AT408228B - Verfahren zur herstellung von sensormaterial und seine verwendung - Google Patents

Verfahren zur herstellung von sensormaterial und seine verwendung Download PDF

Info

Publication number
AT408228B
AT408228B AT31597A AT31597A AT408228B AT 408228 B AT408228 B AT 408228B AT 31597 A AT31597 A AT 31597A AT 31597 A AT31597 A AT 31597A AT 408228 B AT408228 B AT 408228B
Authority
AT
Austria
Prior art keywords
solvent
polysaccharide
solution
sensor material
sensor
Prior art date
Application number
AT31597A
Other languages
English (en)
Other versions
ATA31597A (de
Inventor
Dieter Dipl Phys Vorbach
Eberhard Dipl Chem Dr Taeger
Original Assignee
Thueringisches Inst Textil
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Thueringisches Inst Textil filed Critical Thueringisches Inst Textil
Priority to AT31597A priority Critical patent/AT408228B/de
Publication of ATA31597A publication Critical patent/ATA31597A/de
Application granted granted Critical
Publication of AT408228B publication Critical patent/AT408228B/de

Links

Landscapes

  • Investigating Or Analyzing Materials By The Use Of Fluid Adsorption Or Reactions (AREA)

Description


   <Desc/Clms Page number 1> 
 



   Die Erfindung betrifft ein Verfahren zur Herstellung von Sensormaterial, dessen elektrischer Widerstand hochempfindlich auf Änderungen der Materialform anspricht. Die Erfindung betrifft auch die Verwendung dieses Materials für Sensoren. 



   Aus der WO 95/19626 ist eine temperaturempfindliche Widerstandsverbindung bekannt geworden, die aus einem Gemisch aus   elektrisch leitfähigem   Material (A), wenigstens einem Harz (B), z. B. Celluloseester, und einem oder mehreren Lösungsmitteln (C), z. B. Chlorkohlenwasserstoffen, besteht, welche für elektrische Widerstandselemente mit positivem Temperaturkoeffizienten (PTC) verwendet wird. 



   Der US-PS 5 250 227 ist die Herstellung eines Biegesensors zu entnehmen, wobei ein Gemisch aus Kohlenstoff, Kunstharz, wie Phenolharz und thermoplastisches Harz, und Lösungsmittel für das Kunstharz auf einen flexiblen Polyesterfilm aufgebracht und dann getrocknet wird. 



   Aus der   EP-A 1   0 512 703 sind   schliesslich   leitfähige Polymerzusammensetzungen aus Fluoroplasten und Russ bekannt geworden. 



   Es ist weiters bekannt, dass Sensoren für Flüssigkeiten nach dem Prinzip der elektrischen Leitfähigkeitsbestimmung oder nach dem Prinzip der elektrischen Dämpfungsmessung in einem elektrischen Wechselfeld arbeiten. Änderung mechanischer   Grössen   können   z. B.   über Dehnungsmessstreifen erfasst werden. Ein wesentlicher Nachteil dieser Sensoren ist der damit verbundene erhebliche messtechnische Aufwand und ihre relativ geringe Empfindlichkeit. 



   Der vorliegenden Erfindung liegt die Aufgabe zugrunde, ein Sensormaterial zu schaffen, dessen elektrischer Widerstand sehr empfindlich auf Änderungen der Materialform anspricht und das zur Feststellung und Messung verschiedener, mit Formveränderungen des Materials einhergehender Einflussgrössen eingesetzt werden kann. Ferner soll der messtechnische Aufwand beim Einsatz der aus dem neuen Material gebildeten Sensoren verringert werden. Ausserdem sollen die aus dem Material gebildeten Sensoren möglichst kompakt sein Weitere Vorteile ergeben sich aus der nachfolgenden Beschreibung. 



   Diese Aufgabe wird bei dem eingangs genannten Verfahren erfindungsgemäss dadurch gelöst, dass man eine physikalische Polysaccharid-Lösung in einem geeigneten, organischen Lösungmittel herstellt, die 2 bis 25   Gew.-% Poiysaccharid getost   und einen in dem   Sensormatenal   die Perkolationsschwelle erreichenden Gewichtsanteil wenigstens eines pulverförmigen, elektrisch   leit-   fähigen Zusatzstoffes dispergiert enthält, und der Lösung eine Form gibt und durch Entfernung des Lösungsmittels und Ausfällen des Polysaccharids das Sensormaterial bildet
Bei der Untersuchung des elektrischen Widerstandes der so hergestellten Formkörper, wie   z.

