CN102054566A - 变压器绕组和用于增强变压器绕组的方法 - Google Patents

变压器绕组和用于增强变压器绕组的方法 Download PDF

Info

Publication number
CN102054566A
CN102054566A CN2010105369546A CN201010536954A CN102054566A CN 102054566 A CN102054566 A CN 102054566A CN 2010105369546 A CN2010105369546 A CN 2010105369546A CN 201010536954 A CN201010536954 A CN 201010536954A CN 102054566 A CN102054566 A CN 102054566A
Authority
CN
China
Prior art keywords
winding
reinforcing member
conductor
transformer
transformer winding
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN2010105369546A
Other languages
English (en)
Other versions
CN102054566B (zh
Inventor
T·埃里克森
S·雅唐
L·奥尔森
K·阿格伦
J·安吉
H·佩尔森
E·弗斯伯格
C·埃格马克
C·埃里克森
B·斯坎森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Energy Co ltd
Original Assignee
ABB T&D Technology AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB T&D Technology AG filed Critical ABB T&D Technology AG
Publication of CN102054566A publication Critical patent/CN102054566A/zh
Application granted granted Critical
Publication of CN102054566B publication Critical patent/CN102054566B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/28Coils; Windings; Conductive connections
    • H01F27/32Insulating of coils, windings, or parts thereof
    • H01F27/323Insulation between winding turns, between winding layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets
    • H01F41/04Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets for manufacturing coils
    • H01F41/06Coil winding
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49002Electrical device making
    • Y10T29/4902Electromagnet, transformer or inductor

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Coils Of Transformers For General Uses (AREA)

Abstract

公开了一种变压器绕组和用于增强变压器绕组的方法。该变压器绕组具有以多匝缠绕的导体,其中该变压器绕组包括增强部件,其以使得该增强部件覆盖大于180度的导体圆周的方式布置在绕组过渡处,由此增加导体在增强部件位置处的弯曲强度。因此,改善变压器绕组相对于弯曲应力的可抵抗性。

