BRPI1004701A2 - enrolamento de transformador e mÉtodo de reforÇar um enrolamento de transformador - Google Patents

enrolamento de transformador e mÉtodo de reforÇar um enrolamento de transformador Download PDF

Info

Publication number
BRPI1004701A2
BRPI1004701A2 BRPI1004701-8A BRPI1004701A BRPI1004701A2 BR PI1004701 A2 BRPI1004701 A2 BR PI1004701A2 BR PI1004701 A BRPI1004701 A BR PI1004701A BR PI1004701 A2 BRPI1004701 A2 BR PI1004701A2
Authority
BR
Brazil
Prior art keywords
winding
transformer
conductor
reinforcing
transformer winding
Prior art date
Application number
BRPI1004701-8A
Other languages
English (en)
Inventor
Sebastian Jutaeng
Leif Olsson
Kenneth Agren
Jan Anger
Hans Persson
Erik Forsberg
Curt Eggmark
Christer Ericsson
Tomas Eriksson
Bo Skansen
Original Assignee
Abb Technology Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Abb Technology Ltd filed Critical Abb Technology Ltd
Publication of BRPI1004701A2 publication Critical patent/BRPI1004701A2/pt
Publication of BRPI1004701A8 publication Critical patent/BRPI1004701A8/pt
Publication of BRPI1004701B1 publication Critical patent/BRPI1004701B1/pt

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

ENROLAMENTO DE TRANSFORMADOR E MÉTODO DE REFORÇAR UM ENROLAMENTO DE TRANSFORMADOR. A presente invenção refere-se a um enrolamento de transformador que tem um condutor enrolado em uma pluralidade de espiras é descrito, em que o enrolamento de transformador compreende uma parte de reforço arranjada em uma transição de enrolamento, em uma maneira de modo que cubra mais do que 180<198> da circunferência do condutor, pelo que, a resistência a dobramento do condutor na localização da parte de reforço é aumentada. A capacidade de resistência do enrolamento do transformador contra tensão de dobramento é com isto melhorada.