   B   von Drähten, Fäden und Folien, In Abhängigkeit von der Einwirkung unterschiedlicher Flüssigkeiten wurde überraschenderweise gefunden, dass bei bestimmten quelled wirkenden Flüssigkeiten ein starker Anstieg des elektrischen Widerstandes zu verzeichnen war, wenn der Formkörper mit diesen Flüssigkeiten kontaktiert wurde. Ferner wurde eine starke Änderung des elektrischen Widerstandes beobachtet, wenn das Material mechanisch verformt oder erwärmt wurde. Voraussetzung ist allerdings, dass der Gehalt des Zusatzstoffes in dem festen Sensormaterial in einem bestimmten engen Bereich, der sogenannten Perkolationsschwelle, liegt.

   Zu diesem Bereich steigt die elektrische Leitfähigkeit des Materials in Abhängigkeit von dem Gehalt des elektrisch leitfähigen Zusatzstoffes steil an, während vor und hinter diesem Bereich die Leitfähigkeitsänderungen mit der Änderung des Gehalts des Zusatzstoffes nur gering sind. Es ist daher wesentlich, dass der Anteil des Zusatzstoffes im Sensormaterial so gewählt wird, dass die Perkolationsschwelle zwar erreicht, aber nicht wesentlich überschritten wird. Der der Perkolationsschwelle entsprechende Anteil des Zusatzstoffes im Sensormaterial hängt von verschiedenen Faktoren, wie z. B. Grösse, Form und spezifische Leitfähigkeit der Zusatzstoffteilchen, ab und kann für ein bestimmtes   Polymer/Zusatzstoff-   Paar in einer Versuchsreihe mit verschiedenen Zusatzstoffanteilen empirisch festgestellt werden.

   Der für die Perkolationsschwelle erforderliche Anteil des Zusatzstoffes kann daher in weiten Grenzen schwanken. Im allgemeinen kann die zu verformende Lösung einen   Zusatzstoffanteil In   dem Bereich von 5 bis 500   Gew.-%,   bezogen auf Polysaccharid, haben. Die Lösung mit dem geeigneten Anteil an elektrisch leitfähigen Zusatzstoffen wird dann in die Form gebracht, die das Sensormaterial haben soll, etwa die Form von Drähten, Stäben, Fäden oder Folien. Anschliessend wird durch die Entfernung des Lösungsmittels aus der Lösung,   z. B.   durch Kontaktierung mit einem Nichtlösungsmittel oder Verdampfung des Lösungsmittels, das feste Polymer zurückgebildet, wobei der Zusatzstoff nunmehr in   gleichmässiger   Verteilung in dem festen Polymer vorliegt. 

 <Desc/Clms Page number 2> 

 



   Nach der bevorzugten Ausführungsform des erfindungsgemässen Verfahrens setzt man Cellulose als Polysaccharid ein. Darüber hinaus können aber auch synthetische Polymere eingesetzt werden, die sich in organischen Lösungsmitteln lösen. Geeignete Beispiele sind Polyoxadiazol, Polyacrylnitril und Polyvinylalkohol. 



   Nach der bevorzugten Ausführungsform des erfindungsgemässen Verfahrens setzt man als Lösungsmittel ein Amin-N-oxid ein. Besonders bevorzugt wird das Monohydrat des   N-Methylmor-   pholin-N-oxids (NMMO-MH), das sich insbesondere als Lösungsmittel für Cellulose eignet. Geeignete andere Lösungsmittel für andere Polymere sind z. B. Dimethylformamid, Dimethylacetamid, Dimethylsulfoxid und Nitromethan. Selbstverständlich können auch Gemische dieser Lösungsmittel eingesetzt werden. 



