltigem    Gas vereinigt, und dieses Mischgas wird mit dem erfindungsgemässen Katalysator aus einem aktiven Trägermaterial und einem Vanadiumoxyd in Berührung gebracht.

  Nach der Reduktion wird der Gasstrom mit dem ersten Produktstrom vereinigt und bildet dann ein Ausgangs gas   für    die Gewinnung von elementarem Schwefel. Falls das Schwefeldioxyd enthaltende Ausgangsgas bereits ausreichende Mengen an reduzierend wirkendem Gas enthält, so ist die Verwendung eines dritten Produktstromes nicht erforderlich. Der elementare Schwefel wird entsprechend der nachstehenden Gleichung gebildet:    2H > S + SO2 4 3S + 2H O   
Bei einer solchen Arbeitsweise wird erreicht, dass Schwankungen im Schwefeldioxydgehalt des Schwefeldioxyd enthaltenden Ausgangs gases das Verhältnis von Schwefeldioxyd zu Schwefelwasserstoff in dem Gas für die Erzeugung von elementarem Schwefel nicht beeinflussen, da das gesamte in dem zweiten Produktstrom vorhandene Schwefeldioxyd ¯erfindungsgemäss zu Schwefelwasserstoff reduziert wird.



   Gemäss einer weiteren vorteilhaften   Ausfüh.rungs-    form der Erfindung ist das schwefeldioxydhaltige Gas erhalten   worden    indem man ein Schwefeldioxyd und freien Sauerstoff enthaltendes Gasgemisch mit einem festen Akzeptor in Berührung bringt, weicher aus einem Trägermaterial und einem Metall oder einer Metallverbindung besteht, und indem man den beladenen Akzeptor mit einem reduzierend wirkenden Gas oder einer reduzierenden Gasmischung regeneriert. Der Vorteil dieser Ausführungsform besteht darin, dass die infolge der Regenerierung erhaltenen Gase sowohl Schwefeldioxyd als   auch    nichtumgesetztes reduzierend wirkendes Gas enthalten.

  Zu den aus der Regenerierungsstufe abgezogenen Gasen braucht daher kein oder nur noch sehr wenig weiteres   wasserstoffhaitiges    reduzierend wirkendes Gas hinzugesetzt zu werden, damit das Gasgemisch für das erfindungsgemässe Verfahren eingesetzt werden kann.



   Gemäss einer bevorzugten Ausführungsform besteht der feste Akzeptor aus einem kupferoxydhaltigen Trägermaterial. Die Anwendung von Kupferoxyd bietet, wie vorstehend schon erläutert worden ist, den Vorteil, dass die   Aufnahmes.ufe    für Schwefeldioxyd und die Regenerierung des beladenen Akzeptors in dem gleichen Bereich niedriger Temperatur durchgeführt werden kann, bei der auch die erfindungsgemässe Reduktion des   Schwefeldioxyds    stattfindet.



   Der im Rahmen des erfindungsgemässen Verfahrens eingesetzte Katalysator wird auf an sich bekannte Weise hergestellt. Beispielsweise kann das aktive Trägermaterial mit einer wässrigen Lösung imprägniert werden, welche ein Vanadiumsalz enthält, und anschliessend wird das Trägermaterial getrocknet und kalziniert. Das Trägermaterial kann auch gemäss der   Trockenimpräguie-    rungstechnik mit einem Vanadiumoxyd beladen werden.



   Manchmal enthalten schwefeldioxydhaltige Gase auch eine gewisse Menge an Schwefeltrioxyd. Unter den Bedingungen, bei welchen Schwefeldioxyd reduziert wird, wird auch gegebenenfalls in der Gasmischung enthaltenes Schwefeltrioxyd reduktiv in Schwefelwasserstoff umgewandelt.



   Beispiel 1
Dieses Beispiel erläutert den Einfluss des Trägermaterials sowie eines Zusatzes von Mangan, Kobalt und Molybdän zu dem Trägermaterial auf die Reduktion von Schwefeldioxyd.



