AT388682B - Verfahren zur extraktion von wasserspuren aus piezoelektrischen kristallelementen und eine vorrichtung zur durchfuehrung des verfahrens - Google Patents

Verfahren zur extraktion von wasserspuren aus piezoelektrischen kristallelementen und eine vorrichtung zur durchfuehrung des verfahrens

Info

Publication number
AT388682B
AT388682B AT0342487A AT342487A AT388682B AT 388682 B AT388682 B AT 388682B AT 0342487 A AT0342487 A AT 0342487A AT 342487 A AT342487 A AT 342487A AT 388682 B AT388682 B AT 388682B
Authority
AT
Austria
Prior art keywords
water
crystal elements
reaction flask
extractor
extraction
Prior art date
Application number
AT0342487A
Other languages
English (en)
Other versions
ATA342487A (de
Inventor
Uwe Dipl Ing Posch
Guenter Dipl Ing Dr Engel
Alfred Nitsch
Original Assignee
Avl Verbrennungskraft Messtech
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Avl Verbrennungskraft Messtech filed Critical Avl Verbrennungskraft Messtech
Priority to AT0342487A priority Critical patent/AT388682B/de
Priority to EP88890275A priority patent/EP0316298B1/de
Priority to DE8888890275T priority patent/DE3870812D1/de
Priority to US07/269,794 priority patent/US4881003A/en
Priority to CN88107844A priority patent/CN1038133A/zh
Priority to JP63286620A priority patent/JPH01160896A/ja
Publication of ATA342487A publication Critical patent/ATA342487A/de
Priority to SU894614894A priority patent/RU2060306C1/ru
Application granted granted Critical
Publication of AT388682B publication Critical patent/AT388682B/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B7/00Single-crystal growth from solutions using solvents which are liquid at normal temperature, e.g. aqueous solutions
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B29/00Single crystals or homogeneous polycrystalline material with defined structure characterised by the material or by their shape
    • C30B29/10Inorganic compounds or compositions
    • C30B29/14Phosphates
    • CCHEMISTRY; METALLURGY
    • C30CRYSTAL GROWTH
    • C30BSINGLE-CRYSTAL GROWTH; UNIDIRECTIONAL SOLIDIFICATION OF EUTECTIC MATERIAL OR UNIDIRECTIONAL DEMIXING OF EUTECTOID MATERIAL; REFINING BY ZONE-MELTING OF MATERIAL; PRODUCTION OF A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; SINGLE CRYSTALS OR HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; AFTER-TREATMENT OF SINGLE CRYSTALS OR A HOMOGENEOUS POLYCRYSTALLINE MATERIAL WITH DEFINED STRUCTURE; APPARATUS THEREFOR
    • C30B33/00After-treatment of single crystals or homogeneous polycrystalline material with defined structure

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • Extraction Or Liquid Replacement (AREA)

Description


   <Desc/Clms Page number 1> 
 
 EMI1.1 
 und eine Vorrichtung zur Durchführung des Verfahrens. 



   Der Spurengehalt von H20 in quarzisotypen Kristallen ist ein massgebliches   Qualitätskriterium   für praktisch alle Anwendungen, piezoelektrischer Kristallelemente, wobei dieser Gehalt so niedrig wie möglich gehalten 
 EMI1.2 
 zu kontrollieren. Gleiches gilt auch für die Züchtung von   GaPCh, wo   auch der H20-Gehalt von grosser Bedeutung ist. Hier wird   z. B.   mit hoher Säurekonzentration gearbeitet, um den   HO-Gehalt   von vornherein niedrig zu halten. 



   Eine weitere Möglichkeit den   HO-Gehalt   zu minimieren, bietet sich dadurch an, dass die Löslichkeit von H20 in   GaP04-Kristallen   retrograd ist, d. h., mit steigender Temperatur sinkt. Die sich daraus ergebende Strategie der Züchtung bei hohen Temperaturen wird jedoch durch die Korrosivität der   Zuchtlösung   begrenzt. Bei dem aus der AT-PS 379 831 bekannten Verfahren sind bei hohen Säurekonzentrationen unter günstigen Voraussetzungen H20-Spurenwerte von ca. 50 ppm zu erzielen. Es ist auch hier der Einfluss der Wachstumsrate auf den   H20-   Gehalt zu berücksichtigen, sodass bei schneller wachsenden Kristallen Wassergehalte bis zu 150 ppm gemessen werden. 



