CN102084000B - 微泡在医学疾病和病况的诊断、预后以及治疗中的用途 - Google Patents

微泡在医学疾病和病况的诊断、预后以及治疗中的用途 Download PDF

Info

Publication number
CN102084000B
CN102084000B CN200980111107.0A CN200980111107A CN102084000B CN 102084000 B CN102084000 B CN 102084000B CN 200980111107 A CN200980111107 A CN 200980111107A CN 102084000 B CN102084000 B CN 102084000B
Authority
CN
China
Prior art keywords
microvesicle
exosome
cell
nucleic acid
rna
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
CN200980111107.0A
Other languages
English (en)
Other versions
CN102084000A (zh
Inventor
约翰·卡尔·奥洛夫·斯科格
克桑德拉·O·布莱克费尔德
丹尼斯·布朗
凯文·C·米兰达
雷莱塔·M·鲁索
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Hospital Corp
Original Assignee
General Hospital Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by General Hospital Corp filed Critical General Hospital Corp
Priority to CN201610110030.7A priority Critical patent/CN105734128B/zh
Publication of CN102084000A publication Critical patent/CN102084000A/zh
Application granted granted Critical
Publication of CN102084000B publication Critical patent/CN102084000B/zh
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K48/00Medicinal preparations containing genetic material which is inserted into cells of the living body to treat genetic diseases; Gene therapy
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P35/00Antineoplastic agents
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/10Processes for the isolation, preparation or purification of DNA or RNA
    • C12N15/1003Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor
    • C12N15/1017Extracting or separating nucleic acids from biological samples, e.g. pure separation or isolation methods; Conditions, buffers or apparatuses therefor by filtration, e.g. using filters, frits, membranes
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6806Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6883Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material
    • C12Q1/6886Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for diseases caused by alterations of genetic material for cancer
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/68Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving proteins, peptides or amino acids
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/106Pharmacogenomics, i.e. genetic variability in individual responses to drugs and drug metabolism
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/112Disease subtyping, staging or classification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/156Polymorphic or mutational markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/158Expression markers
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2600/00Oligonucleotides characterized by their use
    • C12Q2600/178Oligonucleotides characterized by their use miRNA, siRNA or ncRNA
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/04Endocrine or metabolic disorders
    • G01N2800/042Disorders of carbohydrate metabolism, e.g. diabetes, glucose metabolism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/24Immunology or allergic disorders
    • G01N2800/245Transplantation related diseases, e.g. graft versus host disease
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N2800/00Detection or diagnosis of diseases
    • G01N2800/70Mechanisms involved in disease identification
    • G01N2800/7023(Hyper)proliferation
    • G01N2800/7028Cancer

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Genetics & Genomics (AREA)
  • Wood Science & Technology (AREA)
  • Zoology (AREA)
  • Analytical Chemistry (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Pathology (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oncology (AREA)
  • Hospice & Palliative Care (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Plant Pathology (AREA)
  • Medicinal Chemistry (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Hematology (AREA)
  • Urology & Nephrology (AREA)
  • Epidemiology (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • General Physics & Mathematics (AREA)
  • Food Science & Technology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Cell Biology (AREA)

Abstract

本发明公开的主题涉及通过检测分离自受试者生物样本的微泡中的生物标志物来辅助诊断、预后、监测和评价该受试者的疾病或其他医学病况的方法。此外,所公开的主题涉及通过确定生物样本内的微泡浓度来诊断、监测疾病的方法;涉及通过给予包含核酸或蛋白质的微泡而将所述核酸或蛋白质都递送到靶标的方法;涉及通过将不含微泡或富含微泡的流体部分引入患者而实施体液输注的方法。

Description

微泡在医学疾病和病况的诊断、预后以及治疗中的用途
相关申请的交叉引用
本申请要求于2008年2月1日提交的美国临时申请61/025,536和于2008年9月26日提交的美国临时申请61/100,293的优先权,其中每篇专利申请以其整体通过引用并入本文。
政府支持
本发明是在由国家癌症研究所(NationalCancerInstitute)颁发的资助金NCICA86355和NCICA69246的政府支持下形成的。政府对本发明具有某些权利。
技术领域
本发明涉及医学诊断、患者监控、治疗效力评价、核酸和蛋白质递送以及输血等领域。
背景技术
成胶质细胞瘤是高度恶性的脑肿瘤,尽管进行了大量的研究和临床工作,但是该肿瘤的预后较差(Louisetal.,2007)。这种肿瘤的侵入本性使得不可能完全手术切除,并且平均存活时间仅为约15个月(Stuppetal.,2005)。成胶质细胞瘤细胞以及许多其他肿瘤细胞具有使间质环境转变为对其自身有利的显著能力。肿瘤细胞直接改变周围的正常细胞以有利于肿瘤细胞的生长、侵入、化学抗性、免疫逃避和转移(Mazzoccaetal.,2005;Muerkosteretal.,2004;Singeretal.,2007)。肿瘤细胞还抢夺正常脉管系统并刺激迅速形成新的血管从而向肿瘤提供营养(CarmelietandJain,2000)。尽管免疫系统初始可以抑制肿瘤生长,但是经常通过免疫抑制途径的肿瘤激活而逐步钝化(Gabrilovich,2007)。
细胞脱落的小微泡称为外来体(Theryetal.,2002)。外来体据报道为具有约30-100nm的直径并且在正常和病理学状况下从许多不同细胞类型上脱落(Theryetal.,2002)。这些微泡最开始被描述为从成熟网织红细胞的细胞表面上弃去转铁蛋白-受体的机制(PanandJohnstone,1983)。通过(胞)内体膜向内出芽而形成外来体,从而产生了随后与质膜融合的胞内多泡体(MVB),并向外部释放外来体(Theryetal.,2002)。然而,现在有证据表明外来体更直接的释放。据称,某些细胞如JurkatT细胞直接通过质膜向外出芽而脱落外来体(Boothetal.,2006)。由细胞脱落的所有膜囊在本文中统称为微泡。
据称,果蝇(Drosophilamelanogaster)中的微泡(所谓的阿尔戈体(argosome))含有诸如无翅蛋白的形态发生素并且通过发育中的果蝇胚胎中的成虫盘上皮在较长的距离上移动(Grecoetal.,2001)。据称,在精液中发现的微泡(称作前列腺小体)具有广泛的功能,包括促进精子运动、稳定顶体(acrosome)反应、辅助免疫抑制和抑制血管生成(Delvesetal.,2007)。另一方面,据称由恶性前列腺细胞释放的前列腺小体促进血管生成。据称,微泡转移蛋白质(Macketal.,2000)并且近期研究表明从不同细胞系分离的微泡也可以含有信使RNA(mRNA)和微小RNA(miRNA),并且可以将mRNA转移到其他细胞类型(Baj-Krzyworzekaetal.,2006;Valadietal.,2007)。
据称来源于B细胞和树突细胞的微泡具有有效的体内免疫-刺激和抗肿瘤作用并且已经用作抗肿瘤疫苗(Chaputetal.,2005)。据称树突细胞来源的微泡含有对于T细胞活化所必需的共刺激蛋白,而大多数肿瘤细胞来源的微泡不含有该蛋白(WieckowskiandWhiteside,2006)。从肿瘤细胞分离的微泡可以起到抑制免疫反应和加速肿瘤生长的作用(Claytonetal.,2007;Liuetal.,2006a)。乳腺癌微泡可以刺激血管生成,而血小板来源的微泡可以促进肿瘤发展和肺癌细胞转移(Janowska-Wieczoreketal.,2005;Millimaggietal.,2007)。
通过积累促进无限制细胞生长的遗传改变而引发癌。已表明每个肿瘤平均具有约50-80个在非肿瘤细胞中不存在的突变(Jonesetal.,2008;Parsonsetal.,2008;Woodetal.,2007)。目前检测这些突变谱(曲线,profile)的技术包括活检样本分析和对在体液(如血液)中循环的突变肿瘤DNA片段的非侵入式分析(Diehletal.,2008)。前一种方法是侵入性的、复杂的并且可能对受试者造成伤害。而后一种方法由于体液中突变癌DNA拷贝数极低,因而天生缺乏敏感性(Gormallyetal.,2007)。因此,癌诊断所面临的一个挑战是开发可以通过非侵入性方式检测不同阶段肿瘤细胞的诊断方法,并且该方法具有高灵敏度和特异性。还已表明基因表达谱(编码mRNA或微小RNA)可以区别癌性和非癌性组织(Jonesetal.,2008;Parsonsetal.,2008;Schetteretal.,2008)。然而,目前检测基因表达谱的诊断技术需要组织的侵入性活检。一些活检程序导致高风险并且可能是有害的。此外,在活检程序中,从有限区域获取组织样本并且该组织样品可能产生假阳性或假阴性,特别是在异质肿瘤和/或分散在正常组织内的肿瘤中。因此,高度需要用于检测生物标志物的非侵入性并且灵敏的诊断方法。
发明内容
一般地,本发明是一种用于检测受试者中是否存在包含在微泡中的各种各样的生物标志物的新型方法,借此辅助诊断、监测和评价与微泡生物标志物有关的疾病、其他医学病况(病症,condition)和治疗效力。
本发明的一个方面是用于辅助诊断或监测受试者的疾病或其他医学病况的方法,其包括以下步骤:a)从来自受试者的生物样本中分离微泡部分;和b)检测该微泡部分内是否存在生物标志物,其中生物标志物与疾病或其他医学病况有关。这些方法可以进一步包括将检测步骤的结果与对照进行比较的步骤或多个步骤(例如,将样本中检测的一个或多个生物标志物的量与一个或多个对照水平进行比较),其中如果检测步骤的结果与对照相比具有可测量的差异,则将该受试者诊断为患有所述疾病或其他医学病况(例如,癌)。
本发明的另一个方面是一种辅助评价在受试者中的治疗效力的方法,其包括以下步骤:a)从受试者的生物样本中分离微泡部分(组分,fraction);和b)检测该微泡部分内是否存在生物标志物,其中所述生物标志物与疾病或其他医学病况的治疗效力有关。该方法可以进一步包括在一段时间内提供一系列来自受试者的生物样本的步骤。另外,该方法可以进一步包括确定来自所述一系列生物样本每一个中的检测步骤结果的任何可测量变化的步骤或多个步骤(例如,一个或多个检测的生物标志物的量),从而评价所述疾病或其他医学病况的治疗效力。
在本发明上述方面的某些优选实施方式中,来自受试者的生物样本为体液样本。特别优选的体液为血液和尿液。
在本发明上述方面的某些优选实施方式中,所述方法进一步包括分离来源于特定类型细胞(例如,癌或肿瘤细胞)的选择性微泡部分。另外,选择性微泡部分可以基本由尿液微泡(泌尿微泡,urinarymicrovesicle)组成。
在本发明上述方面的某些实施方式中,与疾病或其他医学病况有关的生物标志物为i)核酸物质;ii)一种或多种核酸的表达水平;iii)核酸变体;或iv)任何前述标志物的组合。这样的生物标志物的优选实施方式包括信使RNA、微小RNA、DNA、单链DNA、互补DNA和非编码DNA。
在本发明上述方面的某些实施方式中,疾病或其他医学病况为肿瘤性疾病或病况(例如,成胶质细胞瘤、胰腺癌、乳腺癌、黑素瘤和结直肠癌)、代谢疾病或病况(例如,糖尿病、炎症、围产期病况或与铁代谢有关的疾病或病况)、移植后病况或胎儿病况。
本发明的另一个方面是一种辅助诊断或监测受试者的疾病或其他医学病况的方法,其包括以下步骤:a)从受试者获得生物样本;和b)确定该生物样本内的微泡的浓度。
本发明的另一个方面是一种用于将核酸或蛋白质递送到个体中的靶细胞的方法,其包括以下步骤:将含有核酸或蛋白质的微泡或将产生这样的微泡的一个或多个细胞给予该个体,以使这些微泡进入所述个体的靶细胞。在本发明这一方面的优选实施方式中,将微泡被递送到脑细胞。