Description

Relatório Descritivo da Patente de Invenção para "ENROLA- MENTO DE TRANSFORMADOR E MÉTODO DE REFORÇAR UM ENRO- LAMENTO DE TRANSFORMADOR".
Campo Técnico
A presente invenção refere-se ao campo de transformadores pa-
ra transformação de voltagem, e em particular a enrolamento de transforma- dor.
Antecedente
Um condutor que carrega corrente em um campo magnético irá experimentar uma força que corresponde ao produto cruzado entre a corren- te e o campo magnético, esta força muitas vezes referida como a força mag- nética de Lorentz. Em um transformador, a força magnética de Lorentz resul- ta, entre outras, em uma força radial para dentro sobre um enrolamento inte- rior e uma força radial para fora correspondente sobre um enrolamento exte- rior.
No caso de correntes de curto-circuito que escoam em um trans- formador, a força radial para dentro sobre um enrolamento interior de trans- formador pode ser muito elevada e pode provocar dano considerável ao transformador. Este fenômeno foi discutido em diversos documentos, vide por exemplo, Z. Liang e outros em "", Electrical Machines e Systems, Inter- national Conference on Electrical Machines e Systems, 2003, Vol. 1, PP 302- 304. Sumário
Um problema ao qual se relaciona a invenção, é como melhorar a estabilidade mecânica de um enrolamento de transformador contra defor- mação provocada por tensões de dobramento, por exemplo em uma situa- ção de curto- circuito.
Este problema é enfrentado por um enrolamento de transforma- dor que tem um condutor enrolado em uma pluralidade de espiras. O enrolamento do transformador compreende: uma parte de reforço arranja- da em uma transição de enrolamento em uma maneira de modo a cobrir mais do que 180° da circunferência do condutor, pelo que, a resistência a dobramento do condutor na localização da transição de enrolamento é au- mentada. A capacidade de resistência do enrolamento do transformador contra tensão de dobramento provocada por forças de compressão que o- correm, por exemplo em uma situação de curto-circuito, é melhorada com isto. A tensão de dobramento que ocorre quando de curto-circuito em transi- ções de enrolamento, onde o trajeto condutor desvia do trajeto de enrola- mento regular, é muitas vezes um fator Iimitante para todo o dimensiona- mento do enrolamento. Daí, aumentando a resistência a dobramento em uma transição de enrolamento, dimensões maiores do transformador podem ser facilitadas.
Em uma modalidade o componente principal da parte de reforço é um polímero reforçado com fibra. Polímeros reforçados com fibra podem ser conformados de maneira conveniente em uma forma adequada e forne- cer resistência adequada a tração e compressão. A parte de reforço poderia ser dimensionada de maneira vanta-
josa de modo que a resistência a dobramento do condutor é aumentada por no mínimo 25% na localização da parte de reforço. Aumentando a resistên- cia a dobramento do condutor por no mínimo 25% em uma transição de en- rolamento, é muitas vezes conseguido que esta transição de enrolamento não seja mais o ponto mais fraco do enrolamento do transformador.
Em uma modalidade, a parte de reforço se estende na direção axial do condutor a uma distância que corresponde a menos do que uma circunferência de uma espira do enrolamento.
Um enrolamento de transformador pode compreender uma plu- ralidade de espaçadores de duto radiais espaçados a uma distância de es- paçador de duto ao longo da direção circunferencial do enrolamento. Em uma modalidade, a parte de reforço se estende na direção axial do condutor a uma distância que corresponde a 1-4 distâncias de espaçador de duto.
Em uma modalidade, a parte de reforço inclui um componente que fornece propriedades semicondutoras à parte de reforço, de modo que blindagem elétrica da parte de reforço é conseguida. Ao produzir uma parte de reforço existe um risco que bolhas de gás venham a se formar na parte de reforço. Fornecendo blindagem na parte de reforço é conseguido que medidas menos restritivas venham a ser necessárias para evitar que bolhas de gás se formem na parte de reforço quando da produção.
Um transformador que tem um enrolamento de transformador como descrito acima é ainda mais divulgado. O enrolamento de transforma- dor pode formar, de maneira vantajosa, um enrolamento interior do transfor- mador. Além disto, o enrolamento de transformador pode, de maneira vanta- josa, formar um enrolamento de baixa voltagem do transformador. O enro- lamento de transformador pode ser benéfico a diversos tipos de transforma- dores e, em particular, a um transformador de uma classificação de potência elétrica de 25 MVA ou mais, uma vez que tais transformadores são expostos a forças de Lorentz muito fortes quando de curto-circuito.
Em uma modalidade, o condutor de enrolamento do transforma- dor é um condutor de cabo transposto de maneira contínua. Tais condutores são muitas vezes utilizados em enrolamentos de transformador, por exem- plo, enrolamentos de baixa voltagem de transformadores de classificação de potência elétrica de 25MVA ou mais elevada. Condutores de cabo transpos- to de maneira contínua são, genericamente, não tão resistentes a tensão de dobramento como a tensões de compressão ou de tração. Daí, a invenção pode fornecer grandes melhoramentos a tais enrolamentos.
Um método de aumentar a resistência a dobramento de um en- rolamento de transformador que tem um condutor é, alem disto, divulgado. Fibras de reforço em um polímero de cura térmica são arranjadas em uma transição de enrolamento em uma maneira, de modo que as fibras de refor- ço formem uma parte de reforço que se estende ao redor de mais do que 180° da circunferência do condutor.
Outros aspectos da invenção estão descritos na descrição deta- lhada a seguir e nos desenhos que acompanham. Breve Descrição dos Desenhos A figura 1 é uma ilustração esquemática de um enrolamento de
transformador de duas camadas.
A figura 2a é uma vista em perspectiva que ilustra de maneira esquemática um transformador que tem dois enrolamentos.
A figura 2b é uma vista em seção transversal que ilustra de ma- neira esquemática um transformador que tem dois enrolamentos.
A figura 3a é uma vista ao longo do eixo de um exemplo de um enrolamento interior que tem duas camadas.
A figura 3b é uma vista do enrolamento interior da figura 3a de- pois que o enrolamento tenha sido exposto a um cenário de curto- circuito.
A figura 4a é uma ilustração esquemática de um enrolamento in- terior de uma camada. A figura 4b é uma ilustração esquemática do enrolamento interi-
or da figura 4a depois que o enrolamento tenha sido exposto a um cenário de curto-circuito.
A figura 5a é uma ilustração esquemática de um enrolamento de disco interior.
A figura 5b é uma ilustração esquemática de dois discos do en-
rolamento interior da figura 5a depois que o enrolamento tenha sido exposto a um cenário de curto-circuito.
A figura 6a é uma ilustração esquemática de um enrolamento de transformador de duas camadas no qual uma camada de transição bem co- mo as transições de saída/entrada 125 foram reforçadas por meio de partes de reforço.
A figura 6b é uma ilustração esquemática de dois discos de um enrolamento de disco no qual uma transição de disco entre os dois discos foi reforçada por uma parte de reforço. A figura 7a é uma ilustração esquemática de uma parte de refor-
ço na forma de um tubo inteiro.
A figura 7b é uma ilustração esquemática de uma parte de refor- ço na forma de um tubo parcial.
As figuras 8a-d são seções transversais esquemáticas de dife- rentes modalidades de partes de reforço para reforçar um condutor de seção transversal retangular.
A figura 8e é uma seção transversal esquemática de uma moda- Iidade de uma parte de reforço para reforçar o exemplo de um condutor CTC.
A figura 9a é um fluxograma que ilustra de maneira esquemática um exemplo de um método de produzir uma transição de enrolamento refor- çada.
A figura 9b é um fluxograma que ilustra de maneira esquemática uma modalidade do método da figura 9a.
A figura 9c é um fluxograma que ilustra de maneira esquemática outra modalidade do método da figura 9a. A figura 10 é uma ilustração esquemática de uma parte de refor-
ço de polímero que compreende um componente que produz propriedades semicondutoras. Descrição Detalhada
A figura 1 ilustra de maneira esquemática um exemplo de um enrolamento de transformador 100 que tem um condutor 105 que é enrolado ao redor de um núcleo 110 (o núcleo geralmente não é considerado ser par- te do enrolamento do transformador 100). O condutor 105 forma N espiras ao redor do núcleo 110 em pelo menos uma camada 120. O enrolamento de transformador 100 da figura 1, que é fornecido apenas como um exemplo, tem N espiras - divididas entre uma primeira camada 120a e uma segunda camada 120b. Uma camada de transição 130 entre as duas camadas 120a, 120b, está mostrada na figura 1. O condutor 105, além disto, tem duas tran- sições de saída/entrada 125 que formam transições entre as partes de ali- mentação do condutor 105 e a parte do condutor 105 que constitui a bobina. O trajeto de enrolamento em um transformador de potência é muitas vezes circular, porém, pode alternativamente, ser de outra forma tal como, por e- xemplo, elíptica, quadrática ou retangular. Um condutor 105 é tipicamente um cabo formado de diversos fios paralelos, porém também poderia ser um condutor de um fio único. Uma vista em perspectiva esquemática de um transformador 200 que tem um enrolamento interior 100a e um enrolamento exterior 100b é fornecida na figura 2a. Os enrolamentos interior e exterior 100a, 100b da figura 2a são enrolados ao redor de um núcleo circular 110. A figura 2b é uma seção transversal esquemática do transformador 200 da figura 2a. O transformador 200 da figura 2a é apenas um exemplo, e um transformador 200 poderia incluir mais do que dois enroiamentos; os enro- Iamentos poderiam ser arranjados em uma maneira diferente do que aquela mostrada na figura 2b, etc.
