AT389477B - Anwendung eines verfahrens zum schuetzen der badoberflaeche einer metallschmelze - Google Patents
Anwendung eines verfahrens zum schuetzen der badoberflaeche einer metallschmelzeInfo
- Publication number
- AT389477B AT389477B AT270181A AT270181A AT389477B AT 389477 B AT389477 B AT 389477B AT 270181 A AT270181 A AT 270181A AT 270181 A AT270181 A AT 270181A AT 389477 B AT389477 B AT 389477B
- Authority
- AT
- Austria
- Prior art keywords
- melt
- magnesium
- bath surface
- protective
- inert gas
- Prior art date
Links
- 238000000034 method Methods 0.000 title claims description 14
- 230000001681 protective effect Effects 0.000 claims description 26
- FYYHWMGAXLPEAU-UHFFFAOYSA-N Magnesium Chemical compound [Mg] FYYHWMGAXLPEAU-UHFFFAOYSA-N 0.000 claims description 23
- 229910052749 magnesium Inorganic materials 0.000 claims description 23
- 239000011777 magnesium Substances 0.000 claims description 23
- 239000007789 gas Substances 0.000 claims description 22
- 239000000155 melt Substances 0.000 claims description 19
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 claims description 18
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 13
- 239000001301 oxygen Substances 0.000 claims description 13
- 229910052760 oxygen Inorganic materials 0.000 claims description 13
- 239000011261 inert gas Substances 0.000 claims description 10
- 229910052786 argon Inorganic materials 0.000 claims description 9
- 229910000861 Mg alloy Inorganic materials 0.000 claims description 8
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 claims description 7
- 229910052751 metal Inorganic materials 0.000 claims description 7
- 239000002184 metal Substances 0.000 claims description 7
- 229910052757 nitrogen Inorganic materials 0.000 claims description 3
- 229910045601 alloy Inorganic materials 0.000 claims description 2
- 239000000956 alloy Substances 0.000 claims description 2
- 238000005266 casting Methods 0.000 description 11
- 229910018503 SF6 Inorganic materials 0.000 description 10
- SFZCNBIFKDRMGX-UHFFFAOYSA-N sulfur hexafluoride Chemical compound FS(F)(F)(F)(F)F SFZCNBIFKDRMGX-UHFFFAOYSA-N 0.000 description 10
- 229960000909 sulfur hexafluoride Drugs 0.000 description 9
- 239000007788 liquid Substances 0.000 description 8
- 150000003839 salts Chemical class 0.000 description 7
- RAHZWNYVWXNFOC-UHFFFAOYSA-N Sulphur dioxide Chemical compound O=S=O RAHZWNYVWXNFOC-UHFFFAOYSA-N 0.000 description 6
- 238000002844 melting Methods 0.000 description 6
- 230000008018 melting Effects 0.000 description 6
- 229910052790 beryllium Inorganic materials 0.000 description 5
- ATBAMAFKBVZNFJ-UHFFFAOYSA-N beryllium atom Chemical compound [Be] ATBAMAFKBVZNFJ-UHFFFAOYSA-N 0.000 description 5
- 238000010438 heat treatment Methods 0.000 description 5
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 4
- 229910000831 Steel Inorganic materials 0.000 description 3
- 238000009749 continuous casting Methods 0.000 description 3
- 150000002739 metals Chemical class 0.000 description 3
- 239000010959 steel Substances 0.000 description 3
- PXGOKWXKJXAPGV-UHFFFAOYSA-N Fluorine Chemical compound FF PXGOKWXKJXAPGV-UHFFFAOYSA-N 0.000 description 2
- 239000000654 additive Substances 0.000 description 2
- 239000001569 carbon dioxide Substances 0.000 description 2
- 229910002092 carbon dioxide Inorganic materials 0.000 description 2
- 238000005260 corrosion Methods 0.000 description 2
- 230000007797 corrosion Effects 0.000 description 2