本发明的另一个方面是一种用于实施体液(例如,血液、血清或血浆)输注的方法,其包括以下步骤:获得完全不含或基本完全不含微泡的供体体液的部分,或从特定细胞类型(例如,肿瘤细胞)获得完全不含或基本完全不含微泡的部分,并且将不含微泡的部分引入患者。本发明的一个相关方面是是物质的组合物,所述物质包括完全不含或基本完全不含微泡的供体体液样本(例如,血液、血清或血浆),或来自特定细胞类型的完全不含或基本完全不含微泡的样本。
本发明的另一个方面是一种用于实施体液(例如,血液、血清或血浆)输注的方法,其包括以下步骤:获得供体体液的富含微泡的部分,和将富含微泡的部分引入患者。在优选的实施方式中,所述部分富含有来源于特定细胞类型的微泡。本发明的一个相关方面是物质的组合物,所述物质包括富含微泡的体液样本(例如,血液、血清或血浆)。
本发明的另一个方面是一种辅助鉴别与疾病或其他医学病况有关的新型生物标志物的方法,其包括以下步骤:从受试者获得生物样本;从该样本分离微泡部分;和检测该微泡部分内的核酸物质、它们各自的表达水平或浓度、核酸变体、或它们的组合。
现在将详细说明本发明的各个方面和实施方式。应理解在不背离本发明范围的前提下可以对细节进行改变。另外,除非本文另外要求,否则单数术语将包括复数而复数术语将包括单数。
出于描述和公开的目的,所有提到的专利、专利申请和出版物均明确地通过引用并入本文,例如,在可以结合本发明使用的出版物中描述的方法。提供这些出版物仅用于它们在本申请的申请日之前的公开内容。在这方面不应解释为承认本发明的发明人没有权利通过在先发明或出于任何其他原因使本发明提到这样的披露内容之前。所有有关日期的说明或有关这些文献内容的表示均基于申请人可获得的信息并且不构成对这些文献的有关日期或内容的正确性的任何承认。
附图说明
图1:成胶质细胞瘤细胞产生含有RNA的微泡。(a)原代成胶质细胞瘤细胞的扫描电子显微镜图像(图例=10μm)。(b)高倍放大图显示了细胞表面上的微泡。囊泡的大小不同,其直径在约50nm至约500nm之间(图例=1μm)。(c)显示了从用RNA酶A处理或未处理的微泡中提取的总RNA的量的曲线。该量用在260nm波长(x轴)的吸光度值(Abs,y轴)表示。实验重复5次,并且示出了代表性曲线。(d)显示了从原代成胶质细胞瘤细胞提取的总RNA的尺寸分布的生化分析仪数据和(e)显示了从分离自原代成胶质细胞瘤细胞的微泡提取的总RNA的尺寸分布的生化分析仪数据。25nt峰代表内标。(d)中的两个主峰(箭头)代表18S(左箭头)和28S(右箭头)核糖体RNA。从微泡提取的RNA中没有核糖体峰(e)。(f)由原代成胶质细胞瘤细胞分泌的微泡的透射电子显微镜图(图例=100nm)。
图2:微泡RNA的分析。图2(a)和2(b)为在来自两个不同实验的微泡中的mRNA水平和供体成胶质细胞瘤细胞中断mRNA水平的散布图。线性回归显示供体细胞中的mRNA水平相对于微泡的相关性不好。图2(c)和2(d)为在两种不同供体细胞或两种不同微泡制备物中的mRNA水平。与图2(a)和2(b)相比,线性回归显示供体细胞之间(图2(c))或微泡(图2(d))之间的mRNA水平密切相关。
图3:微泡DNA的分析。
a)采用来自在核酸提取前用DNA酶处理的外来体的DNA模板进行GAPDH基因扩增。泳道鉴别如下:
1.100bpMW梯型(ladder)
2.阴性对照
3.来自GBM20/3细胞的基因组DNA对照
4.来自正常血清外来体的DNA(不含肿瘤细胞的对照)
5.来自正常人成纤维细胞(NHF19)的外来体DNA
6.来自原代髓母细胞瘤细胞(D425)的外来体DNA
b)采用来自未用DNA酶预先处理的外来体的DNA模板进行GAPDH基因扩增。泳道鉴别如下:
1.100bpMW梯型
2.来自原代黑素瘤细胞0105的DNA
3.来自黑素瘤0105的外来体DNA
4.阴性对照
5.来自原代GBM20/3的cDNA(阳性对照)
c)人内源性反转录病毒K基因的扩增。泳道鉴别如下:
1.100bpMW梯型
2.来自髓母细胞瘤(medulloblastoma)D425a的外来体DNA
3.来自髓母细胞瘤D425b的外来体DNA
4.来自正常人成纤维细胞(NHF19)的外来体DNA
5.来自正常人血清的外来体DNA
6.来自GBM20/3的基因组DNA
7.阴性对照
d)腱糖蛋白(tenascin)C基因的扩增。所列泳道鉴别如下:
1.100bpMW梯型
2.来自正常人成纤维细胞(NHF19)的外来体
3.来自血清(不含肿瘤细胞的个体A)的外来体
4.来自血清(不含肿瘤细胞的个体B)的外来体
5.来自原代髓母细胞瘤细胞D425的外来体
e)转座细胞系1(transposableLine1)元件的扩增。泳道鉴别如下:
1.100bpMW梯型
2.来自正常人血清的外来体DNA
3.来自正常人成纤维细胞的外来体DNA
4.来自髓母细胞瘤D425a的外来体DNA
5.来自髓母细胞瘤D425b的外来体DNA
f)DNA在来自D425髓母细胞瘤细胞的外来体中存在。泳道鉴别如下:
1.100bp标志物
2.未用DNA酶处理的D425
3.采用DNA酶处理的D425
4.1kb标志物
g)使用RNA皮可芯片(RNApicochip)的单链核酸分析。上图:未用DNA酶处理的纯化的DNA;下图:采用DNA酶处理的纯化的DNA。上图中的箭头指示检测到的核酸。25nt处的峰为内标。
h)来自原代髓母细胞瘤D425的外来体中所包含的核酸的分析。上图:通过RNA皮级芯片检测的单链核酸。下图:通过DNA1000芯片检测的双链核酸。上图中的箭头指示检测到的核酸。两个峰(15和1500bp)为内标。
i)使用RNA皮可芯片对不同来源的外来体DNA的分析。上图:从来自成胶质细胞瘤细胞的外来体提取的DNA。下图:从来自正常人成纤维细胞的外来体提取的DNA。
图4:当包括血清外来体分离步骤时,来自血清的胞外RNA提取更有效。a)来自血清的外来体RNA。b)直接全血清提取。c)空孔。箭头指示样本中检测到的RNA。
图5:微泡和起源细胞之间的基因表达水平的比较。与微泡来源于的细胞相比,发现微泡中有3426个基因,差异分布超过了5倍(p值<0.01)。
图6:微泡RNA的本体(ontological)分析。(a)饼形图显示了微泡中含量最丰富的500种mRNA物质的生物学过程本体。(b)显示了属于与肿瘤生长相关的本体的微泡RNA的密度的曲线图。x轴代表本体中存在的mRNA转录本的数目。阵列上的平均强度水平为182。
图7:mRNA水平的聚簇图(簇状图,clusteringdiagram)。分析了细胞系中以及从这些细胞系培养基中分离的外来体中mRNA表达谱的微阵列数据并且生成了表达谱的聚簇。RNA物质的标记如下:
20/3C-1:成胶质细胞瘤20/3细胞RNA,阵列重复(arrayreplicate)1
20/3C-2:成胶质细胞瘤20/3细胞RNA,阵列重复2
11/5C:成胶质细胞瘤11/5细胞RNA
0105C:黑素瘤0105细胞RNA
0664C:黑素瘤0664细胞RNA
0664E-1:黑素瘤0664外来体RNA,阵列重复1
0664E-2:黑素瘤0664外来体RNA,阵列重复2
0105E:黑素瘤0105外来体RNA
20/3E:成胶质细胞瘤20/3外来体RNA
11/5E-1:成胶质细胞瘤11/5外来体,阵列重复1
11/5E-2:成胶质细胞瘤11/5外来体,阵列重复2
GBM:成胶质细胞瘤。刻度表示聚簇之间的距离。
图8:来自血清的微泡含有微小RNA。使用定量miRNART-PCR分析了从两位不同患者的微泡和成胶质细胞瘤细胞(GBM1和GBM2)中提取的成熟miRNA的水平。循环阈值(Ct)用平均值±SEM表示(n=4)。
图9:微小RNA水平的聚簇图。分析了细胞系中以及从这些细胞系培养基中分离的外来体中微小RNA表达谱的微阵列数据并且生成了表达谱的聚簇。RNA种类的标记如下:
0664C-1:黑素瘤0664细胞RNA,阵列重复1
0664C-2:黑素瘤0664细胞RNA,阵列重复2
0105C-1:黑素瘤0105细胞RNA,阵列重复1
0105C-2:黑素瘤0105细胞RNA,阵列重复2
20/3C-1:成胶质细胞瘤20/3细胞RNA,阵列重复1
20/3C-2:成胶质细胞瘤20/3细胞RNA,阵列重复2
11/5C-1:成胶质细胞瘤11/5细胞RNA,阵列重复1
11/5C-2:成胶质细胞瘤11/5细胞RNA,阵列重复2
11/5E-1:成胶质细胞瘤11/5外来体,阵列重复1
11/5E-2:成胶质细胞瘤11/5外来体,阵列重复2
20/3E-1:成胶质细胞瘤20/3外来体RNA,阵列重复1
20/3E-2:成胶质细胞瘤20/3外来体RNA,阵列重复2
0664E:黑素瘤0664外来体RNA
0105E-1:黑素瘤0105外来体RNA,阵列重复1
0105E-2:黑素瘤0105外来体RNA,阵列重复2
GBM:成胶质细胞瘤。刻度表示聚簇之间的距离。
图10:血清微泡中微小RNA-21的表达水平与神经胶质瘤有关。示出了柱状图,其中左侧为正常对照血清,右侧为神经胶质瘤血清。使用定量RT-PCR测量来自成胶质细胞瘤患者血清和正常患者对照血清的外来体中的微小RNA-21(miR-21)的水平。成胶质细胞瘤血清显示Ct值减小了5.4,相当于miR21增加了约40倍(2ΔCt)。将每个样本的miR21水平归一化为GAPDH(n=3)。
图11:使用巢式RT-PCR检测肿瘤样本和相应血清外来体中的EGFRvIIImRNA。野生型EGFRPCR产物在1153bp处显现为条带,而EGFRvIIIPCR产物在352bp处显现为条带。包括GAPDHmRNA的RT-PCR作为阳性对照(226bp)。用星号表示认为是EGFRvIII阳性的样本。患者11、12和14在肿瘤样本中仅显示出EGFRvIII的弱扩增,但当加载更多样本时其变得明显。
图12:在来自52个正常对照血清的微泡上实施EGFRvIII的巢式RT-PCR。在正常对照血清中从未发现EGFRvIII(352bp)。包括GAPDH(226bp)的PCR作为对照。
图13:可以在来自人血清的外来体内检测海帕西啶(肝抗菌肽,hepcidin)mRNA。A)通过Agilent生化分析仪(AgilentBioanalyzer)产生的假凝胶。B)Agilent生化分析仪对阳性对照(样本1)产生的原始图。C)Agilent生化分析仪对阴性对照(样本2)产生的原始图。D)Agilent生化分析仪对外来体(样本3)产生的原始图。
图14:尿液外来体的分离和尿液外来体内的核酸的鉴别。(a)肾小管细胞中含有许多小“外来体”的多泡体(MVB)的电子显微镜图像。(b)分离的尿液外来体的电子显微镜图像。(c)通过Agilent生化分析仪对尿液外来体中所含的RNA转录本的分析。鉴别出大量的RNA物质,但是没有18S和28S核糖体RNA。(d)通过PCR对尿液外来体中各种RNA转录本的鉴别。由此鉴别的转录本为:水通道蛋白1(Aquaporin1)(AQP1);水通道蛋白2(AQP2);Cubulin(CUBN);兆蛋白(Megalin)(LRP2);精氨酸血管加压素受体2(argininevasopressinreceptor2)(AVPR2);钠/氢交换器3(SLC9A3);V-腺苷三磷酸酶B1亚基(ATP6V1B1);去氧肾上腺素(Nephrin)(NPHS1);肾小球足细胞裂隙膜蛋白(Podocin)(NPHS2);和氯离子通道3(CLCN3)。自上而下,分子量(MW)泳道中的五个条带对应于1000、850、650、500、400、300个碱基对片段。(e)来自尿液样本的外来体核酸的生化分析仪图。数字表示人个体的编号。(f)显示使用(e)中的核酸提取物,用不同引物对产生的PCR产物的假凝胶。House(框)表示肌动蛋白基因,而肌动蛋白引物来自Ambion(TX,USA)。+ve对照表示使用来自Ambion(TX,USA)的人肾cDNA作为模板的PCR,而-ve对照表示不使用核酸模板的PCR。(g)假凝胶照片,其显示了在核酸提取前经由使用和不使用DNA酶处理的外来体的PCR对肌动蛋白基因cDNA进行的阳性鉴别。(h)显示从人尿液外来体分离的核酸量的生化分析仪图。
图15:尿液外来体中前列腺癌生物标志物的分析。(a)凝胶照片,其显示了TMPRSS2-ERG基因的PCR产物以及该PCR产物的消化片段。P1和P2分别表示来自患者1和患者2的尿液样本。对于每个样品,未消化的产物在左侧泳道而消化的产物在右侧泳道。MWM表示具有MW标志物的泳道。在图的右侧指出了条带的大小(未消化和消化的)。(b)凝胶照片,其显示了PCA3基因的PCR产物和该PCR产物的消化片段。P1、P2、P3和P4分别表示来自患者1、患者2、患者3和患者4的尿液样品。对于每个样品,未消化的产物在左侧泳道而消化的产物在右侧泳道。MWM表示具有MW标志物的泳道。在图的右侧指出了条带的大小(未消化和消化的)。(c)在(a)和(b)中出现的患者信息和数据的总结。TMERG表示TMPRSS2-ERG融合基因。
图16:BRAFmRNA包含在由黑素瘤细胞脱落的微泡内。(a)电泳凝胶照片,其显示BRAF基因扩增的RT-PCR产物。(b)电泳凝胶照片,其显示GAPDH基因扩增的RT-PCR产物。泳道以及它们所对应的样本为如下:泳道#1-100bp分子量标志物;泳道#2-YUMEL-01-06exo;泳道#3-YUMEL-01-06细胞;泳道#4-YUMEL-06-64exo;泳道#5.YUMEL-06-64细胞;泳道#6.M34exo;泳道#7-M34细胞;泳道#8-成纤维细胞;泳道#9-阴性对照。参考术语“exo”意思是RNA是从培养基中的外来体提取的。参考术语“细胞”意思是RNA是从培养的细胞提取的。YUMEL后的数字表示特定批次YUMEL细胞系的鉴别。(c)来自YUMEL-01-06exo的PCR产物的测序结果。来自YUMEL-01-06细胞、YUMEL-06-64exo和YUMEL-06-64细胞的结果与来自YUMEL-01-06exo的结果相同。(d)来自M34exo的PCR产物的测序结果。来自M34细胞的结果与来自M34exo的结果相同。
图17:成胶质细胞瘤微泡可以将功能性RNA递送到HBMVEC。(a)纯化的微泡用膜染料PKH67(绿色)标记并将其加入HBMVEC。在1小时内,将微泡内化到内含体-样结构中。(b)从稳定表达Gluc的成胶质细胞瘤细胞分离微泡。RNA提取以及Gluc和GAPDHmRNA的RT-PCR表明两者均整合到微泡中。(c)然后,将微泡加入HBMVEC并培育24小时。在微泡加入后,在0、15和24小时测量培养基中的Gluc活力,并将其归一化为微泡中的Gluc活力。结果表示为平均值±SEM(n=4)。
图18:成胶质细胞瘤微泡刺激体外血管生成并且含有血管生成蛋白。(a)在仅基础培养基(EBM)和添加了GBM微泡(EBM+MV)或血管生产因子(EGM)的基础培养基中的MatrigelTM上培养HBMVEC。16小时后测量小管生成,表示为以与EBM中生长的细胞相比较的平均小管长度±SEM(n=6)。(b)在人血管生成抗体阵列上分析了来自原代成胶质细胞瘤细胞中的总蛋白以及来自这些细胞的微泡(MV)。(c)扫描该阵列并用图像J软件(ImageJsoftware)分析强度(n=4)。
图19:从原代成胶质细胞瘤细胞中分离的微泡促进U87成胶质细胞瘤细胞系的增殖。将100,000个U87细胞接种到24孔板的孔中,并允许在(a)正常生长培养基(DMEM-5%FBS)或(b)添加了125μg微泡的正常生长培养基中,生长三天。(c)3天后,未添加微泡的细胞扩大到480,000个,而添加微泡的细胞扩大到810,000个。NC表示在正常对照培养基中生长的细胞,而MV表示在添加了微泡的培养基上生长的细胞。结果表示为平均值±SEM(n=6)。
具体实施方式
微泡是由真核细胞脱落到或由质膜出芽到细胞外部的。这些膜囊的尺寸是不均匀的,其直径范围在约10nm至约5000nm。在本领域中,将通过胞内多泡体的胞吐作用释放的小微泡(直径为约10至1000nm,并且更经常为30至200nm)称为“外来体”。本文中所描述的方法和组合物同等地可适用于所有大小的微泡;优选30至800nm;并且更优选30至200nm。
在一些文献中,术语“外来体”还表示含有核糖核酸外切酶的蛋白质复合体,该核糖核酸外切酶参与mRNA降解以及小核仁RNA(snoRNA)、小核RNA(snRNA)和核糖体RNA(rRNA)的加工处理(Liuetal.,2006b;vanDijketal.,2007)。这样的蛋白质复合体不具有膜并且不是如本文所使用那些术语的“微泡”或“外来体”。
作为诊断和/或预后工具的外来体
本发明的某些方面是基于以下惊人的发现,即可以从成胶质细胞瘤患者的血清中分离成胶质细胞瘤来源的微泡。这来源于脑中细胞的微泡存在于受试者的体液中的首次发现。在该发现之前,还不知道成胶质细胞瘤细胞是否产生微泡或这样的微泡是否可以穿过血脑屏障而进入到身体的其他部分。发现这些微泡含有与肿瘤细胞有关的突变mRNA。这些微泡还含有微小RNA(miRNA),其被发现在成胶质细胞瘤中含量丰富。还发现成胶质细胞瘤来源的微泡有效地促进了培养基中的原代人脑微血管内皮细胞(HBMVEC)的血管生成特征。这种血管生成作用至少部分是通过存在于微泡中的血管生成蛋白介导的。这些微泡中发现的核酸以及微泡的其他内含物如管生成蛋白,通过提供遗传谱而可以用作用于肿瘤诊断、表征和预后的有价值的生物标志物。通过分析在肿瘤发展期间是否获得其他突变以及某些突变的水平是否随时间或随治疗过程而提高或降低,这些微泡内的内含物还可以用于监测肿瘤随时间的发展。
本发明的某些方面基于微泡是由肿瘤细胞分泌并在体液中循环的发现。微泡的数目随肿瘤生长而增加。体液中微泡的浓度与相应肿瘤负荷成比例。肿瘤负荷越大,则体液中微泡的浓度越高。
本发明的某些方面基于另一惊人的发现,即受试者体液中的大多数胞外RNA包含在微泡中并且因此被保护而不受核糖核酸酶的降解。如实施例3中所证实的,可以从微泡中回收总血清中超过90%的胞外RNA。
本发明的一个方面涉及通过确定生物样本中的微泡浓度而用于检测、诊断、监测、治疗或评价受试者的疾病或其他医学病况的方法。可以使用未首先分离微泡的生物样本或通过首先分离微泡的生物样本来实施该确定。