Quando um transformador 200 está em operação, a corrente no enrolamento exterior 100b dá origem a um campo magnético que irá exercer uma força sobre o condutor que carrega corrente 105 do enrolamento interi- or 100a, e vice-versa. Isto irá resultar em uma compressão radial para dentro do enrolamento interior 100a bem como uma tensão radial para fora do enro- lamento exterior 100b. Genericamente existe o risco que a compressão de um enrolamento interior 100a que resulta das forças sobre o condutor que carrega corrente 105 do enrolamento interior 100a em uma situação de cur- to-circuito dê origem a deformação não desejada do enrolamento interior 100a. Este risco é particularmente pronunciado quando o enrolamento interi- or 100a é o enrolamento de baixa voltagem dos enroiamentos do transfor- mador, uma vez que a corrente que escoa através do enrolamento interior 100a será então maior do que quando o enrolamento interior 100a é o enro- lamento de alta voltagem. O enrolamento interior 100a será daí espremido ao redor do nú-
cleo 110 em um cenário de curto-circuito. Se nenhuma medida especial for tomada esta compressão do enrolamento 100 pode provocar uma flamba- gem do condutor 105. Para aumentar a resistência mecânica do condutor contra flambagem em transformadores de grande potência 200, um cabo transposto de maneira contínua (CTC) é muitas vezes utilizado como o con- dutor 105, no qual tranças finas e isoladas individualmente são arranjadas em uma forma transposta de maneira contínua e ligadas juntas tipicamente por epóxi. Contudo, mesmo se flambagem pode ser evitada, existe ainda um risco que o condutor 105 de um enrolamento interior 100a venha a ser de- formado em uma situação de curto-circuito. Embora CTC ligado com epóxi suporte tensões elevadas de compressão ou de tração, genericamente ele não é resistente a tensões de dobramento. Quando forças magnéticas fortes de Lorentz atuam sobre o en- rolamento interior 100a a compressão do enrolamento interior 100a muitas vezes induz tensão de dobramento no condutor 105 em localizações onde o trajeto condutor desvia do trajeto de enrolamento regular ao redor do núcleo 110, tais localizações referidas daqui em diante como transições de enrola- mento.
Um exemplo de uma transição de enrolamento é a camada de transição 130 encontrada entre duas camadas 120 em um enrolamento mul- ticamadas 100. Na figura 3a uma vista ao longo do eixo de um exemplo de um enrolamento interior 100a está mostrado esquematicamente, onde o en- rolamento 100a tem duas camadas 120a e 120b, com uma camada de tran- sição 130 entre as camadas. Para finalidades de ilustração o condutor 105 foi indicado pelas linhas interrompidas na região de transição de camada. Na figura 3b uma seção transversal do mesmo enrolamento interior 100a está ilustrada depois que o enrolamento interior 100a foi exposto a uma situação de curto-circuito. O enrolamento interior 100a da figura 3b foi deformado na camada de transição 130 pela tensão de dobramento do condutor 105 indu- zida pelas forças de Lorentz radiais para dentro que ocorrem durante curto- circuito.
Outro exemplo de uma transição de enrolamento são as transi-
ções de saída/entrada 125 entre a bobina e as partes de alimentação do condutor 105 de um enrolamento de transformador 100. Tensão de dobra- mento induzida pelas forças magnéticas de Lorentz pode fazer com que um condutor 105 forme o que pode ser referido como o início de uma expira ex- tra nas transições de enrolamento de saída/entrada 120. A tensão de do- bramento de curto-circuito nas transições de saída/entrada 125 são particu- larmente pronunciadas em um de tipos de enrolamento de transformador referidos como enrolamentos de transformador helicoidais e enrolamentos de camada onde o condutor 105 é enrolado de maneira contínua ao redor do núcleo 110 em uma maneira de hélice ou parafuso (vide as figuras 1 e 2, nas quais enrolamentos de transformador de duas camadas 100 de tipo helicoi- dal ou em camadas, foram mostrados. O enrolamento interior helicoidal de uma camada 100a está mostrado de maneira esquemática na figura 4a e o mesmo enrolamento interior 100a está ilustrado de maneira esquemática na figura 4b depois que o enrolamento foi exposto a uma situação de curto- circuito. O condutor 105 foi deformado nas transições de saída/entrada 125 pela tensão de dobramento que ocorre na situação de curto-circuito.
Um outro exemplo de uma transição de enrolamento é uma tran- sição de disco, isto é, uma transição a partir de um disco para o outro em um enrolamento de disco. O exemplo de um enrolamento de transformador 100 que compreende uma pluralidade de discos está ilustrado de maneira es- quemática na figura 5a. Um enrolamento de disco é um tipo de enrolamento de transformador 100 muitas vezes utilizado para voltagens mais elevadas onde o condutor 105 é enrolado em uma pluralidade de espiras 115 em um padrão espiral para formar uma seção de transformador 500, daqui em dian- te referida como um disco 500 (a despeito da terminologia, um disco 500 poderia ser de outras formas diferentes de circular, tal como retangular ou elíptica. Diversos tais discos 500 são tipicamente empilhados axialmente para formar um enrolamento completo 100. Entre dois discos adjacentes 500, o condutor 105 forma uma transição de disco 505. Na figura 5b está ilustrada uma parte de um enrolamento de transformador de disco. A parte mostrada inclui dois discos 500 conectados por meio de uma transição de disco 505, onde o enrolamento de transformador 100 do qual os discos 500 formam uma parte foi exposto a uma situação de curto-circuito. O condutor 105 foi deformado na região de transição de disco pela tensão de dobramen- to induzida durante curto-circuito. Como é o caso nas figuras 5a e 5b, uma pluralidade de espaça-
dores de duto radiais são muitas vezes colocados entre discos 500 direta- mente um em cima do outro na direção axial do enrolamento do transforma- dor 100 para suportar mecanicamente o enrolamento do transformador 100 na direção axial. Os espaçadores de duto radiais 510 são muitas vezes colo- cados em localizações diferentes ao redor da circunferência do enrolamento. A distância entre dois espaçadores de duto radiais 510 ao longo da direção circunferencial do enrolamento será referida como a distância de espaçador de duto. Espaçadores de duto radiais 510 são muitas vezes utilizados tam- bém em outros tipos de enrolamentos, por exemplo, entre espiras 115 em um enrolamento helicoidal de transformador 100, embora alguns enrolamen- tos de transformador 100 não tenham quaisquer espaçadores de duto radiais 510.
Deformação do condutor 105 como discutido em relação às figu- ras 3-5 pode degradar a resistência dielétrica, bem como a tolerância de tensão do enrolamento 100. Além disto, existe um risco que a função de qualquer estrutura suporte para manter o condutor 105 no lugar será degra- dada se as transições de saída/entrada 125 do enrolamento se movem.
Para reduzir o impacto negativo sobre um enrolamento de trans- formador 100 de forças radiais para dentro, uma parte de reforço poderia ser aplicada ao condutor 115 nas transições de enrolamento onde das forças poderiam induzir tensões de dobramento elevadas. Dois exemplos de enro- lamentos de transformador 100 aos quais partes de reforço 600 foram apli- cadas estão mostrados nas figuras 6a e 6b, respectivamente. Os enrolamen- tos de transformador 100 mostrados nas figuras 6a e b são somente exem- plos, e outros tipos de enrolamentos de transformador também podem se beneficiar de ter uma ou mais partes de reforço 600. Na figura 6a um enro- lamento helicoidal de transformador de duas camadas 100 está mostrado, no qual as partes de reforço 600 foram aplicadas à transição de camada 130 bem como às transições do condutor de saída/entrada 125. Na figura 6b uma parte de um transformador de disco 100 está mostrada, no qual uma parte de reforço 600 foi aplicada a uma transição de disco 505 entre dois discos adjacentes 500.
Partes de reforço 600 poderiam ser feitas de um material isolan- te que tenha propriedades adequadas em termos de resistências de tração e compressão e elasticidade a tração. Um componente que fornece proprieda- des semicondutoras à parte de reforço 600 também poderia ser incluído, como está mais discutido em relação à figura 10. Geralmente, um material de alta resistência a escoamento e um valor elevado de módulo de Young poderia ser adequado para aumentar de maneira eficiente a resistência a dobramento do enrolamento de transformador 100. Polímeros de alta resis- tência e polímeros reforçados com fibra, são exemplos de materiais adequa- dos. Polímeros adequados a serem reforçados são, por exemplo, polímeros de cura térmica tal como epóxi, éster de vinila, poliéster, náilon, etc. Exem- pios de fibras de reforço são fibra de vidro, fibra de carbono, fibra de para- aramida, etc.