- 239000011737 fluorine Substances 0.000 description 2
- 229910052731 fluorine Inorganic materials 0.000 description 2
- 239000000203 mixture Substances 0.000 description 2
- 230000002685 pulmonary effect Effects 0.000 description 2
- 239000002341 toxic gas Substances 0.000 description 2
- 229920001817 Agar Polymers 0.000 description 1
- ZAMOUSCENKQFHK-UHFFFAOYSA-N Chlorine atom Chemical compound [Cl] ZAMOUSCENKQFHK-UHFFFAOYSA-N 0.000 description 1
- 239000008272 agar Substances 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000000460 chlorine Substances 0.000 description 1
- 229910052801 chlorine Inorganic materials 0.000 description 1
- 230000001427 coherent effect Effects 0.000 description 1
- PXBRQCKWGAHEHS-UHFFFAOYSA-N dichlorodifluoromethane Chemical compound FC(F)(Cl)Cl PXBRQCKWGAHEHS-UHFFFAOYSA-N 0.000 description 1
- 235000019404 dichlorodifluoromethane Nutrition 0.000 description 1
- 229910001873 dinitrogen Inorganic materials 0.000 description 1
- 230000008020 evaporation Effects 0.000 description 1
- 238000001704 evaporation Methods 0.000 description 1
- 239000003112 inhibitor Substances 0.000 description 1
- 239000010410 layer Substances 0.000 description 1
- 239000003915 liquefied petroleum gas Substances 0.000 description 1
- 229910001338 liquidmetal Inorganic materials 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 230000003647 oxidation Effects 0.000 description 1
- 238000007254 oxidation reaction Methods 0.000 description 1
- 239000011241 protective layer Substances 0.000 description 1
- 238000007790 scraping Methods 0.000 description 1
- 239000007787 solid Substances 0.000 description 1
- 239000013589 supplement Substances 0.000 description 1
- 230000007704 transition Effects 0.000 description 1
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/006—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals with use of an inert protective material including the use of an inert gas
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B26/00—Obtaining alkali, alkaline earth metals or magnesium
- C22B26/20—Obtaining alkaline earth metals or magnesium
- C22B26/22—Obtaining magnesium
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Mechanical Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Life Sciences & Earth Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- General Life Sciences & Earth Sciences (AREA)
- Geology (AREA)
- Manufacture And Refinement Of Metals (AREA)
Description
<Desc/Clms Page number 1> Die Erfindung betrifft die Anwendung eines Verfahrens zum Schützen der Badoberfläche einer Metallschmelze oder einer Schmelze einer Legierung, wobei über der Schmelzbadoberfläche eine im wesentlichen aus inertem Gas bestehende Schutzgasatmosphäre errichtet wird und auf die Schmelzbadoberfläche verflüssigtes Inertgas, vorzugsweise Argon oder Stickstoff gegeben wird, auf eine Magnesiumschmelze oder eine Schmelze einer Magnesiumlegierung. Geschmolzenes Magnesium nimmt wegen seiner enorm hohen Affinität zu Sauerstoff eine Sonderstellung unter den Metallschmelzen ein. Um ein Entzünden und Brennen einer Magnesiumschmelze zu verhindern, ist es notwendig, den Zutritt von Sauerstoff zur Magnesiumschmelze zu verhindern. Zu diesem Zweck sind zahlreiche Verfahren vorgeschlagen worden. Das Verfahren, welches auf Magnesiumschmelzen angewandt werden voll, ist aus der DE-OS 25 28 427 bekannt und wird gemäss dieser Druckschrift in Verbindung