本发明的另一个方面涉及用于检测、诊断、监测、治疗或评价受试者的疾病或其他医学病况的方法,其包括以下步骤:从受试者体液中分离外来体,和分析在该外来体中包含的一种或多种核酸。核酸定性和/或定量地进行分析,并将结果与从患有或未患有该疾病或其他医学病况的一位或多位其他受试者预期或获得的结果相比较。如与一位或多位其他个体相比,存在受试者的微泡核酸含量差异,可以指示该受试者中是否存在该疾病或其他医学病况,指示该疾病或其他医学病况的发展(例如,肿瘤尺寸和肿瘤恶性程度的变化)或指示对该疾病或其他医学病况的易患性。
事实上,本文所描述的分离方法和技术提供了以下至今未实现的优势:1)选择性分析疾病或肿瘤-特异性核酸的机会,这可以通过将疾病或肿瘤-特异性微泡与液体样本内其他微泡分离开得以实现;2)与通过直接从液体样本中提取核酸所获得的得率/完整性相比,核酸物质的得率显著较高,并且序列完整性也较高;3)可量测性,例如,检测表达水平低的核酸,可以通过从大量血清中使更多微泡成颗粒而提高灵敏度;4)更纯的核酸,因为在核酸提取步骤前从微泡颗粒中排除了蛋白质和脂质、死细胞碎片以及其他可能的污染物和PCR抑制剂;和5)由于微泡颗粒的体积比初始血清要小得多,因此核酸提取方法的选择更多,从而有可能使用小体积柱过滤器从这些微泡颗粒中提取核酸。
优选从采自受试者体液的样本分离微泡。如本文所使用的,“体液”表示从受试者身体的任何位置,优选地为外周位置分离的液体样本,其包括但不限于,例如,血液、血浆、血清、尿液、痰液、脊髓液、胸膜液、乳头吸出物(nippleaspirate)、淋巴液、呼吸液、肠道液和泌尿生殖道液、泪液、唾液、乳汁、来自淋巴系统的液体、精液、脑脊髓液、器官内系统液、腹水液、肿瘤囊肿液、羊水和它们的组合。
术语“受试者”旨在包括表现或预计具有微泡的所有动物。在具体实施方式中,受试者为哺乳动物、人类或非人类的灵长类动物、狗、猫、马、牛、其他家畜或啮齿动物(例如,小鼠、大鼠、豚鼠等)。术语“受试者”和“个体”在本文中可以互换使用。
在本领域中,从生物样本中分离微泡的方法是已知的。例如,在Raposo等人(Raposoetal.,1996)的论文中说明了差速离心的方法,并且在本文的实施例部分中详细说明了类似的方法。美国专利No.6899863和6812023中描述了阴离子交换色谱和/或凝胶渗透色谱的方法。美国专利No.7198923中描述了蔗糖密度梯度电泳或细胞器电泳的方法。在(TaylorandGercel-Taylor,2008)中描述了磁力活化细胞分选(MACS)的方法。在(Cheruvankyetal.,2007)中描述了纳米膜超滤浓缩器的方法。优选地,可以通过新近开发的使用独特微流体平台的微芯片技术从受试者体液中鉴别和分离微泡,从而有效并且选择性地分离肿瘤来源的微泡。如在Nagrath等人(Nagrathetal.,2007)的论文中所描述的,可以使用该论文中所教导的捕获和分离的类似原理调整该技术以适于鉴别和分离微泡。以上每篇参考文献对其这些方法的教导通过引用并入本文。
在一种实施方式中,针对来源于特定细胞类型例如:肺、胰腺、胃、肠、膀胱、肾、卵巢、睾丸、皮肤、结直肠、乳腺、前列腺、脑、食管、肝、胎盘、胎儿细胞的微泡富集从体液分离的微泡。由于微泡经常携带来自其供体细胞的表面分子,如抗原,因此可以使用表面分子来鉴别、分离和/或富集来自特定供体细胞类型的微泡(Al-Nedawietal.,2008;TaylorandGercel-Taylor,2008)。以这种方式,可以分析来源于不同细胞群体的微泡的核酸内含物。例如,肿瘤(恶性和非恶性)微泡携带肿瘤相关表面抗原并且可以经由这些特异性肿瘤相关表面抗原进行检测、分离和/或富集。在一个实施例中,所述表面抗原为上皮细胞粘附分子(EpCAM),它对来自肺癌、结直肠癌、乳腺癌、前列腺癌、头颈癌以及肝起源癌的微泡具有特异性,但是对血液细胞起源的癌症不具有特异性。(Balzaretal.,1999;Wentetal.,2004)。在另一个实施例中,表面抗原为CD24,它是对尿液微泡特异的糖蛋白(Kelleretal.,2007)。在另一个实施例中,表面抗原选自CD70分子、癌胚抗原(CEA)、EGFR、EGFRvIII及其他变体、Fas配基、TRAIL、转铁蛋白受体、p38.5、p97和HSP72的组。另外,肿瘤特异性微泡可以以缺少表面标志物(如CD80和CD86)为特征。
可以通过例如,使用对所期望表面抗原特异的抗体、适体、适体类似物或分子印迹聚合物实现对来自特定细胞类型的微泡的分离。在一种实施方式中,所述表面抗原对癌类型特异。在另一种实施方式中,所述表面抗原对不必需是癌性的细胞类型特异。在美国专利No.7198923中提供了基于细胞表面抗原的微泡分离方法的一个实例。例如,如在美国专利No.5840867和5582981、WO/2003/050290以及Johnson等人的出版物(Johnsonetal.,2008)中所描述的,适体以及它们的类似物特异地结合表面分子并且可以用作用于收集细胞类型特异性微泡的分离工具。例如,如在美国专利No.6525154、7332553和7384589以及Bossi等人的出版物(Bossietal.,2007)中所描述的,分子印迹聚合物还特异地识别表面分子并且是用于回收和分离细胞类型特异性微泡的工具。以上每篇参考文献以对这些方法的教导通过引用并入本文。
在分析前,从外来体提取核酸可能是有益的或是另外所希望的。可以使用本领域中熟知的任何数量的程序从微泡中分离核酸分子,对特定生物样本选择适合的具体分离程序。在本文的实施例部分中提供了提取方法的实例。在一些情况下,使用一些技术也可能在不从微泡进行提取的情况下进行核酸分析。
在一种实施方式中,在不进行扩增步骤下直接分析提取的核酸,包括DNA和/或RNA。可以使用不同的方法进行直接分析,所述方法包括,但不限于,纳米弦技术(nanostringtechnology)。纳米弦技术通过将颜色编码的荧光报告子连接到各个靶分子上从而使得能够鉴别和定量生物样本中的单个靶分子。该方法与通过扫描条型码测量库存量的概念类似。可以用数百个或甚至数千个不同的代码制定报告子从而允许高度复杂的分析。在Geiss等人的出版物(Geissetal.,2008)中描述了该技术,并且该教导的内容通过引用并入本文。
在另一种实施方式中,在分析前对微泡的核酸进行扩增可能是有益的或是另外所希望的。核酸扩增的方法是本领域是常用的并且一般是已知的,在本文中描述了核酸扩增方法的多个实例。如果期望,可以进行扩增从而使其为定量的。定量扩增将允许定量确定各种核酸的相对量以生成如下所描述的谱图。
在一种实施方式中,提取的核酸为RNA。然后,在进一步扩增前优选地将RNA反转录到互补DNA中。这样的反转录可以单独进行或结合扩增步骤进行。结合反转录和扩增步骤的方法的一个实例为反转录聚合酶链反应(RT-PCR),它可以进一步修改为定量的,例如,如美国专利No.5639606中所描述的定量RT-PCR,其所教导的内容通过引用并入本文。
核酸扩增方法包括,但不限于,聚合酶链反应(PCR)(美国专利No.5219727)和它的改变形式,如原位聚合酶链反应(美国专利No.5538871)、定量聚合酶链反应(美国专利No.5219727)、巢式聚合酶链反应(美国专利No.5556773)、自主序列复制和它的改变形式(Guatellietal.,1990)、转录扩增系统和它的改变形式(Kwohetal.,1989)、Qb复制酶法和它的改变形式(Mieleetal.,1983)、冷-PCR(Lietal.,2008)或任何其他核酸扩增方法,随后使用本领域技术人员熟知的技术检测扩增的分子。如果诸如核酸的分子以极低的数目存在,则设计用于检测核酸分子的那些检测方案是特别有用的。以上参考文献以其对这些方法的教导通过引用并入本文。
微泡中存在的核酸的分析为定量的和/或定性的。对于定量分析,使用本领域已知的方法(如下所述)测量微泡内所关心的特异性核酸的相对或绝对量(表达水平)。对于定性分析,使用本领域已知的方法(如下所述)鉴别微泡内所关心的特异性核酸的种类(野生型或变体)。
在本文中,使用“遗传畸变”表示微泡内的核酸量以及核酸变体。具体地,遗传畸变包括但不限于基因(例如,致癌基因)或一组基因的过表达、基因(例如,肿瘤抑制基因如p53或RB)或一组基因的欠表达(under-expression)、基因或一组基因拼接变体的替代生产、基因拷贝数变体(CNV)(例如,DNA双微体(doubleminutes))(Hahn,1993)、核酸修饰(例如,甲基化、乙酰化和磷酸化)、单核苷酸多态性(SNP)、染色体重排(例如,倒转、缺失和重复)以及基因或一组基因的突变(插入、缺失、重复、错义、无义、同义或任何其他核苷酸变化),在许多情况下,这些突变最终影响基因产物的活力和功能,导致产生替代性转录拼接变体和/或基因表达水平变化。
可以通过熟练技术人员已知的多种技术确定这些遗传畸变。例如,可以通过微阵列分析(美国专利No.6913879、7364848、7378245、6893837和6004755)和定量PCR确定核酸表达水平、替代性拼接变体、染色体重排和基因拷贝数。尤其是,可以使用IlluminaInfiniumII全基因组基因分型测定或Agilent人类基因组CGH微阵列检测拷贝数变化(Steemersetal.,2006)。可以通过,例如,美国专利No.7186512和专利公开WO/2003/023065中所描述的方法测定核酸修饰。具体地,可以通过IlluminaDNA甲基化OMA003癌板(IlluminaDNAMethylationOMA003CancerPanel)确定甲基化谱。可以通过使用等位基因特异探针的杂交、酶促突变检测、错配异源双链体(heteroduplex)的化学切割(Cottonetal.,1988)、错配碱基的核糖核酸酶切割(Myersetal.,1985)、质谱法(美国专利No.6994960、7074563和7198893)、核酸测序、单链构型多态性(SSCP)(Oritaetal.,1989)、变性梯度凝胶电泳(DGGE)(FischerandLerman,1979a;FischerandLerman,1979b)、温度梯度凝胶电泳(TGGE)(FischerandLerman,1979a;FischerandLerman,1979b)、限制性片段长度多态性(RFLP)(KanandDozy,1978a;KanandDozy,1978b)、寡核苷酸连接测定(OLA)、等位基因特异性PCR(ASPCR)(美国专利No.5639611)、连接链反应(LCR)及其改变形式(Abravayaetal.,1995;Landegrenetal.,1988;Nakazawaetal.,1994)、流式细胞异源双链分析(WO/2006/113590)以及它们的组合/改变形式来检测SNP和突变。显著地,可以通过基因表达系列分析(SAGE)技术确定基因表达水平(Velculescuetal.,1995)。一般地,在多个出版物中报道了分析遗传畸变的方法,它并不限于本文所引用的那些方法,并且这些方法对熟练专业人员来说是可用的。适当的分析方法将取决于具体的分析目标、患者的病况/病史以及要检测、监测或治疗的特定的癌、疾病或其他医学病况。以上参考文献以其对这些方法的教导通过引用并入本文。
已鉴别出导致和/或有助于癌初始产生或发展的各种各样的遗传畸变。在表4(不同类型的癌)和表6(胰腺癌)中提供了通常在癌中上调(即过表达)的基因的实例。表8中提供了在脑肿瘤中上调的微小RNA的实例。在本发明的一种实施方式中,表4和/或表6中所列的基因以及表8中所列的微小RNA的核酸表达水平提高。表5(不同类型的癌)和表7(胰腺癌)中提供了通常在癌中下调(例如,欠表达)的基因的实例。表9中提供了在脑肿瘤中下调的微小RNA的实例。在本发明的一种实施方式中,表5和/或表7中所列的基因以及表9中所列的微小RNA的核酸表达水平降低。在(Furnarietal.,2007)中综述了通常在脑肿瘤中欠表达或过表达的基因的实例,并且该主题内容作为参考并入本文。对于脑肿瘤的发展,RB和p53通常为下调以降低它们的肿瘤抑制活力。因此,在这些实施方式中,可以使用其失调表达水平对癌类型特异的基因和/或微小RNA的核酸表达水平是否提高或降低,来指示受试者中是否存在该类型的癌。
同样地,还可以在来自受试者体液的微泡内分析核酸变体,例如,DNA或RNA修饰、单核苷酸多态性(SNP)和突变(例如,错义、无义、插入、缺失、重复),其中的受试者包括怀孕的雌性动物,其中来源于胎儿的微泡可以存在于血清以及羊水中。表3提供了非限制性实例。在另一实施方式中,核苷酸变体位于EGFR基因中。在另一实施方式中,核苷酸变体为EGFRvIII突变/变体。在本领域中,术语“EGFR”、“表皮生长因子受体”和“ErbB1”可互换使用,例如,如在Carpenter的论文(Carpenter,1987)中所描述的。对于脑肿瘤的发展,RB、PTEN、p16、p21和p53经常突变以降低它们的肿瘤抑制活力。在Furnari等人的论文(Furnarietal.,2007)中讨论了特定形式脑肿瘤中的特异性突变的实例,并且该主题内容作为参考并入本文。
另外,最近已在一些正在进行的研究项目中鉴别出与癌有关的更多的遗传畸变。例如,癌症基因组谱(CancerGenomeAtlas,TCGA)计划正在探索与人癌症有关的基因组变化的谱图。该项目以及其他类似研究工作的结果已经发表并且作为参考并入本文(Jonesetal.,2008;McLendonetal.,2008;Parsonsetal.,2008;Woodetal.,2007)。具体地,这些研究项目已鉴别了在人成胶质细胞瘤、胰腺癌、乳腺癌和/或结直肠癌中的遗传畸变,如突变(例如,错义、无义、插入、缺失和重复)、基因表达水平变化(mRNA或微小RNA)、拷贝数变化和核酸修饰(例如,甲基化)。表11和表12(成胶质细胞瘤)、表13(胰腺癌)、表14(乳腺癌)和表15(结直肠癌)中列出了在这些癌中最经常突变的基因。这些基因中的遗传畸变,以及事实上在癌中含有任何遗传畸变的任何基因,均为可以选择用于通过本文所述方法诊断和/或监测癌的靶标。
通过对微泡内的核酸实施核苷酸变体筛选可以实现对一种或多种核苷酸变体的检测。根据熟练专业人员所确定必需或期望的,该筛选可以是宽泛的或狭窄的。它可以是宽泛的筛选(建立该筛选以检测已知与一种或多种癌或疾病状况有关的基因中的所有可能的核苷酸变体)。在怀疑或已知存在一种特定癌或疾病的情况下,则可以将所述筛选特定于该癌或疾病。一个实例为脑肿瘤/脑癌筛选(例如,建立该筛选以检测与脑癌各种临床特定亚型或该癌的已知抗药性或药物敏感性突变有关的基因中的所有可能核苷酸变体)。
在一种实施方式中,分析是微泡中存在的特定核酸的量(水平)的谱图,本文中称为微泡的“定量核酸谱”。在另一实施方式中,该分析是微泡(野生型以及变体)中存在的特定核酸种类的谱,本文中称为“核酸种类谱图”。本文中用于提及这些谱图类型的组合的术语为“遗传谱”,其提及对核苷酸物质、变体是否存在以及核酸水平是否提高或降低的确定。
一旦产生后,将微泡的这些遗传谱与健康正常个体中预期的或来源健康正常个体其他方面的那些遗传谱进行比较。谱图可以是基因组范围的谱图(建立该谱图以检测所有可能的表达基因或DNA序列)。它也可以是较狭窄的,如癌范围的谱图(建立该谱图以检测所有可能的基因或来源于该基因的核酸,或已知与一种或多种癌有关的基因)。在怀疑或已知存在一种特定癌的情况下,可以将谱图特定于该癌(例如,建立该谱图以检测所有可能的基因或来源于该基因并且与该癌的各种临床特定亚型或该癌已知抗药性或敏感性突变有关的核酸)。
可以由熟练专业人员选择要扩增和/或分析的核酸。可以扩增和/或分析外来体的全部核酸内含物或仅扩增和分析特定核酸的亚组,其中的核酸可能或怀疑受到所存在的疾病或其他医学病况(如癌)的影响。对所分析微泡核酸中的核酸畸变的鉴别可以用于诊断受试者是否患有疾病,如与该畸变有关的癌、遗传病或病毒感染。例如,对癌特异性基因的一种或多种核酸变体(例如,EGFRvIII突变)是否存在的分析可以指示该个体中癌的存在性。可替换地或另外地,对核酸针对癌特异性核酸水平的提高或降低的分析可以指示该个体中癌的存在性(例如,EGFR核酸的相对提高,或肿瘤抑制基因如p53的相对降低)。
在一种实施方式中,通过对微泡中核酸的分析检测了与疾病(如癌)有关的基因突变(例如,经由核苷酸变体,过表达或欠表达),其中的核酸来源于细胞起源中的基因组本身或来源于通过病毒引入的外源基因。由于预期能够产生在疾病诊断和预后中有用的信息,因此该核酸序列可以是完整的或部分的。该序列对实际基因或转录序列可以是正义的或反义的。熟练专业人员将能够根据微泡中可能存在的正义或反义核酸来设计核苷酸差异的检测方法。许多这样的方法包括对核苷酸序列特异性的探针的使用,其中的核苷酸序列为直接侧连或含有核苷酸差异。具有基因序列和该基因内核酸变体位置的知识的熟练专业人员可以设计这样的探针。如本领域和本文中所述的,这样的探针可以用于分离、扩增和/或实际杂交以检测该核酸变体。
可以采用各种各样的方式来确定来自受试者的微泡内的核酸中是否存在特定核苷酸变体或多个变体。各种各样的方法可用于该分析,其包括,但不限于,PCR、用等位基因特异性探针的杂交、酶促突变检测、错配的化学切割、质谱法或DNA测序(包括微测序)。在特定的实施方式中,可以两种形式实施用等位基因特异性探针的杂交:1)结合到固相(玻璃、硅、尼龙膜)的等位基因特异性寡核苷酸和在溶液中的标记样本,如在许多DNA芯片应用中,或2)在溶液中的结合样本(通常为克隆的DNA或PCR扩增的DNA)和标记的寡核苷酸(等位基因特异性或短的以允许通过杂交测序)。诊断性测试可以包括通常在固体载体上的一组差异,其使得能够同时确定多于一个的差异。在另一实施方式中,确定微泡核酸中存在至少一种核酸差异需要单体型分析试验(haplotypingtest)。确定单体型的方法是本领域技术人员已知的,例如在WO00/04194中。
在一种实施方式中,确定是否存在核酸变体涉及通过一些方法确定变体位点或多个位点(序列内的核酸与标准出现差异的确切位置)的序列,其中的方法例如为聚合酶链反应(PCR)、链终止DNA测序(美国专利No.5547859)、微测序(Fiorentinoetal.,2003)、寡核苷酸杂交、焦磷酸测序(pyrosequencing)、Illumina基因组分析仪、深度测序、质谱法或其他核酸序列检测方法。用于检测核酸变体的方法是本领域熟知的并且在WO00/04194中公开,该专利作为参考并入本文。在示例性方法中,诊断测试包括对所期望基因序列中跨过一个或多个已知变体的DNA或RNA(通常在将RNA转换为互补DNA之后)的片段进行扩增。接着,为了鉴别扩增片段中的核苷酸变体,对该扩增片段进行测序和/或进行电泳。