   Proben unter Verwendung von   y-Aluminiumoxyd    als Trägermaterial werden gemäss der Trockenimprä   guiertechnik    mit einer wässrigen Lösung von Mangannitrat bzw. Kobaltnitrat bzw. Ammoniummolybdat imprägniert. Das imprägnierte Aluminiumoxyd wird dann bei 1200 C getrocknet und anschliessend 3 Stunden lang bei 5000 C kalziniert. Die so hergestellten Katalysatoren werden geprüft, indem man jeweils 10 ml Katalysator bei Atmosphärendruck mit einer Gasmischung in Berührung bringt, welche 20   Vol.%    SOg und 80 Vol.% CH4 enthält. Die Raumgeschwindigkeit der Gasmischung beträgt 500 Normalliter je Liter Katalysator je Stunde. Der Katalysator hat eine Korngrösse entsprechend einer Siebnummer von 10-35 Maschen (lichte Maschenweite: 0,17 bis 0,60 mm).



   Die Aktivität des Katalysators wird ausgedrückt als die Mindesttemperatur in   O    C, welche unter den vorstehend erwähnten Bedingungen für eine 95-100 % ige Reduktion von SOo in   HS    erforderlich ist. Die hierbei erzielten Ergebnisse sind in Tabelle I zusammengefasst.



   Tabelle I    Erforderliche Mindesttemperatur
Zusammensetzung des für eine 95¯100%ige Reduktion   
Katalysators   o C      y-Ainminiumoxyd    (Typ 1) 590   s-Aluminiumoxyd    (Typ 2) 650 y-Aluminiumoxyd (Typ 3) 600   5 %    Mn auf   y < Aluminium-    oxyd (Typ 1) 580   5 %    Mo auf   yAluminium-    oxyd (Typ 1) 570      Erforderliche Mindesttemperatur
Zusammensetzung des für eine 95¯100%ige Reduktion   
Katalysators   o C      5,0      Co    auf   y-Aluminium-    oxyd (Typ 1) 575    4,6% Co/14,2% ZuMo auf        >  > -Aluminiumoxyd     (Typ 1) 640
5    O    V auf  

     y-Aluminium-    oxyd (Typ 1) 545
Bei einem Vergleich der für eine 95-100 % ige Reduktion erforderlichen Mindesttemperaturen ergibt sich, dass die Metalle Mangan,   Molybdän    und Cobalt auf einem   y-Aluminiumoxyd    des Typs 1 nur einen geringen Einfluss ausüben. Die Kombination aus Kobalt und Molybdän hat sogar einen nachteiligen Effekt, denn die Temperatur für das Trägermaterial allein (y-Aluminiumoxyd vom Typ 1) ist geringer als diejenige für die Kombination aus Kobalt und Molybdän. Die drei hier erwähnten Typen von   y-Alumininmoxyd    stammen von drei verschiedenen Herstellern. Aus den mitgeteilten Zahlenwerten ergibt sich ferner, dass das   Trägermaterial    schon an sich bezüglich der Reduktion von Schwefeldioxyd zu Schwefelwasserstoff aktiv ist.

  Ein Katalysator, welcher 5 % Vanadium auf   y-Aluminiumoxyd    vom Typ 1 enthält, zeigt die höchste Aktivität. Dieser Katalysator ist in der Weise hergestellt worden, wie es im nachfolgenden Beispiel 2 für andere   Katalyslatoren    be schrieben wird.



   Beispiel 2
In diesem Beispiel wird der Einfluss von Katalysatoren mit unterschiedlichen Vanadiumgehalten auf die Reduktion von Schwefeldioxyd erläutert. Die Katalysatoren sind nach der   Trockenimpräguiertechnik    berge stellt worden, indem man   y-Aluminiumoxyd    mit einer Lösung von Vanadyloxalat imprägniert. Der imprägnierte Träger wird bei 1200 C getrocknet und anschlie ssend 3 Stunden lang bei 5000 C kalziniert. Die nachstehenden Versuche sind unter den gleichen Bedingungen durchgeführt worden, wie in Beispiel 1 beschrieben.



