BE853547A - Procede de fabrication de transistors a effet de champ - Google Patents
Procede de fabrication de transistors a effet de champInfo
- Publication number
- BE853547A BE853547A BE176676A BE176676A BE853547A BE 853547 A BE853547 A BE 853547A BE 176676 A BE176676 A BE 176676A BE 176676 A BE176676 A BE 176676A BE 853547 A BE853547 A BE 853547A
- Authority
- BE
- Belgium
- Prior art keywords
- effect transistors
- manufacturing field
- manufacturing
- field
- transistors
- Prior art date
Links
- 230000005669 field effect Effects 0.000 title 1
- 238000004519 manufacturing process Methods 0.000 title 1
- 238000000034 method Methods 0.000 title 1
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/02—Manufacture or treatment of semiconductor devices or of parts thereof
- H01L21/04—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer
- H01L21/18—Manufacture or treatment of semiconductor devices or of parts thereof the devices having potential barriers, e.g. a PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic Table or AIIIBV compounds with or without impurities, e.g. doping materials
- H01L21/28—Manufacture of electrodes on semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/268
- H01L21/28008—Making conductor-insulator-semiconductor electrodes
- H01L21/28017—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon
- H01L21/28026—Making conductor-insulator-semiconductor electrodes the insulator being formed after the semiconductor body, the semiconductor being silicon characterised by the conductor
- H01L21/28123—Lithography-related aspects, e.g. sub-lithography lengths; Isolation-related aspects, e.g. to solve problems arising at the crossing with the side of the device isolation; Planarisation aspects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/68—Types of semiconductor device ; Multistep manufacturing processes therefor controllable by only the electric current supplied, or only the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched
- H01L29/76—Unipolar devices, e.g. field effect transistors
- H01L29/772—Field effect transistors
- H01L29/78—Field effect transistors with field effect produced by an insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L21/00—Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
- H01L21/70—Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
- H01L21/71—Manufacture of specific parts of devices defined in group H01L21/70
- H01L21/76—Making of isolation regions between components
- H01L21/762—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers
- H01L21/76202—Dielectric regions, e.g. EPIC dielectric isolation, LOCOS; Trench refilling techniques, SOI technology, use of channel stoppers using a local oxidation of silicon, e.g. LOCOS, SWAMI, SILO
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L23/00—Details of semiconductor or other solid state devices
- H01L23/52—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames
- H01L23/522—Arrangements for conducting electric current within the device in operation from one component to another, i.e. interconnections, e.g. wires, lead frames including external interconnections consisting of a multilayer structure of conductive and insulating layers inseparably formed on the semiconductor body
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/02—Semiconductor bodies ; Multistep manufacturing processes therefor
- H01L29/06—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions
- H01L29/0603—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions
- H01L29/0607—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration
- H01L29/0638—Semiconductor bodies ; Multistep manufacturing processes therefor characterised by their shape; characterised by the shapes, relative sizes, or dispositions of the semiconductor regions ; characterised by the concentration or distribution of impurities within semiconductor regions characterised by particular constructional design considerations, e.g. for preventing surface leakage, for controlling electric field concentration or for internal isolations regions for preventing surface leakage or controlling electric field concentration for preventing surface leakage due to surface inversion layer, e.g. with channel stopper
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/41—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions
- H01L29/423—Electrodes ; Multistep manufacturing processes therefor characterised by their shape, relative sizes or dispositions not carrying the current to be rectified, amplified or switched