   Da höhere Wachstumsraten bei niedrigem Spurengehalt an H20 anzustreben sind, müssen Methoden zur nachträglichen Reduktion des   Ho-gehaltes   angewandt werden. 



   Bisher sind dazu vor allem Verfahren wie Ausheizen, sowie Ausheizen im Vakuum angewandt worden, welche den Nichtgleichgewichtszustand des H20 bei Temperaturen des Kristalls ausnützen, welche weit über seiner Züchtungstemperatur liegen. Das so erzeugte Ungleichgewicht des   H20   im Kristallgitter kann aber zu Schädigungen in der Struktur führen. Es bilden sich beispielsweise sogenannte Wasserblasen, welche die Qualitätsverbesserung durch Verminderung des   HO-Gehaltes   wieder zunichte machen. 



   In diesem Zusammenhang wurde auch bereits vorgeschlagen, die Kristallelemente mittels   Elektrodiffusion   zu behandeln. Durch den Elektrodiffusionsprozess,   d. h.   anlegen hoher Spannung und dadurch induzierte Ionendiffusion, werden zwar die obengenannten Nachteile vermieden, der Prozess ist aber ungleich aufwendiger, da die Elektrodenbereiche senkrecht zur z-Achse der Kristallelemente nach dem Diffusionsprozess gekappt werden müssen, um die dort angereicherten Fremdionen zu entfernen. 



   Aufgabe der vorliegenden Erfindung ist es, ein Verfahren vorzuschlagen, mit welchem der Spurengehalt von Wasser in piezoelektrischen Kristallelementen nach deren Züchtung entscheidend vermindert werden kann, ohne aufwendige Nachbearbeitungsprozesse oder Schädigungen des Kristallgitters in Kauf nehmen zu müssen. 



   Diese Aufgabe wird erfindungsgemäss dadurch gelöst, dass die piezoelektrischen Kristallelemente mit einer wasserentziehenden Lösung in Kontakt gebracht werden, bis der gewünschte Extraktionsgrad erreicht ist So kann beispielsweise bei einer Verfahrensdauer von 24 Stunden eine Abnahme des Wassergehaltes von durchschnittlich 5 bis 20 % erwartet werden. Die vom Wassergehalt abhängigen physikalischen Parameter der Kristallelemente, beispielsweise der Resonanzgütefaktor, wird verbessert, während andere vom Wassergehalt unabhängige Eigenschaften aufgrund des schonenden Verfahrens unverändert bleiben. 



   Da die Schwingungsgüte piezoelektrischer Elemente direkt mit dem   H20-Spurengehalt   korreliert, bringt das erfindungsgemässe Verfahren Vorteile für alle Resonatorapplikationen, aber auch für Oberflächenwellenanwendungen, da insbesondere in der aktiven Schicht der für diese Zwecke verwendeten   Kristallplättchen   geringste H20-Werte erreichbar sind. 



   Durch das neue Verfahren ist es auch möglich, Zuchtverfahren für Kristallelemente, beispielsweise für   GaP04-Kristallelemente,   vorzuschlagen, bei welchen niedrige Zuchttemperaturen angewandt werden, da der bis jetzt zwingende Grund für höhere Temperaturen, der des geringeren Wassereinbaus, durch das der Züchtung nachfolgende Extraktionsverfahren relativiert wird. 



   Der jeweilige   HO-Gehalt   als Ergebnis des Verfahrens kann durch Vermessung im Infrarot-Spektrum zu Beginn und am Schluss der Extraktion jeweils unter möglichst gleichen Bedingungen überprüft werden. 