   Tabelle II
Zusammensetzung Erforderliche Mindesttemperatur des Katalysators für eine   95-100%ige    Reduktion    7-Al uminiumoxyd,    Typ 1   oc   
4% V 550    15 % V    520
15% V  (Perlen 1,5 X 1,5 mm) 520    20%    V 540
Die Zahlenwerte in Tabelle II bestätigen, dass bei Anwendung von 15 % Vanadium auf einem Träger aus   ,-Aluminiumoxyd    die für eine 95-100 % ige Reduktion erforderliche Mindesttemperatur ¯auf 5200 C abgesenkt werden konnte. Diese Mindesttemperatur wird auch nicht dadurch beeinflusst, dass anstelle eines Katalysators mit einem Korndurchmesser entsprechend einer Siebnummer von 10-35 Maschen ein solcher mit einem Korndurchmesser von 1,5 x 1,5 mm verwendet wird.



   Beispiel 3
Dieses Beispiel erläutert den Einfluss des Methan Partialdruckes auf die für eine 100 % ige Reduktion von   SO.i    in H2S erforderliche Mindesttemperatur. Gemäss der Arbeitsweise von Beispiel 2 wird ein Katalysator hergestellt, welcher 15 % Vanadium auf einem Träger aus   y-Alurnininmoxyd    enthält. Die Teilchengrösse des Katalysators entspricht einer Siebnummer von 10-35 Maschen. Mit diesem Katalysator wird bei Atmosphärendruck mit einer Raumgeschwindigkeit von 500 Normallitern pro Liter Katalysator pro Stunde eine Gasmischung in Berührung gebracht, welche 20   Vol.%      SO2    enthält.



   Die bei diesen Versuchen erhaltenen Ergebnisse sind in Tabelle III zusammengestellt.



   Tabelle III
Zusammensetzung der Gas- Erforderliche Mindesttemperatur mischung in Vol.% für eine vollständige Reduktion
CH4 SO2 N2   o C   
80 20 0 520
70 20   10    535
60 20 20 540    50    20 30 545
40 20 40 560
30 20 50 575
Aus den Zahlenwerten dieser Tabelle ergibt sich, dass die für eine vollständige Reduktion erforderliche Mindesttemperatur bei einer SO2-Konzentration von 20 Vol.% von dem Methanpartialdruck abhängt. Je höher dieser Methanpartialdruck ist, eine desto niedrigere Mindesttemperatur kann angewendet werden.



   Beispiel 4
Dieses Beispiel erläutert den Einfluss des Schwefeldioxydpartialdruckes auf die für eine vollständige Reduktion bei   konstantem    Methanpartialdruck erforderliche Mindesttemperatur. Es werden die gleichen Bedingungen und der gleiche Katalysator wie bei Beispiel 3 angewendet.



   Die erzielten Ergebnisse sind in Tabelle IV   zus am-    mengestellt.



   Tabelle IV
Zusammensetzung der Gas- Erforderliche Mindesttemperatur mischung in Vol.% für eine vollständige Reduktion
CH4   SO2    N2   o C   
70 5 25 440
70 10 20 495
70 20 10 535
70 30 0 545
Die für eine vollständige   Schwefeldioxydreduktion    erforderliche Mindesttemperatur bei einer Gasmischung, welche 5   Vol.%    SO2, 70 Vol.% CH4 und 25   Vol.%    N2 enthält, beträgt nur 4400 C. Bei Erhöhen des   SO2-Par-    tialdruckes ist es notwendig, die für eine vollständige Reduktion erforderliche Mindesttemperatur etwas hierauf  zusetzen, doch beträgt diese bei einer SO2-Konzentration von 30   Vol.%    immer noch nur 5450 C.



   Beispiel 5
Dieses Beispiel erläutert den Einfluss des SO2-Par   tialdruckes    auf die für eine 100 % ige Reduktion erforderliche Mindesttemperatur bei einer Gasmischung, welche nur aus Methan und Schwefeldioxyd besteht. Es werden die gleichen Betriebsbedingungen und der gleiche Katalysator wie in den Beispielen 3 und 4 angewendet.



  Die erzielten Ergebnisse sind in Tabelle V zusammengestellt.



   Tabelle V
Zusammensetzung der Gas- Erforderliche Mindesttemperatur mischung in Vol.% für eine vollständige Reduktion
CH4   SO2      o C   
95 5 415
90 10   480   
80 20 520
70   3 < )    545
Aus dieser Tabelle ist ersichtlich, dass bei einem Gas, welches 5 Vol.% SO2 enthält (CH4:   SO2-Verhält-    nis = 19) nur eine Mindesttemperatur von 4150 C er   förderlich    ist.