Description

变压器绕组和用于增强变压器绕组的方法
技术领域
本发明涉及用于电压变换的变压器领域,且更具体而言涉及变压器绕组。
背景技术
磁场中的载流导体将经受对应于电流和磁场之间的叉积(cross product)的作用力,该力通常被称为磁洛伦兹力。在变压器中,磁洛伦兹力尤其导致内部绕组上的向内径向力和外部绕组上相应的向外径向力。
在流经变压器中的电流短路的事件中,内部变压器绕组上的向内径向力极高,且可能对变压器产生严重损坏。这一现象在若干论文中有所讨论,例如参见Z.Liang等人的文章″Stability of Transformer′s Whole Low Voltage Winding″,Electrical Machi nes and Systems,International Conference on Electrical Machines and Systems2003,Vol.1,pp.302-304.
发明内容
本发明涉及的问题在于,怎样改善变压器绕组相对于例如在短路情形中由弯曲应力导致的变形的机械稳定性。
此问题通过具有以多匝缠绕的导体的变压器绕组解决。该变压器绕组包括:增强部件,以使得覆盖大于180度的导体圆周的方式布置在绕组过渡处,藉此增强导体在绕组过渡位置处的弯曲强度。由此改善变压器绕组相对于例如在短路情形中发生的压力导致的弯曲应力的可抵抗性。短路时在绕组过渡(其中导体路径从正常绕组路径偏离)处发生的弯曲应力通常是整个绕组尺寸的限制因素。因此,通过增强绕组过渡处的弯曲强度,可以有利于更大的变压器尺寸。
在一个实施例中,增强部件的主要成分是纤维增强聚合物。纤维增强聚合物可以方便地形成为合适的形状,且提供适当的拉伸和压缩强度。
增强部件可以有利地定制尺寸,以使得导体在增强部件位置的弯曲强度至少增加25%。通过使得导体在绕组过渡处的弯曲强度至少增加25%,通常能够将使得该绕组过渡不再是变压器绕组的最薄弱点。
在一个实施例中,增强部件在导体的轴向延伸一距离,该距离对应于比绕组匝的圆周小的距离。
变压器绕组可以包括沿着绕组的圆周方向以风道隔离片距离间隔的多个径向风道隔离片。在一个实施例中,增强部件在导体的轴向延伸一距离,该距离对应于1-4个风道隔离片距离。
在一个实施例中,增强部件包括向增强部件提供半导电属性的成分,从而实现增强部件的电屏蔽。当生产增强部件时,在增强部件中存在形成气泡的风险。通过向增强部件提供屏蔽,使得为避免在生产时在增强部件中形成气泡而需要的措施较不苛刻。
进一步公开了具有如上所述变压器绕组的变压器。变压器绕组有利地可以形成变压器的内部绕组。而且,变压器绕组有利地可以形成变压器的低压绕组。该变压器绕组可以有益于任意类型的变压器,且尤其有益于25MVA或更高额定电功率的变压器,因为这种变压器在短路时承受极强的洛伦兹力。
在一个实施例中,变压器绕组的导体是连续换位线缆导体。这种导体通常用在变压器绕组中,例如25MVA或更高额定电功率的变压器的低压绕组中。连续换位线缆导体一般并不像耐受压应力或拉应力那样耐受于弯曲应力。因此,本发明可以提供这种绕组的改进。
还公开了增加具有导体的变压器绕组的弯曲强度的方法。在绕组过渡处,以如下方式布置热固性聚合物中的增强纤维,该方式使得增强纤维形成在大于180度的导体圆周周围延伸的增强部件。
本发明的其他方面将在下面的详细描述和所附权利要求书中陈述。
附图说明
图1是两层变压器绕组的示意性说明。
图2a是示意性说明具有两个绕组的变压器的透视图。
图2b是示意性说明具有两个绕组的变压器的剖面图。
图3a是沿着具有两层的内部绕组的实例的沿着轴的视图。
图3b是在绕组遭受短路情形之后图3a的内部绕组的视图。
图4a是一层内部绕组的示意性说明。
图4b是在绕组遭受短路情形之后图4a的内部绕组的示意性说明。
图5a是内部盘式绕组的示意性说明。
图5b是在绕组遭受短路情形之后图5a的内部绕组的两个盘的示意性说明。
图6a是两层变压器绕组的示意性说明,其中层过渡以及出口/入口过渡125借助于增强部件而被增强。
图6b是盘式绕组的两个盘的示意性说明,其中两个盘之间的盘过渡通过增强部件而被增强。
图7a是整个管道形状的增强部件的示意性说明。
图7b是部分管道形状的增强部件的示意性说明。
图8a-图8d是用于增强矩形剖面的导体的增强部件的不同实施例的示意性剖面图。
图8e是用于增强CTC导体的示例的增强部件的实施例的示意性剖面图。
图9a是示意性说明生产增强的绕组过渡的方法的示例的流程图。
图9b是示意性说明图9a的方法的实施例的流程图。
图9c是示意性说明图9a的方法的另一实施例的流程图。
图10是包括屏蔽半导电属性的成分的聚合物增强部件的示意性说明。
具体实施方式
图1示意性说明变压器绕组100的示例,该变压器绕组100具有缠绕在铁心110(铁心一般不认为是变压器绕组100的部件)周围的导体105。导体105在至少一层120中在铁心110周围形成N匝115。仅以示例给出的图1的变压器绕组100具有划分在第一层120a和第二层120b之间的N匝。在图1中示出两个层120a和120b之间的层过渡130。导体105还具有出口/入口过渡125,该出口/入口过渡125形成导体105的馈入部分和组成线圈的导体105的部件之间的过渡。功率变压器中的绕组路径通常是圆形的,但是备选地可以是其他形状,例如,椭圆形、方形或矩形。导体105典型地是由若干平行导线形成的线缆,但也可以是单导线导体。