mit teilchenförmigen Zusatzstoffen verwendet. Diese Zusatzstoffe würden die sofortige Entflammung einer magnesiumhältigen Metallschmelze hervorrufen und dienen hauptsächlich dazu, die Reibung beim Stranggiessen der in dieser Druckschrift genannten Metalle zu verringern. Aus der DE-OS 20 18 407 geht eine Schutzatmosphäre für Magnesium und Magnesiumlegierungen hervor, die auf der Lehre beruht, dass zur wirksamen Abdeckung von Magnesiumschmelzen eine zumindest aus zwei Komponenten bestehende Gasatmosphäre notwendig ist. Mindestens eine dieser Komponenten ist gemäss dieser Druckschrift fluor- oder fluor- und chlorhältiger Oxydationsinhibitor. Aus der DE-OS 27 58 103 ist es beim Stranggiessen von Stahl zum Schutz der flüssigen Stahloberfläche bekannt, ein Mehrphasengemisch aus flüssigem Inertgas und darin suspendierten, nach dem Ausscheiden aus dem Gemisch in Kontakt mit dem flüssigen Stahl aufschmelzenden Festkörper über der Badoberfläche aufzubringen. Aus der FR-OS 21 77 452 ist es beim Stranggiessen von Metallen bekannt, flüssiges Inertgas auch auf den ausfliessenden Strahl des flüssigen Metalles zu bringen. Die Anordnung der dazu vorgesehenen Vorrichtung zeigt, dass dabei nur an Schmelzen von Metallen gedacht ist, die keine mit Magnesium vergleichbare Affinität zu Sauerstoff besitzen. Es ist weiters bekannt, mit Hilfe von Abdecksalzen auf der Badoberfläche einer Magnesiumschmelze eine geschlossene Schicht zu bilden, die Schutz vor dem Zutritt der Atmosphäre gewährt. Nachteilig ist dabei jedoch, dass die Schutzschicht häufig durch Zugabe weiterer Mengen von Abdecksalz ergänzt oder erneuert werden muss. Zudem sind die durch den Wärmekontakt mit der Schmelze verflüssigten Abdecksalze spezifisch schwerer als die Schmelze, sinken daher durch die Schmelze hindurch und setzen sich auf dem Tiegelboden ab. Die Gussstücke haben deshalb Salzeinschlüsse, die die Festigkeitswerte vermindern und die Korrosion beschleunigen. Ausserdem können einer Magnesiumschmelze geringe Mengen (ungefähr 0, 001%) Beryllium zulegiert werden. Beryllium-Zusatz vermindert die Oxidationsneigung von geschmolzenem Magnesium. Das Zulegieren von Beryllium wird jedoch wegen seiner geringen Schutzwirkung selten als alleinige Schutzmassnahme ergriffen, sondern dient meist nur als Ergänzung. Zudem ist das Zulegieren von Beryllium wegen der Gefahr einer Lungenberyllose äusserst gefährlich. Während einer Schicht darf der Durchschnittsgehalt an Beryllium in der eine Magnesiumgiessanlage umgebenden Atmosphäre den Wert 2. 10-6 g/m3 Luft nicht überschreiten. Schliesslich ist es bekannt, zur Vermeidung eines Brandes beim Schmelzen und Vergiessen von Magnesium bzw. Magnesiumlegierungen Schutzgase wie Schwefelhexafluorid, Schwefeldioxid, Kohlendioxid, Stickstoff, Argon und Difluordichlormethan selten in der Form von Einkomponentengasen, meist in Form von Mischgasen eingesetzt werden. So ist es bekannt, dass z. B. in einer nur aus Kohlendioxid bestehenden Schutzgasatmosphäre kein zusammenhängender Schutzfilm an der Badoberfläche einer Magnesiumschmelze gebildet werden kann. Eine gute Schutzwirkung kann bisher mit Schwefeldioxid oder Schwefelhexafluorid erzielt werden. Unter den in der Ofenatmosphäre herrschenden Bedingungen erfolgt stets entweder eine Spaltung der Schutzgase oder eine chemische Reaktion, wodurch in der Ofenatmosphäre immer giftige Gase gebildet werden. Selbst die Schutzgase mit der besten Schutzwirkung (Schwefelhexafluorid