Uma parte de reforço 600 poderia ser fornecida de maneira van- tajosa em uma transição de enrolamento tal como, por exemplo, nas transi- ções de saída/entrada do condutor 125, por exemplo, em um enrolamento helicoidal ou em camadas, em transições de camada 130 em um enrolamen- to multicamadas, em transições entre discos, em um enrolamento de trans- formador de disco, etc. Uma parte de reforço 600 poderia também ser forne- cida em outras partes de um condutor de enrolamento 105m onde resistên- cia a dobramento aumentada seria benéfica. Uma parte de reforço 600 poderia ser na forma de um tubo que
circunda o condutor 105 ao longo de sua circunferência totalmente ou parci- almente. Uma parte de reforço em forma de tubo 600 poderia ser na forma de um tubo completo cobrindo 360° da circunferência do condutor 105 ou na forma de um tubo parcial cobrindo menos do que 360 ° da circunferência do condutor. Se uma parte de reforço 600 na forma de um tubo parcial é utiliza- da, a parte de reforço 600 deveria preferivelmente ser posicionada de modo que uma tensão de modo que um mínimo de tensão de dobramento venha ser experimentado ao longo da parte da circunferência do condutor que não está coberta pela parte de reforço 600. Um exemplo de uma parte de reforço 600 na forma de um tubo completo está mostrado de maneira esquemática na figura 7a enquanto um exemplo de uma parte de reforço na forma de um tubo parcial está mostrado na figura 7b. As partes de reforço 600 das figuras 7a e 7b estão mostradas sendo de uma forma lisa como ar estas iguais. Contudo, tubos mais ásperos também podem ser utilizados. Da circunferência interior da parte de reforço 600 poderia ser, de
maneira vantajosa, de forma similar ou de mesma forma que a circunferên- cia do condutor 105,de modo que a parte de reforço 600 se situe junto ao condutor 105. As partes de reforço 600 das figuras 7a e 7b estão mostradas para serem de circunferência circular. Contudo, muitas vezes a seção trans- versal do condutor 105 é de uma forma não circular, tal como retangular, elíptica ou uma forma aproximada retangular. Um condutor CTC1 por exem- pio, tem tipicamente uma forma retangular aproximada onde um desvio de uma seção transversal retangular é provocado pela transposição de tranças. Uma parte de reforço 600 a ser utilizada para reforçar a resistência a dobra- mento de um condutor 105 de circunferência retangular poderia ter, de ma- neira vantajosa, uma circunferência retangular interior, e assim por diante. Em uma modalidade a parte de reforço 600 adere à superfície do condutor 105 enquanto em outra modalidade o condutor 105 e a parte de reforço 600 não aderem um ao outro.
Nas figuras 8a-d, seções transversais de exemplos diferentes de partes de reforço 600 para reforçar um condutor retangular 105 estão mos- trados. Um eixo A que indica a direção do eixo do enrolamento 100 do qual o condutor faz parte está mostrado nos desenhos, bem como um eixo r que indica a direção radial do enrolamento 100. Na figura 8a uma parte de refor- ço na forma de um tubo inteiro retangular está mostrada. Esta forma da par- te de reforço 600 é adequada para reforçar o condutor retangular 105 em qualquer localização. Contudo, por exemplo, por razões de facilidade de montar a parte de reforço 600 no condutor 105, muitas vezes pode ser dese- jável utilizar uma parte de reforço 600 na forma de um tubo parcial. Na figura 8b uma parte de reforço 600 por meio da qual três lados do condutor retan- gular 105 estão no mínimo parcialmente cobertas em uma maneira de modo que um lado do corpo do condutor 600 não está coberto, está ilustrada. Esta forma da parte de reforço 600 é adequada para reforçar uma parte do con- dutor 105 onde os lados longos da seção transversal do condutor experi- mentam um risco mais elevado de serem expostos à tensão de dobramento, tal como em uma transição de disco 130, ou em uma transição de entra- da/saída 125 quando o condutor 105 entra/sai do enrolamento 100 na dire- ção axial do enrolamento. Na figura 8c uma parte de reforço 600 está ilus- trada por meio da qual três lados do condutor retangular 105 são no mínimo parcialmente cobertos em uma maneira de modo que um lado longo do con- dutor 600 não seja coberto. Esta forma da parte de reforço 600 é adequada para reforçar uma parte do condutor 105 onde os lados curtos da seção transversal do cabo experimentam um risco mais elevado de serem expos- tos à tensão de dobramento tal como em uma transição de camada 130 ou em uma transição de entrada/saída 125 quando o condutor 105 entra/sai do enrolamento 100 na direção radial do enrolamento. Na figura 8d uma parte de reforço 600 está mostrada tendo uma forma onde todos os quatro lados do condutor retangular 105 são no mínimo parcialmente cobertos em uma maneira de modo que um canto do condutor 105 não está coberto pela parte de reforço 600. Esta forma da parte de reforço 600 é adequada para aplica- ção em todas as localizações do condutor 105.
Embora o condutor 105 das figuras 8a-b seja retangular, a dis- cussão acima também se mantém para condutores aproximadamente retan- gulares 105 tal como condutores CTC. Um exemplo de um condutor CTC 105 que é reforçado por meio de uma parte de reforço completa 600 está mostrado de maneira esquemática na figura 8e, o condutor CTC 1055 com- preendendo tranças condutoras 800.
A despeito da forma do condutor, a parte de reforço 600 deveria genericamente cobrir no mínimo 180° da circunferência do condutor para fornecer o reforço suficiente ao condutor 105. Se 360° da circunferência es- tão cobertos, a espessura e/ou o comprimento axial da parte de reforço 600 poderia tipicamente ser menor enquanto mantendo o mesmo aprimoramento de reforço que se fosse utilizado um tubo parcial. Em uma modalidade a par- te de reforço compreende dois ou mais tubos parciais cobrindo em conjunto no mínimo 180° da circunferência do condutor e formando uma parte de re- forçou dividida 600. Um ou mais dos tubos parciais de tal parte de reforço dividida deveriam cobrir menos do que 180° da circunferência do condutor. Tais tubos parciais de uma parte de reforço dividida 600 poderiam ser man- tidos no lugar por exemplo por meio de ranhuras no condutor 105; por meio de uma fita adesiva forte, etc.
A resistência a dobramento de um condutor 105 é o limite supe- rior de tensão normal do condutor 105 no qual ocorre fratura ou deformação plástica excessiva, e pode ser definida como o produto da resistência limite (ponto de escoamento o resistência à ruptura) e módulo da seção do condu- tor 105. A resistência a dobramento pode, por exemplo, ser medida por meio de um teste de dobramento em três pontos, ou um teste de dobramento em balanço, ambos os quais são bem-conhecidos na técnica.
Dependendo por exemplo das dimensões do condutor 105, as resistências a tração e compressão do material utilizado para a parte de re- forço 600, e a magnitude do momento de dobramento M esperado no caso de curto-circuito, uma espessura adequada da parte de reforço 600 pode ser selecionada. Um aumento na resistência a dobramento de 50% ou mais é muitas vezes desejado na transição de enrolamento quando comparada às partes do condutor 105 que não foram reforçadas, embora em algumas situ- ações um aumento menor em resistência a dobramento possa ser suficiente, e as dimensões da parte de reforço 600 poderiam ser selecionadas de acor- do. Tipicamente, um aumento em resistência a dobramento de no mínimo 25% é desejado para assegurar que a resistência a dobramento do condutor 105 não será o fator Iimitante ao dimensionar um transformador 200. Testes mecânicos foram realizados em uma transição de enrolamento de um con- dutor 105de dimensões 30 mm X 18 mm. O condutor 105 deste teste foi en- volvido com uma fita reforçada com fibra de vidro e impregnada com epóxi semicurado, que foi então curado. Uma parte de reforço 600 de aproxima- damente 2 a 3 mm espessura aproximadamente dobrou a resistência a do- bramento do condutor assim reforçado na transição de enrolamento. Quando uma parte de reforço 600 é aplicada a uma transição de
enrolamento na qual o trajeto condutor se desvia do trajeto de enrolamento regular (muitas vezes circular) para formar uma dobra no condutor 105, a parte de reforço 600 poderia se estender de maneira vantajosa na direção axial do condutor 105, além da dobra no condutor 105. Uma parte de reforço 600 não deve se estender pela mesma distância em ambas as direções a partir da transição de enrolamento, embora este possa, muitas vezes, ser o caso. Contudo, a parte de reforço 600 tipicamente se estende ao longo da direção axial do condutor 105 por no mínimo um diâmetro do condutor em cada direção (quando o condutor 105 é de seção transversal retangular, o comprimento de uma diagonal poderia ser visto como o diâmetro). Em algu- mas implementações a parte de reforço 600 poderia se estender sobre uma distância que corresponde a um quarto de uma espira 115 em cada direção a partir da transição de enrolamento (ou mais); em outras implementações a parte de reforço poderia se estender sobre 1/40 de uma espira 115 em cada direção (ou menos). Tipicamente, para um enrolamento maior 100, a parte de reforço 600 poderia se estender sobre uma parte menor de uma espira 115. Em enrolamentos de transformador 100 nos quais espaçadores de duto 510 são utilizados para separar discos diferentes 500 ou espiras 115, a parte de reforço 600 poderia, por exemplo, se estender além dos espaçadores de duto 510 que são adjacentes à transição de enrolamento a ser reforçada, de modo que a parte de reforço 600 se estende sobre um comprimento que cor- responde aproximadamente a 1-4 vezes a distância circunferencial de espa- çador de duto. Desta maneira, a parte de reforço 600 irá cobrir a parte do condutor 105 que está submetida à tensão de dobramento a mais elevada no caso de um curto circuito. Os espaçadores de duto 510 fornecem suporte mecânico para o condutor 105 de tal modo que a tensão de dobramento é consideravelmente mais baixa um espaçamento de duto afastado da transi- ção de enrolamento. Se a parte de reforço 600 por exemplo reforça o condu- tor 105 em uma transição de enrolamento localizada entre dois espaçadores de duto 505, a parte de reforço irá, se ela se estende aproximadamente por 1-4 distâncias de espaçador de duto, cobrir a parte do condutor 105 que está submetida à tensão de dobramento a mais elevada no caso de um curto- circuito. Por meio de a parte de reforço 600 cobrir aproximadamente duas distâncias de espaçadores de duto, os espaçadores de duto muitas vezes fornecem suporte suficiente para o condutor 105.