   Beispiel 6
Zur Durchführung der Reduktion von SO2 mittels Methan wird der gleiche Katalysator wie in den Beispielen 3-5 verwendet. Das   Verhälinis    der Partialdrucke von Methan zu Schwefeldioxyd in der Gasmischung be trägt 7,5, und es wird mit einer Raumgeschwindigkeit von 500 gearbeitet. Die Gasmischung enthält ausserdem Wasser und Kohlendioxyd in solchen Mengen, wie sie   auch    in einem Gas auftreten, welches nach der Regenerierung des vorstehend schon erwähnten kupferoxydhaltigen Akzeptors vorhanden ist. Die Gasmischung enthält
10   Vol.%      H2O,    5 Vol.%   CO2,    10 Vol.%   SO3    und 75 Vol.% CH4.

  Die hohe Stabilität des Katalysators ergibt sich aus der Tatsache, dass die für eine vollständige Reduktion des Schwefeldioxyds   erforderliche    Mindesttemperatur während 400 Stunden konstant bei 5150 C liegt.



   Beispiel 7
Für die Reduktion von Schwefeldioxyd mittels einer Mischung aus 9 % Propen und   91 %    Propan wird der gleiche Katalysator wie in den Beispielen 3-6 eingesetzt.



  Das Verhältnis der Partialdrucke von C3H8 zu Schwefeldioxyd in der Gasmischung beträgt 9 und es wird eine Raumgeschwindigkeit von 250 verwendet. Die für eine vollständige Reduktion erforderliche Mindesttemperatur beträgt in diesem Fall nur 2950 C.



   PATENTANSPRUCH 1
Verfahren zur reduktiven Umwandlung von Schwefeldioxyd in Schwefelwasserstoff, dadurch gekennzeichnet, dass eine Gasmischung, welche sowohl Schwefeldioxyd als auch einen reduzierend wirkenden Gasanteil in Form von freiem oder in gebundener Form vorliegendem Wasserstoff enthält, mit einem Katalysator in Berührung gebracht wird, der auf einem aktiven Trägermaterial aus Bauxit, synthetischem Aluminiumoxyd und/ oder   Kieselsäure-Aluminiumoxyd-Mischoxyd    ein   Vana-    diumoxyd enthält.



   UNTERANSPRÜCHE
1. Verfahren nach   Patentanspruch    I, dadurch gekennzeichnet, dass ein Katalysator verwendet wird, der   Vanadiumpentoxyd    und/oder Vanadiumtrioxyd enthält.



   2. Verfahren nach Patentanspruch I und Unteranspruch 1, dadurch gekennzeichnet, dass ein   Katalysa-    tor mit einem Gehalt an Vanadiumoxyd von 1 bis 20 Gew.%, bezogen auf das Trägermaterial, verwendet wird.



   3. Verfahren nach Patentanspruch I und Unteransprüchen 1 und 2, dadurch gekennzeichnet, dass der reduzierend wirkende Gas anteil einen   Kohienwasser-    stoff, insbesondere Methan, enthält.



   4. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 3, dadurch gekennzeichnet, dass das Verhältnis der Partialdrucke von reduzierend wirkendem Gasanteil zu Schwefeldioxyd in der Gasmischung unter 20 liegt.



   5. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 4, dadurch gekennzeichnet, dass während der Reduktion mit einer Raumgeschwindigkeit von 100 bis 2000 Volumteilen der Gasmischung je Volumanteil Katalysator je Stunde gearbeitet wird.



   6. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 5, dadurch gekennzeichnet,   dass    die Reduktion bei einer Temperatur zwischen 300 und 6000 C durchgeführt wird.



   7. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 6, dadurch gekennzeichnet, dass ein   Katalysator    mit einem Trägermaterial aus   Gamina-Alu-    miniumoxyd verwendet wird.



   8. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 7, dadurch gekennzeichnet, dass ein Katalysator verwendet wird, dessen Trägermaterial eine spezifische Oberfläche von mindestens 100 m2/g aufweist.