图2a中给出具有内部绕组100a和外部绕组100b的变压器200的示意性透视图。图2a的内部绕组100a和外部绕组100b缠绕在圆形铁心110周围。图2b是图2a的变压器200的示意性剖面图。图2的变压器200仅是示例,且变压器200可以包括多于两个绕组;绕组可以以不同于图2所示的方式布置,等等。
当变压器200操作时,外部绕组100b中的电流产生磁场,该磁场将在内部绕组100a的载流导体105上施加力,且反之亦然。这将导致内部绕组100a的向内径向压缩以及外部绕组100b的向外径向伸展。一般地,存在这种风险:由于在短路情形中的内部绕组100a的载流导体105上的力而引起的内部绕组100a的压缩将导致内部绕组100a的不希望变形。这种风险在内部绕组100a是变压器绕组的低压绕组时尤其明显,这是因为流经内部绕组100a的电流将大于内部绕组100a是高压绕组时的电流。
因此,在短路情形中,内部绕组100a将在铁心110周围受到挤压。如果不采取特殊的措施,绕组100的这种压缩可能导致导体105压曲。为了增加大功率变压器200中导体抗压曲的机械强度,连续换位线缆(CTC)常用作导体105,其中,薄的单独隔离的线束以连续换位方式布置且典型地通过环氧树脂键合在一起。然而,即使可以避免压曲,仍然存在内部绕组100a的导体105在短路情形中变形的风险。尽管环氧树脂键合的CTC承受高的压应力或拉应力,但它一般并不耐受弯曲应力。
当强磁洛伦兹力作用于内部绕组100a时,内部绕组100a的压缩通常在导体路径从铁心110周围的正常绕组偏离的位置(这种位置此后称为绕组过渡)在导体105中引起弯曲应力。
绕组过渡的示例是多层绕组100中在两个层120之间发现的层过渡130。在图3a中,示意性示出沿着内部绕组100a的示例的沿着轴的视图,其中绕组100a具有两层120a和120b,在层之间具有层过渡130。出于说明目的,在层过渡区域中通过虚线示意导体105。在图3b中示出在内部绕组100a遭受短路情形之后相同内部绕组100a的剖面图。由于在短路期间发生的向内径向洛伦兹力而引起的导体105中的弯曲应力,图3b的内部绕组100在层过渡130处已经变形。
绕组过渡的另一示例是线圈和变压器绕组100的导体105的馈入部分之间的出口/入口过渡125。磁洛伦兹力引入的弯曲应力可以导致导体105在绕组出口/入口过渡125处形成可被称作额外匝开始之物。出口/入口过渡125处的短路弯曲应力在称为螺旋变压器绕组和层绕组的变压器绕组类型中尤其明显,其中导体105以螺旋或者螺转方式(参考图1和2,其中,示出螺旋或分层的两层变压器绕组100)连续缠绕在铁心110周围。在图4a中示意性示出一层螺旋内部绕组100a,且在图4b中示意性说明在绕组遭受短路情形之后的相同内部绕组100a。由于短路情形中发生的弯曲应力,导致导体105在出口/入口过渡125处已经变形。
绕组过渡的又一示例是盘过渡,即,从盘式绕组中的一个盘到另一盘的过渡。在图5a中示意性说明包括多个盘的变压器绕组100的示例。盘式绕组是常常用于较高电压的一种类型的变压器绕组100,其中导体105以螺旋图案缠绕多匝115,以形成变压器分段500,此后称为盘500(不管术语学如何,盘500可以是不同于圆形的其他形状,诸如是矩形或椭圆形)。很多这种盘500典型地轴向堆叠,以形成完整的绕组100。在两个相邻盘500之间,导体105形成盘过渡505。在图5b中示出了盘式变压器绕组的一部分。示出的部分包括经由盘过渡505连接的两个盘500,其中变压器绕组100(盘500形成其一部分)已经遭受短路情形。由于短路过程中引起的弯曲应力,导体105在盘过渡区域中已经变形。
在图5a和图5b的情形中,多个径向风道间隔片通常布置在盘500之间,直接在变压器100的轴向方向中彼此堆叠,以便在轴向上机械支撑变压器绕组100。径向风道间隔片510通常布置在绕组圆周的不同位置。沿着绕组的圆周方向在两个径向风道间隔片510之间的距离被称为风道间隔片距离。径向风道间隔片510常常还用于其他类型的绕组,例如,用于螺旋变压器绕组100中各匝115之间,不过,一些变压器绕组100并不具有任何径向风道间隔片510。
参考图3-图5讨论的导体105的变形可能劣化绕组100的介电强度以及应力耐受度。而且,存在这种风险:如果绕组100的出口/入口过渡125移动,用于支撑导体105就位的任意支撑结构的功能将劣化。
为了减小向内径向力对变压器绕组100的负面影响,可以在绕组过渡(这种力将引入高弯曲应力)处向导体115应用增强部件。在图6a和图6b中分别示出已经向其应用增强部件600的变压器绕组100的两个示例。图6a和图6b中示出的变压器绕组100仅是示例,且其他类型的变压器绕组也可以从具有一个或更多增强部件600受益。在图6a中,示出两层螺旋变压器绕组100,其中增强部件600被应用于层过渡130以及导体出口/入口过渡125。在图6b中,示出盘式变压器100的部件,其中增强部件600应用于两个相邻盘500之间的盘过渡505。
增强部件600可以由在拉伸和压缩强度以及拉伸弹性方面具有合适属性的绝缘材料制成。如参考图10所进一步讨论的,还将包括向增强部件600提供半导电属性的成分。一般地,高抗屈强度和高杨氏模量值的材料将是合适的,以便有效地增加变压器绕组100的弯曲强度。高强度聚合物和纤维增强聚合物是合适材料的示例。有待增强的合适聚合物例如是热固性聚合器,诸如环氧物、乙烯基酯、聚酯、尼龙等。合适的增强纤维的示例是玻璃纤维、碳纤维、对位芳纶纤维等。