   Vorzugsweise setzt man als Zusatzstoffe metallische oder nichtmetallische Stoffe oder Mischungen daraus mit Korngrössen in dem Bereich von 1 nm bis   lOOp. m,   vorzugsweise   O. Ot m   bis   logo,   ein. Geeignete metallische Zusatzstoffe sind Metallpulver. Ein nichtmetallischer Zusatzstoff ist z. B. Kohlenstoff in Form von Russ oder Graphit. Die Teilchenform der leitfähigen Zusatzstoffe kann kugelförmig rund, länglich oder plättchenförmig sein. 



   Die Verformung der Lösung kann vorzugsweise durch Trocken-Nassextrusion oder auch durch Giessen erfolgen. Bei der Trocken-Nassextrusion wird die Lösung durch Düsen mit runden oder profilierten   Düsenlochbohrungen,   Hohldüsen oder Schlitzdüsen verformt und im allgemeinen in einer kurzen Luftstrecke einer bevorzugten Länge von 1 bis 50 mm, insbesondere von 2 bis 20 mm, verformt. Dabei ermöglicht die Luftstrecke in überraschender Weise auch bei den erfindungsgemässen sehr hohen   Füllgraden   der Polymerlösung mit   pulverförmigen leitfähigen Zuschlagsstoffen   eine sehr hohe Verformungssicherheit ohne Düsenlochverstopfungen.

   Vorzugsweise bringt man den durch Trocken-Nassextrusion erhaltenen Lösungsformkörper mit einem Nichtlösungsmittel in Berührung, entzieht dem Formkörper dadurch das Lösungsmittel und trocknet ihn danach. Auf diese Weise wird in dem Fällbad ein mechanisch stabiler Formkörper gebildet, der für den technischen Einsatz als Sensormaterial die entscheidende Voraussetzung ist. Das Lösungsmittel geht bei der Fällung in das Fällbad über und kann nach Aufarbeitung erneut verwendet werden. Als Fällbadmittel empfehlen sich mit dem Lösungsmittel mischbare Nichtlösungsmittel für das Polymere, wie Wasser und Alkohole bei dem Lösungsmittel NMMO-MH. Die Formkörper können an Luft bei Raumtemperatur oder bei erhöhten Temperaturen unterhalb der Schädigungsgrenze des Polymeren getrocknet werden. 



   Die Dispersionsbildung kann in unterschiedlicher Weise erfolgen. Bei einer Ausführungsform dispergiert man den Zusatzstoff in der zuvor gebildeten Polymerlösung Bei einer anderen Ausführungsform suspendiert man das Polymere, wie   z. B. Cellulose,   und den Zusatzstoff in einer Mischung aus Lösungsmittel (NMMO-MH) und   Nichtlösungsmittel (H2O)   und löst dann das Polymere durch Abdampfen des Nichtlösungsmittels. 



   Generell lässt sich sagen, dass man bei dem erfindungsgemässen Verfahren eine Polymerlösung einsetzen kann, die durch gute Löslichkeit des Polymeren gekennzeichnet ist und bei Berührung mit einem Nichtlösungsmittel für das Polymere momentan ohne Durchlaufen eines mechanisch instabilen Gelzustandes das feste, mechanisch stabile Polymere zurückbildet. Auf diese Weise wird die gleichmässige Dispersion des Zusatzstoffes bei der Rückbildung des festen Polymeren beibehalten, was Voraussetzung für ein empfindliches   Sensormaterialist.   



   Die Erfindung ist in weiterer Ausgestaltung gerichtet auf die Verwendung der in der vorstehenden Art und Weise hergestellten Sensormaterialien in Form von Filamenten oder Folien, die auf einen Träger aufgebracht sind und deren Enden mit elektrisch leitenden Kontakten versehen sind, als Feuchtigkeits-, Spannungs- oder Temperatursensor. Die erfindungsgemässen Sensoren sprechen jedoch nicht nur auf wässrige Feuchtigkeit an, sondern auf alle quelled wirkenden Flüssigkeiten,   d. h.   neben Wasser auch   z. B.   auf Alkohole, Glyzerin, Glykol und Ester. Auch Gase können Widerstandsänderungen bewirken, wenn sie in das Sensormatenal eindringen   konnen   und damit eine Formänderung des Materials verbunden ist. 