   PATENTANSPRUCH II
Anwendung des Verfahrens nach Patentanspruch   1    bei der Herstellung von Schwefel, dadurch gekennzeichnet, dass ein Schwefeldioxyd enthaltendes Gas in zwei Ströme unterteilt wird, wobei der erste Strom etwa   1/3    und der zweite Strom etwa   2/2    des Ausgangsgases enthält, dass der zweite Strom mit einem dritten Strom aus dem wasserstoffhaltigen, reduzierend wirkenden Gas vereinigt und dieser Mischstrom mit dem genannten Katalysator in Berührung gebracht wird, und dass das umgesetzte Mischgas mit dem ersten Strom vereinigt und dieses Gemisch einer Anlage zur   Schwefelerzeugung    zugeleitet wird.



   UNTERANSPRÜCHE
9. Anwendung nach Patentanspruch II, dadurch gekennzeichnet, dass ein   schwefeldioxydhaltiges    Gas verwendet wird, wie es durch Behandeln eines Schwefeldioxyd und freien Sauerstoff enthaltenden Abgases mit einem festen Akzeptor, welcher ein Metall oder eine Metallverbindung auf einem Trägermaterial enthält, und anschliessende Regenerierung des mit   Metailsulfat    beladenen Akzeptors mit einem reduzierend wirkenden Gas erhältlich ist.



   10.   Anwendung    nach Unteranspruch 9, dadurch gekennzeichnet, dass der feste Akzeptor ein Kupferoxyd enthält. 

**WARNUNG** Ende DESC Feld konnte Anfang CLMS uberlappen**.



   

Claims (1)