可以有利地在绕组过渡处,诸如在导体出口/入口过渡125(例如,在螺旋或分层绕组中)、多层绕组中的层过渡130处、盘式变压器绕组中盘之间的过渡处,提供增强部件600。还可以在增强弯曲强度将有利的绕组导体105的其他部分提供增强部件600。
增强部件600可以是完整地或部分地沿其圆周环绕导体105的管道形状。管道形式的增强部件600可以是覆盖360度的导体105圆周的完整管道形状,或者是覆盖小于360度的导体105圆周的部分管道形状。如果使用部分管道形状的增强部件600,则增强部件600优选地布置为使得沿未被增强部件600覆盖的导体圆周部分将承受弯曲应力的最小值。在图7a中示例性示出完整管道形状的增强部件600的示例,而图7b中示出部分管道形状的增强部件600的示例。图7a和图7b的增强部件600示为具有均匀边缘的光滑形状。然而,也可以使用更粗糙的管道。
增强部件600的内圆周有利地可以具有与导体105的圆周相同或类似的形状,使得增强部件600靠近导体105定位。图7a和图7b的增强部件600示为圆形圆周。然而,通常导体105的剖面是非圆形形状,诸如是矩形、椭圆形、近矩形形状。例如,CTC导体典型地具有近矩形形状,其中从矩形剖面的偏离由线束的换位导致。用于增强矩形圆周的导体105的弯曲强度的增强部件600有利地具有矩形(内)圆周等。在一个实施例中,增强部件600粘合到导体105的表面,而在另一实施例中,导体105和增强部件600并不彼此粘合。
在图8a-图8d中,示出用于增强矩形导体105的增强部件600的不同示例的剖面图。在图中示出表示绕组100(导体形成其一部分)的轴方向的轴A以及表示绕组100的径向方向的轴r。在图8a中,示出完整矩形管道形状的增强部件。这种形状的增强部件600适于增强任意位置的矩形导体105。然而,例如,由于简化在导体105上安装增强部件600的原因,有时希望使用部分管道形状的增强部件600。在图8b中,示出增强部件600,矩形导体105的三边以如下方式被增强部件600至少部分地覆盖,该方式使得导体600的短边不被覆盖。这种形状的增强部件600适于增强导体105中导体剖面的长边具有更高遭受弯曲应力风险的部分,诸如在盘过渡130中,或者当导体105在绕组的轴向进入/退出绕组100时在入口/出口过渡125中。在图8c中,说明了增强部件600,矩形导体105的三条边以如下方式被增强部件600至少部分地覆盖,该方式使得导体600的长边不被覆盖。这种形状的增强部件600适于导体105中线缆剖面的短边具有更高遭受弯曲应力风险的部分,诸如在层过渡130中,或者当导体105在绕组的径向进入/退出绕组100时在入口/出口过渡125中。在图8d中,示出了增强部件600,其具有如下形状:矩形导体105的所有4条边都以如下方式被至少部分地覆盖,该方式使得导体105的一角不被增强部件600覆盖。这种形状的增强部件600适用于在导体105的所有位置应用。
尽管图8a-图8d的导体105是矩形的,但上述讨论也适用于诸如CTC导体的近矩形导体105。在图8e中示意性示出通过完整增强部件600而被增强的CTC导体105的示例,该CTC导体105包括导电线束800。
不管导体形状如何,增强部件600一般应覆盖至少180度的导体圆周,以便提供对导体105的足够增强。如果覆盖360度的圆周,则在维持相同的增强改进的同时,增强部件600的厚度和/或轴向长度典型地比使用部分管道小。在一个实施例中,增强部件包括两个或更多的部分管道,它们一起覆盖至少180度的导体圆周,且形成分离增强部件600。这种分离增强部件的部分管道其中一个或多个覆盖小于180度的导体圆周。分离增强部件600的这种部分管道例如通过导体105上的凹槽、通过强粘合带等保持在适当的位置。
导体105的弯曲强度是导体105发生破碎或过度塑性变形的法向应力(normal stress)的上限,且可以定义为限制强度(屈服点或最终强度)和导体105的断面模量的乘积。弯曲强度例如可以通过3点弯曲测试或悬臂弯曲测试测量,这两种测试在本领域中已知。
例如,依赖于导体105的尺寸;用于增强部件600的材料的拉伸和压缩强度;以及短路情形中预期的弯矩M的幅度,可以选择合适厚度的增强部件600。通常,与未被增强的导体105的部分相比,通常在绕组过渡中需要50%或更多的弯曲强度的增加,不过在一些情形中,弯曲强度的较小增加便已足够,且可以相应地选择增强部件600的尺寸。典型地,需要至少25%的弯曲强度的增加,以确保当定制变压器200尺寸时导体105的弯曲强度将不是限制因素。已经对尺寸为30mm×18mm的导体105的绕组过渡执行机械测试。这种测试的导体105包裹以浸渍有半固化环氧树脂随后被固化的玻璃纤维增强带。约2-3mm厚的增强部件600几乎使得该被增强导体在绕组过渡处的弯曲强度增强一倍。