   Zur Verdeutlichung des erfindungsgemässen Verfahrens wird die Herstellung der Sensormaterialien an den folgenden Beispielen beschrieben. 



   Beispiel 1
Einer 10   Gew.-% igen Celluloselösung in N-Methylmorpholin-N-oxid-Monohydrat wird pulvriger   

 <Desc/Clms Page number 3> 

 feinverteilter Kohlenstoff mit einer Korngrösse von kleiner   als 1,um, In   einem Gewichtsanteil von 120   Gew.-%,   bezogen auf den Celluloseanteil, zugesetzt. Diese Spinnlösung wird bei einer Temperatur von ca. 1050C durch eine Spinndüse mit 80 Bohrungen zu einem 80   kapillarigen Cellu-   losefaden, der im getrockneten Zustand einen Einzelfilamentdurchmesser von cm besitzt, versponnen. Die Abzugsgeschwindigkeit betrug   17, 5 m/min.   Die Düse hatte einen Abstand zum wässrigen   Fällbad   von 20 mm.

   Der aus der Düse austretende Faden wurde nach der Luftstrecke durch ein Wasserbad von 6 m Länge geführt und anschliessend auf einer Spule aufgewickelt. Die Trocknung des Fadens erfolgte bei   60 C.   Die so hergestellten Filamente hatten im trockenen Zustand einen spezifischen Widerstand von p=0, 03 Qcm. Bei der Benetzung mit Wasser erhöhte sich der spezifische Widerstand, je nach   Wasseranteil in   den Filamenten, bis auf   maximal 1, 3 Ocm. Die   Widerstandszunahme beträgt maximal etwa das 40-fache 
Beispiel 2
Einer 8   Gew.-% igen Celluloselösung in N-Methylmorpholin-N-oxid-Monohydrat   wird Russ in einem GewIchtsanteil von 80   Gew.-%,   bezogen auf Cellulose, zugesetzt.

   Diese Spinnlösung wird bei einer Temperatur von ca.   95 C   durch eine Schlitzdüse zu einer Folie, die im getrockneten Zustand eine Dicke von 50   go   besitzt, verformt Die Abzugsgeschwindigkeit betrug 15 m/min. Die Düse hatte einen Abstand zum wässrigen Fällbad von 10 mm. Die aus der Düse austretende Folie wurde nach der Luftstrecke durch ein Wasserbad von 6 m Länge geführt und anschliessend aufgewickelt. Die Trocknung der Folie erfolgte bei   60 C.   Die so hergestellten Folien hatten Im trockenen Zustand einen spezifischen Widerstand von 0, 14 Qcm. Bei der Benetzung mit Wasser erhöhte sich der spezifische Widerstand, in Abhangigkeit vom Wassergehalt, bis maximal 44 Ocm Das entspricht einer maximalen Widerstandserhöhung um das 314-fache. 



   Beispiel 3
Ein Sensor gemäss Beispiel 2 wurde mit Ethanol benetzt. Der spezifische Widerstand erhöhte sich in Abhängigkeit vom Ethanolgehalt von   0, 14 cm.   auf   maximal 0, 46 Ocm.   Das ist eine Erhöhung des Widerstandes um das 3, 3-fache. 
 EMI3.1 
 gesetzt. Der spezifische Widerstand erhöhte sich in Abhängigkeit von der Zugspannung von   0, 03 Ocm   auf 0, 035 Ocm. 



    Beispiel 5   
Eine Folie nach Beispiel 2 wurde einer mechanischen Druckbelastung bis 5 kN/cm2 ausgesetzt. 



  Der spezifische Widerstand verringerte sich In Abhängigkeit von der Druckbelastung von 0, 14 Ocm auf   0, 11 Qcm.   Diese Widerstandsänderung entspricht einer hohen Druckempfindlichkeit bei dem Einsatz dieser Folie als Drucksensor. 



   Beispiel 6
Ein Sensor nach Beispiel 2, der aus einer 5 mm breiten und 50 mm langen Folie bestand, wurde so mit einer Lichtquelle bestrahlt, dass sich die Folientemperatur von   180C auf 280C   erhöhte Der spezifische Widerstand betrug vor der Erwärmung   0,14 cm   und nach der Erwärmung   0, 135 cm.   