   In einer speziellen Ausführung der Erfindung ist vorgesehen, dass die Kristalle in eine Mischung aus KarlFischer-Lösung und absolutem Methanol im   Volumsverhältnis 4 : 1   bis 1 : 4 eingelegt werden. Die zu behandelnden piezoelektrischen Kristallelemente werden in eine Mischung aus KF-Lösung und absolutem Methanol eingelegt, wobei das Methanol sowohl als Lösungsmittel dient, als auch als Reagens, welche in die Reaktion durch Bildung eines Übergangskomplexes eingreift. Die Konzentration der KF-Lösung ist vorteilhafterweise so zu wählen, dass 1 ml Lösung einem Wassergehalt von 2 bis 5 mg entspricht. 



   Von Vorteil ist in diesem Zusammenhang die Verwendung von pyridinfreier KF-Lösung, da Geruchsbelästigungen während des Verfahrens wegfallen. 



   Die mit Hilfe des Infrarot-Spektrometers gewonnenen Werte des   HoO-Gehaltes   können durch eine Titration nach Karl Fischer überprüft werden, wofür einige der vorher der Infrarot-Messung unterzogenen Kristallelemente gewogen und in einer Achat-Reibschale verrieben werden müssen. Die gepulverten Proben werden unter 

 <Desc/Clms Page number 2> 

 Ausschluss von Luftfeuchtigkeit in die Titrierzelle eingebracht. Als Titriermittel findet beispielsweise KFReagens pyridinfrei Merk 9258 Verwendung. 



   Bei hinreichend geringen Wasserspuren kann auch die Methode der coulometrischen Titration vorteilhaft sein.
Eine Weiterbildung des erfindungsgemässen Verfahrens sieht vor, dass die Kristallelemente in eine Mischung aus Karl-Fischer-Lösung und absolutem Methanol im Volumsverhältnis   l : l   eingelegt werden und die Mischung unter Ausschluss von Luftfeuchtigkeit in einem geschlossenen System erhitzt wird. Im geschlossenen System,   z. B.   in einem Stahlautoklav, baut sich durch das Erhitzen ein Druck auf, der ein Desorbieren des in der KFLösung gelösten S02 verhindert. Dadurch werden bessere Extraktionswerte in kürzerer Zeit erzielt. Ein Sieden der KF-Lösung würde zum Desorbieren des in der KF-Lösung gelösten SO2 führen und das Extraktionsvermögen der Lösung rasch erschöpfen. 



   Um höhere   Verfahrenstemperaturen - welche   im Idealfall nahe bei der Züchtungstemperatur des Kristalls liegen-zu erreichen, kann erfindungsgemäss die Mischung aus Karl-Fischer-Lösung und absolutem Methanol bei 
 EMI2.1 
 in ein mit Wasser nicht mischbares, organisches Lösungsmittel mit einer im Spurenbereich hohen Affinität zu Wasser eingelegt werden. Dieses Verfahren verwendet ein organisches Lösungsmittel, welches zwar nur eine begrenzte Menge Wasser aufnimmt, im Spurenbereich jedoch eine hohe   Affinität   zu Wasser zeigt. 



   In einer Weiterbildung des Verfahrens wird das organische Lösungsmittel im Reaktionskolben bis zum Siedepunkt erhitzt, das entstehende Dampfgemisch aus Lösungsmitteldampf und Wasserdampf am Rückfluss abgekühlt, sowie in einem dem Reaktionskolben vorgeschalteten Extraktor das Wasser, vorzugsweise mittels eines Molekularsiebes, aus dem Lösungsmittel entfernt. Die Kristalle werden dabei in das siedende Lösungsmittel eingelegt, wo dann ein Gemisch aus Lösungsmittel, und Wasser verdampft. Dieser Dampf wird am Rückfluss abgekühlt und fliesst nun nicht direkt in den Reaktionskolben zurück, sondern zuerst in einen Extraktor, der entweder Extraktionsmittel oder ein Molekularsieb für Wasser enthält.