当增强部件600应用于绕组过渡(其中导体路径从正常(通常为圆形的)绕组路径偏离以形成导体105中的弯曲)处时,增强部件600可以在导体105的轴向有利地延伸,超出导体105的弯曲。增强部件600并不需要自绕组过渡在两个方向中延伸相同的距离,不过通常如此。然而,增强部件600典型地沿导体105的轴向在每个方向中延伸至少一个导体直径。(当导体105是矩形剖面时,对角线的长度可以看作直径。)在一些实现中,增强部件600将在每个方向中从绕组过渡开始延伸一距离,该距离对应于匝115的四分之一(或者更多);在其他实现中,增强部件将在每个方向中延伸匝115的1/40(或更少)。典型地,对于较大的绕组100,增强部件600应在匝115的一小部分上延伸。在风道间隔片510用于分离不同的盘500或匝115的变压器绕组100中,增强部件600例如可延伸出风道间隔片510,该风道间隔片510与待增强的绕组过渡相邻,使得增强部件600延伸大约对应于圆周风道间隔片距离的1至4倍的长度。这样,增强部件600将覆盖导体105在短路情形中承受最高弯曲应力的部分。风道间隔片510为导体105提供机械支撑,使得在远离绕组过渡的一个风道间隔处的弯曲应力明显降低。如果增强部件600例如在定位于两个风道间隔片505之间的绕组过渡处增强导体105,如果增强部件延伸约1-4个风道间隔片距离,增强部件将覆盖导体105在短路情况承受最高弯曲应力的部分。通过覆盖约2个风道间隔片距离的增强部件600,风道间隔片通常为导体105提供足够的支撑。
依赖于增强部件600和导体105的弯曲属性以及短路情况中期望的弯矩M的幅度,可以使用比上面给定示例更短或更长的其他长度的增强部件600。
为了形成纤维增强热固性聚合物的增强部件600,例如可以通过向导体105应用预浸渍热固性聚合物的纤维带、纤维层或类似物,来形成增强部件600。备选地,增强纤维和热固性聚合物可以单独地应用于导体105,在这种情况下通常首先例如以粗纱、单向纤维线、编织纤维等形式应用纤维。典型地在应用纤维之后,可以通过刷子、油漆滚子、喷射、注射、灌注临时结构等来应用该热固性聚合物。
图9a是示意性说明生产由纤维增强聚合物制成的增强绕组过渡的方法的示例的流程图。在步骤900,在绕组过渡处布置热固性聚合物中的增强纤维,以形成适当形状的增强部件600。在步骤910,热固聚合物被固化。热固聚合物的固化例如与绕组100或完成的变压器(通常,在绕组100放置就位之后干燥变压器铁心110)的热干燥在同时执行。因此,典型地不再需要附加的固化步骤。
图9b是示意性说明图9a中示出的方法的实施例的流程图。在该实施例中,步骤900包括在绕组过渡处布置已预浸渍热固性聚合物的增强纤维的步骤910。然后进入步骤905。预浸渍增强纤维例如可以是与浸渍纤维带或纤维层的形式。图9c是示意性说明图9a中示出的方法的另一实施例的流程图,其中步骤900包括步骤915和920。在步骤915中,在绕组过渡处布置增强纤维,而在步骤920,热固性聚合物应用于增强纤维。增强纤维例如可以是粗纱、单向纤维线、编织纤维或类似的形式。
增强部件600备选地可以在向绕组过渡应用增强部件之前固化,即,图9a的步骤905先于步骤900执行。步骤905之前,将是将纤维增强聚合物形成为增强部件600的形状的另一步骤。例如,将以常规方式在模具中制备适当形状的增强部件600。然后,在增强部件600固化之后,向导体600应用增强部件600。这例如适合将应用于出口/入口过渡125的增强部件600,其中在缠绕变压器绕组100的匝115之后导体105能够经过增强部件600;或者适合应用于可滑到导体105上的部分管道形状的增强部件600。
增强部件600备选地可以由非固化和/或未经纤维增强的聚合物制成。此外,其他绝缘材料可以用作增强部件600的主要成分。
在一个实施例中,增强部件600包括向增强部件600提供半导电属性的成分。一般地,在将聚合物形成为合适形状时,存在在聚合物内形成气泡的风险。气泡的存在将增加当变压器绕组100承受高压时局部放电的风险。聚合物增强部件600的屏蔽属性例如可以通过将聚合物与向增强部件600提供半导电属性的成分混合来实现,使得聚合物中的气泡(如果存在)将被该成分屏蔽。因而减小了聚合物中气泡的局部放电的风险。因此,通过将聚合物与提供半导电属性的成分相混合,聚合物应用或铸模工艺的要求可以较不苛刻。半导电聚合物例如可以在将聚合物形成为合适的形状之前,通过将聚合物与碳粉、金属粉末或类似物混合实现。在图10中示出了聚合物增强部件600的示例,其中聚合物与提供半导电属性的粉末1000相混合。提供半导电属性的成分应被预添加到纤维增强聚合物带、粗纱或类似物的聚合物中(参考图9的步骤910),或者应在执行图9的步骤920之前添加到聚合物中。获得增强部件600的屏蔽属性的备选方式是在增强部件600周围提供一层合适的半导电材料,例如,一层碳纸。增强部件600的半导电属性优选地应获得足够的导电性,以用于相对于增强部件600外部的电场提供电势均衡。然而,增强部件600的导电性不应大得足以有助于引起电压。
当增强部件600呈现半导电属性时,有利地可以在增强部件600和导体105之间形成电接触,使得增强部件将与导体105处于相同的电势。例如,在由增强部件600覆盖的位置处可去除覆盖导体105的绝缘涂层。
本发明可应用于遭受由弯曲应力导致的绕组导体105变形风险的所有变压器200。本发明例如在大功率变压器中是有用的,诸如具有25MVA或更高额定功率的功率变压器中是有用的,在额定为100MVA或更高的发电机升压变压器中是有用的,但是在一些小变压器中也是有用的。在上文中,主要结合短路情形中磁洛伦兹力引入的弯曲应力给出描述。然而,本发明还可用于减小由其他情形中的弯曲应力导致的变压器绕组100的导体105的变形的风险。
尽管在所附独立权利要求中陈述了本发明的各个方面,但本发明的其他方面包括在上述描述和/或所附权利要求书中表现的任意特征的组合,且不单单是所附权利要求书中特别指出的组合。
本领域技术人员将意识到,此处提出的技术不限于附图和上面详细描述中公开的实施例,附图和上面的详细描述仅用于说明目的,本发明可以以各种不同方式实施,且其由所附权利要求书限定。

