ATE274240T1 - Verfahren zur herstellung von mosfets mit verbesserten kurz-kanal effekten - Google Patents

Verfahren zur herstellung von mosfets mit verbesserten kurz-kanal effekten

Info

Publication number
ATE274240T1
ATE274240T1 AT94117948T AT94117948T ATE274240T1 AT E274240 T1 ATE274240 T1 AT E274240T1 AT 94117948 T AT94117948 T AT 94117948T AT 94117948 T AT94117948 T AT 94117948T AT E274240 T1 ATE274240 T1 AT E274240T1
Authority
AT
Austria
Prior art keywords
type
gate
devices
channel effects
counterdoped
Prior art date
Application number
AT94117948T
Other languages
English (en)
Inventor
Udo Schwalke
Original Assignee
Infineon Technologies Ag
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Infineon Technologies Ag filed Critical Infineon Technologies Ag
Application granted granted Critical
Publication of ATE274240T1 publication Critical patent/ATE274240T1/de

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/77Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate
    • H01L21/78Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices
    • H01L21/82Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components
    • H01L21/822Manufacture or treatment of devices consisting of a plurality of solid state components or integrated circuits formed in, or on, a common substrate with subsequent division of the substrate into plural individual devices to produce devices, e.g. integrated circuits, each consisting of a plurality of components the substrate being a semiconductor, using silicon technology
    • H01L21/8232Field-effect technology
    • H01L21/8234MIS technology, i.e. integration processes of field effect transistors of the conductor-insulator-semiconductor type
    • H01L21/8238Complementary field-effect transistors, e.g. CMOS
    • H01L21/823828Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes
    • H01L21/823842Complementary field-effect transistors, e.g. CMOS with a particular manufacturing method of the gate conductors, e.g. particular materials, shapes gate conductors with different gate conductor materials or different gate conductor implants, e.g. dual gate structures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0922Combination of complementary transistors having a different structure, e.g. stacked CMOS, high-voltage and low-voltage CMOS
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers
    • H01L27/04Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body
    • H01L27/08Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind
    • H01L27/085Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only
    • H01L27/088Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate
    • H01L27/092Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors
    • H01L27/0928Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having potential barriers; including integrated passive circuit elements having potential barriers the substrate being a semiconductor body including only semiconductor components of a single kind including field-effect components only the components being field-effect transistors with insulated gate complementary MIS field-effect transistors comprising both N- and P- wells in the substrate, e.g. twin-tub
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L29/00Semiconductor devices specially adapted for rectifying, amplifying, oscillating or switching and having potential barriers; Capacitors or resistors having potential barriers, e.g. a PN-junction depletion layer or carrier concentration layer; Details of semiconductor bodies or of electrodes thereof ; Multistep manufacturing processes therefor
    • H01L29/40Electrodes ; Multistep manufacturing processes therefor
    • H01L29/43Electrodes ; Multistep manufacturing processes therefor characterised by the materials of which they are formed
    • H01L29/49Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET
    • H01L29/4916Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen
    • H01L29/4925Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement
    • H01L29/4933Metal-insulator-semiconductor electrodes, e.g. gates of MOSFET the conductor material next to the insulator being a silicon layer, e.g. polysilicon doped with boron, phosphorus or nitrogen with a multiple layer structure, e.g. several silicon layers with different crystal structure or grain arrangement with a silicide layer contacting the silicon layer, e.g. Polycide gate

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Metal-Oxide And Bipolar Metal-Oxide Semiconductor Integrated Circuits (AREA)
  • Insulated Gate Type Field-Effect Transistor (AREA)
  • Thin Film Transistor (AREA)
  • Amplifiers (AREA)
AT94117948T 1993-12-07 1994-11-14 Verfahren zur herstellung von mosfets mit verbesserten kurz-kanal effekten ATE274240T1 (de)

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US16310893A 1993-12-07 1993-12-07

Publications (1)

Publication Number Publication Date
ATE274240T1 true ATE274240T1 (de) 2004-09-15

Family

ID=22588515

Family Applications (1)