   Dort wird das Wasser, welches sich im organischen Lösungsmittel gelöst hat, entfernt, das reine Lösungsmittel fliesst zurück in den Reaktionskolben und der Prozess beginnt von vorne. Diese Prozessführung hat den Vorteil, dass sie kontinuierlich betrieben werden kann. 



   Erfindungsgemäss können dabei als organische Lösungsmittel Toluol, Benzol oder Xylol zur Verwendung kommen. 



   Schliesslich ist erfindungsgemäss vorgesehen, dass die Extraktion über einen Zeitraum von einem halben Tag bis 60 Tagen durchgeführt wird. Bei 20 Tagen Prozessdauer ist, beispielsweise eine Reduktion des   HO-Gehaltes   um 90 % denkbar, was auch für anspruchsvollste Resonatoranwendungen ausreichend ist. Zu erwähnen ist in diesem Zusammenhang, dass Resonatorplättchen üblicherweise dünner sind als Kristallelemente für andere Anwendungen, sodass das Verfahren hier noch wirksamer zur Geltung kommt. Auch bei Oberflächenwellenelementen ist die aktive Schicht, welche die akustische Dämpfung bestimmt, sehr dünn, sodass auch hier die entsprechenden Spezifikationen gut erfüllbar sind.

   Auch bei Kristallelementen mit bereits vom Züchtungsprozess sehr niedrigen Wassergehalten ist durch das erfindungsgemässe Verfahren eine weitere Absenkung des   HO-Gehaltes   möglich. 
 EMI2.2 
 gewisse Sicherheitsvorkehrungen zu beachten. Ausserdem ist das Einatmen der Dämpfe und Berührung der Reaktionsflüssigkeit mit der Haut zu vermeiden. 



   Eine vorteilhafte Vorrichtung zur Durchführung des   erfindungsgemässen   Verfahrens ist dadurch gegeben, dass ein beheizbarer Reaktionskolben zur Aufnahme der Kristallelemente und des organischen Lösungsmittels vorhanden ist, welcher mit einem Rückflusskühler in Verbindung steht, dass der Ausgang des Rückflusskühlers in einen Extraktor, vorzugsweise einem Soxhlet-Extraktor mit einem Molekularsieb mündet, sowie dass der Extraktor ausgangsseitig mit dem Reaktionskolben verbindbar ist. Selbstverständlich können im Extraktor auch andere geeignete Trockenmittel,   z. B. CaCIo   oder   NaSCL,   zur Anwendung kommen. Im von einem Silikonölbad beheizten Reaktionskolben kann auch der Rührstab eines Magnetrührers angeordnet sein. 



   Weiters ist erfindungsgemäss vorgesehen, dass die aus dem Reaktionskolben dem Extraktor und dem   Rückflusskühler   bestehende Einheit über ein Anschlussventil an eine Trockenvorlage anschliessbar ist, wodurch die Vorrichtung frei von Luftfeuchtigkeit gehalten werden kann. 



   Im folgenden wird die vorliegende Erfindung anhand von Zeichnungen näher erläutert. 



   Es zeigen Fig. 1 eine Vorrichtung nach der Erfindung und die Fig. 2 bis 6 Infrarot-Spektren von Kristallelementen. 



   Die in Fig.   l   dargestellte Vorrichtung weist einen Reaktionskolben (l) auf, der über ein mit Silikonöl gefülltes Wärmebad (2) geheizt wird. Im als Rundkolben ausgeführten Reaktionskolben (l) befinden sich Kristallelemente (3) im Lösungsmittel Toluol. Sowohl im Reaktionskolben (l) als auch im Wärmebad (2) befinden sich Rührstäbe (4,4'), die von einem Magnetrührer (5) in Bewegung versetzt werden. Die vom siedenden Lösungsmittel aufsteigenden Lösungsmitteldämpfe gelangen mit dem aus den Kristallelementen (3) stammenden Wasserdampf durch die Leitung (6) in den Rückflusskühler (7) und treten nach deren Kondensation 

 <Desc/Clms Page number 3> 

 über dem Ausgang (8) des Rückflusskühlers in den   Soxb1et-Extraktor   (9) ein.