Claims (15)

1.一种变压器绕组(100),具有以多匝(115)缠绕的导体(105),该变压器绕组包括:
增强部件(600),以使得该增强部件覆盖大于180度的导体圆周的方式布置在导体的绕组过渡(125;130;505)处,由此增加导体在绕组过渡位置处的弯曲强度。
2.根据权利要求1所述的变压器绕组,其中该增强部件的主要成分是纤维增强聚合物。
3.根据权利要求1或2所述的变压器绕组,其中该增强部件使得导体在绕组过渡位置处的弯曲强度至少增加25%。
4.根据上述权利要求其中任一项所述的变压器绕组,其中该增强部件在导体的轴向延伸一距离,该距离对应于比绕组匝的圆周小的距离。
5.根据上述权利要求其中任一项所述的变压器绕组,其中
该变压器绕组包括沿着所述绕组的圆周方向以风道隔离片距离间隔的多个径向风道隔离片(510),且其中该增强部件在导体的轴向延伸对应于1-4个风道隔离片距离的距离。
6.根据上述权利要求其中任一项所述的变压器绕组,其中
该增强部件包括向该增强部件提供半导电属性的成分(1000),从而实现对该增强部件的电屏蔽。
7.根据上述权利要求其中任一项所述的变压器绕组,其中该导体是连续换位线缆导体。
8.一种变压器,包括权利要求1-7其中任一项所述的变压器绕组。
9.根据权利要求8所述的变压器,其中该变压器绕组形成该变压器的内部绕组。
10.根据权利要求8或9所述的变压器,其中该变压器绕组形成该变压器的低压绕组。
11.根据权利要求8-10所述的变压器,其中该变压器是设计为具有25MVA或更高额定电功率的功率变压器。
12.一种增强具有导体(105)的变压器绕组(100;100a;100b)的弯曲强度的方法,其中在绕组过渡处(125;130;505),以如下方式布置(900;910;915;920)热固性聚合物中的增强纤维,该方式使得增强纤维在绕组过渡的至少一部分处形成在大于180度的导体圆周周围延伸的增强部件(600)。
13.根据权利要求12所述的方法,其中
所述布置的步骤包括在绕组过渡处布置已被预浸渍热固性聚合物的增强纤维,以形成所述增强部件。
14.根据权利要求12或13所述的方法,其中
该热固性聚合物包括布置为向该增强部件提供电屏蔽的半导电组件(1000)。
15.根据权利要求12-14其中任一项所述的方法,其中
在变压器绕组或变压器绕组形成其一部分的变压器(200)的热干燥时,执行该增强部件的固化(905)。
CN201010536954.6A 2009-11-05 2010-11-04 变压器绕组和用于增强变压器绕组的方法 Active CN102054566B (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
EP09175158A EP2320440B1 (en) 2009-11-05 2009-11-05 Transformer winding and a method of reinforcing a transformer winding
EP09175158.6 2009-11-05