   Beispiel 7
Zum Aufbau eines Feuchtesensors wurde ein polyfiler Faden mit einer Länge von 10 cm, der entsprechend Beispiel 1 hergestellt wurde, auf einen Keramikzylinder von 5 mm Durchmesser aufgewickelt. Die beiden Enden wurden wegen des besseren elektrischen Kontaktes mit Leitsilber belegt. Der elektrische Widerstand zwischen den beiden Enden betrug im trockenen Zustand   1, 55 kO. Im   nassen Zustand betrug der Widerstand   62, 2 kO.   Dieser Feuchtesensor wurde in dem Zweig einer elektrischen Brückenschaltung angeordnet und konnte in Verbindung mit einer Verstärkeranordnung zur Füllstandsüberwachung in einem Behälter eingesetzt werden.

Claims (10)

  1. PATENTANSPRÜCHE : 1. Verfahren zur Herstellung von Sensormaterial, dessen elektrischer Widerstand hochemp- findlich auf Änderungen der Materialform anspricht, dadurch gekennzeichnet, dass man eine physikalische Polysaccharid-Lösung in einem geeigneten organischen Lösungs- mittel herstellt, die 2 bis 25 Gew.-% Polysaccharid gelöst und einen in dem Sensormaterial die Perkolationsschwelle erreichenden Gewichtsanteil wenigstens eines pulverförmigen, elektrisch leitfähigen Zusatzstoffes dispergiert enthält, und der Lösung eine Form gibt und durch Entfernung des Lösungsmittels und Ausfällen des Polysaccharids das Sensormaterial bildet.
  2. 2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass man eine Lösung mit einem Zu- satzstoffanteil in dem Bereich von 5 bis 500 Gew.-%, bezogen auf Polysaccharid, einsetzt.
  3. 3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, dass man Cellulose als Poly- saccharid einsetzt.
  4. 4. Verfahren nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass man ein Amin-N-oxid, insbesondere das Monohydrat des N-Methylmorpholin-N-oxids (NMMO-MH) als Lösungsmittel einsetzt.
  5. 5. Verfahren nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass man die Zusatzstoffe mit Korngrössen in dem Bereich von 1 nm bis 10 Jlm einsetzt
  6. 6. Verfahren nach einem der Ansprüche 1 bis 5, dadurch gekennzeichnet, dass man der Lösung durch Trocken-Nassextrusion eine Form gibt.
  7. 7. Verfahren nach Anspruch 6, dadurch gekennzeichnet, dass man den durch Trocken-Nass- extrusion erhaltenen Lösungsformkörper mit einem Nichtlösungsmittel in Berührung bringt, dadurch das Lösungsmittel dem Formkörper entzieht und ihn danach trocknet.
  8. 8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass man den Zusatzstoff in der vorgefertigten Lösung dispergiert.
  9. 9. Verfahren nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, dass man das Poly- saccharid und den Zusatzstoff In einer Mischung aus Amin-N-oxid und Nichtlösungsmittel für das Polysacchand suspendiert und durch Abdampfen des Nichtlösungsmittels das Polysaccharid löst
  10. 10. Verwendung des nach einem der Ansprüche 1 bis 9 hergestellten Sensormaterials in Form von Filamenten oder Folien, die auf einen Träger aufgebracht sind und deren Enden mit elektrisch leitenden Kontakten versehen sind, als Feuchtigkeits-, Spannungs- oder Tempe- ratursensor.
AT31597A 1997-02-25 1997-02-25 Verfahren zur herstellung von sensormaterial und seine verwendung AT408228B (de)

Priority Applications (1)

Application Number Priority Date Filing Date Title
AT31597A AT408228B (de) 1997-02-25 1997-02-25 Verfahren zur herstellung von sensormaterial und seine verwendung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT31597A AT408228B (de) 1997-02-25 1997-02-25 Verfahren zur herstellung von sensormaterial und seine verwendung

Publications (2)

Publication Number Publication Date
ATA31597A ATA31597A (de) 2001-02-15
AT408228B true AT408228B (de) 2001-09-25

Family

ID=3487313

Family Applications (1)