Outros comprimentos da parte de reforço 600 poderiam ser utili- zados, mais curtos ou mais longos do que nos exemplos fornecidos acima, dependendo das propriedades de dobramento da parte de reforço 600 e do condutor 105, bem como da magnitude do momento de dobramento espera- do no caso de curto-circuito.
Para formar uma parte de reforço 600 de polímero de cura tér- mica reforçado por fibra, a parte de reforço 600 poderia, por exemplo, ser formada aplicando ao condutor 105 uma fita de fibra, tapete de fibra, ou simi- lar, o qual foi impregnado com um polímero de cura térmica. De maneira al- ternativa, as fibras de reforço e um polímero de cura térmica poderiam ser aplicados ao condutor 105 separadamente, caso em que a fibra é muitas vezes aplicada primeiro, por exemplo, na forma de uma fibra para tecer, um filamento de fibra unidirecional, um pano tecido, ou similar. O polímero de cura térmica é então aplicado, tipicamente depois da fibra, e poderia ser a- plicado por meio de, por exemplo, uma escova, um rolo de pintura, spray, injeção, derramamento em uma forma temporária, etc.
A figura 9a é um fluxograma que ilustra de maneira esquemática um exemplo de um método de produzir uma transição de enrolamento refor- çada feita de um polímero reforçado com fibra. Na etapa 900, fibras de refor- ço em um polímero de cura térmica são arranjadas na transição de enrola- mento para formar uma parte de reforço 600 de uma forma adequada. Na etapa 910 o polímero de cura térmica é curado. A cura do polimento de cura térmica poderia ser realizada, por exemplo, Ada secagem a quente do enro- lamento 100m ou do transformador acabado 200 (normalmente, o núcleo do transformador 110 é secado depois que os enrolamentos 100 tenham sido colocados em posição). Daí, uma etapa de cura adicional, tipicamente, pode- ria ser desnecessária.
A figura 9b é um fluxograma que ilustra de maneira esquemática uma modalidade do método mostrado na figura 9a. Nesta modalidade a eta- pa 900 inclui a etapa 910 de arranjar fibras de reforço que foram pré- impregnadas como um polímero de cura térmica na transição de enrolamen- to. A etapa 905 é então introduzida. As fibras de reforço pré-impregnadas poderiam, por exemplo, ser na forma de uma fita de fibra pré-impregnada ou tapete de fibra. A figura 9c é um fluxograma que ilustra de maneira esque- mática outra modalidade do método mostrado na figura 9a, na qual a etapa 900 compreende as etapas 915 e 920. Na etapa 915 fibras de reforço são arranjadas na transição de enrolamento, enquanto na etapa 920 um políme- ro de cura térmica é aplicado às fibras de reforço.
As fibras de reforço poderiam ser, por exemplo, na forma de uma fibra para tecer, um filamento de fibra unidirecional, um pano tecido, ou similar.
Uma parte de reforço 600 poderia, alternativamente, ser curada antes de aplicar a parte de reforço à transição de enrolamento, isto é, a eta- pa 905 da figura 9a poderia ser realizada antes da etapa 900. A etapa 905 deveria então ser precedida por outra etapa de conformar um polímero re- forçado com fibra para a forma de uma parte de reforço 600. Por exemplo, uma parte de reforço 600 de forma adequada poderia ser feita em um molde em uma maneira convencional. A parte de reforço 600 poderia então ser a - plicada ao condutor 600 depois que a parte de reforço 600 tenha sido cura- da. Isto poderia, por exemplo, ser adequado para partes de reforço 600 a serem aplicadas a transições de saída/entrada 125 onde o condutor 105 po- deria ser passado através da parte de reforço 600 depois que as espiras 115 do enrolamento de transformador 100 tenham sido enroladas; ou para partes de reforço 600 na forma de um tubo parcial que poderia ser deslizado sobre o condutor 105.
Partes de reforço 600 poderiam, de maneira alternativa, ser fei-
tas de um polímero que não é curado e/ou que não é reforçado com fibra. Além disto, outros materiais isolantes poderiam ser utilizados como o com- ponente principal de uma parte de reforço 600.
Em uma modalidade a parte de reforço 600 compreende um componente que fornece propriedades semicondutoras à parte de reforço 600. Geralmente existe o risco que bolhas de gás venham se formar dentro de um polímero quando da conformação do polímero em uma forma ade- quada. A presença de bolhas de gás irá aumentar o risco de descargas par- ciais quando o enrolamento do transformador 100 é submetido a voltagens elevadas. Uma propriedade de blindagem de uma parte de reforço de polí- mero 600 pode, por exemplo, ser concedida misturando o polímero com um componente que fornece propriedades semicondutoras à parte de reforço 600, de modo que bolhas de gás no polímero, se alguma, serão blindadas por este componente. O risco por descargas parciais em bolhas de gás no polímero será assim reduzido. Daí, misturando o polímero com um compo- nente que fornece propriedades semicondutoras, as demandas sobre a apli- cação do polímero ou processo de montagem podem ser menos estritas. Um polímero semicondutor pode, por exemplo, ser conseguido misturando um polímero com pó de carbono, um pó metálico, ou similar, antes de conformar o polímero para uma forma adequada. Um exemplo de uma parte de reforço de polímero 600 na qual o polímero foi misturado com um pó 1000 que for- nece propriedades semicondutoras está mostrado na figura 10. O compo- nente que fornece propriedades semicondutoras poderia ter sido pré- adicionado ao polímero de uma fita de polímero reforçado com fibra, filamen- to para tecer ou similar (ver a etapa 910 da figura 9), ou poderia ter sido adi- cionado a um polímero antes de realizar a etapa 920 da figura 9. Uma ma- neira alternativa de obter uma propriedade de blindagem da parte de reforço 600 é fornecer uma camada de um material semicondutor adequado, por exemplo, uma camada de papel carbono ao redor da parte de reforço 600. As propriedades semicondutoras da parte de reforço 600 deveriam ser prefe- rivelmente tais que condutividade elétrica suficiente seja conseguida para fornecer e equalização de potencial em relação a um campo elétrico exterior à parte de reforço 600. Contudo, a condutividade da parte de reforço 600 não deveria ser grande o suficiente para contribuir para indução de volta- gem.
Quando a parte de reforço 600 apresenta propriedades semi- condutoras, contato elétrico poderia ser feito de maneira vantajosa entre a parte de reforço 600 e o condutor 105, de modo que a parte de reforço esta- rá no mesmo potencial elétrico que o condutor 105. Por exemplo, revesti- mento isolante que cobre o condutor 105 poderia ser removido em uma loca- lização que é coberta pela parte de reforço 600. A presente invenção é aplicável a todos os transformadores 200
que estão expostos a risco por deformação do condutor de enrolamento 105 provocada por tensão de dobramento. A invenção, por exemplo, é útil em grandes transformadores de potência como transformadores de potência que têm uma classificação elétrica de 25MVA ou mais elevada, por exemplo transformador de elevação de classificação 10OMVA ou mais, porém poderia também ser útil em transformadores menores. No acima, a descrição foi for- necida principalmente em relação à tensão de dobramento induzida por for- ças magnéticas de Lorentz em uma situação de curto-circuito. Contudo, a invenção também poderia ser utilizada para reduzir o risco de deformação em um condutor 105 de um enrolamento de transformador 100 provocada por tensão de dobramento em outras situações.
Embora diversos aspectos da invenção estejam descritos nas reivindicações independentes que acompanham, outros aspectos da inven- ção incluem a combinação de quaisquer aspectos apresentados na descri- ção acima e/ou nas reivindicações que acompanham, e não apenas as com- binações explicitamente descritas nas reivindicações que acompanham.
Alguém versado na técnica irá apreciar que a tecnologia aqui a- presentada não está limitada às modalidades descritas nos desenhos que acompanham e na descrição anteriormente detalhada, as quais são apre- sentadas apenas para finalidades de ilustração, porém ela pode ser imple- mentada em inúmeras maneiras diferentes, e está definida pelas reivindica- ções a seguir.