Publications (2)

Publication Number Publication Date
CN102054566A true CN102054566A (zh) 2011-05-11
CN102054566B CN102054566B (zh) 2015-09-09

Family

ID=42103853

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201010536954.6A Active CN102054566B (zh) 2009-11-05 2010-11-04 变压器绕组和用于增强变压器绕组的方法

Country Status (4)

Country Link
US (1) US8154374B2 (zh)
EP (1) EP2320440B1 (zh)
CN (1) CN102054566B (zh)
BR (1) BRPI1004701B1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013624A (ko) * 2012-05-31 2015-02-05 가부시끼가이샤 에스애취티 코일의 권선 방법 및 변압기
CN109841393A (zh) * 2019-03-25 2019-06-04 孙崇山 绕组交错式配电变压器

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011115868A1 (de) * 2010-11-25 2012-05-31 Continental Teves Ag & Co. Ohg Magnetspule, insbesondere für Elektromagnetventile
JP6014747B2 (ja) * 2013-03-01 2016-10-25 株式会社日立産機システム 油入変圧器
CN109961937B (zh) * 2017-12-26 2022-03-22 台达电子企业管理(上海)有限公司 磁性元件
RU188932U1 (ru) * 2019-04-05 2019-04-29 Сергей Александрович Моляков Винтовая обмотка
CN113808846A (zh) * 2021-11-02 2021-12-17 山东电工电气集团智能电气有限公司 干式变压器线圈绕制方法、干式变压器线圈及干式变压器
RU210170U1 (ru) * 2022-02-02 2022-03-30 Сергей Александрович Моляков Винтовая обмотка
RU210759U1 (ru) * 2022-02-03 2022-04-29 Сергей Александрович Моляков Винтовая обмотка с изоляцией соединенных концов проводов

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794361A (en) * 1988-03-10 1988-12-27 General Motors Corporation Coil winding method for maximum utilization of winding envelope
JPH11329880A (ja) * 1998-05-14 1999-11-30 Takaoka Electric Mfg Co Ltd 変圧器コイルの巻線方法
CN2752923Y (zh) * 2004-11-30 2006-01-18 保定天威集团有限公司 一种变压器换位导线
CN1864236A (zh) * 2003-06-19 2006-11-15 Abb技术公开股份有限公司 三相变压器
US20070247269A1 (en) * 2004-08-31 2007-10-25 Theta Microelectronics, Inc. Integrated high frequency BALUN and inductors
CN101546620A (zh) * 2007-10-04 2009-09-30 埃塞克斯欧洲公司 绞合导线

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR1191964A (fr) 1957-04-02 1959-10-22 Oerlikon Maschf Enroulements haute tension pour transformateurs
US3659033A (en) 1970-10-28 1972-04-25 Westinghouse Electric Corp Electrical bushing having adjacent capacitor sections separated by axially continuous conductive layers, and including a cooling duct
DE3234098A1 (de) 1982-09-14 1984-03-15 Transformatoren Union Ag, 7000 Stuttgart Verfahren zur herstellung in giessharz eingebetteter wicklungen fuer transformatoren
CH659910A5 (de) * 1983-01-27 1987-02-27 Bbc Brown Boveri & Cie Luftdrosselspule und verfahren zu ihrer herstellung.
US5589808A (en) * 1993-07-28 1996-12-31 Cooper Industries, Inc. Encapsulated transformer
GB9624586D0 (en) * 1996-11-27 1997-01-15 British Nuclear Fuels Plc Improvements in and relating to coils
SE510946C2 (sv) * 1997-11-27 1999-07-12 Asea Brown Boveri Transformator/reaktor samt förfarande vid tillverkning av en sådan samt förtillverkad lindningsmodul
DE10035237C1 (de) * 2000-07-20 2001-09-06 Daimler Chrysler Ag Verfahren und Produktionsanlage zum Herstellen von schalenförmigen, fasermatten-verstärkten Kunststoffteilen
US6624734B2 (en) 2001-09-21 2003-09-23 Abb Technology Ag DC voltage/current heating/gelling/curing of resin encapsulated distribution transformer coils
TWI276123B (en) * 2003-11-05 2007-03-11 Tdk Corp Coil device
EP1798740B1 (en) 2005-12-14 2011-08-31 ABB Research Ltd. High voltage bushing
US7719397B2 (en) * 2006-07-27 2010-05-18 Abb Technology Ag Disc wound transformer with improved cooling and impulse voltage distribution
CN101136270B (zh) 2006-08-31 2013-03-20 Abb技术有限公司 高压套管及其制造方法以及高压设备