在一种实施方式中,本发明提供了一种对在如本文所述的分离的微泡核酸筛选核苷酸变体的方法。这可以通过例如PCR实现,或可替换地,可以在连接链式反应(LCR)中实现(Abravayaetal.,1995;Landegrenetal.,1988;Nakazawaetal.,1994)。对于所关心基因中的点突变的检测,LCR可以是特别有用的(Abravayaetal.,1995)。LCR方法包括以下步骤:设计用于扩增靶序列的简并引物,该引物对应于与所关心基因对应的核酸的一个或多个保守区,使用从微泡获得的核酸作为模板用所述引物扩增PCR产物并分析该PCR产物。微泡核酸的PCR产物与对照样本(具有或不具有核苷酸变体)的比较指示该微泡核酸中的变体。根据对照,改变可以是微泡核酸中存在或不存在核苷酸变体。
可以使用能够按照扩增产物尺寸对它们进行分离的任何方法实施扩增产物分析,包括自动和手动凝胶电泳、质谱法等。
可替换地,可以使用SSCP、DGGE、TGGE、化学切割、OLA、限制性片段长度多态性以及杂交(例如,核酸微阵列),基于序列差异性对扩增产物进行分析。
核酸分离、扩增和分析的方法对本领域技术人员来说是常规的,并且可以在,例如MolecularCloning:AlaboratoryManual(3-VolumeSet)Ed.JosephSambrook、DavidW.RusselandJoeSambrook,ColdSpringHarborLaboratory,3rdedition(January15,2001),ISBN:0879695773中查找到方案的实例。PCR扩增中所使用方法的特别有用的方案来源是PCRBasics:FromBackgroundtoBenchbySpringerVerlag;1stedition(October15,200),ISBN0387916008。
由于已知肿瘤细胞以及一些正常细胞将微泡脱落到体液中并且如本文所证明的,这些微泡内的遗传畸变反映了肿瘤细胞内的畸变,因此可以利用微泡来实施自肿瘤活检样本上进行的多种诊断方法。此外,使用微泡的诊断方法具有直接在肿瘤活检样本上实施的诊断方法所不具有的特征。例如,与肿瘤/癌核酸采样的其他形式不同,微泡核酸分析的一个具体优势是对来源于个体中肿瘤或遗传学非均匀肿瘤所有病灶的肿瘤/癌核酸进行分析的可利用性。活检样本是受限的,因为它们仅提供关于获得的活组织检查的肿瘤的特定病灶的信息。体内或甚至单个肿瘤内发现的不同肿瘤/癌性病灶经常具有不同的遗传谱并且在标准活组织检查中得不到分析。然而,对来自个体的微泡核酸的分析估计可能提供个体内所有病灶的采样。这提供了有关推荐治疗、治疗有效性、疾病预后和疾病复发分析的重要信息,而简单的活组织检查不能提供这些信息。
通过本文所描述的方法,对与特定疾病和/或医学病况有关的遗传畸变的鉴别也可以用于诊断患有疾病或其他医学病况(如癌)的个体的预后和治疗决定。疾病和/或医学病况的遗传基础的鉴别提供了指导治疗该疾病和/或医学病况的有用信息。例如,已证明化学疗法的多种形式对具有特定遗传异常/畸形的癌更有效。一个实例为使用如激酶抑制剂吉非替尼(gefitinib)和厄洛替尼(erlotinib)的药物靶向治疗EGFR的有效性。已表明这样的治疗对EGFR基因在EGFR蛋白激酶结构域中具有特定核苷酸突变的癌细胞更有效(美国专利公开20060147959)。换言之,在EGFR核酸信息的激酶结构域中存在至少一个鉴别的核苷酸变体,表明患者可能受益于使用EGFR靶向化合物吉非替尼或厄洛替尼的治疗。由于已经证明从体液中的微泡分离出了肿瘤来源的EGFR转录本,因此可以通过本文所述的方法在微泡中存在的核酸中鉴别这样的核苷酸变体。
还发现其他基因中的遗传畸变影响治疗有效性。如在Furnari等人的出版物(Furnarietal.,2007)中所公开的,在各种各样的基因中的突变影响在治疗脑肿瘤的化学疗法中使用的特定药物的有效性。对微泡内核酸中的这些遗传畸变的鉴别将指导适当治疗计划的选择。
同样地,本发明的多个方面涉及用于监测受试者的疾病(例如,癌)发展的方法,还涉及用于监测个体的疾病复发的方法。这些方法包括以下步骤:如本文所讨论的从个体体液中分离微泡,并且如本文所讨论的分析微泡内的核酸(例如,形成该微泡的遗传谱)。使用某个遗传畸变/谱的存在性/不存在性来指示如本文所讨论的受试者中该疾病(例如,癌)的存在性/不存在性。随时间周期性地实施该过程并检查结果以监测该疾病的发展或消退,或确定该疾病的复发。换句话说,遗传谱的变化表明受试者的疾病状态的变化。从受试者中采集微泡样本以进行微泡分离和分析之间花费的时间段将取决于受试者的情况并且由熟练的专业人员决定。当分析来自与受试者所进行的疗法有关的基因的核酸时,这样的方法将证明是极其有利的。例如,可以监测该疗法所靶向的基因的突变发展,其中的突变使其对疗法产生耐受性,此时可以相应地改变疗法。所监测的基因还可以是指示对特定疗法产生特定反应的基因。
本发明的多个方面还涉及这样的事实,即各种各样的非癌性疾病和/或医学病况也具有遗传联系和/或原因,并且这样的疾病和/或医学病况同样可以通过本文所述的方法进行诊断和/或监测。许多这样的疾病在本质上为代谢性、传染性或退变性的。一种这样的疾病为糖尿病(例如,尿崩症),其中加压素2型受体(V2R)发生改变。另一种这样的疾病为肾纤维化,其中胶原、纤连蛋白和TGF-β的基因的遗传谱发生改变。通过本文所述的方法同样可以检测由于药物滥用(例如,类固醇或药物使用)、病毒和/或细菌感染以及遗传病状态所造成的遗传谱的变化。
本文所描述的发明可应用的疾病或其他医学病况包括,但不限于,肾病、尿崩症、I型糖尿病、II型糖尿病、肾病性肾小球肾炎、细菌或病毒性肾小球肾炎、IgA肾病、亨-舍二氏紫癜(Henoch-SchonleinPurpura)、膜性增生性肾小球肾炎、膜性肾病、干燥综合征(Sjogren′ssyndrome)、肾病综合征微小病变性疾病、局灶性肾小球硬化症及相关病症、急性肾衰竭、急性小管间质性肾炎、肾盂肾炎(pyelonephritis)、泌尿生殖道炎性疾病(GUtractinflammatorydisease)、初期子巅(Pre-clampsia)、肾移植排斥、麻疯病、反流性肾病(refluxnephropathy)、肾石病、遗传性肾病、髓质囊性病(medullarcystic)、髓状海绵病(medullarsponge)、多囊性肾病、常染色体显性多囊性肾病、常染色体隐性多囊性肾病、结节性硬化、希林二氏病(vonHippel-Lindaudisease)、家族性肾小球薄基底膜病、III型胶原肾小球病、纤连蛋白肾小球病、阿尔波特氏综合征(Alport′ssyndrome)、法布里病(Fabry′sdisease)、指甲膝盖综合征(Nail-PatellaSyndrome)、先天性泌尿异常、单克隆丙种球蛋白病、多发性骨髓瘤、淀粉样变性病和相关病症、热性疾病、家族性地中海热、HIV感染-AIDS、炎性疾病、系统性血管炎、结节性多动脉炎、韦格纳肉芽肿病(Wegener′sgranulomatosis)、多动脉炎、坏死性和新月体肾小球肾炎、多肌炎-皮肤肌炎、胰腺炎、类风湿性关节炎、系统性红斑狼疮、痛风、血液病症、镰刀细胞病、血栓性血小板减少性紫癜、范科尼综合征(Fanconi′ssyndrome)、移植、急性肾损伤、过敏性肠道综合征、溶血尿毒症综合征、急性肾皮质坏死、肾血栓、创伤和手术、大面积损伤、燃烧、腹部和血管手术、麻醉诱发、药物使用或药物滥用的副作用、循环疾病性心肌梗塞、心力衰竭、周围性血管疾病、高血压、冠心病、非动脉粥样硬化性心血管疾病、动脉粥样硬化性心血管疾病、皮肤病、牛皮癣、系统性硬化病、呼吸道疾病、COPD(慢性阻塞性肺病)、阻塞性睡眠呼吸暂停、高海拔缺氧症或内分泌病、肢端肥大症、糖尿病或尿崩症。
根据对多种因素中的一个或多个的分析,由熟练的专业人员对分离微泡的个体进行选择。所考虑的这些因素为受试者是否具有特定疾病(例如,癌)的家族史、是否对该疾病具有遗传易患性、是否由于家族史、遗传易患性、指示易患性的其他疾病或体征或环境原因而具有高患病风险。环境原因包括生活方式、对造成或有助于该疾病的试剂的暴露,如在空气、土地、水或饮食中暴露。另外,之前已患有该疾病、在治疗前或治疗后诊断为该疾病、目前正在治疗该疾病(正在进行疗法)以及正在从该疾病中缓解或恢复都是选择实施所述方法的个体的原因。
在分析步骤前,可选地利用选择基因或核酸以进行分析的其他额外步骤实施本文所描述的方法。这种选择可以基于受试者的任何易患性(趋向,predisposition)、或任何之前的暴露或诊断或受试者经历的或同时进行的治疗性治疗。
诊断、监测或其他方式测定谱图的癌可以是任何种类的癌。这包括但不限于上皮细胞癌,如肺、卵巢、子宫颈、子宫内膜、乳腺、脑、结肠和前列腺癌。还包括胃肠癌、头颈癌、非小细胞肺癌、神经系统癌、肾癌、视网膜癌、皮肤癌、肝癌、胰癌、生殖泌尿癌和膀胱癌、黑素瘤和白血病。另外,本发明的方法和组合物同样可应用于个体中非恶性肿瘤的检测、诊断和预后(例如,神经纤维瘤、脑脊膜瘤和许旺氏细胞瘤)。
在一种实施方式中,所述癌为脑癌。在本领域中,脑肿瘤和脑癌的类型是熟知的。神经胶质瘤是由脑神经胶质(支持性的)组织引起的肿瘤的通称。神经胶质瘤是最常见的原发性脑肿瘤。星形细胞瘤、室管膜瘤、少突神经胶质瘤以及两种或更多种细胞类型混合的肿瘤(称作混合性胶质细胞瘤)是最常见的神经胶质瘤。以下是脑肿瘤的其他常见类型:听神经瘤(神经鞘瘤、许旺氏细胞瘤、神经鞘瘤(Neurinoma))、腺瘤、星形细胞瘤、低级星形细胞瘤、巨细胞星形细胞瘤、中级和高级星形细胞瘤、再发性肿瘤、脑干神经胶质瘤、脊索瘤、脉络丛乳头状瘤、CNS淋巴瘤(原发性恶性淋巴瘤)、囊肿、皮样囊肿、表皮样囊肿、颅咽管瘤、室管膜瘤、间变性室管膜瘤、神经节细胞瘤(节细胞神经瘤)、神经节神经胶质瘤、多形性成胶质细胞瘤(GBM)、恶性星形细胞瘤、神经胶质瘤、成血管细胞瘤、不宜手术的脑肿瘤、淋巴瘤、髓母细胞瘤(MDL)、脑膜瘤、转移性脑肿瘤、混合性胶质细胞瘤、神经纤维瘤、少突神经胶质瘤、视神经胶质瘤、松果体区肿瘤、垂体腺瘤、PNET(原始神经外胚层瘤)、脊髓肿瘤、亚室管膜瘤和结节性硬化(布尔讷维氏病(Bourneville′sDisease))。
除鉴别先前已知的核酸畸变(由于与疾病有关)之外,本发明的方法可以用于鉴别先前未鉴别的核酸序列/修饰(例如,转录后修饰),所述核酸序列/修饰的畸变与某种疾病和/或医学病况有关。这是通过以下步骤完成的,例如,分析来自患有指定疾病/医学病况(例如,癌的临床类型和亚型)的一位或多位受试者体液的微泡内的核酸并且与未患有给定疾病/医学病况的一位或多位受试者的微泡内的核酸进行比较以鉴别它们核酸内含物的差异。该差异可以是任何遗传畸变,其包括但不限于,核酸的表达水平、可替换的拼接变体、基因拷贝数变体(CNV)、核酸的修饰、单核苷酸多态性(SNP)和核酸突变(插入、缺失或单核苷酸改变)。一旦对某种疾病鉴别出了特定核酸遗传参数的差异,则可以进行涉及临床和统计显著数目的受试者的进一步研究以建立该特定核酸遗传畸变与该疾病之间的相关性。如熟练专业人员所确定为适当的,可以通过本文所描述的一种或多种方法进行遗传畸变分析。
作为递送载体的外来体
本发明的多个方面还涉及本文所述的实际微泡。在一种实施方式中,本发明是一种如本文所描述的分离的微泡,其分离自个体。在一种实施方式中,通过个体脑内的细胞(例如,肿瘤或非肿瘤细胞)产生了微泡。在另一实施方式中,如本文所述的,从个体体液分离了微泡。本文描述了分离方法。
本发明的另一个方面涉及以下发现,即从人成胶质细胞瘤细胞中分离的微泡含有mRNA、miRNA和血管生成蛋白。原代人脑内皮细胞经由内吞机制吸收这样的成胶质细胞瘤微泡,并且在那些细胞中翻译掺入到该微泡中的报告蛋白mRNA。这表明微泡所传递的信息可以改变靶细胞(吸收微泡的细胞)的遗传和/或翻译谱。所述微泡还含有已知在成胶质细胞瘤中含量富含的miRNA(Krichevskyetal,manuscriptinpreparation)。因此,来源于成胶质细胞瘤肿瘤的微泡可以作为mRNA、miRNA和蛋白质的递送载体起作用,其可以经由递送特定mRNA物质而改变其他细胞的翻译状态、促进内皮细胞的血管生成并且刺激肿瘤生长。
在一种实施方式中,在将供体受试者体液递送到受体受试者前,将微泡从所述体液中消除。供体受试者可以是具有不可检测的肿瘤的受试者,并且体液中的微泡来源于肿瘤。由于微泡中的遗传材料和蛋白质可以促使受体受试者中细胞无限制的生长,因此如果不除去供体体液中的肿瘤微泡,则它们将是有害的。
同样,本发明的另一个方面为本文所鉴别的微泡将核酸递送到细胞的应用。在一种实施方式中,细胞位于个体的体内。该方法包括将含有核酸的微泡或产生这样的微泡的细胞给予个体以使微泡接触和/或进入该个体的细胞。将核酸递送至其的细胞称为靶细胞。
可以遗传改造微泡以含有其天然不包含的核酸(即,对微泡正常内含物来说是外源的)。这可以通过将核酸物理插入到微泡中来完成。可替换地,可以遗传改造细胞(例如,在培养基中生长的细胞)以将一个或多个特定核酸靶向至外来体中,并且可以从该细胞分离外来体。可替换地,可以将遗传改造的细胞本身给予所述个体。
在一种实施方式中,产生用于给予的外来体的细胞与靶细胞在体内具有相同或类似的来源或位置。也就是说,对于将微泡递送到脑细胞来说,产生微泡的细胞将是脑细胞(例如,在培养基中生长的原代细胞)。在另一实施方式中,产生外来体的细胞与靶细胞相比为不同的细胞类型。在一种实施方式中,产生外来体的细胞为在体内位于靶细胞附近的类型。
可以经由外来体被递送至细胞的核酸序列可以是RNA或DNA,并且可以是单链或双链的,并且可以选自包括以下的组:编码所关心蛋白质的核酸、寡核苷酸、核酸类似物,例如,肽-核酸(PNA)、假互补PNA(pc-PNA)、锁核酸(LNA)等。这些核酸序列包括,例如,但是不局限于,编码蛋白质的核酸序列(例如,作为翻译抑制物的蛋白)、反义分子、核糖酶、小抑制性核酸序列、例如,但是不局限于RNAi、shRNA、siRNA、miRNA、反义寡核苷酸和它们的组合。
将从细胞类型中分离的微泡递送到受体受试者。所述微泡可能使受体受试者医学上受益。例如,肿瘤外来体的血管生成和前增殖(pro-proliferation)作用可能有助于受体受试者中受损组织的再生。在一种实施方式中,递送方式为通过体液输注,其中在将来自供体受试者的体液递送到受体受试者前,将微泡加入到所述体液中。
在另一实施方式中,微泡是适合给予给受试者(例如,本文所述方法中的受试者)的成分(例如,药用制剂中的活性成分)。通常,这包括用于活性成分的药用载体。具体载体将取决于多种因素(例如,给药途径)。
“药用载体”是指混合靶向递送组合物和/或将其递送至受试者的任何药学上可接受的方式。这包括药用材料、组合物或载体,如液体或固体填料、稀释剂、赋形剂、溶剂或包封材料,涉及将主题试剂从一个器官或身体部分携带或递送到另一个器官或身体部分。每种载体必须是在与制剂其他成分相容的意义上是“可接受的”并且与对受试者(例如,人)给药是兼容的。
对受试者的给药可以是系统的或局部的。这包括但不限于,通过将活性化合物递送至受试者中所期望位置的任何适合途径,将活性化合物(例如,药物制剂中的)分散、递送或施加至受试者,包括通过肠胃外或口服途径、肌肉注射、皮下/皮内注射、静脉注射、含服给药、透皮递送以及通过直肠、结肠、阴道、鼻内或者呼吸道途径施用等方式给药。
应理解,本发明不局限于本文中所描述的特定方法、方案和试剂,并且同样可以改变。本文中所使用的术语仅用于描述具体实施方式的目的,而不用于限制本发明的范围,该范围仅由本发明的权利要求限定。
在一个方面,本发明涉及本文中所描述的组合物、方法及其各自的成分,它们对本发明是必要的,但是对未指明元件(组分,element)的包括是开放的,必要或不必要的(“包括”)。在一些实施方式中,要包括在所述组合物、方法或它们各自成分的描述中的其他元件限于不实质性地影响本发明的基本和新颖特征的那些元件(“基本由...组成”)。这同样适用于所描述的方法的步骤以及其中的组合物和成分。在其他实施方式中,本文中所描述的发明、组合物、方法和它们各自的成分用来排除认为不是该成分、组合物或方法的必要要素的任何元件(“由...组成”)。
实施例
实施例1-7:肿瘤细胞脱落的微泡,其含有RNA,包括mRNA和微小RNA,并且这些微泡含有体液中超过90%的胞外RNA。
实施例1:从原代人成胶质细胞瘤细胞脱落的微泡。
通过手术切除术获得成胶质细胞瘤组织,解离肿瘤细胞并进行单层培养。具体地,直接从手术中取得来自由神经病理学家诊断为多形性成胶质细胞瘤的患者的脑肿瘤试样并将其置于冷的无菌神经基础培养基(Invitrogen,Carlsbad,CA,USA)。在手术后1小时内使用神经组织解离试剂盒(MiltenyiBiotech,BerischGladbach,Germany)将该试样解离成单细胞并在添加了青霉素-链霉素(分别为10IUmL-1和10μgmL-1,Sigma-Aldrich,StLouis,MO,USA)的DMEM5%dFBS上铺板。由于在通常用于培养细胞的胎儿牛血清(FBS)中可以找到微泡并且这些微泡含有相当大量的mRNA和miRNA,因此使肿瘤细胞在含有除去了微泡的FBS(dFBS)的培养基中生长是重要的。发现培养的获自三种成胶质细胞瘤肿瘤的原代细胞在早期传代和晚期传代产生微泡(传代是根据细胞分裂所定义的细胞代,它是常见的细胞培养技术并且是保持细胞存活所必需的)。通过扫描电子显微镜(图1a和1b)以及透射电子显微镜(图1f)能够检测微泡。简要地说,将人成胶质细胞瘤细胞置于鸟氨酸涂敷的盖片上,并用0.5×Karnovskys固定剂固定,然后用PBS清洗2×5分钟(清洗两次,每次5分钟)。细胞在35%EtOH2×10min、50%EtOH2×10min、70%EtOH2×10min、95%EtOH2×10min、以及100%EtOH4×10min中脱水。然后将这些细胞转移到TousimisSAMDR1-795半自动临界点干燥器中进行临界点干燥(criticalpointdrying),接着在GATAN618型高分辨离子束涂布器中用铬涂覆。如图1a和1b所示,用尺寸在约50-500nm变化的微泡覆盖肿瘤细胞。