   Hier wird im Molekularsieb (10) das Wasser aus dem Lösungsmittel entfernt, wonach das reine Lösungsmittel in den Reaktionskolben zurückfliesst. Über das Anschlussventil (11) ist der Rückflusskühler (7) und der damit verbundene Extraktor (9), sowie der Reaktionskolben   (1)   mit einer hier nicht weiter dargestellten Trockenvorlage verbunden, welche das Eindringen von Luftfeuchtigkeit in die Vorrichtung verhindert. 



    In den Fig. 2 bis 6 ist jeweils auf der Ordinate die Transmission in % und auf der Abszisse die Wellenzahl in cm' aufgetragen. Der Wassergehalt der Probe ist aus dem Infrarot-Transmissionswert im Bereich von 3400 cm-l     (2, 9pu)   ersichtlich. Die Messkurve vor Durchführung der   HO-Extraktion   ist jeweils mit v bezeichnet und die das Ergebnis darstellende Messkurve mit n. 



   Einige Resultate des erfindungsgemässen Verfahrens sind anhand von Infrarot-Spektren von GaP04Kristallelementen in den Fig. 2 bis 4 ersichtlich, wo die Verringerung des   HO-Gehaltes   aus der verringerten IRAbsorption im Hydroxylbandenbereich entnehmbar ist. 



   In allen Fällen erfolgt eine deutliche Reduktion des Wassergehaltes in den Proben, wobei in Fig. 2 die Extraktion von   H2O   in methanolischer KF-Lösung über einen Zeitraum von 24 Stunden erfolgte und in Fig. 3 in siedender KF-Lösung über 72 Stunden extrahiert wurde. Die guten Resultate nach Fig. 3 werden jedoch durch das Austreiben von   SO2   aus der Lösung zum Teil aufgehoben, sodass es besser ist, bei höheren Verfahrenstemperaturen den Druck zu erhöhen, in einem geschlossenen System zu arbeiten und dadurch den Druck zu erhöhen, um ein Sieden der KF-Lösung zu vermeiden. Eine weitere Möglichkeit ist die Extraktion mit Toluol. 



  Das Ergebnis einer 48 Stunden Extraktion ist in Fig. 4 dargestellt. Zusammenfassend für GaP04 kann gesagt werden, dass der Wassergehalt bei einer Extraktionszeit von 24 Stunden durchschnittlich um ca. 10 % sinkt, wie die systematische Abnahme der Absorption im Hydroxylbereich feststellen lässt. Der Vergleich von Spektren, die sich durch mehrere Extraktionsschritte unterscheiden, zeigt, dass der Prozess auch über einen längeren Zeitraum wirksam ist. 



   Auch bei einer sehr wasserreichen AlP04-Probe wurde-dargestellt in Fig.   5-eine   deutliche Verringerung der Hydroxylabsorption erzielt, die Extraktion erfolgte hier in Toluol in 24 Stunden. 



   Fig. 6 zeigt den Vergleich zweier Spektren einer Probe mit sehr geringem Wassergehalt, an welcher über 
 EMI3.1 
 welch=l/dlog (lo/l)- lo.... Intensität der Primärstrahlung 1..... Intensität der Transmissionsstrahlung d..... Dicke des Kristallelementes ...... Absorptionskoeffizient eines wasserfreien Kristalls bei einer Wellenlänge von   2, 9 pu.   
 EMI3.2 
 von Wasserwerten hebt sicclsjedoch weg, sodass die aus Fig. 2 bis 6 entnommenen Werte der Wasserreduktion davon nicht betroffen sind. 



   Das hier beschriebene Wasserextraktionsverfahren stellt somit eine aussichtsreiche Möglichkeit zur Verminderung des H2O-Spurengehaltes in Kristallelementen dar.