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4794361A (en) * 1988-03-10 1988-12-27 General Motors Corporation Coil winding method for maximum utilization of winding envelope
JPH11329880A (ja) * 1998-05-14 1999-11-30 Takaoka Electric Mfg Co Ltd 変圧器コイルの巻線方法
CN1864236A (zh) * 2003-06-19 2006-11-15 Abb技术公开股份有限公司 三相变压器
US20070247269A1 (en) * 2004-08-31 2007-10-25 Theta Microelectronics, Inc. Integrated high frequency BALUN and inductors
CN2752923Y (zh) * 2004-11-30 2006-01-18 保定天威集团有限公司 一种变压器换位导线
CN101546620A (zh) * 2007-10-04 2009-09-30 埃塞克斯欧洲公司 绞合导线

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20150013624A (ko) * 2012-05-31 2015-02-05 가부시끼가이샤 에스애취티 코일의 권선 방법 및 변압기
CN104335304B (zh) * 2012-05-31 2017-02-22 Sht有限公司 线圈的绕线方法及变压器
KR102079409B1 (ko) * 2012-05-31 2020-02-19 가부시끼가이샤 에스애취티 코일의 권선 방법 및 변압기
CN109841393A (zh) * 2019-03-25 2019-06-04 孙崇山 绕组交错式配电变压器
CN109841393B (zh) * 2019-03-25 2021-10-26 孙崇山 绕组交错式配电变压器

Also Published As

Publication number Publication date
EP2320440A1 (en) 2011-05-11
BRPI1004701B1 (pt) 2023-11-07
BRPI1004701A8 (pt) 2022-12-13
EP2320440B1 (en) 2013-01-09
US8154374B2 (en) 2012-04-10
US20110109420A1 (en) 2011-05-12
CN102054566B (zh) 2015-09-09
BRPI1004701A2 (pt) 2013-02-26

Similar Documents

Publication Publication Date Title
CN102054566B (zh) 变压器绕组和用于增强变压器绕组的方法
US8823238B2 (en) Winding arrangement for an electrical machine
US7788794B2 (en) Disc-wound transformer with foil conductor and method of manufacturing the same
US9424974B2 (en) Dry-type transformer and method of manufacturing a dry-type transformer
CN101873023A (zh) 电枢
US20180226852A1 (en) Rotating electric machine
CN102792398A (zh) 具有环氧绝缘线圈的三相高性能干式变压器及其制造方法
JP2018537001A (ja) アモルファス変圧器の耐短絡性に関わる問題を解決するためのセルフクランピング構造
CN101055800B (zh) 绕制线圈的方法、绕组框架、和线圈
CN114300235A (zh) 一种高压绕组及干式变压器
WO2012000985A1 (en) Transformer with field control layer arrangement
CA1177546A (en) Inductor and process of manufacturing the same
CN105374529A (zh) 一种抗短路变压器线圈及其制备方法
CN211879192U (zh) 一种可降低层间场强的线圈结构、绕组结构及变压器
CN111049287B (zh) 一种轴向磁通双转子电机的定子铁芯
US20120119870A1 (en) Method for producing a disk winding and disk winding
CN101313369A (zh) 云母增强型绝缘
WO1999028919A1 (en) Magnetic core assemblies
RU132247U1 (ru) Высоковольтный ввод
CN101539649A (zh) 高强度/重量比细钢丝绳和多线电缆
CN201222409Y (zh) 一种变压器线圈
CN204857413U (zh) 一种抗短路非晶合金油浸式变压器
US20140210124A1 (en) Cast Split Low Voltage Coil With Integrated Cooling Duct Placement After Winding Process
KR102659159B1 (ko) 다층 병렬 권선 변압기
CN101556856A (zh) 高频加热电源用空心线圈

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
C14 Grant of patent or utility model
GR01 Patent grant
TR01 Transfer of patent right

Effective date of registration: 20180502

Address after: Baden, Switzerland

Patentee after: ABB Switzerland Co.,Ltd.

Address before: Zurich

Patentee before: ABB TECHNOLOGY Ltd.

TR01 Transfer of patent right
TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20210519

Address after: Baden, Switzerland

Patentee after: ABB grid Switzerland AG

Address before: Baden, Switzerland

Patentee before: ABB Switzerland Co.,Ltd.

CP01 Change in the name or title of a patent holder
CP01 Change in the name or title of a patent holder

Address after: Swiss Baden

Patentee after: Hitachi energy Switzerland AG

Address before: Swiss Baden

Patentee before: ABB grid Switzerland AG

TR01 Transfer of patent right
TR01 Transfer of patent right

Effective date of registration: 20231226

Address after: Zurich, SUI

Patentee after: Hitachi Energy Co.,Ltd.

Address before: Swiss Baden

Patentee before: Hitachi energy Switzerland AG