  1. **WARNUNG** Anfang CLMS Feld konnte Ende DESC uberlappen **. zusetzen, doch beträgt diese bei einer SO2-Konzentration von 30 Vol.% immer noch nur 5450 C.
    Beispiel 5 Dieses Beispiel erläutert den Einfluss des SO2-Par tialdruckes auf die für eine 100 % ige Reduktion erforderliche Mindesttemperatur bei einer Gasmischung, welche nur aus Methan und Schwefeldioxyd besteht. Es werden die gleichen Betriebsbedingungen und der gleiche Katalysator wie in den Beispielen 3 und 4 angewendet.
    Die erzielten Ergebnisse sind in Tabelle V zusammengestellt.
    Tabelle V Zusammensetzung der Gas- Erforderliche Mindesttemperatur mischung in Vol.% für eine vollständige Reduktion CH4 SO2 o C 95 5 415 90 10 480 80 20 520 70 3 < ) 545 Aus dieser Tabelle ist ersichtlich, dass bei einem Gas, welches 5 Vol.% SO2 enthält (CH4: SO2-Verhält- nis = 19) nur eine Mindesttemperatur von 4150 C er förderlich ist.
    Beispiel 6 Zur Durchführung der Reduktion von SO2 mittels Methan wird der gleiche Katalysator wie in den Beispielen 3-5 verwendet. Das Verhälinis der Partialdrucke von Methan zu Schwefeldioxyd in der Gasmischung be trägt 7,5, und es wird mit einer Raumgeschwindigkeit von 500 gearbeitet. Die Gasmischung enthält ausserdem Wasser und Kohlendioxyd in solchen Mengen, wie sie auch in einem Gas auftreten, welches nach der Regenerierung des vorstehend schon erwähnten kupferoxydhaltigen Akzeptors vorhanden ist. Die Gasmischung enthält 10 Vol.% H2O, 5 Vol.% CO2, 10 Vol.% SO3 und 75 Vol.% CH4.
    Die hohe Stabilität des Katalysators ergibt sich aus der Tatsache, dass die für eine vollständige Reduktion des Schwefeldioxyds erforderliche Mindesttemperatur während 400 Stunden konstant bei 5150 C liegt.
    Beispiel 7 Für die Reduktion von Schwefeldioxyd mittels einer Mischung aus 9 % Propen und 91 % Propan wird der gleiche Katalysator wie in den Beispielen 3-6 eingesetzt.
    Das Verhältnis der Partialdrucke von C3H8 zu Schwefeldioxyd in der Gasmischung beträgt 9 und es wird eine Raumgeschwindigkeit von 250 verwendet. Die für eine vollständige Reduktion erforderliche Mindesttemperatur beträgt in diesem Fall nur 2950 C.
    PATENTANSPRUCH 1 Verfahren zur reduktiven Umwandlung von Schwefeldioxyd in Schwefelwasserstoff, dadurch gekennzeichnet, dass eine Gasmischung, welche sowohl Schwefeldioxyd als auch einen reduzierend wirkenden Gasanteil in Form von freiem oder in gebundener Form vorliegendem Wasserstoff enthält, mit einem Katalysator in Berührung gebracht wird, der auf einem aktiven Trägermaterial aus Bauxit, synthetischem Aluminiumoxyd und/ oder Kieselsäure-Aluminiumoxyd-Mischoxyd ein Vana- diumoxyd enthält.
    UNTERANSPRÜCHE 1. Verfahren nach Patentanspruch I, dadurch gekennzeichnet, dass ein Katalysator verwendet wird, der Vanadiumpentoxyd und/oder Vanadiumtrioxyd enthält.
    2. Verfahren nach Patentanspruch I und Unteranspruch 1, dadurch gekennzeichnet, dass ein Katalysa- tor mit einem Gehalt an Vanadiumoxyd von 1 bis 20 Gew.%, bezogen auf das Trägermaterial, verwendet wird.
    3. Verfahren nach Patentanspruch I und Unteransprüchen 1 und 2, dadurch gekennzeichnet, dass der reduzierend wirkende Gas anteil einen Kohienwasser- stoff, insbesondere Methan, enthält.
    4. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 3, dadurch gekennzeichnet, dass das Verhältnis der Partialdrucke von reduzierend wirkendem Gasanteil zu Schwefeldioxyd in der Gasmischung unter 20 liegt.
    5. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 4, dadurch gekennzeichnet, dass während der Reduktion mit einer Raumgeschwindigkeit von 100 bis 2000 Volumteilen der Gasmischung je Volumanteil Katalysator je Stunde gearbeitet wird.
    6. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 5, dadurch gekennzeichnet, dass die Reduktion bei einer Temperatur zwischen 300 und 6000 C durchgeführt wird.
    7. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 6, dadurch gekennzeichnet, dass ein Katalysator mit einem Trägermaterial aus Gamina-Alu- miniumoxyd verwendet wird.
    8. Verfahren nach Patentanspruch I und Unteransprüchen 1 bis 7, dadurch gekennzeichnet, dass ein Katalysator verwendet wird, dessen Trägermaterial eine spezifische Oberfläche von mindestens 100 m2/g aufweist.
    PATENTANSPRUCH II Anwendung des Verfahrens nach Patentanspruch 1 bei der Herstellung von Schwefel, dadurch gekennzeichnet, dass ein Schwefeldioxyd enthaltendes Gas in zwei Ströme unterteilt wird, wobei der erste Strom etwa 1/3 und der zweite Strom etwa 2/2 des Ausgangsgases enthält, dass der zweite Strom mit einem dritten Strom aus dem wasserstoffhaltigen, reduzierend wirkenden Gas vereinigt und dieser Mischstrom mit dem genannten Katalysator in Berührung gebracht wird, und dass das umgesetzte Mischgas mit dem ersten Strom vereinigt und dieses Gemisch einer Anlage zur Schwefelerzeugung zugeleitet wird.
    UNTERANSPRÜCHE 9. Anwendung nach Patentanspruch II, dadurch gekennzeichnet, dass ein schwefeldioxydhaltiges Gas verwendet wird, wie es durch Behandeln eines Schwefeldioxyd und freien Sauerstoff enthaltenden Abgases mit einem festen Akzeptor, welcher ein Metall oder eine Metallverbindung auf einem Trägermaterial enthält, und anschliessende Regenerierung des mit Metailsulfat beladenen Akzeptors mit einem reduzierend wirkenden Gas erhältlich ist.
    10. Anwendung nach Unteranspruch 9, dadurch gekennzeichnet, dass der feste Akzeptor ein Kupferoxyd enthält.
    PATENTANSPRUCH III
    Katalysator für die Durchführung des Verfahrens nach Patentanspruch I, gekennzeichnet durch ein aus Bauxit, synthetischem Aluminiumoxyd und/oder Kieselsäure-Aluminiumoxyd-Mischoxyd bestehendes aktives Trägermaterial mit einem Vanadiumoxydgehalt.
CH293668A 1967-03-02 1968-02-29 Verfahren zur reduktiven Umwandlung von Schwefeldioxyd in Schwefelwasserstoff CH500132A (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
GB9982/67A GB1116129A (en) 1967-03-02 1967-03-02 Catalytic reduction of sulphur dioxide to hydrogen sulphide