und Schwefeldioxid) gewähren keinen 100%-igen Schutz vor Bränden, wie hinreichend viele Beispiele in der Praxis belegen. Ein Brand muss mit Abdecksalzen gelöscht werden, wobei die Restschmelze dann zu verwerfen ist Der Erfindung liegt daher die Aufgabe zugrunde, ein Verfahren anzugeben, mit dem auf wirtschaftliche und umweltfreundliche Weise die Badoberfläche von Schmelzen aus Magnesium oder Magnesiumlegierungen sicher vor Bränden geschützt werden können. Erfindungsgemäss wird diese Aufgabe dadurch gelöst, dass das eingangs definierte Verfahren auf eine Magnesiumschmelze oder eine Schmelze einer Magnesiumlegierung angewandt wird, wobei an Hand des gemessenen Sauerstoffgehaltes der Schutzgasatmosphare eine solche Menge des verflüssigten Inertgases pro Zeiteinheit der Schmelzoberfläche zugeführt wird, dass der Sauerstoffgehalt der Schutzgasatmosphare stets unter 1 Vol.-% bleibt. Aufgrund der Volumenänderung während des Verdampfens - aus einem Liter Flüssigargon z. B. bilden sich 836 Liter Argongas bei 150C und 1 bar - wird der in der Luft enthaltene Sauerstoff im Ofenraum ausgespült Es ist festgestellt worden, dass mit dem erfindungsgemässen Verfahren das Brennen einer Magnesiumschmelze oder einer Schmelze einer Magnesiumlegierung wirksam verhindert werden kann. Dies ist überraschend, da man bisher der Auffassung war, mit einer z. B. ausschliesslich aus Argon bestehenden Schutzatmosphäre könne wirtschaftlich kein ausreichender Schutz über der Badoberfläche gebildet werden. Bisher wurden z. B. aus Schwefelhexafluorid gebildete Schutzatmosphären einer ausschliesslich aus Argon bestehenden Schutzgasatmosphäre vorgezogen. Die <Desc/Clms Page number 2> Praxis hat jedoch gezeigt, dass die Neigung zu Bränden beim erfindungsgemässen Verfahren geringer ist, als beispielsweise in einer Schutzatmosphäre aus reinem Schwefelhexafluorid. Bei erfindungsgemässer Anwendung des Verfahrens werden die Nachteile bekannter Schutzmassnahmen vermieden : Es treten keinerlei giftige Gase auf und die Gefahr einer Lungen-Beryllose ist ausgeschlossen, so dass das vorliegende Verfahren umweltfreundlich ist. Die hergestellten Gussteile haben keine Salzeinschlüsse und sind somit korrosionsbeständiger und besitzen höhere Festigkeitswerte, als Gussstücke, die aus einer mit Abdecksalzen geschützten Magnesiumschmelze hergestellt worden sind. Schliesslich konnte festgestellt werden, dass eine nach dem erfindungsgemäss angewendeten Verfahren hergestellte Schutzatmosphäre einer aus Schwefelhexafluorid bestehenden Atmosphäre nicht nur in ihrer Schutzwirkung sondern auch wirtschaftlich überlegen ist. So müssen für das Schutzgas Schwefelhexafluorid gegenwärtig die hohen Kosten von ca. 120,--DM/m3 veranschlagt werden. Vergleicht man jedoch die Kosten eines Liters Argongases oder Stickstoffgases mit denen eines Liters Schwefelhexafluorid-Gases, so verhalten sich die Kosten 1 : 40 bis 1 : 80. Zwar wird beim vorliegenden Verfahren eine grössere Menge inerten Gases verbraucht als SF6 für die Ausbildung einer Schwefelhexafluorid-Schutzatmosphäre erforderlich ist, jedoch bewirkt der günstigere Preis Kosteneinsparungen bis zu etwa 75%. Wird die Vol. %-Grenze für den Sauerstoffgehalt nicht überschritten, so kann ein Brennen einer Magnesiumschmelze sicher vermieden werden. Die Menge des der Schmelzbadoberfläche zuzuführenden Flüssiggases ist von mehreren Parametern abhängig, z. B. vom Volumen über der Badoberfläche im