实施例2:成胶质细胞瘤微泡含有RNA。
为了分离微泡,将第1-15代的成胶质细胞瘤细胞在不含微泡的培养基(含有5%dFBS的DMEM,其中dFBS是通过在110,000×g超离心16小时以除去牛微泡制备的)中培养。48小时后,收获了来自4000万细胞的条件培养基。通过差速离心纯化微泡。具体地,将成胶质细胞瘤条件培养基在300×g离心10分钟以消除任何细胞污染物。将上清液在16500×g进一步离心20分钟,并通过0.22μm过滤器(或滤膜)过滤。接着,以110,000×g超离心70分钟使微泡成颗粒(或沉淀)。将微泡颗粒在13ml的PBS中清洗,再次成粒并重新悬浮于PBS中。
使用DC蛋白质测定(Bio-Rad,Hercules,CA,USA)测量分离的微泡的总蛋白质含量。
对于RNA从微泡中的提取来说,将最终浓度为100μg/ml的RNA酶A(Fermentas,GlenBurnie,MD,USA)加入微泡悬液并在37℃培育15分钟以除去微泡外部的RNA,从而确保所提取的RNA来自微泡的内部。接着,根据生产商的规程使用MirVanaRNA分离试剂盒(Ambion,AustinTX,USA)从微泡提取总RNA。根据生产商的规程用DNA酶处理后,使用纳滴(nanodrop)ND-1000仪(ThermoFischerScientific,Wilmington,DE,USA)对总RNA进行定量。
发现成胶质细胞瘤微泡含有RNA和蛋白质,其比值为约1∶80(μgRNA∶μg蛋白质)。在培养的48小时时间后,从微泡中分离的蛋白质和RNA的平均得率为约4μg蛋白质和50ngRNA/百万细胞。
为了证实RNA包含在微泡内部,将微泡暴露于RNA酶A或在RNA提取前进行模拟处理(图1c)。用RNA酶处理后,RNA含量的减少从未超过7%。因此,看起来几乎所有来自培养基的胞外RNA都包含在微泡内,并因而通过周围的液胞膜而保护所述RNA不受外部RNA酶的作用。
使用生化分析仪(Bioanalyzer)分析来自微泡及其供体细胞的总RNA,表明微泡包含与各种各样的mRNA和miRNA相一致的宽范围的RNA尺寸,但是缺乏18S和28S(细胞RNA的核糖体RNA特征峰)(图1d和1e)。
实施例3:微泡含有DNA。
为了测试微泡是否还含有DNA,如实施例2所提到的,分离外来体,然后在细胞溶解以释放内含物前用DNA酶进行处理。DNA酶处理步骤是为了除去外来体外部的DNA以使只提取存在于该外来体内部的DNA。具体地,使用购自Ambion的不含DNA的试剂盒按照生产商的建议(产品号#AM1906)进行DNA酶处理。对于DNA纯化步骤,将分离外来体的等分试样在作为MirVanaRNA分离试剂盒(Ambion)一部分的300μl溶胞缓冲液中溶解,并且按照生产商的建议使用DNA纯化试剂盒(Qiagen)从细胞溶解混合物中纯化DNA。
为了检查所提取的DNA中是否含有常见的基因,使用对GAPDH、人内源性反转录病毒K、腱糖蛋白-c和系-1(Line-1)特异的引物对进行PCR。对于GAPDH基因,使用下列引物:正向3GAPDH新(Forw3GAPDHnew)(SEQIDNO:1)和反向3GAPDH新(Rev3GAPDHnew)(SEQIDNO:2)。如果模板为拼接GAPDHcDNA,则该引物对扩增112bp的扩增子,如果模板为未拼接基因组GAPDHDNA,则该引物对扩增216bp的扩增子。在一个实验中,在细胞溶解以进行DNA提取前,用DNA酶处理分离的外来体(图3a)。如所预期的,从来自肿瘤血清(参见图3a中的泳道4)和原代肿瘤细胞(参见图3a中的泳道6)的外来体扩增了所述112bp片段,但是未从来自正常人成纤维细胞的外来体(参见图3a中的泳道5)扩增。不能从所有三种来源的外来体扩增所述216bp片段。但是,当使用从成胶质细胞瘤细胞分离的基因组DNA作为模板时,112bp和216bp片段均得到扩增(参见图3a中的泳道3)。因此,拼接的GAPDHDNA存在于分离自肿瘤细胞的外来体内,但是不存在于分离自正常成纤维细胞的外来体内。
相反,在另一实验中,在细胞溶解以进行DNA提取前,分离的外来体没有用DNA酶处理(图3b)。从分离自原代黑素瘤细胞的外来体不但扩增了所述112bp片段,而且也扩增了所述216bp片段(参见图3b中的泳道3),表明外来体外部存在已经被反转录的非拼接GAPDHDNA或部分拼接的cDNA。
对于人内源性反转录病毒K(HERV-K)基因,使用下列引物:HERVK_6正向(HERVK_6Forw)(SEQIDNO:3)和HERVK_6反向(HERVK_6Rev)(SEQIDNO:4)。引物对扩增172bp扩增子。从被分离并用DNA酶处理的外来体提取DNA,并将其用作用于PCR扩增的模板。如图3c所示,在所有肿瘤和正常人血清外来体中扩增了172bp片段,但是未在正常人成纤维细胞的外来体中扩增。这些数据表明与来自正常人成纤维细胞的外来体不同,肿瘤和正常人血清外来体含有内源性反转录病毒DNA序列。为了检查肿瘤外来体是否还含有转座元件,使用下列细胞系-1特异性引物进行PCR扩增:细胞系1正向(Line1_Forw)(SEQIDNO:5)和细胞系1_反向(Line1_Rev)(SEQIDNO:6)。由于每种引物含有等量的两种不同的寡核苷酸,因此这两种引物被设计用于检测所有物质中的细胞系-1。对于细胞系1_正向引物,在用“s”表示的位置处,一个寡核苷酸包含C而另一个寡核苷酸包含G。对于细胞系1_反向引物,在用“r”表示的位置处,一个寡核苷酸包含A而另一个寡核苷酸包含G。该引物对扩增290bp扩增子。模板为从用DNA酶(如上所述)处理的外来体中提取的DNA。如图3e所示,可以从来自肿瘤细胞和正常人血清的外来体扩增290bp的细胞系-1片段,但是不能从来自正常人成纤维细胞的外来体中扩增。
为了测试外来体是否还含有腱糖蛋白-CDNA,使用下列引物对进行PCR:腱糖蛋白C正向(Forw)(SEQIDNO:7)和腱糖蛋白C反向(Rev)(SEQIDNO:8)。该引物对扩增197bp扩增子。模板为从被分离并接着在细胞溶解前用DNA酶处理的外来体中提取的DNA。如图3d所示,在来自肿瘤细胞或正常人血清的外来体中扩增了197bp的腱糖蛋白C片段,但是没有在正常人成纤维细胞的外来体中扩增。因此,腱糖蛋白CDNA存在于肿瘤和正常人血清外来体中,而不存在于正常人成纤维细胞外来体中。
为了进一步证实外来体中DNA的存在,使用如上所述的方法从D425髓母细胞瘤细胞提取外来体DNA。具体地,分离外来体,并在细胞溶解前用DNA酶处理。在通过1%琼脂糖凝胶中用溴化乙锭染色进行可视化前,用DNA酶处理或不用DNA酶处理等体积的最终DNA提取物。溴化乙锭是对核酸特异性染色的染料并且可以在紫外光下可视化。如图3f所示,DNA酶处理后溴化乙锭染色消失(参见图3f中的泳道3),而在未处理等分试样中可以可视化强染色(参见图3f中的泳道2)。还在RNA皮可芯片(AgilentTechnologies)上分析用和未用DNA酶处理的提取物。如图3g所示,可以容易地在未用DNA酶处理的提取物中检测到单链DNA( 图3g的上图),但是在使用DNA酶处理的提取物中几乎不能检测到(参见图3g的下图)。
为了测试所提取的DNA是否为单链,如上一段所述的,从处理的外来体提取核酸并进一步用RNA酶处理以去除任何RNA污染物。接着,在RNA皮可生化分析仪芯片(RNApicoBioanalyzercihp)和DNA1000芯片上分析处理的核酸。RNA皮可芯片仅检测单链核酸。DNA1000芯片检测双链核酸。如图3h所示,检测到单链核酸(参见上图),但是未检测到双链核酸(参见下图)。因此,包含在肿瘤外来体内的DNA主要为单链DNA。
为了证明单链DNA存在于肿瘤细胞中但不存在于正常人成纤维细胞中,从来自成胶质细胞瘤患者血清或正常人成纤维细胞的外来体中提取核酸。细胞溶解前用DNA酶处理外来体,并在分析前用RNA酶处理纯化的核酸。如图3i所示,通过RNA皮可芯片可以检测从成胶质细胞瘤患者血清提取的外来体核酸。相反,从正常人成纤维细胞中仅提取了极少量的单链DNA。
因此,发现来自肿瘤细胞和正常人血清的外来体含有单链DNA。由于扩增产物不含有内含子,因此所述单链DNA是反转录产物(图3a和图3b)。已经知晓,肿瘤细胞以及正常祖细胞/干细胞具有活性反转录酶(RT)活力,尽管正常祖细胞/干细胞中反转录酶活力相对地低得多。这种RT活力使得以下结论似乎是合理的,即可以反转录细胞中的RNA转录本并将其作为cDNA包装到外来体中。令人感兴趣地,由于肿瘤细胞通常具有上调的反转录酶活力,因此来自肿瘤细胞的外来体含有更多的对应于肿瘤特异性基因转录本的cDNA。因此,外来体中的肿瘤特异cDNA可以用作不同肿瘤类型的诊断或预后的生物标志物。与使用mRNA作为肿瘤生物标志物相比,使用cDNA作为生物标志物将省去反转录步骤。另外,由于血清/血浆含有从要死亡的细胞释放的基因组DNA,因此相对于全血清/血浆DNA的使用,外来体cDNA的使用是有利的。当测试扩增的全血清/血浆DNA时,将有更多背景。
实施例4:人血清中的大多数胞外RNA包含在外来体内。
为了确定在血清中作为“游离RNA”/RNA蛋白复合体循环的RNA量相对于包含在外来体内的RNA量,我们从健康人受试者中分离了血清,并将该血清均匀分成体积相等的两个样本。对于样本1,对该血清超离心以除去大部分微泡。然后,收集血清上清液并使用TrizolLS提取该上清液中留下的RNA。对于样本2,不对该血清进行超速离心,而是使用TrizolLS从血清中提取总RNA。测量样本1上清液中和样本2血清中的RNA的量。作为结果,发现样本1上清液中游离RNA的量小于从血清样本2中分离的总RNA量的10%。因此,血清中大部分RNA与外来体有关。
实施例5:通过增加血清外来体分离步骤实现高效的血清胞外核酸提取。
全血清和血浆含有大量循环的DNA并且可能还含有在蛋白质复合体中受到保护的RNA,而血清中游离RNA的半衰期为几分钟。正常和患病哺乳动物血清中的胞外核酸谱不同,因此它们可以作为某些疾病的生物标志物。为了检查该谱,需要提取核酸。然而,从血清和血浆中直接提取核酸是不实际的,特别是对于从大体积的血清/血浆中提取。这种情况下,在提取外来体核酸前,使用大量的TrizolLS(一种RNA提取试剂)使所有血清核酸酶立即失活。随后,污染物沉淀到样本中并影响随后的分析。如实施例4所示,血清中大部分胞外RNA包含在血清外来体中。因此,我们测试了通过在核酸提取前分离血清外来体是否更有效地分离胞外核酸。
将来自患者的4毫升(mL)血清分成2个2ml的等分试样。在RNA提取前分离来自一个等分试样的血清外来体。外来体分离和RNA提取的方法与实施例2中所提到的相同。对于另一等分试样,根据生产商的建议直接使用TrizolLS提取RNA。在生化分析仪RNA芯片(AgilentTechnologies)上分析了来自这两种提取的核酸。如图4所示,使用前一种方法提取的RNA的量显著高于后一种方法所获得的量。另外,后一种方法提取的RNA的质量比前一种方法的质量相对较差。因此,外来体分离步骤有助于有效地从血清提取胞外RNA。
实施例6:mRNA的微阵列分析。
使用Agilent全人类基因组微阵列(4×44k,双色阵列),通过MiltenyiBiotech(Auburn,CA,USA)对成胶质细胞瘤细胞和来源于成胶质细胞瘤细胞的微泡中的mRNA群体进行微阵列分析。对如实施例1和2中所述制备的来自原代成胶质细胞瘤细胞的两种不同RNA制备物以及它们相应的微泡RNA制备物进行微阵列分析。使用GeneSifter软件(Vizxlabs,Seattle,WA,USA)分析数据。使用Intersector软件(Vizxlabs)提取两种阵列上易于检测的基因。已将微阵列数据存放在NCBI基因表达汇编(GeneExpressionOmnibus)中,并且通过GEO系列登记号GSE13470可访问。
我们发现在两种阵列上在细胞中有约22,000个基因转录本的检测水平大大高于背景水平,而在微泡中有约27,000个基因转录本的检测水平大大高于背景水平(99%置信区间)。在两种阵列上,有约4700个不同的mRNA是仅在微泡中检测到的,这表明了微泡内的选择性富集过程。与此一致的是,相比于来自两种肿瘤细胞制备物的起源细胞,微泡中的mRNA水平存在较差的整体相关性(图2a和2b)。相反,来自一个细胞培养物(A)的mRNA水平对第二细胞培养物(B)具有较好的相关性(图2c),并且在来自相应微泡(A)和(B)的mRNA水平中也存在类似的相关性(图2d)。因此,肿瘤细胞和微泡内的mRNA分布具有一致性。通过比较微泡中转录本与它们的起源细胞的转录本的比值,我们发现有3426个转录本分布的差异超过了5倍(p值<0.01)。这些之中,与细胞中的相比,有2238个转录本为富集的(高达380倍)而有1188个转录本的丰度较小(高达90倍)(图5)。记录了所有基因转录本的强度和比值。记录并检查了提高或降低超过10倍的mRNA转录本的本体。
在微泡中高度富集的mRNA转录本并非总是在微泡中最丰富的那些。一旦递送,含量最丰富的转录本更可能会在受体细胞中产生作用,因此,基于它们的本体描述,将微泡中存在的含量最丰富的500个mRNA转录本分成不同的生物学过程(图6a)。在各种本体中,由于代表了可以参与重建肿瘤间质和提高肿瘤生长的特定功能,因此选择血管生成、细胞增殖、免疫反应、细胞迁移和组蛋白修饰进行进一步研究。对属于这五种本体(存在论,ontology)的成胶质细胞瘤微泡mRNA作图以比较它们的水平以及对mRNA谱的贡献(图6b)。与阵列的中间信号强度水平相比,所有五种本体均包含具有极高表达水平的mRNA。
对与供体细胞相比在微泡中富含的mRNA的全面分析,表明可能存在将这些信息定位到微泡中的细胞机制,该机制可能是经由如对在特定细胞位置中翻译的mRNA(如对β肌动蛋白)所描述的3′UTR中的“区位编码(zipcode)”进行的(Kislauskisetal.,1994)。微泡中mRNA的构象是未知的,但是它们可以作为核糖核酸颗粒(RNP)存在(Mallardoetal.,2003),该颗粒然后在供体细胞中会防止降解和过早翻译。
使用全基因组cDNA介导的退火、选择、延伸和连接(DASL)测定,通过IlluminaInc.公司(SanDiego,CA,USA)对成胶质细胞瘤细胞和来源于成胶质细胞瘤细胞的微泡、黑素瘤细胞和来源于黑素瘤细胞的微泡进行了mRNA群体微阵列分析。全基因组DASL测定将IlluminaDASL测定的PCR和标记步骤与基于基因的杂交和Illumina的HumanRef-8珠芯片(BeadChip)的全基因组探针组相结合。这种珠芯片覆盖了来源于RefSeq(工作版本36.2(Build36.2,发行号22(Release22))的超过24,000种注释基因。对从原代成胶质细胞瘤细胞、来自成胶质细胞瘤细胞的微泡(用实施例1和2中所述的方法获得)、黑素瘤细胞和来自黑素瘤细胞的微泡(用实施例1和2中所述的方法获得)获得的两种不同RNA制备物进行微阵列分析。
将每种RNA制备物的表达数据收集在一起并用于产生聚簇图(clusterdiagram)。如图7所示,分别将成胶质细胞瘤细胞、来源于成胶质细胞瘤细胞的微泡、黑素瘤细胞和来源于黑素瘤细胞的微泡的mRNA表达谱聚集。以约0.06的距离将两种原代成胶质细胞瘤细胞系20/3C和11/5C的表达谱聚簇。以约0.09的距离将两种原代黑素瘤细胞系0105C和0664C的表达谱聚簇。以约0.15的距离将来自两种原代黑素瘤细胞系0105C和0664C的外来体的表达谱一起聚簇。以约0.098的距离将来自两种原代成胶质细胞瘤细胞系20/3C和11/5C的外来体的表达谱一起聚簇。因此,来自成胶质细胞瘤和黑素瘤的外来体具有独特的mRNA表达标记图(expressionsignature),并且外来体的基因表达标记图与它们的来源细胞的标记图不同。这些数据证明来自微泡的mRNA表达谱可以在本文所述的癌诊断和预后方法中使用。
实施例7:成胶质细胞瘤微泡含有miRNA
使用定量miRNA反转录PCR检测来自微泡和来自供体细胞的成熟miRNA。具体地,使用mirVanaRNA分离试剂盒(AppliedBiosystems,FosterCity,CA,USA)从微泡和供体细胞分离总RNA。使用微小RNA测定试剂盒(AppliedBiosystems,FosterCity,CA,USA),使用特异性miR-引物将30ng总RNA转化为cDNA并根据生产商的规程进一步扩增。
在已知被上调并且在神经胶质瘤中含量丰富的那些miRNA中,在从两种不同原代成胶质细胞瘤(GBM1和GBM2)纯化的微泡中分析了11种miRNA的子集。该子集含有let-7a、miR-15b、miR-16、miR-19b、miR-21、miR-26a、miR-27a、miR-92、miR-93、miR-320和miR-20。所有这些miRNA在供体细胞和微泡中易于检测(图8)。微泡中每μg总RNA的水平通常比亲本细胞中的低(10%,相当于约3Ct-值),但是这些水平具有良好的相关性,表明这11种miRNA在微泡中的含量不高。
使用由DASL测定激励的微小RNA表达谱板(MicroRNAExpressionProfilingPanel),通过IlluminaInc.公司(SanDiego,CA,USA)对成胶质细胞瘤细胞和来源于成胶质细胞瘤细胞的微泡、黑素瘤细胞和来源于黑素瘤细胞的微泡中的微小RNA群组进行了微阵列分析。人微小RNA组包括1146种微小RNA。对来自原代成胶质细胞瘤细胞、来自成胶质细胞瘤细胞的微泡(使用实施例1和2中所述的方法获得)、黑素瘤细胞和来自黑素瘤细胞的微泡(使用实施例1和2中所述的方法获得)的两种不同RNA制备物进行微阵列分析。