Publications (1)

Publication Number Publication Date
CH500132A true CH500132A (de) 1970-12-15

Family

ID=9882359

Family Applications (1)

Application Number Title Priority Date Filing Date
CH293668A CH500132A (de) 1967-03-02 1968-02-29 Verfahren zur reduktiven Umwandlung von Schwefeldioxyd in Schwefelwasserstoff

Country Status (12)

Country Link
US (1) US3495941A (de)
AT (1) AT277283B (de)
BE (1) BE711469A (de)
CA (1) CA921678A (de)
CH (1) CH500132A (de)
DE (1) DE1667728A1 (de)
ES (1) ES351054A1 (de)
FR (1) FR1562292A (de)
GB (1) GB1116129A (de)
NL (1) NL6802844A (de)
NO (1) NO120267B (de)
SE (1) SE329603B (de)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3864459A (en) * 1969-04-21 1975-02-04 Alvin B Stiles Process for the economical use of refractory reducing gases for the reduction of sulfur dioxide
US3615231A (en) * 1969-06-18 1971-10-26 John T Cullom Ocess utilizing the sensible heat of smelter gases to recover sulfur therefrom
BE759295A (fr) * 1969-12-09 1971-04-30 Allied Chem Procede de traitement d'anhydride sulfureux avec un gaz reducteur et nouveaux produits ainsi obtenus
CA918384A (en) * 1970-01-12 1973-01-09 The Ralph M. Parsons Company Sulfur production process
CA905083A (en) * 1970-02-11 1972-07-18 O. Archambault Jacques Process for recovery of sulphur from sulphur dioxide
NL171144B (nl) * 1970-07-17 1982-09-16 Shell Int Research Werkwijze voor het verlagen van het totale zwavelgehalte van clausafgassen.
US3635820A (en) * 1970-08-31 1972-01-18 Universal Oil Prod Co Treating a water stream containing a water-soluble sulfite compound
US3865927A (en) * 1970-09-15 1975-02-11 Allied Chem Method and apparatus for reacting sulfur dioxide and natural gas
US3729551A (en) * 1971-01-07 1973-04-24 Cons Coal Co Conversion of calcium sulfate to calcium oxide and elemental sulfur
US3726958A (en) * 1971-02-22 1973-04-10 Exxon Research Engineering Co Reduction of so{11 {11 in gas mixtures
US3789110A (en) * 1971-07-23 1974-01-29 Westvaco Corp Method for removing sulfur dioxide from waste gases and recovering a concentrated stream of sulfurdioxide
US3846536A (en) * 1972-09-07 1974-11-05 Exxon Research Engineering Co Regeneration process for flue gas sorbent
US4029752A (en) * 1973-05-29 1977-06-14 Exxon Research And Engineering Company Method of producing sulfur from sulfur dioxide
US4094961A (en) * 1974-11-07 1978-06-13 Ralph M. Parsons Company Hydrogen sulfide production
US3970744A (en) * 1974-11-07 1976-07-20 Ralph M. Parsons Company Process for the production of sulfur from sulfur dioxide extracted from gas streams
US4164556A (en) * 1974-11-14 1979-08-14 Exxon Research & Engineering Co. Method of producing sulfur from sulfur dioxide
US4302218A (en) * 1980-06-16 1981-11-24 Fmc Corporation Process for controlling sulfur oxides in coal gasification
US4464252A (en) * 1982-08-23 1984-08-07 Exxon Research & Engineering Co. Adsorbents for sulfur removal
EP0179163A1 (de) * 1984-10-23 1986-04-30 Chemische Fabrik Kalk GmbH Verfahren zur Herstellung von Brom durch katalytische Oxidation von Bromwasserstoff
GB0115850D0 (en) * 2001-06-28 2001-08-22 Isis Innovations Ltd Catalyst
US8506918B2 (en) * 2006-01-03 2013-08-13 University Of Wyoming Apparatus and method to sequester contaminants
US8673257B2 (en) * 2006-01-03 2014-03-18 University Of Wyoming Apparatus and method to sequester contaminants
WO2007081561A2 (en) * 2006-01-03 2007-07-19 University Of Wyoming Apparatus and method for sequestering flue gas co2