Claims (15)

1. Enrolamento de transformador (100) que tem um condutor (105) enrolado em uma pluralidade de espiras (115), o enrolamento de trans- formador compreendendo: uma parte de reforço (600) arranjada em uma transição de enro- lamento (125; 130; 505) do condutor em uma maneira de modo que a parte de reforço cubra mais do que 180° da circunferência do condutor pelo que a resistência a dobramento do condutor na localização da transição de enro- lamento é aumentada.
2. Enrolamento de transformador de acordo com a reivindicação 1, em que o componente principal da parte de reforço é um polímero refor- çado com fibra.
3. Enrolamento de transformador de acordo com a reivindicação 2, em que a parte de reforço aumenta a resistência a dobramento do condu- tor por no mínimo 25% na localização da transição de enrolamento.
4. Enrolamento de transformador de acordo com qualquer uma das reivindicações 1 a 3, em que a parte de reforço se estende na direção axial do condutor por uma distância que corresponde a menos do que uma circunferência de uma espira de enrolamento.
5. Enrolamento de transformador de acordo com qualquer uma das reivindicações 1 a 4, em que o enrolamento de transformador compreende uma pluralidade de espaçadores de duto radiais (510) espaçados a uma distância de um es- paçador de duto ao longo da direção circunferencial do enrolamento e em que a parte de reforço se estende na direção axial do conduto por uma dis- tância que corresponde a 1-4 distâncias do espaçador de duto.
6. Enrolamento de transformador de acordo com qualquer uma das reivindicações 1 a 5, em que a parte de reforço inclui um componente (1000) que fornece pro- priedades semicondutoras à parte de reforço, de modo que blindagem elétri- ca da parte de reforço seja conseguida.
7. Enrolamento de transformador de acordo com qualquer uma das reivindicações 1 a 6, em que o condutor é um condutor de cabo trans- posto de maneira contínua.
8. Transformador que inclui o enrolamento de transformador co- mo definido em qualquer uma das reivindicações 1 a 7.
9. Transformador de acordo com a reivindicação 8, em que o en- rolamento de transformador forma um enrolamento interior do transformador.
10. Transformador de acordo com a reivindicação 8 ou 9, em que o enrolamento de transformador forma um enrolamento de baixa volta- gem do transformador.
11. Transformador de acordo com a reivindicação 8 a 10, em que o transformador é um transformador de potência projetado para ter uma classificação de potência elétrica de 25MVA ou mais elevada.
12. Método de aumentar a resistência a dobramento de um enro- lamento de transformador (110; 100a; 100b) que tem um condutor (105), em que fibras de reforço em um polímero de cura térmica são arranjadas (900; 910; 915, 920) em uma transição de enrolamento (125; 130; 505) em uma maneira de modo que as fibras de reforço formem uma parte de reforço (600) que se estende ao redor de mais do que 180 ° da circunferência do condutor em no mínimo parte da transição de enrolamento.
13. Método de acordo com a reivindicação 12, em que a etapa de arranjar compreender arranjar fibras de reforço que foram pré-impregnadas com um polímero de cura térmica na transição de enrolamento para formar dita parte de reforço.
14. Método de acordo com a reivindicação 12 ou 13, em que o polimento de cura térmica compreende um componente semicondu- tor (1000) arranjado para fornecer blindagem elétrica para a parte de reforço.
15. Método de acordo com qualquer uma das reivindicações 12 a 14, em que a cura (905) da parte de reforço é realizada quando da secagem a quente do enrolamento do transformador ou de um transformador (200) do qual o enrolamento de transformador forma uma parte.
BRPI1004701-8A 2009-11-05 2010-11-04 Enrolamento de transformador, transformador e método de aumentar a resistência a dobramento de um enrolamento de transformador BRPI1004701B1 (pt)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09175158.6 2009-11-05
EP09175158A EP2320440B1 (en) 2009-11-05 2009-11-05 Transformer winding and a method of reinforcing a transformer winding