将每种RNA制备物的表达数据收集在一起并用于产生聚簇图。如图9所示,分别将成胶质细胞瘤细胞、来源于成胶质细胞瘤细胞的微泡、黑素瘤细胞和来源于黑素瘤细胞的微泡的微小RNA表达谱一起聚簇。以约0.13的距离将两种原代黑素瘤细胞系0105C和0664C的表达谱聚簇。以约0.12的距离将两种原代成胶质细胞瘤细胞系20/3C和11/5C的表达谱聚簇。以约0.12的距离将来自两种原代成胶质细胞瘤细胞系20/3C和11/5C的外来体的表达谱一起聚簇。以约0.17的距离将来自两种原代黑素瘤细胞系0105C和0664C的外来体的表达谱一起聚簇。因此,来自成胶质细胞瘤和黑素瘤的外来体具有独特的微小RNA表达标记图,并且外来体的基因表达标记图与它们来源细胞的标记图不同。此外,如本文所证明的,来自微泡的微小RNA表达谱可以在本文所述的癌诊断和预后方法中使用。
微泡中微小RNA的发现表明来源于肿瘤的微泡可以通过改变它们的转录/翻译谱来更改周围的正常细胞。此外,如本文所证明的,来自微泡的miRNA表达谱可以在本文所描述的癌(包括,但不限于,成胶质细胞瘤)诊断和预后方法中使用。
实施例8-15:这些实施例表明来自体液的外来体内的核酸可以用作疾病或其他医学病况的生物标志物。
实施例8:微泡中miRNA的表达谱可以用作成胶质细胞瘤的敏感生物标志物。
为了确定外来体内的微小RNA是否可以用作疾病和/或医学病况的生物标志物,我们检查了微小RNA表达水平与疾病状态之间存在的相关性。由于在成胶质细胞瘤细胞中微小RNA-21以高水平表达并且在从成胶质细胞瘤患者血清中分离的外来体中易于检测,因此我们通过定量RT-PCR定量地测量了来自成胶质细胞瘤患者血清的外来体内微小RNA-21的拷贝数。具体地,从来自9位正常人受试者和9位成胶质细胞瘤患者的4ml血清样本中分离了外来体。RNA提取程序与实施例2中所描述的RNA提取程序类似。使用单重qPCR(AppliedBiosystems)分析miR-21的水平并将其归一化为GAPDH表达水平。
如图10所示,成胶质细胞瘤血清样本中的平均Ct值低了5.98,表明成胶质细胞瘤患者中外来体miRNA-21的表达水平比正常人受试者中的高约63倍。该差异为统计学显著性的,其p值为0.01。因此,微小RNA-21表达水平和成胶质细胞瘤疾病状态之间具有相关性,这证明了本文公开的无创性诊断方法的有效性和适用性。例如,在一个方面,所述方法包括以下步骤:从受试者体液分离外来体,通过测量微小RNA-21的拷贝数分析外来体内的微小RNA-21表达水平,将所述拷贝数与来自正常受试者的外来体内的拷贝数或与通过分析来自一组正常受试者的外来体内的微小RNA-21的含量所产生的标准拷贝数相比较。拷贝数增加表明受试者中存在成胶质细胞瘤;而拷贝数未增加则表明受试者中不存在成胶质细胞瘤。可以将该基本方法推广到与其他种类的微小RNA有关的其他疾病和/或医学病况的诊断/监测。
实施例9:微泡中的mRNA可以用作诊断的敏感生物标志物
由于通过PCR方法能够高灵敏度地检测核酸,因此它们作为生物标志物具有较高的价值。因此,设计并实施了下列测试以确定微泡中的mRNA是否可以用作医学疾病或病况(在这种情况下是成胶质细胞瘤肿瘤)的生物标志物。由于EGFRvIII突变的表达对某些肿瘤是特异的并且限定了神经胶质瘤的不同临床亚型,因此选择了表皮生长因子受体(EGFR)mRNA(Pelloskietal.,2007)。另外,由于EGFRvIII突变为体细胞突变而不是种系突变,因此通常不能使用不同于病变组织以外的组织检测这些突变。因此,检测EGFRvIII突变通常需要对如神经胶质瘤肿瘤的损害组织进行活组织检查。如以下详细说明的,使用巢式RT-PCR鉴别神经胶质瘤肿瘤活检样本中的EGFRvIIImRNA,并将结果与从相同患者血清样本中纯化的微泡中所发现的mRNA种类进行比较。
从原代人成胶质细胞瘤细胞中纯化了微泡,然后从所述微泡和供体细胞(活组织检查)中提取RNA。对样本编码并以蒙眼方式(blindfashion)进行PCR。包括Gli-36EGFRvIII(稳定表达EGFRvIII的人神经胶质瘤细胞)作为阳性对照。如实施例2中所述,使来自0.5-2ml冷冻血清样本的微泡成颗粒,并使用MirVana微泡RNA分离试剂盒提取RNA。然后使用相同的引物组,通过巢式RT-PCR扩增来自微泡和供体细胞的野生型EGFR(1153bp)和EGFRvIII(352bp)转录本。具体地,按照生产商推荐的规程使用OmniscriptRT试剂盒(QiagenInc,Valencia,CA,USA)将RNA转化为cDNA。GAPDH引物为GAPDH正向引物(SEQIDNO:9)和GAPDH反向引物(SEQIDNO:10)。EGFR/EGFRvIIIPCR1引物为SEQIDNO:11和SEQIDNO:12。EGFR/EGFRvIIIPCR2引物为SEQIDNO:13和SEQIDNO:14。PCR循环方案为在94℃保持3分钟;在94℃保持45秒,60℃保持45秒,72℃保持2分钟,进行35个循环;以及最后一步为在72℃保持7分钟。
我们分析了活检样本以确定是否存在EGFRvIIImRNA并将结果与从相同患者冷冻血清样本中纯化的外来体中提取的RNA进行比较。30个肿瘤样本中有14个(47%)含有EGFRvIII转录本,这与在其他研究中所发现的包含该突变的成胶质细胞瘤的百分比一致(Nishikawaetal.,2004)。可以从大约在手术时间抽取血清的25位患者中的7位(28%)的外来体扩增EGFRvII(图11和表1)。当使用新引物对EGFR/EGFRvIIIPCR3:SEQIDNO:15和SEQIDNO:16作为以上巢式PCR扩增的第二引物对时,发现了具有EGFRvIII突变的更多个体(表1)。可以从用旧引物对EGFRvIIIPCR2:SEQIDNO:13和SEQIDNO:14鉴别为阴性的6位患者的外来体中扩增EGFRvIII。值得注意地,活组织检查未显示EGFRvIII突变的个体13的外来体证实含有EGFRvIII突变,这表明使用外来体技术提高了EGFRvIII突变检测的灵敏度。不能从分离自52个正常对照血清样本的外来体扩增EGFRvIII(图12)。令人感兴趣地,具有EGFRvIII阴性肿瘤样本的两位患者在血清外来体中原来为EGFRvIII阳性,这支持神经胶质瘤肿瘤中的EGFRvIII表达是不均匀(不同种类,heterogeneous)的病灶。此外,我们的数据还显示,出乎意料地能够从成胶质细胞瘤患者的冷冻体血清中分离微泡中的完整RNA。来自证实为成胶质细胞瘤患者的这些蒙眼血清样本是从癌症研究中心(VUmedicalcenter,Amsterdam,theNetherlands)获得的,并且将它们保存在-80℃直至使用。血清微泡中的肿瘤特异性RNA的鉴别使得能够检测存在于肿瘤细胞中的体细胞突变。这样的技术应导致诊断和治疗决定的改善。
微泡中发现的RNA含有在给定时间的细胞基因表达谱的基本阵列的“快照(snapshot)”。在来源于成胶质细胞瘤的微泡中发现的mRNA中,由于EGFRvIII拼接变体特异地与成胶质细胞瘤相关,因此EGFRmRNA受到了特别的关注(Nishikawaetal.,2004)。这里证实了脑肿瘤将微泡释放到穿过血脑屏障(BBB)的血流中,这在之前是未被证实的。进一步证实了通过以下方法能够检测mRNA变体如脑肿瘤中EGFRvIII,所述方法包括从少量患者血清中分离外来体并分析所述微泡中的RNA。
在选择最佳治疗方案时,对肿瘤中EGFRvIII突变的认识是重要的。EGFRvIII-阳性神经胶质瘤对使用EGFR-抑制剂如厄洛替尼或吉非替尼进行治疗的响应可能性高了超过50倍(Mellinghoffetal.,2005)。
实施例10:铁代谢紊乱的诊断
如下列实施例所证实的,可以修整外来体诊断方法以适用于其他目的。
海帕西啶(一种抗菌肽),是铁代谢的主要激素调节剂。这种肽主要在哺乳动物的肝脏中产生,并受骨髓促红细胞生成活性、循环和储存的体内铁含量以及炎症的控制。一旦受到刺激,海帕西啶将会被分泌到循环或尿中,在那里它可以作用于靶膜铁转运蛋白(ferropotin)表达细胞。膜铁转运蛋白是迄今为止鉴定出的唯一铁输出子(ironexporter),并且当与海帕西啶结合时,它被内化并降解。所得到的膜铁转运蛋白的破坏导致铁保留在如巨噬细胞和肠上皮细胞的膜铁转运蛋白表达细胞中。这种病理生理机制在于慢性疾病的贫血。更具体地,贫血的特征在于海帕西啶不适当的高水平以及网状内皮组织系统内铁含量的升高。的确,贫血可能与多种疾病和/或医学病况有关,如感染(急性和慢性的)、癌、自体免疫、实体器官移植后的慢性排斥以及慢性肾病和炎症(WeissandGoodnough,2005)。另一方面,在如遗传性血色素沉着病的遗传性铁过载疾病中,海帕西啶不适当的低表达水平促使铁从网状内皮组织系统内潜在致命的过量流出。因此,海帕西啶在与慢性病有关的贫血中被上调,而在血色素沉着病中被下调。
目前,除飞行时间质谱法(TOFMS)外,没有定量测量循环或尿中海帕西啶水平的适合测试(Kemnaetal.,2008),而飞行时间质谱法需要高度专业化的设备,并因此不易使用。最近,已提出使用酶联免疫吸附测定(ELISA)方法定量测量海帕西啶激素水平,但由于与海帕西啶(Kemnaetal.,2005;Kemnaetal.,2007)以及其他铁相关参数(Brookesetal.,2005;Roeetal.,2007)缺乏明确的相关性,因此该方法缺乏一致性。
如下所示,在来自人血清的外来体中检测了海帕西啶mRNA。首先从人血清中分离了外来体,并且在转化为cDNA并进行PCR扩增前提取它们的mRNA内含物。设计PCR引物以扩增人海帕西啶的129个核苷酸片段。引物序列为SEQIDNO:57和SEQIDNO:58。通过生化分析仪容易地检测了129个核苷酸的海帕西啶转录本(图13D的中间峰)。作为阳性对照(图13B),提取了来自人肝细胞瘤细胞系Huh-7的RNA并将其转化为cDNA。阴性对照(图13C)没有mRNA。在图13A中的假凝胶中还显示了这些生化分析仪数据。
循环的微泡内的海帕西啶mRNA与肝细胞中的海帕西啶mRNA相关联。因此,测量体液样本中微泡内的海帕西啶mRNA将允许人们诊断或监测受试者中的贫血或血色素沉着病。
因此,可以通过从体液分离微泡并将所述微泡中的海帕西啶mRNA与来自正常受试者的mRNA相比较以诊断和/或监测受试者中贫血和血色素沉着病。对于贫血受试者,mRNA的拷贝数比正常的非贫血水平高。在患有血色素沉着病的受试者中,相对于正常受试者中的mRNA,所述拷贝数减少。
实施例11:用于糖尿病肾病诊断的外来体非侵入式转录谱
糖尿病肾病(DN)是目前缺乏特效疗法的危及生命的并发症。因此,需要开发灵敏的诊断方法以鉴别发展DN或具有发展DN风险的患者,从而能够进行早期干预和监测。
尿液分析提供了不必通过活组织检查而进行肾功能检查的方法。迄今为止,该分析限于尿液中蛋白质的研究。本实施例说明了从来自细胞的尿液转录谱获得通常只能通过肾活组织检查获得的结果的方法。具体地,该方法包含以下步骤:分离尿液外来体并分析所述外来体内的RNA以获得转录谱,其可以用于检验糖尿病个体中肾细胞所造成的分子变化并提供肾所产生的任何新蛋白质的“快照”。目前获得外来体转录谱的技术包括,但不限于,同时杂交阵列(contemporaryhybridizationarrays)、基于PCR的技术和下一代测序方法。由于直接测序不需要预设计的引物或点DNA寡核苷酸(spottedDNAoligos),因此它将为外来体RNA谱提供客观的说明。通过Illumina基因组分析仪提供了下一代测序技术的实例,它利用了大规模平行测序技术,其允许每次运行对相当于1/3人类基因组的量进行测序。从该分析可得到的数据将使得人们能够快速并广泛地检验尿液外来体转录谱并允许与全肾进行比较。使用该方法,人们可以获得与尿液外来体转录谱有关的许多需要的信息。对照中的转录本与糖尿病来源的尿液外来体中转录本的比较还可以向人们提供糖尿病肾病的预测和新型生物标志物的综合列表。
为了证明上述诊断方法的可行性,设计并实施了实验以分离尿液外来体以及确认这些外来体内是否存在肾特异性生物标志物。在该实验中,从28岁健康男性受试者中采集了220mL新鲜的晨尿样本并经由差速离心处理以分离尿液外来体。具体地,先将尿液以300×g旋转离心10分钟以从该样本中除去任何细胞。收集上清液,然后以16,500×g旋转离心20分钟以沉淀任何细胞碎片或蛋白聚集体。然后将该上清液通过0.22μM膜过滤器以除去直径大于0.22μm的碎片。最后,将该样本在100,000×g下超离心1小时以使外来体成颗粒(Theryetal.,2006)。在磷酸盐缓冲盐水(PBS)中轻轻冲洗所述颗粒,并按照生产商的说明书使用QiagenRNeasy试剂盒提取RNA。使用OmniscriptRT试剂盒(Qiagen)将分离的RNA转化为cDNA,然后对肾特异性基因进行PCR扩增。
所考察的肾特异性基因以及表达这些基因的相应肾区域为如下:AQP1-近端小管;AQP2-远端小管(主细胞);CUBN-近端小管;LRP2-近端小管;AVPR2-近端和远端小管;SLC9A3(NHE-3)-近端小管;ATP6V1B1-远端小管(闰细胞(intercalatedcell));NPHS1-肾小球(足细胞(podocytecell));NPHS2-肾小球(足细胞)和CLCN3-集合管(collectingduct)的B型闰细胞。设计用于扩增各个基因的引物序列为AQP1-F(SEQIDNO:17)和AQP1-R(SEQIDNO:18);AQP2-F(SEQIDNO:19)和AQP2-R(SEQIDNO:20);CUBN-F(SEQIDNO:21)和CUBN-R(SEQIDNO:22);LRP2-F(SEQIDNO:23)和LRP2-R(SEQIDNO:24);AVPR2-F(SEQIDNO:25)和AVPR2-R(SEQIDNO:26);SLC9A3-F(SEQIDNO:27)和SLC9A3-R(SEQIDNO:28);ATP6V1B1-F(SEQIDNO:29)和ATP6V1B1-R(SEQIDNO:30);NPHS1-F(SEQIDNO:31)和NPHS1-R(SEQIDNO:32);NPHS2-F(SEQIDNO:33)和NPHS2-R(SEQIDNO:34);CLCN5-F(SEQIDNO:35)和CLCN5-R(SEQIDNO:36)。
对于每个基因的PCR产物的预计尺寸为AQP1-226bp、AQP2-208bp、CUBN-285bp、LRP2-220bp、AVPR2-290bp、SLC9A3-200bp、ATP6V1B1-226bp、NPHS1-201bp、NPHS2-266bp和CLCN5-204bp。PCR循环方案为在95℃保持8分钟;在95℃保持30秒;在60℃保持30秒;在72℃保持45秒,循环30次;最后一步为在72℃保持10分钟。
如图14a所示,肾小管细胞含有多泡体,它是外来体产生过程中的中间步骤。可以通过电子显微镜鉴别从这些细胞分离的外来体(图14b)。对从尿液外来体中提取的总RNA的分析表明存在具有大范围尺寸的RNA种类(图14c)。未发现18S和28S核糖体RNA。PCR分析确认了尿液外来体内存在肾特异性转录本(图14d)。这些数据表明,肾细胞将外来体脱落到尿液中并且这些尿液外来体含有肾起源的转录本,以及所述外来体方法可以检测与某些肾病和/或其他医学病况有关的肾生物标志物。
为了进一步确认尿液外来体中存在肾特异性mRNA转录本,使用来自六位个体的尿液样本进行了一组独立实验。按照如上所提到的程序,从每位个体的200ml晨尿样本中提取了外来体核酸。具体地,以1000×g的离心作用起始对尿液样本进行差速离心以使全细胞和细胞碎片旋转沉降。小心除去上清液,并将其在16,500×g离心20分钟。然后,移出离心后的上清液并通过0.8μm过滤器过滤从而从含有外来体的上清液中除去残留碎片。然后,将最终上清液以100,000×g超离心1小时10分钟。在不含核酸酶的PBS中清洗颗粒,并以100,000×g再次离心1小时10分钟以获得准备用于核酸提取的外来体颗粒。使用ArcturusPicoPureRNA分离试剂盒从成粒的外来体提取核酸,并使用生化分析仪(Agilent)皮可芯片分析核酸浓度和完整性。如图14e所示,不同个体之间从尿液外来体分离的核酸也不相同。为了测试不同个体之间肾生物标志物的存在性是否也不相同,使用一组新引物对对水通道蛋白1(Aquaporin1)、水通道蛋白2和Cubilin基因(或吞饮受体基因)进行PCR扩增,其中所述引物对为:AQP1新引物对:SEQIDNO:37和SEQIDNO:38;AQP2新引物对:SEQIDNO:39和SEQIDNO:40;CUBN新引物对:SEQIDNO:41和SEQIDNO:42。特别地设计了这些引物对以扩增拼接和反转录的cDNA片段。使用QiagenSensiscript试剂盒进行反转录。如图14f所示,在个体1中未发现扩增,这可能是由于核酸提取失败所造成的。仅在个体2中扩增了AQP1。在个体2和3中扩增了CUBN。而在个体2、3、4和5中扩增了AQP2。相比之下,在个体2、3、4、5和6中扩增了肌动蛋白基因(图14f中用“House(方框)”表示)。这些数据提供了更多证据,即尽管在不同个体之间表达水平不同,但是尿液外来体含有肾特异性mRNA转录本。
为了测试尿液外来体中是否存在cDNA,将200ml人尿液样本分成两个100ml的尿液样本。从每个样本中分离尿液外来体。用DNA酶处理来自一个样本的外来体,而对来自另一个样本的外来体进行模拟处理。然后,使用PicoPureRNA分离试剂盒(Acturus)使每个样本中的外来体细胞溶解以进行核酸提取。在事先不进行反转录的情况下,将核酸用作巢式PCR扩增(实施例9中所述的PCR规程)的模板。扩增肌动蛋白基因的引物对为肌动蛋白-正向(Actin-FOR)(SEQIDNO:43)和肌动蛋白-反向(Actin-REV)(SEQIDNO:44);肌动蛋白-巢式-正向(Actin-nest-FOR)(SEQIDNO:45)和肌动蛋白-巢式-反向(Actin-nest-REV)(SEQIDNO:46),其中基于肌动蛋白基因cDNA序列预计的最终扩增子为100bp。如图14g所示,该100bp片段存在于阳性对照(以人肾cDNA作为模板)、DNA酶处理的和未处理的外来体中,但在阴性对照泳道中不存在(无模板)。因此,肌动蛋白cDNA存在于DNA酶处理的和未处理的尿液外来体中。