- H01L29/42312—Gate electrodes for field effect devices
- H01L29/42316—Gate electrodes for field effect devices for field-effect transistors
- H01L29/4232—Gate electrodes for field effect devices for field-effect transistors with insulated gate
- H01L29/42372—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out
- H01L29/4238—Gate electrodes for field effect devices for field-effect transistors with insulated gate characterised by the conducting layer, e.g. the length, the sectional shape or the lay-out characterised by the surface lay-out
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4916—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
- H01L29/4925—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/40—Electrodes ; Multistep manufacturing processes therefor
- H01L29/43—Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
- H01L29/49—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
- H01L29/4983—Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET with a lateral structure, e.g. a Polysilicon gate with a lateral doping variation or with a lateral composition variation or characterised by the sidewalls being composed of conductive, resistive or dielectric material
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L29/00—Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
- H01L29/66—Types of semiconductor device ; Multistep manufacturing processes therefor
- H01L29/66007—Multistep manufacturing processes
- H01L29/66075—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials
- H01L29/66227—Multistep manufacturing processes of devices having semiconductor bodies comprising group 14 or group 13/15 materials the devices being controllable only by the electric current supplied or the electric potential applied, to an electrode which does not carry the current to be rectified, amplified or switched, e.g. three-terminal devices
- H01L29/66409—Unipolar field-effect transistors
- H01L29/66477—Unipolar field-effect transistors with an insulated gate, i.e. MISFET
- H01L29/66568—Lateral single gate silicon transistors
- H01L29/66575—Lateral single gate silicon transistors where the source and drain or source and drain extensions are self-aligned to the sides of the gate
-
- H—ELECTRICITY
- H10—SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
- H10B—ELECTRONIC MEMORY DEVICES
- H10B12/00—Dynamic random access memory [DRAM] devices
- H10B12/30—DRAM devices comprising one-transistor - one-capacitor [1T-1C] memory cells
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01L—SEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
- H01L2924/00—Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
- H01L2924/0001—Technical content checked by a classifier
- H01L2924/0002—Not covered by any one of groups H01L24/00, H01L24/00 and H01L2224/00
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/053—Field effect transistors fets
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/103—Mask, dual function, e.g. diffusion and oxidation
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/106—Masks, special
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/117—Oxidation, selective
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/141—Self-alignment coat gate
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10—TECHNICAL SUBJECTS COVERED BY FORMER USPC
- Y10S—TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y10S148/00—Metal treatment
- Y10S148/147—Silicides
Landscapes
- Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Power Engineering (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- Physics & Mathematics (AREA)
- Condensed Matter Physics & Semiconductors (AREA)
- Ceramic Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Chemical & Material Sciences (AREA)
- Crystallography & Structural Chemistry (AREA)
- Insulated Gate Type Field-Effect Transistor (AREA)
- Semiconductor Memories (AREA)
- Local Oxidation Of Silicon (AREA)
- Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US68696976A | 1976-05-14 | 1976-05-14 |
Publications (1)
Publication Number | Publication Date |
---|---|
BE853547A true BE853547A (fr) | 1977-08-01 |
Family
ID=24758498
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
BE176676A BE853547A (fr) | 1976-05-14 | 1977-04-13 | Procede de fabrication de transistors a effet de champ |
Country Status (8)
Country | Link |
---|---|
US (1) | US4160987A (sv) |
JP (1) | JPS52139389A (sv) |
BE (1) | BE853547A (sv) |
CA (1) | CA1082371A (sv) |