Publications (3)

Publication Number Publication Date
BRPI1004701A2 true BRPI1004701A2 (pt) 2013-02-26
BRPI1004701A8 BRPI1004701A8 (pt) 2022-12-13
BRPI1004701B1 BRPI1004701B1 (pt) 2023-11-07

Family

ID=42103853

Family Applications (1)

Application Number Title Priority Date Filing Date
BRPI1004701-8A BRPI1004701B1 (pt) 2009-11-05 2010-11-04 Enrolamento de transformador, transformador e método de aumentar a resistência a dobramento de um enrolamento de transformador

Country Status (4)

Country Link
US (1) US8154374B2 (pt)
EP (1) EP2320440B1 (pt)
CN (1) CN102054566B (pt)
BR (1) BRPI1004701B1 (pt)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115868A1 (de) * 2010-11-25 2012-05-31 Continental Teves Ag & Co. Ohg Magnetspule, insbesondere für Elektromagnetventile
JP5490186B2 (ja) * 2012-05-31 2014-05-14 株式会社エス・エッチ・ティ コイルの巻線方法及び変圧器
EP2963662B1 (en) * 2013-03-01 2018-02-14 Hitachi Industrial Equipment Systems Co., Ltd. Oil-filled transformer
CN109961937B (zh) * 2017-12-26 2022-03-22 台达电子企业管理(上海)有限公司 磁性元件
CN109841393B (zh) * 2019-03-25 2021-10-26 孙崇山 绕组交错式配电变压器
RU188932U1 (ru) * 2019-04-05 2019-04-29 Сергей Александрович Моляков Винтовая обмотка
CN113808846A (zh) * 2021-11-02 2021-12-17 山东电工电气集团智能电气有限公司 干式变压器线圈绕制方法、干式变压器线圈及干式变压器
RU210170U1 (ru) * 2022-02-02 2022-03-30 Сергей Александрович Моляков Винтовая обмотка
RU210759U1 (ru) * 2022-02-03 2022-04-29 Сергей Александрович Моляков Винтовая обмотка с изоляцией соединенных концов проводов