为了测试使用该方法提取的大部分核酸是否存在于外来体内,将从DNA酶处理的和未处理的外来体中提取的核酸以等体积溶解并使用RNA皮可芯片(AgilentTechnologies)分析。如图14h所示,从DNA酶处理的样本中分离的核酸的浓度为1.131pg/ul,而从未处理样本中提取的浓度为1.378pg/ul。因此,使用上述方法从尿液外来体提取的核酸中有超过80%的核酸来自外来体内部。
为了系统地鉴别尿液外来体的内含物,从尿液外来体提取核酸并将其送至博德研究所(BroadInstitute)进行测序。产生了约1400万个序列阅读,每个长度为76个核苷酸。这些序列阅读对应于尿液外来体内存在的DNA/RNA转录本片段。使用极其严格的比对参数(全长序列上100%的同一性),将约15%的阅读与人基因组进行比对。如果使用不太严格的比对标准,则该百分比可能会提高。这15%的阅读中的大多数未与蛋白质编码基因比对而是与非编码基因组元件比对,如转座子和各种LINE&SINE重复元件。值得注意地,对于未与人基因组比对的那些阅读,许多与病毒序列比对。在包含于尿液外来体中的核酸组合物和水平相对于疾病状态而变化的程度上,根据本发明方法,可以将核酸谱用作疾病诊断的生物标志物。
这个实施例证明分析尿液外来体的外来体方法可以用于确定糖尿病相关肾病中肾的细胞变化而不必采用高风险、侵入式的肾活组织检查。该方法提供了使用外来体进行肾病(如糖尿病肾病)早期检测的新的并且灵敏的诊断工具。这将使得能够立即进行干预和治疗。总而言之,本文所述的外来体诊断方法和技术为糖尿病肾病以及与包含于尿液外来体内核酸的某些谱图有关的其他疾病提供了急需的诊断方法。
实施例12:前列腺癌诊断和尿液外来体
目前,前列腺癌是男性中最常见的癌症。前列腺癌的风险为约16%。2008年,美国诊断出了超过218,000位男性患者。越早期检测出前列腺癌,则成功治疗的机会越大。根据美国癌症学会(AmericanCancerSociety),如果在前列腺癌处于前列腺本身或附近区域时发现,则五年相对存活率超过98%。
通过测量血液中前列腺特异性抗原(PSA)水平,结合数字直肠检查进行一种已建立的诊断方法。然而,PSA测试的灵敏度和特异性均需要明显改善。该低特异性导致产生了较高数量的假阳性,其造成了很多不必要并且昂贵的活组织检查。通过检测新近鉴别的生物标志物的遗传谱而实施其他诊断方法,其中的生物标志物包括,但不限于,前列腺癌基因3(PCA3)(Groskopfetal.,2006;Nakanishietal.,2008)、跨膜蛋白酶丝氨酸2和ETS相关基因之间的融合基因(TMPRSS2-ERG)(Tomlinsetal.,2005)、谷胱甘肽S-转移酶π(Goessletal.,2000;Gonzalgoetal.,2004)和在体液如血清和尿液中发现的前列腺癌细胞中的α-甲基酰基辅酶A消旋酶(AMACR)(Groskopfetal.,2006;WrightandLange,2007)(Zehentneretal.,2006;Zielieetal.,2004)。尽管由于这些生物标志物在前列腺癌细胞中过表达(例如,前列腺癌细胞中PCA3表达提高了60至100倍)而可能提高特异性,但是需要数字直肠检查从而在样本采集前将前列腺细胞抽取到尿液中(Nakanishietal.,2008)。这样的直肠检查固有的缺陷如收集易于抽取到尿液中的那些癌细胞的偏差和昂贵并且耗时的医学医生的参与。
本文中,提出了检测这些生物标志物的遗传谱的新方法以克服如上所提到的限制。该方法包括从体液分离外来体并分析来自该外来体的核酸的步骤。所述方法的程序与实施例9中详细说明的类似。在本实施例中,尿液样本来自4位诊断为前列腺癌的患者。如图15c所示,以等级、格里森级(Gleasonstage)和PSA水平表征癌症阶段。另外,通过实施例7中详细说明的巢式RT-PCR分析的核酸为TMPRSS2-ERG和PCA3,它们是两种新近鉴别的前列腺癌生物标志物。对于TMPRSS2-ERG的扩增,第一扩增步骤的引物对为TMPRSS2-ERGF1(SEQIDNO:47)和TMPRSS2-ERGR1(SEQIDNO:48);而第二扩增步骤的引物对为TMPRSS2-ERGF2(SEQIDNO:49)和TMPRSS2-ERGR2(SEQIDNO:50)。预计的扩增子为122个碱基对(bp)并且在用限制性内切酶HaeII消化后得到两个片段(一个为68bp,另一个为54bp)。对于PCA3的扩增,第一扩增步骤的引物对为PCA3F1(SEQIDNO:51)和PCA3R1(SEQIDNO:52);而第二扩增步骤的引物对为PCA3F2(SEQIDNO:53)和PCA3R2(SEQIDNO:54)。预计的扩增子长度为152bp并且用限制性内切酶Sca1消化后得到两个片段(一个为90bp,另一个为62bp)。
如图15a所示,在患者1和2中可以检测TMPRSS2-ERG的预计扩增子并且其可以消化成预计尺寸的两个片段,但是在患者3和4中不可以。如图15b所示,在所有4位患者中,可以检测PCA3的预计扩增子并且其可以消化成预计尺寸的两个片段。因此,可以在来自所有4位患者的尿液样本中检测PCA3表达,但是只可以在患者1和2的尿液样本中检测TMPRSS2-ERG表达(图15c)。尽管由于样本量较小而不能得出结论,但是这些数据证明了所述新方法在检测前列腺癌生物标志物中的可应用性。而且,该外来体方法不局限于诊断,而且可以用于前列腺癌相关其他医学病况的预后和/或监测。
实施例13:非侵入式产前诊断中的微泡
目前,产前诊断是全世界已建立的产科实践的一部分。获得用于遗传分析的胎儿组织的常规方法包括羊膜穿刺术和绒膜绒毛采样,这两种方法都是侵入式的并且会对未出生的胎儿造成风险。在临床遗传学中,对开发非侵入式诊断方法有长期的需要。已广泛研究的一种方法是基于母体血浆中循环胎儿细胞的发现。然而,有多种障碍妨碍其在临床环境中应用。这些障碍包括胎儿细胞不足(每毫升母体血液中仅有1.2个细胞),这需要相对大量的血液样本;以及上次怀孕时残留的胎儿细胞较长的半衰期,这可能导致假阳性。另一种方法是基于母体血浆中胎儿DNA的发现。充足的胎儿DNA量以及较短的清除时间克服了与胎儿细胞方法有关的阻碍。然而,DNA仅提供可遗传的遗传信息和一些后生信息(epigeneticinformation),两者均不能代表与胎儿医学病况有关的动态基因表达谱。母体血浆中循环胎儿RNA的发现(Ngetal.,2003b;Wongetal.,2005)可能是非侵入式产前诊断的所选方法。
几种研究表明胎儿RNA具有较高的诊断价值。例如,胎儿促肾上腺皮质激素-释放激素(CRH)转录本表达的提高与怀孕期间的先兆子痫(表现为高血压、浮肿和蛋白尿的临床病况)有关(Ngetal.,2003a)。另外,母体血浆中的胎盘特异性4(PLAC4)mRNA已成功用于非整倍体妊娠(如21-三体(trisomy21)、唐氏综合征)的非侵入式测试(Loetal.,2007)。此外,母体血浆中的胎儿人绒毛膜促性腺激素(hCG)转录本可以是妊娠滋养层疾病(GTD)的标志物,该疾病为母体宿主中胎儿组织的肿瘤性生长。循环胎儿RNA主要来源于胎盘(Ngetal.,2003b)。可以早在妊娠第4周检测这些胎儿RNA,并且该RNA在产后快速清除。
尽管如此,使用母体血浆中的循环胎儿RNA的产前诊断具有多种限制。第一种限制是循环的胎儿RNA与循环的母体RNA混合并且未被有效地分离。目前,根据以下假设鉴别了胎儿转录本,即在分娩前的孕妇中以及在她们的婴儿的脐带血中检测到的胎儿转录本在产后24或36小时内在母体血液中显著降低或消失(Maronetal.,2007)。第二种限制是由于仍不了解胎儿RNA的包装和释放,因此未建立富集循环胎儿RNA以提高诊断灵敏度的方法。克服这些限制的方法可能在于微泡的分离以及对其中胎儿RNA的分析。
若干事实表明,真核细胞脱落的微泡是母体血浆中循环胎儿RNA的载体。第一,微泡内的循环RNA受到保护而不受RNA酶的降解作用。第二,已证实循环胎儿RNA保留在母体血浆的非细胞部分中,这与包含这些胎儿RNA的微泡能够通过0.22μm膜过滤的主张一致。第三,与已知脱落微泡的肿瘤组织类似,作为假恶性胎儿组织的胎盘细胞最可能能够脱落微泡。因此,非侵入式产前诊断的新方法由以下步骤组成:从母体血浆中分离胎儿微泡,然后分析所述微泡内核酸的与某些疾病和/或其他医学病况有关的任何遗传性变体。
非侵入式产前诊断的假设情况如下:从孕妇中采集周围血液样本并进行磁力活化细胞分选(MACS)或其他亲和纯化以分离和富集胎儿特异性微泡。将微泡颗粒在PBS中重新悬浮并立即使用或保存在-20℃以备随后处理使用。按照生产商的说明使用QiagenRNA提取试剂盒从分离的微泡中提取RNA。对胎儿人绒毛膜促性腺激素(hCG)转录本的表达水平分析RNA内含物。与标准范围相比hCG表达水平的提高指示了妊娠滋养层疾病(GTD)的发展并且还需要对胎儿中该异常生长进行临床治疗。微泡技术的灵敏度使得有可能在表现出任何症状之前或在通过超声检查可检测结构变化之前的极早阶段检测出GTD。可以通过检查统计学显著个数的正常孕妇中的循环胎儿RNA样本确定hCG转录本水平的标准范围。
通过检查与这些疾病或医学病况有关的那些转录本,可以将产前诊断方法推广到其他疾病或医学病况的产前诊断和/或监测。例如,从来自母体血液的胎儿起源微泡中提取间变性淋巴瘤激酶(anaplasticlymphomakinase,ALK)核酸并进行分析是成神经细胞瘤的非侵入式产前诊断,它与激酶结构域内的突变或与ALK表达的提高密切相关(Mosseetal.,2008)。因此,本文所述的微泡方法和技术可以导致开创急需的非侵入式产前遗传诊断的新纪元。
实施例14:黑素瘤诊断
黑素瘤为黑素细胞(色素细胞)的恶性肿瘤,并且主要在皮肤中发现。它是皮肤癌的严重形式,并且占与皮肤癌相关所有死亡的75%。BRAF的体细胞激活突变(例如,V600E)是在人黑素瘤发生中所检测到的最早期和最常见的遗传畸形。激活的BRAF促进黑素瘤的细胞周期发展和/或存活。
目前,黑素瘤的诊断是基于身体检查和切除的活组织检查进行的。然而,活组织检查仅可以采集病变内有限数目的病灶并且可能得到假阳性或假阴性结果。外来体方法提供了诊断黑素瘤的更准确的方法。如上所讨论的,所述方法包括从受试者体液分离外来体并分析来自所述外来体的核酸的步骤。
为了确定黑素瘤脱落的外来体是否含有BRAFmRNA,我们在添加了除去外来体的FBS的DMEM培养基上培养原代黑素瘤细胞并使用实施例2中详细说明的类似程序收获培养基中的外来体。原代细胞系为Yumel和M34。Yumel细胞在BRAF不具有V600E突变,而M34细胞在BRAF具有V600E突变。从外来体提取RNA,然后通过RT-PCR分析是否存在BRAFmRNA。用于PCR扩增的引物为:BRAF正向(SEQIDNO:55)和BRAF反向(SEQIDNO:56)。扩增子的长度为118个碱基对(bp)并且覆盖了V600E突变所在的BRAFcDNA序列部分。如图16a所示,在来自原代黑素瘤细胞(Yumel和M34细胞)的外来体中检测到了118bp的条带,但是在来自人成纤维细胞或阴性对照的外来体中未检测到。由于可以在来自黑素瘤细胞和人成纤维细胞的外来体中检测GAPDH转录本,因此118bpPCR产物条带的阴性检测不是由于错误的RNA提取所造成的(图16b)。还对118bpPCR产物进行测序以检测V600E突变。如图16c和16d所示,如所预计的,来自Yumel细胞的PCR产物含有野生型BRAFmRNA。相反,如所预计的,来自M34细胞的PCR产物含有具有T-A点突变的突变体BRAFmRNA,其使得BRAF蛋白的氨基酸位置600处的氨基酸缬氨酸(V)被谷氨酸(E)代替。此外,在来自正常人成纤维细胞的外来体中不能检测到BRAFmRNA,表明并非所有组织来源的外来体中都含有BRAFmRNA。
这些数据表明,黑素瘤细胞将外来体脱落到血液循环中,因此通过从血清分离这些外来体并分析从其中所获得的核酸在BRAF中是否存在突变(例如,V600E)而可以诊断黑素瘤。还可以使用上述方法诊断与其他BRAF突变以及其他基因中的突变有关的黑素瘤。可以使用该方法诊断与BRAF以及其他核酸表达谱有关的黑素瘤。
实施例15:检测来自外来体的MMP水平以监测移植后病况。
器官移植是器官损坏的常用有效治疗。肾衰竭、心脏病、晚期肺病和肝硬化都是可以通过移植有效治疗的病况。然而,移植后并发症所引起的器官排异是异源移植受体长期存活的主要障碍。例如,在肺移值中,闭塞性细支气管炎综合征是影响存活率的严重并发症。在肾移植中,慢性异源移植肾病仍是肾异源移植失败的主要原因之一。局部缺血-再灌注损伤使心脏移植后的供体心脏受损,还使正位肝移植后的供体肝脏受损。一旦在早期检测到这些移植后并发症,则它们可以得到改善。因此,为了减轻有害并发症,监测移植后病况是至关重要的。
胞外基质中的改变有助于移植后并发症中的间质重塑。基质金属蛋白酶(MMP)参与胞外基质(ECM)蛋白的周转和降解。MMP是蛋白水解、锌依赖性酶的家族,目前已描述的成员有27个,它们表现出多结构域结构和底物特异性,并且在多种可溶性因子的加工、活化和失活中起作用。血清MMP水平可以指示移植后病况的状态。的确,循环MMP-2与血清半胱氨酸蛋白酶抑制剂C(cystatinC)、移植后持续时间和肾移植受体中的糖尿病有关(Changetal.,2008)。MMP-9的不均衡表达与肺移植后闭塞性细支气管炎综合征的发展有关(Hubneretal.,2005)。
如实施例4和表10所表明的,在成胶质细胞瘤细胞脱落的外来体中可以检测MMPmRNA(MMP1、8、12、15、20、21、24、26和27)。可以使用本发明的外来体方法监测移植状况,所述方法为从体液分离外来体并分析来自所述外来体的核酸。外来体分离程序与实施例2中详细说明的类似。实施例9中详细说明了分析外来体内所包含的核酸的本发明程序。肾移植后MMP-2表达水平的显著提高将表明移植后并发症的发病和/或恶化。类似地,肺移植后MMP-9水平的显著提高表明闭塞性细支气管炎综合征的发病和/或恶化。
因此,通过确定与移植后并发症有关的MMP蛋白的表达水平,所述外来体方法可以用于监测移植后状况。还预计可以推广该方法从而通过确定其他标志物基因的表达以监测移植后状况以及通过确定与这些医学病况有关的核酸遗传谱而监测其他医学病况。
实施例16-18:微泡可以是治疗剂或治疗剂的递送载体。
实施例16:微泡蛋白质诱导体外血管生成。
设计并实施了研究以证明成胶质细胞瘤微泡有助于血管生成。将脑内皮细胞系HBMVEC(30,000个细胞)(CellSystems,产品号#ACBRI-376,Kirkland,WA,USA)在24孔板的涂覆了Matrigel的孔上在以下培养基中进行培养:仅基础培养基(EBM)(LonzaBiologicsInc.,Portsmouth,NH,USA)、添加了成胶质细胞瘤微泡的基础培养基(EBM+MV)(7μg/孔)或添加了血管生成因子混合物的基础培养基(EGM;氢化可的松、EGF、FGF、VEGF、IGF、抗坏血酸、FBS和肝素;Singlequots(EBM阳性对照)。16小时后测量小管形成并用图像J软件分析。在存在成胶质细胞瘤微泡的情况下培养的HBMVEC表明小管长度在16小时内加倍。该结果相当于在存在血管生成因子的情况下培养的HBMCEC所得到的结果(图18a)。这些结果表明成胶质细胞瘤源微泡在引起脑内皮细胞中血管生成中起作用。
还分析了微泡中血管生成蛋白的水平并与成胶质细胞瘤供体细胞中的水平进行比较。使用人血管生成抗体阵列,我们能够检测参与血管生成的19种蛋白质。具体地,在细胞溶解缓冲液(Promega,Madison,WI,USA)中使来自原代成胶质细胞瘤细胞的或来自从所述细胞分离的纯化微泡的总蛋白溶解并按照生产商的推荐加入至人血管生成抗体阵列中(Panomics,FremontCA,USA)。扫描阵列并用图像J软件分析。如图18b所示,在微泡中容易地检测到了19种血管生成蛋白中的7种,其中与成胶质细胞瘤细胞相比,基于总蛋白,有6种(血管生成素、IL-6、IL-8、TIMP-I、VEGF和TIMP-2)以较高水平存在(图18c)。与肿瘤细胞相比,微泡中含量最高的三种血管生成蛋白为血管生成素、IL-6和IL-8,其全部与神经胶质瘤血管生成有关,并且肿瘤恶性程度提高,则它们的水平也越高(25-27)。
还发现从原代成胶质细胞瘤细胞分离的微泡促进了人U87神经胶质瘤细胞系的增殖。在这些研究中,将100,000个U87细胞接种到24孔板的孔中,并允许在(DMEM-5%FBS)上或在添加了从原代成胶质细胞瘤细胞分离的125μg微泡的DMEM-5%FBS上生长三天。三天后,发现使用比尔克尔室(Burkerchamber)所确定的未处理U87细胞(图19a)的数目比添加微泡的那些细胞少(图19b)。在这段时间,未添加和添加的U87细胞分别提高了5倍和8倍(图19c)。因此,成胶质细胞瘤微泡看起来刺激了其他神经胶质瘤细胞的增殖。
实施例17:成胶质细胞瘤微泡被HBMVEC吸收。
为了证明成胶质细胞瘤微泡能够被人脑微泡内皮细胞(HBMVEC)吸收,用PKH67绿色荧光标记试剂盒(Sigma-Aldrich,StLouis,MO,USA)标记纯化的成胶质细胞瘤微泡。将标记的微泡与HBMVEC在培养基(5μg/50000个细胞)中在4℃培育20分钟。清洗细胞并在37℃培育1小时。30分钟内,PKH67标记的微泡内化到HBMVEC内的内含体样结构中(图17a)。这些结果表明成胶质细胞瘤微泡可以通过脑内皮细胞内化。
当将荧光标记的微泡加入到原代成胶质细胞瘤细胞中时,获得了类似的结果。
实施例18:由成胶质细胞瘤微泡递送的mRNA可以在受体细胞中翻译。
为了确定成胶质细胞瘤来源的微泡mRNA是否可以递送到受体细胞并在其中表达,使用CMV启动子以>95%的感染效率用表达分泌型长腹水蚤荧光素酶(Gaussialuciferase,Gluc)的自失活慢病毒载体感染原代人成胶质细胞瘤细胞。在此后的传代中,这些细胞稳定转导并产生微泡(分析了2-10个传代)。如上所述,从所述细胞中分离微泡并进行纯化。RT-PCR分析显示Gluc(555bp)和GAPDH(226bp)的mRNA存在于微泡中(图17b)。如使用定量RT-PCR所评价的,GlucmRNA的水平比GAPDH的更高。