DE (1) | DE2716691A1 (sv) |
FR (1) | FR2351502A1 (sv) |
GB (1) | GB1574872A (sv) |
IT (1) | IT1114777B (sv) |
Families Citing this family (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS583380B2 (ja) * | 1977-03-04 | 1983-01-21 | 株式会社日立製作所 | 半導体装置とその製造方法 |
JPS53124084A (en) * | 1977-04-06 | 1978-10-30 | Hitachi Ltd | Semiconductor memory device containing floating type poly silicon layer and its manufacture |
US4282647A (en) * | 1978-04-04 | 1981-08-11 | Standard Microsystems Corporation | Method of fabricating high density refractory metal gate MOS integrated circuits utilizing the gate as a selective diffusion and oxidation mask |
US4192059A (en) * | 1978-06-06 | 1980-03-11 | Rockwell International Corporation | Process for and structure of high density VLSI circuits, having inherently self-aligned gates and contacts for FET devices and conducting lines |
US4221044A (en) * | 1978-06-06 | 1980-09-09 | Rockwell International Corporation | Self-alignment of gate contacts at local or remote sites |
US4231051A (en) * | 1978-06-06 | 1980-10-28 | Rockwell International Corporation | Process for producing minimal geometry devices for VSLI applications utilizing self-aligned gates and self-aligned contacts, and resultant structures |
US4304042A (en) * | 1978-11-13 | 1981-12-08 | Xerox Corporation | Self-aligned MESFETs having reduced series resistance |
US4268951A (en) * | 1978-11-13 | 1981-05-26 | Rockwell International Corporation | Submicron semiconductor devices |
US4277882A (en) * | 1978-12-04 | 1981-07-14 | Fairchild Camera And Instrument Corporation | Method of producing a metal-semiconductor field-effect transistor |
US4246593A (en) * | 1979-01-02 | 1981-01-20 | Texas Instruments Incorporated | High density static memory cell with polysilicon resistors |
US4246592A (en) * | 1979-01-02 | 1981-01-20 | Texas Instruments Incorporated | High density static memory cell |
US4317690A (en) * | 1980-06-18 | 1982-03-02 | Signetics Corporation | Self-aligned double polysilicon MOS fabrication |
US4397075A (en) * | 1980-07-03 | 1983-08-09 | International Business Machines Corporation | FET Memory cell structure and process |
US4329773A (en) * | 1980-12-10 | 1982-05-18 | International Business Machines Corp. | Method of making low leakage shallow junction IGFET devices |
EP0054102A3 (en) * | 1980-12-11 | 1983-07-27 | Rockwell International Corporation | Very high density cells comprising a rom and method of manufacturing same |
AT387474B (de) * | 1980-12-23 | 1989-01-25 | Philips Nv | Verfahren zur herstellung einer halbleitervorrichtung |
JPH01162351A (ja) * | 1987-12-19 | 1989-06-26 | Fujitsu Ltd | 半導体装置の製造方法 |
JPH0448640A (ja) * | 1990-06-14 | 1992-02-18 | Oki Electric Ind Co Ltd | Mosトランジスタの製造方法 |
JPH06349820A (ja) * | 1993-06-11 | 1994-12-22 | Rohm Co Ltd | 半導体装置の製造方法 |
US5543343A (en) * | 1993-12-22 | 1996-08-06 | Sgs-Thomson Microelectronics, Inc. | Method fabricating an integrated circuit |
US5927992A (en) * | 1993-12-22 | 1999-07-27 | Stmicroelectronics, Inc. | Method of forming a dielectric in an integrated circuit |
US5783366A (en) * | 1995-12-07 | 1998-07-21 | Taiwan Semiconductor Manufacturing Company Ltd. | Method for eliminating charging of photoresist on specimens during scanning electron microscope examination |
US5972776A (en) * | 1995-12-22 | 1999-10-26 | Stmicroelectronics, Inc. | Method of forming a planar isolation structure in an integrated circuit |
US5834360A (en) * | 1996-07-31 | 1998-11-10 | Stmicroelectronics, Inc. | Method of forming an improved planar isolation structure in an integrated circuit |
US6221715B1 (en) * | 1998-07-28 | 2001-04-24 | Winbond Electronics Corporation | Method of making polysilicon self-aligned to field isolation oxide |
US6265256B1 (en) * | 1998-09-17 | 2001-07-24 | Advanced Micro Devices, Inc. | MOS transistor with minimal overlap between gate and source/drain extensions |
JP2000223701A (ja) * | 1999-01-28 | 2000-08-11 | Mitsubishi Electric Corp | 半導体装置およびその製造方法 |
JP3940560B2 (ja) * | 2001-01-25 | 2007-07-04 | 独立行政法人産業技術総合研究所 | 半導体装置の製造方法 |
US7259053B2 (en) * | 2003-09-22 | 2007-08-21 | Dongbu Electronics Co., Ltd. | Methods for forming a device isolation structure in a semiconductor device |
JP5444694B2 (ja) * | 2008-11-12 | 2014-03-19 | ソニー株式会社 | 固体撮像装置、その製造方法および撮像装置 |
US11295893B2 (en) | 2018-02-16 | 2022-04-05 | KYOCERA AVX Components Corporation | Self-aligning capacitor electrode assembly having improved breakdown voltage |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