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2180353A (en) * 1933-01-06 1939-11-21 Nat Aniline & Chem Co Inc Vanadium oxide catalyst
US2631087A (en) * 1950-08-02 1953-03-10 Fluor Corp Sulfur recovery process
US2747968A (en) * 1951-05-07 1956-05-29 Pigache Pierre Gustave Adolphe Dry process for the recovery of sulfur from gases
US2887363A (en) * 1956-09-28 1959-05-19 Exxon Research Engineering Co Conversion of methane to produce hydrogen sulfide

Also Published As

Publication number Publication date
FR1562292A (de) 1969-04-04
SE329603B (de) 1970-10-19
CA921678A (en) 1973-02-27
BE711469A (de) 1968-08-29
US3495941A (en) 1970-02-17
ES351054A1 (es) 1969-05-16
NO120267B (de) 1970-09-28
GB1116129A (en) 1968-06-06
AT277283B (de) 1969-12-29
DE1667728A1 (de) 1971-06-24
NL6802844A (de) 1968-09-03

Similar Documents

Publication Publication Date Title
CH500132A (de) Verfahren zur reduktiven Umwandlung von Schwefeldioxyd in Schwefelwasserstoff
DE2832002C3 (de) Verfahren zum Entfernen von Stickstoffoxiden aus Verbrennungsabgasen
DE2838231C2 (de) Verfahren zur Entschwefelung eines Kohlenwasserstofföls
DE2441199A1 (de) Katalysatoren fuer die behandlung von schwefelverbindungen enthaltenden abgasen
DE3228481A1 (de) Reaktionsmasse, verfahren zu ihrer herstellung und deren verwendung
DE2135522C2 (de) Verfahren zur Verringerung des Gesamtschwefelgehaltes von Schwefeldioxid enthaltenden Abgasen, die aus einer Claus-Anlage stammen
DE2101901C2 (de) Verfahren zur Verringerung des Gesamtschwefelgehaltes von Schwefeldioxid enthaltenden Abgasen
EP0499095A1 (de) Katalysatoren zur Entfernung von Schwefelverbindungen aus technischen Gasen, Verfahren zu deren Herstellung sowie deren Verwendung
DE2214939A1 (de) Verfahren zur verminderung des gesamtschwefelgehalts von claus-abgasen
EP0218302B1 (de) Verfahren zum Reinigen von Schwefelwasserstoff und Schwefeldioxid enthaltendem Abgas
DE1273734B (de) Verfahren zur katalytischen Entschwefelung von Kohlenwasserstoffoelen
DE2363865A1 (de) Verfahren zur entfernung von stickoxiden aus gasmischungen
DE2750006C2 (de)
DE2709881A1 (de) Verfahren zum aufarbeiten schwefelwasserstoff enthaltender gase
DE2411888C3 (de) Verfahren zur Beseitigung von Stickstoffoxiden in Abgasen
DE2442986B2 (de) Verfahren zur Entfernung von Stickstoffoxyden aus Gasen
DE2653884A1 (de) Traeger fuer katalysatoren, verfahren zu ihrer herstellung und deren verwendung
EP0215317A1 (de) Verfahren zum Entfernen von Schwefelwasserstoff aus Abgasen
DE2754762A1 (de) Verfahren zur katalytischen verbrennung von schwefelwasserstoff enthaltenden abgasen und zur durchfuehrung des verfahrens geeigneter katalysator
DE2348295A1 (de) Verfahren zur entfernung von stickstoffoxiden aus gasen
DE1667328A1 (de) Verfahren zum Regenerieren von festen Katalysatoren
CH509946A (de) Verfahren zur Behandlung von Abwässern
DE2646627A1 (de) Verfahren zur herstellung von schwefel
DE2815069A1 (de) Katalytisches verfahren zum cracken von kohlenwasserstoffen mit vermindertem schadstoffgehalt im abgas und hierzu geeignete zusammensetzung
DE936088C (de) Verfahren zum Vermindern des Natriumsulfid- und Mercaptangehaltes von waessrigen Alkalilaugen

Legal Events

Date Code Title Description
PL Patent ceased