Application Number Title Priority Date Filing Date
AT94117948T ATE274240T1 (de) 1993-12-07 1994-11-14 Verfahren zur herstellung von mosfets mit verbesserten kurz-kanal effekten

Country Status (6)

Country Link
US (2) US5932919A (de)
EP (1) EP0657929B1 (de)
JP (1) JPH07202014A (de)
AT (1) ATE274240T1 (de)
DE (1) DE69433949T2 (de)
TW (1) TW268135B (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5602410A (en) * 1995-08-25 1997-02-11 Siemens Aktiengesellschaft Off-state gate-oxide field reduction in CMOS
DE19612950C1 (de) * 1996-04-01 1997-07-31 Siemens Ag Schaltungsstruktur mit mindestens einem MOS-Transistor und Verfahren zu deren Herstellung
US6140688A (en) * 1998-09-21 2000-10-31 Advanced Micro Devices Inc. Semiconductor device with self-aligned metal-containing gate
US6492688B1 (en) * 1999-03-02 2002-12-10 Siemens Aktiengesellschaft Dual work function CMOS device
KR100434537B1 (ko) * 1999-03-31 2004-06-05 삼성전자주식회사 다공질 실리콘 혹은 다공질 산화 실리콘을 이용한 두꺼운 희생층을 가진 다층 구조 웨이퍼 및 그 제조방법
US6448590B1 (en) * 2000-10-24 2002-09-10 International Business Machines Corporation Multiple threshold voltage FET using multiple work-function gate materials
KR100387259B1 (ko) * 2000-12-29 2003-06-12 주식회사 하이닉스반도체 반도체 소자의 제조 방법
US6812529B2 (en) * 2001-03-15 2004-11-02 Micron Technology, Inc. Suppression of cross diffusion and gate depletion
JP4094379B2 (ja) * 2002-08-27 2008-06-04 エルピーダメモリ株式会社 半導体装置及びその製造方法
US6690039B1 (en) 2002-10-01 2004-02-10 T-Ram, Inc. Thyristor-based device that inhibits undesirable conductive channel formation
US6686612B1 (en) 2002-10-01 2004-02-03 T-Ram, Inc. Thyristor-based device adapted to inhibit parasitic current
US7202535B2 (en) * 2005-07-14 2007-04-10 Infineon Technologies Ag Manufacturing method for an integrated semiconductor structure and corresponding integrated semiconductor structure
US7750416B2 (en) * 2006-05-03 2010-07-06 Taiwan Semiconductor Manufacturing Company, Ltd. Modifying work function in PMOS devices by counter-doping
JP5627165B2 (ja) * 2007-04-27 2014-11-19 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. 半導体装置及び半導体装置の製造方法
US8900954B2 (en) 2011-11-04 2014-12-02 International Business Machines Corporation Blanket short channel roll-up implant with non-angled long channel compensating implant through patterned opening
KR101923763B1 (ko) 2015-03-13 2018-11-30 매그나칩 반도체 유한회사 레벨 쉬프트 회로 보호용 정전기 방전 보호 회로 및 소자