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1191964A (fr) 1957-04-02 1959-10-22 Oerlikon Maschf Enroulements haute tension pour transformateurs
US3659033A (en) 1970-10-28 1972-04-25 Westinghouse Electric Corp Electrical bushing having adjacent capacitor sections separated by axially continuous conductive layers, and including a cooling duct
DE3234098A1 (de) 1982-09-14 1984-03-15 Transformatoren Union Ag, 7000 Stuttgart Verfahren zur herstellung in giessharz eingebetteter wicklungen fuer transformatoren
CH659910A5 (de) * 1983-01-27 1987-02-27 Bbc Brown Boveri & Cie Luftdrosselspule und verfahren zu ihrer herstellung.
US4794361A (en) * 1988-03-10 1988-12-27 General Motors Corporation Coil winding method for maximum utilization of winding envelope
US5589808A (en) * 1993-07-28 1996-12-31 Cooper Industries, Inc. Encapsulated transformer
GB9624586D0 (en) * 1996-11-27 1997-01-15 British Nuclear Fuels Plc Improvements in and relating to coils
SE510946C2 (sv) * 1997-11-27 1999-07-12 Asea Brown Boveri Transformator/reaktor samt förfarande vid tillverkning av en sådan samt förtillverkad lindningsmodul
JP3651262B2 (ja) * 1998-05-14 2005-05-25 株式会社高岳製作所 変圧器コイルの巻線方法
DE10035237C1 (de) * 2000-07-20 2001-09-06 Daimler Chrysler Ag Verfahren und Produktionsanlage zum Herstellen von schalenförmigen, fasermatten-verstärkten Kunststoffteilen
US6624734B2 (en) 2001-09-21 2003-09-23 Abb Technology Ag DC voltage/current heating/gelling/curing of resin encapsulated distribution transformer coils
US7260883B2 (en) * 2003-06-19 2007-08-28 Abb Technology Ag Method for forming a winding for a three-phase transformer
TWI276123B (en) * 2003-11-05 2007-03-11 Tdk Corp Coil device
US7808356B2 (en) * 2004-08-31 2010-10-05 Theta Microelectronics, Inc. Integrated high frequency BALUN and inductors
CN2752923Y (zh) * 2004-11-30 2006-01-18 保定天威集团有限公司 一种变压器换位导线
ATE522912T1 (de) 2005-12-14 2011-09-15 Abb Research Ltd Hochspannungsdurchführung
US7719397B2 (en) * 2006-07-27 2010-05-18 Abb Technology Ag Disc wound transformer with improved cooling and impulse voltage distribution
CN101136270B (zh) 2006-08-31 2013-03-20 Abb技术有限公司 高压套管及其制造方法以及高压设备
EP2045898A1 (de) * 2007-10-04 2009-04-08 Essex Europe SAS Elektrischer Drilleiter

Also Published As

Publication number Publication date
US8154374B2 (en) 2012-04-10
US20110109420A1 (en) 2011-05-12
EP2320440A1 (en) 2011-05-11
BRPI1004701A8 (pt) 2022-12-13
EP2320440B1 (en) 2013-01-09
BRPI1004701B1 (pt) 2023-11-07
CN102054566B (zh) 2015-09-09
CN102054566A (zh) 2011-05-11

Similar Documents

Publication Publication Date Title
BRPI1004701A2 (pt) enrolamento de transformador e mÉtodo de reforÇar um enrolamento de transformador
US8150230B2 (en) High-voltage bushing
US7719397B2 (en) Disc wound transformer with improved cooling and impulse voltage distribution
EP2629305B1 (en) Composite materials for use in high voltage devices
KR101464628B1 (ko) 감겨진 고정자 코일
CZ385998A3 (cs) Izolovaný vodič pro velmi vysoké napětí a způsob jeho výroby
KR20120049277A (ko) 리드아웃 튜브
JP2015507465A (ja) 電力チップアップが低減した高電圧固定子コイル
JP4995433B2 (ja) 回転電機の固定子コイル及びその製造方法
JP6255697B2 (ja) 樹脂モールドコイル及びその製造方法とモールド変圧器
JP6349922B2 (ja) 樹脂モールドコイル及びその製造方法並びにモールド変圧器
US20160035488A1 (en) Cast Split Low Voltage Coil With Integrated Cooling Duct Placement After Winding Process
JP6116335B2 (ja) 回転電機
RU2371796C1 (ru) Способ изготовления электрического изолятора и изолятор, изготовленный данным способом
KR20220130083A (ko) 전자기 유도 장치의 전기 권선을 제조하는 방법 및 도체 구조
US9502938B2 (en) Wrapped stator coil for use in a generator
JP2022053786A (ja) 固定子の製造方法
WO2008027009A1 (en) High voltage dc bushing and high voltage dc device comprising such bushing
JP2011138830A (ja) トランス
JPH04347550A (ja) 回転電機の絶縁コイルの製造方法
BRPI0619897B1 (pt) Bushing for high voltage, method for the production of a bushing, electrically conductive layer for a bushing and high-voltage apparatus
CZ20001971A3 (cs) Kabel pro vinutí na vysoké napětí v elektrických strojích
CN101866723A (zh) 一种弯曲的绝缘母线的制造方法
JPH11341642A (ja) テープ巻き式直線接続部

Legal Events

Date Code Title Description
B03A Publication of a patent application or of a certificate of addition of invention [chapter 3.1 patent gazette]
B06F Objections, documents and/or translations needed after an examination request according [chapter 6.6 patent gazette]
B06U Preliminary requirement: requests with searches performed by other patent offices: procedure suspended [chapter 6.21 patent gazette]
B07A Application suspended after technical examination (opinion) [chapter 7.1 patent gazette]
B09B Patent application refused [chapter 9.2 patent gazette]
B12B Appeal against refusal [chapter 12.2 patent gazette]
B25A Requested transfer of rights approved

Owner name: ABB SCHWEIZ AG (CH)

B25C Requirement related to requested transfer of rights

Owner name: ABB SCHWEIZ AG (CH)

Free format text: A FIM DE ATENDER A TRANSFERENCIA, REQUERIDA ATRAVES DA PETICAO NO 870220071335 DE 10/08/2022, E NECESSARIO APRESENTAR GUIA DE RECOLHIMENTO, CODIGO 248, RELATIVA A ALTERACAO DE ENDERECO DA EMPRESA CEDENTE. ALEM DISSO, E PRECISO APRESENTAR A GUIA DE CUMPRIMENTO DE EXIGENCIA.

B25G Requested change of headquarter approved

Owner name: ABB SCHWEIZ AG (CH)

B25A Requested transfer of rights approved

Owner name: ABB POWER GRIDS SWITZERLAND AG (CH)

B25D Requested change of name of applicant approved

Owner name: HITACHI ENERGY SWITZERLAND AG (CH)

B16A Patent or certificate of addition of invention granted [chapter 16.1 patent gazette]

Free format text: PRAZO DE VALIDADE: 20 (VINTE) ANOS CONTADOS A PARTIR DE 04/11/2010, OBSERVADAS AS CONDICOES LEGAIS. PATENTE CONCEDIDA CONFORME ADI 5.529/DF, QUE DETERMINA A ALTERACAO DO PRAZO DE CONCESSAO.

B25A Requested transfer of rights approved

Owner name: HITACHI ENERGY LTD (CH)