NL164424C (nl) * | 1970-06-04 | 1980-12-15 | Philips Nv | Werkwijze voor het vervaardigen van een veldeffect- transistor met een geisoleerde stuurelektrode, waarbij een door een tegen oxydatie maskerende laag vrijgelaten deel van het oppervlak van een siliciumlichaam aan een oxydatiebehandeling wordt onderworpen ter verkrijging van een althans gedeeltelijk in het siliciumlichaam verzonken siliciumoxydelaag. |
US3830657A (en) * | 1971-06-30 | 1974-08-20 | Ibm | Method for making integrated circuit contact structure |
US3811076A (en) * | 1973-01-02 | 1974-05-14 | Ibm | Field effect transistor integrated circuit and memory |
CA1001771A (en) * | 1973-01-15 | 1976-12-14 | Fairchild Camera And Instrument Corporation | Method of mos transistor manufacture and resulting structure |
IN140846B (sv) * | 1973-08-06 | 1976-12-25 | Rca Corp | |
US3936859A (en) * | 1973-08-06 | 1976-02-03 | Rca Corporation | Semiconductor device including a conductor surrounded by an insulator |
JPS5075775A (sv) * | 1973-11-06 | 1975-06-21 | ||
US3958323A (en) * | 1975-04-29 | 1976-05-25 | International Business Machines Corporation | Three mask self aligned IGFET fabrication process |
JPS51145285A (en) * | 1975-06-09 | 1976-12-14 | Matsushita Electric Ind Co Ltd | Manufacture of semiconductor device |
JPS5291382A (en) * | 1976-01-26 | 1977-08-01 | Nec Corp | Insulating gate type field effect transistor |
-
1977
- 1977-03-30 FR FR7710334A patent/FR2351502A1/fr active Granted
- 1977-04-13 BE BE176676A patent/BE853547A/xx not_active IP Right Cessation
- 1977-04-15 DE DE19772716691 patent/DE2716691A1/de not_active Ceased
- 1977-04-15 IT IT22495/77A patent/IT1114777B/it active
- 1977-04-19 GB GB16293/77A patent/GB1574872A/en not_active Expired
- 1977-05-13 CA CA278,402A patent/CA1082371A/en not_active Expired
- 1977-05-13 JP JP5451377A patent/JPS52139389A/ja active Granted
- 1977-06-06 US US05/804,200 patent/US4160987A/en not_active Expired - Lifetime
Also Published As
Publication number | Publication date |
---|---|
FR2351502B1 (sv) | 1979-03-09 |
CA1082371A (en) | 1980-07-22 |
JPS52139389A (en) | 1977-11-21 |
US4160987A (en) | 1979-07-10 |
JPS571145B2 (sv) | 1982-01-09 |
IT1114777B (it) | 1986-01-27 |
FR2351502A1 (fr) | 1977-12-09 |
GB1574872A (en) | 1980-09-10 |
DE2716691A1 (de) | 1977-12-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
BE853547A (fr) | Procede de fabrication de transistors a effet de champ | |
FR2345813A1 (fr) | Procede de realisation d'elements de memoire a transistor a effet de champ | |
BE860786A (fr) | Procede de fabrication de courroies dentees | |
FR2326038A1 (fr) | Procede de fabrication de circuits integres auto-alignes et dispositifs en resultant | |
BE841984A (fr) | Procede de fabrication d'un bonbon carbonate | |
BE857659A (fr) | Procede de fabrication de dragees | |
FR2337893A1 (fr) | Procede de fabrication de micro-motifs et micro-substrats appropries | |
FR2284988A1 (fr) | Transistor a effet de champ a grille isolee et procede de fabrication | |
FR2339954A1 (fr) | Procede de fabrication de dispositifs mos | |
FR2301092A1 (fr) | Procede de fabrication d'un semi-conducteur et semi-conducteur obtenu | |
FR2333348A1 (fr) | Procede de fabrication de transistors a effet de champ et transistors en resultant | |
BE838332R (fr) | Procede de fabrication d'un succedane d'amuse-geule | |
FR2301922A1 (fr) | Procede pour fabriquer un transistor commande en inverse | |
BE835288A (fr) | Procede de fabrication de transistors a effet de champ perfectionnes | |
FR2300105A1 (fr) | Procede de fabrication de panneaux en f | |
BE859573A (fr) | Procede de fabrication de carbonates aromatiques | |
FR2297574A1 (fr) | Procede de fabrication de sucreries | |
FR2318500A1 (fr) | Circuit a transistors a effet de champ a metal-oxyde-semi-conducteur complementaire et son procede de fabrication | |
FR2346855A1 (fr) | Procede de fabrication de dispositifs a transistors a effet de champ et dispositifs en resultant | |
FR2347375A1 (fr) | Procede de fabrication de methylchlorosilanes | |
BE780695A (fr) | Procede de fabrication d'un transistor a effet de champ | |
BE856754A (fr) | Procede de fabrication de fermetures a curseur | |
FR2331611A1 (fr) | Procede de fabrication de briquettes | |
BE856204A (fr) | Procede de fabrication de tricots chaines extensibles | |
FR2338961A1 (fr) | Procede de fabrication de polyoxyphenylenes |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RE | Patent lapsed |
Owner name: INTERNATIONAL BUSINESS MACHINES CORP. Effective date: 19850413 |