Claims (1)

  1. PATENTANSPRÜCHE 1. Verfahren zur Extraktion von Wasserspuren aus piezoelektrischen Kristallelementen, dadurch gekennzeichnet, dass die piezoelektrischen Kristallelemente mit einer wasserentziehenden Lösung in Kontakt gebracht werden, bis der gewünschte Extraktionsgrad erreicht ist.
    2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kristalle in eine Mischung aus KarlFischer-Lösung und absolutem Methanol im Volurnsverhältnis 4 : 1 bis 1 : 4 eingelegt werden.
    3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Kristallelemente in eine Mischung aus KarlFischer-Lösung und absolutem Methanol im Volumsverhältnis 1 : 1 eingelegt werden und die Mischung unter Ausschluss von Luftfeuchtigkeit in einem geschlossenen System erhitzt wird.
    4. Verfahren nach Anspruch 2 oder 3, dadurch gekennzeichnet, dass die Mischung aus Karl-Fischer-Lösung und absolutem Methanol bei einem Druck bis 20 bar auf eine Temperatur bis 3000C erhitzt wird.
    5. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass die Kristallelemente in einem Reaktionskolben in ein mit Wasser nicht mischbares, organisches Lösungsmittel mit einer im Spurenbereich hohen Affinität zu Wasser eingelegt werden.
    6. Verfahren nach Anspruch 5, dadurch gekennzeichnet, dass das organische Lösungsmittel im Reaktionskolben bis zum Siedepunkt erhitzt wird, dass das entstehende Dampfgemisch aus Lösungsmitteldampf und Wasserdampf am Rückfluss abgekühlt wird, sowie das in einem dem Reaktionskolben vorgeschalteten Extraktor das Wasser, vorzugsweise mittels eines Molekularsiebes, aus dem Lösungsmittel entfernt wird.
    7. Verfahren nach Anspruch 5 oder 6, dadurch gekennzeichnet, dass als organisches Lösungsmittel Toluol, Benzol oder Xylol verwendet werden.
    8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass die Extraktion über einen Zeitraum von einem halben Tag bis 60 Tagen durchgeführt wird.
    9. Vorrichtung zur Durchführung des Verfahrens nach einem der Ansprüche 1 oder 5 bis 8, dadurch gekennzeichnet, dass ein beheizbarer Reaktionskolben (1) zur Aufnahme der Kristallelemente (3) und des organischen Lösungsmittels vorhanden ist, welcher mit einem Rückflusskühler (7) in Verbindung steht, dass der Ausgang (8) des Rückflusskühlers (7) in einen Extraktor (9), vorzugsweise einen Soxhlet-Extraktor mit einem Molekularsieb (10) mündet, sowie dass der Extraktor (9) ausgangsseitig mit dem Reaktionskolben (1) verbindbar ist.
    10. Vorrichtung nach Anspruch 9, dadurch gekennzeichnet, dass die aus dem Reaktionskolben (1) dem Extraktor (9) und dem Rückflusskühler (7) bestehende Einheit über ein Anschlussventil (11) an eine Trockenvorlage anschliessbar ist.
AT0342487A 1987-11-11 1987-12-23 Verfahren zur extraktion von wasserspuren aus piezoelektrischen kristallelementen und eine vorrichtung zur durchfuehrung des verfahrens AT388682B (de)

Priority Applications (7)

Application Number Priority Date Filing Date Title
AT0342487A AT388682B (de) 1987-12-23 1987-12-23 Verfahren zur extraktion von wasserspuren aus piezoelektrischen kristallelementen und eine vorrichtung zur durchfuehrung des verfahrens
EP88890275A EP0316298B1 (de) 1987-11-11 1988-11-03 Verfahren zur Verringerung des Wassergehaltes in piezoelektrischen Galliumphosphat-Kristallelementen
DE8888890275T DE3870812D1 (de) 1987-11-11 1988-11-03 Verfahren zur verringerung des wassergehaltes in piezoelektrischen galliumphosphat-kristallelementen.
US07/269,794 US4881003A (en) 1987-11-11 1988-11-10 Method and device for reducing the water content in piezoelectric GAPO.sub.4
CN88107844A CN1038133A (zh) 1987-11-11 1988-11-11 减少磷酸镓压电晶体单元含水量的方法、装置及按此方法生产的晶体单元
JP63286620A JPH01160896A (ja) 1987-11-11 1988-11-11 圧電性GaPO4結晶素子中の含水量低減方法とこの方法のための含水量低減装置とこの方法によって製造される圧電性結晶素子
SU894614894A RU2060306C1 (ru) 1987-11-11 1989-08-09 Способ уменьшения воды в пьезоэлектрических кристаллических элементах gapo4 и устройство для его осуществления