Schmelzofen, von der Grösse der Badoberfläche und der Temperatur der Schmelze. Die sicherste Methode, ein Brennen der Magnesiumschmelze zu vermeiden, ist daher die, den Sauerstoffgehalt der Schutzatmosphäre unter der oben angegebenen Grenze zu halten. Wird diese Grenze überschritten, muss die auf die Schmelzbadoberfläche geleitete Menge an verflüssigtem Gas erhöht werden. Ist der Sauerstoffgehalt wieder unter die Höchstgrenze gefallen, kann die Flüssiggasmenge stufenweise reduziert werden, bis sich ein konstanter Sauerstoffpegel eingestellt hat. Diese Regelung hat sich für die Dauer der Aufheizphase und der Giessphase bewährt. Nach Beendigung der Aufheizphase hat es sich oft als notwendig erwiesen, mit Beginn der Giessphase die der Schmelzbadoberfläche zugeführte Menge an verflüssigtem Gas für die Dauer der Giessphase gegenüber der Aufheizphase zu erhöhen. Diese Massnahme gewährleistet eine konstante Schutzwirkung auch beim Übergang von der Aufheizphase zur Giessphase, in der die Badoberfläche abgekrätzt wird. Beim Giessen selbst sinkt der Badspiegel und das Volumen oberhalb der Schmelzbadoberfläche vergrössert sich ständig, weshalb vor allem bei offenen Giesssystemen zur Gewährleistung der Sauerstoffkonzentration von kleiner als 1 Vol% die Zugabe von Flüssiggas zu erhöhen ist. Beispiel : In einem Ofen mit einem Volumen von ca. 85 Litern wurden bis zu 50 kg Magnesiumlegierung geschmolzen und anschliessend gegossen (offenes System). Während der Aufheizphase wurden 2 kg Flüssigargon/h, während der Giessphase 4 kg Flüssigargon/h auf die Schmelzbadoberfläche geleitet. Zu keiner Zeit, ob in der Aufheizphase, während des Abkratzens der Schmelze, noch während der Giessphase, waren irgenwelche Anzeichen eines Brandes festzustellen. Sämtliche gegossenen Teile sind im Automobilbau verwendbar. Zusammenfassend ist festzustellen, dass das vorliegende Verfahren, das nicht nur im Schmelzofen, sondern auch in geschlossenen oder offenen Giesseinrichtungen mit Vorteil anwendbar ist, auf wirksame Weise das Brennen einer Magnesiumschmelze verhindert und die Herstellung qualitativ hochwertiger Gussstücke unter umweltfreundlichen Bedingungen wirtschaftlich ermöglicht.
Claims (1)
- PATENTANSPRUCH Anwendung eines Verfahrens zum Schützen der Badoberfläche einer Metallschmelze oder einer Schmelze einer Legierung, wobei über der Schmelzbadoberfläche eine im wesentlichen aus inertem Gas bestehende Schutzgasatmosphäre errichtet wird und auf die Schmelzbadoberfläche verflüssigtes Inertgas, vorzugsweise Argon oder Stickstoff gegeben wird, auf eine Magnesiumschmelze oder eine Schmelze einer Magnesiumlegierung, wobei an Hand des gemessenen Sauerstoffgehaltes der Schutzgasatmosphäre eine solche Menge des verflüssigten Inertgases pro Zeiteinheit der Schmelzoberfläche zugeführt wird, dass der Sauerstoffgehalt der Schutzgasatmosphäre stets unter 1 Vol.-% bleibt.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT270181A AT389477B (de) | 1981-03-10 | 1981-06-17 | Anwendung eines verfahrens zum schuetzen der badoberflaeche einer metallschmelze |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19813109066 DE3109066A1 (de) | 1981-03-10 | 1981-03-10 | "verfahren zum schuetzen der badoberflaeche einer magnesiumschmelze" |
AT270181A AT389477B (de) | 1981-03-10 | 1981-06-17 | Anwendung eines verfahrens zum schuetzen der badoberflaeche einer metallschmelze |
Publications (2)
Publication Number | Publication Date |
---|---|