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4315781A (en) * 1980-04-23 1982-02-16 Hughes Aircraft Company Method of controlling MOSFET threshold voltage with self-aligned channel stop
JPS5912416A (ja) * 1982-07-14 1984-01-23 Ricoh Co Ltd 多ビ−ム光走査装置
JPS59124161A (ja) * 1982-12-29 1984-07-18 Fujitsu Ltd Mis型電界効果半導体装置
US4555842A (en) * 1984-03-19 1985-12-03 At&T Bell Laboratories Method of fabricating VLSI CMOS devices having complementary threshold voltages
US4649629A (en) * 1985-07-29 1987-03-17 Thomson Components - Mostek Corp. Method of late programming a read only memory
US4637836A (en) * 1985-09-23 1987-01-20 Rca Corporation Profile control of boron implant
US4808555A (en) * 1986-07-10 1989-02-28 Motorola, Inc. Multiple step formation of conductive material layers
US5214298A (en) * 1986-09-30 1993-05-25 Texas Instruments Incorporated Complementary heterostructure field effect transistors
US4908327A (en) * 1988-05-02 1990-03-13 Texas Instruments, Incorporated Counter-doped transistor
US4978626A (en) * 1988-09-02 1990-12-18 Motorola, Inc. LDD transistor process having doping sensitive endpoint etching
US4990974A (en) * 1989-03-02 1991-02-05 Thunderbird Technologies, Inc. Fermi threshold field effect transistor
US4956311A (en) * 1989-06-27 1990-09-11 National Semiconductor Corporation Double-diffused drain CMOS process using a counterdoping technique
DE69006978T2 (de) * 1989-08-24 1994-06-09 Delco Electronics Corp MOSFET-Verarmungsanordnung.
US5021356A (en) * 1989-08-24 1991-06-04 Delco Electronics Corporation Method of making MOSFET depletion device
JPH043978A (ja) * 1990-04-20 1992-01-08 Fujitsu Ltd 半導体装置の製造方法
JPH04102374A (ja) * 1990-08-21 1992-04-03 Matsushita Electric Works Ltd 絶縁ゲート型電界効果トランジスタ
US5064775A (en) * 1990-09-04 1991-11-12 Industrial Technology Research Institute Method of fabricating an improved polycrystalline silicon thin film transistor
US5061647A (en) * 1990-10-12 1991-10-29 Motorola, Inc. ITLDD transistor having variable work function and method for fabricating the same

Also Published As

Publication number Publication date
US5932919A (en) 1999-08-03
EP0657929B1 (de) 2004-08-18
EP0657929A3 (de) 1997-12-29
DE69433949D1 (de) 2004-09-23
TW268135B (de) 1996-01-11
EP0657929A2 (de) 1995-06-14
JPH07202014A (ja) 1995-08-04
DE69433949T2 (de) 2005-09-08
US6380015B1 (en) 2002-04-30

Similar Documents

Publication Publication Date Title
ATE274240T1 (de) Verfahren zur herstellung von mosfets mit verbesserten kurz-kanal effekten
KR960008735B1 (en) Mos transistor and the manufacturing method thereof
EP0801427A3 (de) Feldeffekttransistor, Halbleiter-Speicheranordnung, Verfahren zur Herstellung und Verfahren zum Steuern der Halbleiter-Speicheranordnung
KR950015828A (ko) 이중 주입 후방 확산된 금속산화물 반도체 장치 및 그 형성 방법
TW374226B (en) Graded-channel semiconductor device and method of manufacturing the same
EP1001467A3 (de) Halbleiterbauelement und deren Herstellungsverfahren
WO2003036714A1 (fr) Procede de fabrication de misfet longitudinal, misfet longitudinal, procede de fabrication de dispositif de stockage a semi-conducteur et dispositif de stockage a semi-conducteur
ATE267461T1 (de) Hochspannungs-mos-transistor
EP0414400A3 (de) MOSFET-Verarmungsanordnung
EP0710989A3 (de) Feldeffekttransistor und Verfahren zu seiner Herstellung
TW373338B (en) A semiconductor device having an SOI structure and a method for manufacturing the same
DE59909564D1 (de) Hochspannungsfestigkeits-MIS-Transistor
KR910017678A (ko) Ldd 모오스 fet제조방법 및 구조
KR920008963A (ko) Mos트랜지스터의 채널도핑방법
KR920013767A (ko) 핫 캐리어 방지 트랜지스터의 제조방법
KR880013258A (ko) 반도체 장치의 제조방법
EP0852401A3 (de) Halbleiteranordnung und Herstellungsverfahren
JPS5552254A (en) Semiconductor device
EP1054450A3 (de) MOSFET Halbleiterbauelement mit hochdotiertem Sperrgebiet
KR970009277B1 (en) Source/drain junction formation method of semiconductor device
KR970006264B1 (en) Fabrication method of tft
KR950034732A (ko) 마스크롬 제조방법
KR920013775A (ko) 트랜치 사용 트랜지스터 제조방법
KR920015633A (ko) 반도체장치의 제조방법
TW266321B (en) Process for high-voltage CMOS transistor

Legal Events

Date Code Title Description
RER Ceased as to paragraph 5 lit. 3 law introducing patent treaties