Application Number Title Priority Date Filing Date
AT31597A AT408228B (de) 1997-02-25 1997-02-25 Verfahren zur herstellung von sensormaterial und seine verwendung

Country Status (1)

Country Link
AT (1) AT408228B (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340847C (zh) * 2005-10-10 2007-10-03 北京科技大学 一种电阻式压力传感器用力学敏感材料的制备方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0512703A1 (de) * 1991-05-04 1992-11-11 Cabot Plastics Limited Leitfähige Polymerzusammensetzungen
US5250227A (en) * 1990-05-03 1993-10-05 National Starch And Chemical Investment Holding Corporation Electrically conductive coating composition for providing a bend sensor
WO1995019626A1 (en) * 1994-01-17 1995-07-20 Hydor S.R.L. Heat-sensitive resistive compound and method for producing it and using it

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5250227A (en) * 1990-05-03 1993-10-05 National Starch And Chemical Investment Holding Corporation Electrically conductive coating composition for providing a bend sensor
EP0512703A1 (de) * 1991-05-04 1992-11-11 Cabot Plastics Limited Leitfähige Polymerzusammensetzungen
WO1995019626A1 (en) * 1994-01-17 1995-07-20 Hydor S.R.L. Heat-sensitive resistive compound and method for producing it and using it

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100340847C (zh) * 2005-10-10 2007-10-03 北京科技大学 一种电阻式压力传感器用力学敏感材料的制备方法

Also Published As

Publication number Publication date
ATA31597A (de) 2001-02-15

Similar Documents

Publication Publication Date Title
AT391473B (de) Monoaxial verstreckter formkoerper aus polytetrafluoraethylen und verfahren zu seiner herstellung
AT395863B (de) Verfahren zur herstellung eines cellulosischen formkoerpers
DE1927929C3 (de) Verfahren zum Bearbeiten einer Werkstückoberfläche
DE3703077A1 (de) Verfahren zur modifizierung der oberflaechencharakteristik von russ und mittels desselben hergestellter russ
DE2350158B2 (de) Verfahren *ur Herstellung von elektrisch leitfä.higen Bahnen oder Folien f Pll
DE2010220B2 (de) Kapazitives synthetisches Feuchtigkeitsmeßelement
WO1990001043A1 (de) Hydrophiles polymer mit gegenüber hydrophilen lösungsmitteln erhöhter beständigkeit
DE19537726C2 (de) Verfahren zur Herstellung von mechanisch stabilen polyfilen Filamentbündeln aus Cellulose mit einem sehr hohen Anteil von Zusatzstoffen
DE3720135C2 (de) Öl enthaltende Spritzgußmasse
AT408228B (de) Verfahren zur herstellung von sensormaterial und seine verwendung
DE2931439A1 (de) Acrylnitrilpolymerfasern und verfahren zur herstellung derselben
DE19542533C2 (de) Verfahren zur Herstellung von Sensormaterial und seine Verwendung
DE1807652A1 (de) Feuchtigkeitsempfindliches Element fuer Feuchtigkeitsmessgeraete und Verfahren zu dessen Herstellung
DE2754515C2 (de) Flammfestausrüsten von Kunststoffen
DE2352903A1 (de) Verfahren zur herstellung von mit kohlenstoffasern verstaerkten polyamidharzen
DE2340695A1 (de) Polymermasse und ihre herstellung und verwendung
EP1268886A2 (de) Verfahren zum spinnstrecken von polymeren
DE3642416C2 (de)
DE2124473B2 (de) Poroese acrylfasern und verfahren zu deren herstellung
DE69121906T2 (de) Formkörper aus mikroporösem, segmentiertem, elastischem polyurethan
DE2514919C2 (de) Herstellung von mikroporösen Flächengebilden
DE1494574A1 (de) Verfahren zur Herstellung von Hohlfaeden aus Tetrafluoraethylenpolymeren
DE1807652C (de) Feuchte-Meßelement und Verfahren zu dessen Herstellung
DE2356329A1 (de) Synthetische hochpolymere masse zur herstellung von textilem material
DE1094918B (de) Verfahren zur Herstellung von Faeden aus Polypropylen

Legal Events

Date Code Title Description
ELJ Ceased due to non-payment of the annual fee