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
AT0342487A AT388682B (de) 1987-12-23 1987-12-23 Verfahren zur extraktion von wasserspuren aus piezoelektrischen kristallelementen und eine vorrichtung zur durchfuehrung des verfahrens

Publications (2)

Publication Number Publication Date
ATA342487A ATA342487A (de) 1989-01-15
AT388682B true AT388682B (de) 1989-08-10

Family

ID=3550311

Family Applications (1)

Application Number Title Priority Date Filing Date
AT0342487A AT388682B (de) 1987-11-11 1987-12-23 Verfahren zur extraktion von wasserspuren aus piezoelektrischen kristallelementen und eine vorrichtung zur durchfuehrung des verfahrens

Country Status (1)

Country Link
AT (1) AT388682B (de)

Also Published As

Publication number Publication date
ATA342487A (de) 1989-01-15

Similar Documents

Publication Publication Date Title
DE3211309C2 (de)
DE2010185C3 (de) Verfahren zum Bestimmen dampf fluchtiger organischer Basen, insbe sondere Alkaloiden des Tabaks, und Vor richtung zur Durchfuhrung des Verfahrens
DD273442A5 (de) Verfahren zur gewinnung von steviosiden aus pflanzlichem rohmaterial
Riemer et al. Adsorption of copper by clay minerals, humic acid and bottom muds
DE2219639B2 (de) Verfahren zur abtrennung einer im wesentlichen aus hochmolekularen verbindungen bestehenden fraktion bei der reinigung von zuckersaft
DE3228535C2 (de) Verfahren zur Reinigung von Siliciumtetrafluoridgas
AT388682B (de) Verfahren zur extraktion von wasserspuren aus piezoelektrischen kristallelementen und eine vorrichtung zur durchfuehrung des verfahrens
DE19804010C2 (de) Verfahren und Vorrichtung zur Gewinnung von Pflanzen-Inhaltsstoffen
DE566153C (de) Verfahren und Vorrichtung zur Herstellung von Furfurol
EP0316298B1 (de) Verfahren zur Verringerung des Wassergehaltes in piezoelektrischen Galliumphosphat-Kristallelementen
DE2823574A1 (de) Verfahren zur holzbehandlung
DE4019182A1 (de) Verfahren zum impraegnieren von gewebeproben in paraffin
DE649324C (de) Verfahren zur Herstellung von Furfurol
DE1592467A1 (de) Verfahren zur Herstellung reinen roten Bleimonoxyds
CN110548055A (zh) 鲜香芹叶水提物粉末,其制备,舒张血管作用及应用
DE950027C (de) Verfahren zur Herstellung injizierbarer Extrakte der Rosskastanie
DE709663C (de) Verfahren zum Schoenen von Trauben-, Obst- und Beerenweinen und -mosten
DE896449C (de) Verfahren zum Loeslichmachen von Kasein
AT71146B (de) Verfahren zur kontinuierlichen Konzentration verdünnter Salpetersäure.
DE102019109444A1 (de) Verfahren und Einrichtung zur Verarbeitung von Lebensmitteln unter Druck
Doležel Über die Variabilität der adrenergen Innervation der grossen Gefässe
AT125185B (de) Verfahren zum Spinnen von Kunstseide nach dem Kupferoxydammoniakstreckspinnverfahren.
DE129755C (de)
AT73352B (de) Verfahren zur Gewinnung eines neuen Präparates aus Digitalisblättern.
DE19185C (de) Neuerungen in dem Verfahren der Extraktion von löslichen Substanzen durch flüchtige Lösungsmittel, sowie der Wiedergewinnung der benutzten Lösungsmittel und hierzu nöthige Apparate