ATA270181A ATA270181A (de) | 1989-05-15 |
AT389477B true AT389477B (de) | 1989-12-11 |
Family
ID=25598943
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
AT270181A AT389477B (de) | 1981-03-10 | 1981-06-17 | Anwendung eines verfahrens zum schuetzen der badoberflaeche einer metallschmelze |
Country Status (1)
Country | Link |
---|---|
AT (1) | AT389477B (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT2420U1 (de) * | 1997-11-24 | 1998-10-27 | Unitech Ag | Verfahren zum betrieb von ofenanlagen für magnesiumlegierungen |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN116445738B (zh) * | 2023-04-14 | 2025-06-10 | 昆明理工大学 | 一种提纯粗镁的设备及方法 |
-
1981
- 1981-06-17 AT AT270181A patent/AT389477B/de not_active IP Right Cessation
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT2420U1 (de) * | 1997-11-24 | 1998-10-27 | Unitech Ag | Verfahren zum betrieb von ofenanlagen für magnesiumlegierungen |
Also Published As
Publication number | Publication date |
---|---|
ATA270181A (de) | 1989-05-15 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE2650113A1 (de) | Entschwefelungsverfahren | |
DE2222348C3 (de) | Schweißelektrode zum Lichtbogenschweißen an Luft | |
DE2137996A1 (de) | Verfahren zum Eintragen eines festen Metalls in eine Metallschmelze | |
EP0053848B2 (de) | Verfahren zum Einblasen von hochsauerstoffhaltigen Gasen in ein NE-Metall-Schmelzbad | |
DE1299670B (de) | Zusatz zu Gusseisenschmelzen zum Entschwefeln und zur Kugelgraphitbildung | |
AT389477B (de) | Anwendung eines verfahrens zum schuetzen der badoberflaeche einer metallschmelze | |
DE3109066A1 (de) | "verfahren zum schuetzen der badoberflaeche einer magnesiumschmelze" | |
DE2713639A1 (de) | Verfahren zum schmelzen von kupferlegierungen | |
EP0263255A1 (de) | Verfahren und Mittel zum gleichzeitigen Aufheizen und Reinigen von Metallbädern | |
DE1408878C3 (de) | Behandlungsgemisch für Stahlschmelzen | |
DE3428732A1 (de) | Verfahren zur herstellung von staehlen mit niedrigem kohlenstoffgehalt | |
DE3001941C2 (de) | Verfahren zur Herstellung von Ferromangan | |
DE4226982C1 (de) | Metallothermisches Reaktionsgemisch | |
DE2049720A1 (de) | Verfahren zum Stranggießen | |
DE2626354C3 (de) | Kohlenstofffreies Gießpulver für Kokillen- und Strangguß von Stahl | |
DE2241876A1 (de) | Verfahren zur entfernung von al tief 2 o tief 3 aus stahlschmelzen | |
DE2550620A1 (de) | Verfahren zum einverleiben eines hochreaktiven materials in geschmolzenen stahl | |
DE4033183A1 (de) | Mittel und verfahren zur calciumbehandlung von stahl | |
DE2715077C3 (de) | Exothermes Gemisch zum Frischen von Stahlschmelzen | |
DE1812917C (de) | Schlackenpulver als Zusatz beim Gießen von titanlegierten Stahlen in Kokillen | |
DE19641383C1 (de) | Verfahren zur Herstellung von Stahlgüten mit einem Silizium-Gehalt kleiner gleich 0,08 Gewichtsprozent und hohem Reinheitsgrad | |
DE3013213A1 (de) | Verfahren zur dispergierung eines schwimmfaehigen, festen additivs in einer schmelze aus geschmolzenem metall und entsprechendes in schmelze dispergierbares, schwimmfaehiges, festes additiv | |
AT211137B (de) | Verfahren zur Elektro-Schlacke-Schweißung | |
AT362411B (de) | Verfahren und vorrichtung zur herstellung einer legierung | |
DE847809C (de) | Verfahren zum Reinigen, Entgasen und Giessen von Zink enthaltenden Legierungen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
EN | Declaration of nullification | ||
ELJ | Ceased due to non-payment of the annual fee |