将50微克纯化的微泡加入至50,000个HBMVE细胞并培育24个小时。在加入微泡后(0小时)、加入后15小时以及24小时,直接测量上清液中Gluc的活力。将上清液中的Gluc活力归一化为与微泡有关的Gluc蛋白活力。将结果表示为平均值±SEM(n=4)。具体地,受体HBMVE细胞中的活力表明了微泡GlucmRNA的连续翻译。因此,可以将掺入到肿瘤微泡中的mRNA递送到受体细胞中并产生功能性蛋白。
所有实施例中的统计学分析是使用学生t-检验进行的。
参考文献
1.Abravaya,K.,J.J.Carrino,S.Muldoon,andH.H.Lee.1995.Detectionofpointmutationswithamodifiedligasechainreaction(Gap-LCR).NucleicAcidsRes.23:675-82.
2.Al-Nedawi,K.,B.Meehan,J.Micallef,V.Lhotak,L.May,A.Guha,andJ.Rak.2008.IntercellulartransferoftheoncogenicreceptorEGFRvIIIbymicrovesiclesderivedfromtumourcells.NatCellBiol.10:619-24.
3.Baj-Krzyworzeka,M.,R.Szatanek,K.Weglarczyk,J.Baran,B.Urbanowicz,P.Branski,M.Z.Ratajczak,andM.Zembala.2006.Tumour-derivedmicrovesiclescarryseveralsurfacedeterminantsandmRNAoftumourcellsandtransfersomeofthesedeterminantstomonocytes.CancerImmunolImmunother.55:808-18.
4.Balzar,M.,M.J.Winter,C.J.deBoer,andS.V.Litvinov.1999.Thebiologyofthe17-1Aantigen(Ep-CAM).JMolMed.77:699-712.
5.Booth,A.M.,Y.Fang,J.K.Fallon,J.M.Yang,J.E.Hildreth,andS.J.Gould.2006.ExosomesandHIVGagbudfromendosome-likedomainsoftheTcellplasmamembrane.JCellBiol.172:923-35.
6.Bossi,A.,F.Bonini,A.P.Turner,andS.A.Piletsky.2007.Molecularlyimprintedpolymersfortherecognitionofproteins:thestateoftheart.BiosensBioelectron.22:1131-7.
7.Brookes,M.J.,N.K.Sharma,C.Tselepis,andT.H.Iqbal.2005.Serumpro-hepcidin:measuringactivehepcidinoranon-functionalprecursor?Gut.54:169-70.
8.Carmeliet,P.,andR.K.Jain.2000.Angiogenesisincancerandotherdiseases.Nature.407:249-57.
9.Carpenter,G.1987.Receptorsforepidermalgrowthfactorandotherpolypeptidemitogens.AnnuRevBiochem.56:881-914.
10.Chang,H.R.,W.H.Kuo,Y.S.Hsieh,S.F.Yang,C.C.Lin,M.L.Lee,J.D.Lian,andS.C.Chu.2008.Circulatingmatrixmetalloproteinase-2isassociatedwithcystatinClevel,posttransplantduration,anddiabetesmellitusinkidneytransplantrecipients.TranslRes.151:217-23.
11.Chaput,N.,J.Taieb,F.Andre,andL.Zitvogel.2005.Thepotentialofexosomesinimmunotherapy.ExpertOpinBiolTher.5:737-47.
12.Cheruvanky,A.,H.Zhou,T.Pisitkun,J.B.Kopp,M.A.Knepper,P.S.Yuen,andR.A.Star.2007.Rapidisolationofurinaryexosomalbiomarkersusingananomembraneultrafiltrationconcentrator.AmJPhysiolRenalPhysiol.292:F1657-61.
13.Clayton,A.,J.P.Mitchell,J.Court,M.D.Mason,andZ.Tabi.2007.Humantumor-derivedexosomesselectivelyimpairlymphocyteresponsestointerleukin-2.CancerRes.67:7458-66.
14.Cotton,R.G.,N.R.Rodrigues,andR.D.Campbell.1988.Reactivityofcytosineandthymineinsingle-base-pairmismatcheswithhydroxylamineandosmiumtetroxideanditsapplicationtothestudyofmutations.ProcNatlAcadSciUSA.85:4397-401.
15.Delves,G.H.,A.B.Stewart,A.J.Cooper,andB.A.Lwaleed.2007.Prostasomes,angiogenesis,andtissuefactor.SeminThrombHemost.33:75-9.
16.Diehl,F.,K.Schmidt,M.A.Choti,K.Romans,S.Goodman,M.Li,K.Thornton,N.Agrawal,L.Sokoll,S.A.Szabo,K.W.Kinzler,B.Vogelstein,andL.A.Diaz,Jr.2008.CirculatingmutantDNAtoassesstumordynamics.NatMed.14:985-90.
17.Fiorentino,F.,M.C.Magli,D.Podini,A.P.Ferraretti,A.Nuccitelli,N.Vitale,M.Baldi,andL.Gianaroli.2003.Theminisequencingmethod:analternativestrategyforpreimplantationgeneticdiagnosisofsinglegenedisorders.MolHumReprod.9:399-410.
18.Fischer,S.G.,andL.S.Lerman.1979a.Length-independentseparationofDNArestrictionfragmentsintwo-dimensionalgelelectrophoresis.Cell.16:191-200.
19.Fischer,S.G.,andL.S.Lerman.1979b.Two-dimensionalelectrophoreticseparationofrestrictionenzymefragmentsofDNA.MethodsEnzymol.68:183-91.
20.Furnari,F.B.,T.Fenton,R.M.Bachoo,A.Mukasa,J.M.Stommel,A.Stegh,W.C.Hahn,K.L.Ligon,D.N.Louis,C.Brennan,L.Chin,R.A.DePinho,andW.K.Cavenee.2007.Malignantastrocyticglioma:genetics,biology,andpathstotreatment.GenesDev.21:2683-710.
21.Gabrilovich,D.I.2007.Molecularmechanismsandtherapeuticreversalofimmunesuppressionincancer.CurrCancerDrugTargets.7:1.
22.Geiss,G.K.,R.E.Bumgarner,B.Birditt,T.Dahl,N.Dowidar,D.L.Dunaway,H.P.Fell,S.Ferree,R.D.George,T.Grogan,J.J.James,M.Maysuria,J.D.Mitton,P.Oliveri,J.L.Osborn,T.Peng,A.L.Ratcliffe,P.J.Webster,E.H.Davidson,andL.Hood.2008.Directmultiplexedmeasurementofgeneexpressionwithcolor-codedprobepairs.NatBiotechnol.26:317-25.
23.Goessl,C.,H.Krause,M.Muller,R.Heicappell,M.Schrader,J.Sachsinger,andK.Miller.2000.Fluorescentmethylation-specificpolymerasechainreactionforDNA-baseddetectionofprostatecancerinbodilyfluids.CancerRes.60:5941-5.
24.Gonzalgo,M.L.,M.Nakayama,S.M.Lee,A.M.DeMarzo,andW.G.Nelson.2004.DetectionofGSTP1methylationinprostaticsecretionsusingcombinatorialMSPanalysis.Urology.63:414-8.
25.Gormally,E.,E.Caboux,P.Vineis,andP.Hainaut.2007.CirculatingfreeDNAinplasmaorserumasbiomarkerofcarcinogenesis:practicalaspectsandbiologicalsignificance.MutatRes.635:105-17.
26.Greco,V.,M.Hannus,andS.Eaton.2001.Argosomes:apotentialvehicleforthespreadofmorphogensthroughepithelia.Cell.106:633-45.
27.Groskopf,J.,S.M.Aubin,I.L.Deras,A.Blase,S.Bodrug,C.Clark,S.Brentano,J.Mathis,J.Pham,T.Meyer,M.Cass,P.Hodge,M.L.Macairan,L.S.Marks,andH.Rittenhouse.2006.APTIMAPCA3molecularurinetest:developmentofamethodtoaidinthediagnosisofprostatecancer.ClinChem.52:1089-95.
28.Guatelli,J.C.,K.M.Whitfield,D.Y.Kwoh,K.J.Barringer,D.D.Richman,andT.R.Gingeras.1990.Isothermal,invitroamplificationofnucleicacidsbyamultienzymereactionmodeledafterretroviralreplication.ProcNatlAcadSciUSA.87:1874-8.
29.Hahn,P.J.1993.Molecularbiologyofdouble-minutechromosomes.Bioessays.15:477-84.
30.Hubner,R.H.,S.Meffert,U.Mundt,H.Bottcher,S.Freitag,N.E.ElMokhtari,T.Pufe,S.Hirt,U.R.Folsch,andB.Bewig.2005.Matrixmetalloproteinase-9inbronchiolitisobliteranssyndromeafterlungtransplantation.EurRespirJ.25:494-501.
31.Janowska-Wieczorek,A.,M.Wysoczynski,J.Kijowski,L.Marquez-Curtis,B.Machalinski,J.Ratajczak,andM.Z.Ratajczak.2005.Microvesiclesderivedfromactivatedplateletsinducemetastasisandangiogenesisinlungcancer.IntJCancer.113:752-60.
32.Johnson,S.,D.Evans,S.Laurenson,D.Paul,A.G.Davies,P.K.Ferrigno,andC.Walti.2008.Surface-immobilizedpeptideaptamersasprobemoleculesforproteindetection.AnalChem.80:978-83.
33.Jones,S.,X.Zhang,D.W.Parsons,J.C.Lin,R.J.Leary,P.Angenendt,P.Mankoo,H.Carter,H.Kamiyama,A.Jimeno,S.M.Hong,B.Fu,M.T.Lin,E.S.Calhoun,M.Kamiyama,K.Walter,T.Nikolskaya,Y.Nikolsky,J.Hartigan,D.R.Smith,M.Hidalgo,S.D.Leach,A.P.Klein,E.M.Jaffee,M.Goggins,A.Maitra,C.Iacobuzio-Donahue,J.R.Eshleman,S.E.Kern,R.H.Hruban,R.Karchin,N.Papadopoulos,G.Parmigiani,B.Vogelstein,V.E.Velculescu,andK.W.Kinzler.2008.CoreSignalingPathwaysinHumanPancreaticCancersRevealedbyGlobalGenomicAnalyses.Science.
34.Kan,Y.W.,andA.M.Dozy.1978a.Antenataldiagnosisofsickle-cellanaemiabyD.N.A.analysisofamniotic-fluidcells.Lancet.2:910-2.
35.Kan,Y.W.,andA.M.Dozy.1978b.PolymorphismofDNAsequenceadjacenttohumanbeta-globinstructuralgene:relationshiptosicklemutation.ProcNatlAcadSciUSA.75:5631-5.
36.Keller,S.,C.Rupp,A.Stoeck,S.Runz,M.Fogel,S.Lugert,H.D.Hager,M.S.Abdel-Bakky,P.Gutwein,andP.Altevogt.2007.CD24isamarkerofexosomessecretedintourineandamnioticfluid.KidneyInt.72:1095-102.
37.Kemna,E.,P.Pickkers,E.Nemeth,H.vanderHoeven,andD.Swinkels.2005.Time-courseanalysisofhepcidin,serumiron,andplasmacytokinelevelsinhumansinjectedwithLPS.Blood.106:1864-6.
38.Kemna,E.H.,H.Tjalsma,V.N.Podust,andD.W.Swinkels.2007.Massspectrometry-basedhepcidinmeasurementsinserumandurine:analyticalaspectsandclinicalimplications.ClinChem.53:620-8.
39.Kemna,E.H.,H.Tjalsma,H.L.Willems,andD.W.Swinkels.2008.Hepcidin:fromdiscoverytodifferentialdiagnosis.Haematologica.93:90-7.
40.Kislauskis,E.H.,X.Zhu,andR.H.Singer.1994.Sequencesresponsibleforintracellularlocalizationofbeta-actinmessengerRNAalsoaffectcellphenotype.JCellBiol.127:441-51.
41.Kwoh,D.Y.,G.R.Davis,K.M.Whitfield,H.L.Chappelle,L.J.DiMichele,andT.R.Gingeras.1989.Transcription-basedamplificationsystemanddetectionofamplifiedhumanimmunodeficiencyvirustype1withabead-basedsandwichhybridizationformat.ProcNatlAcadSciUSA.86:1173-7.
42.Landegren,U.,R.Kaiser,J.Sanders,andL.Hood.1988.Aligase-mediatedgenedetectiontechnique.Science.241:1077-80.
43.Li,J.,L.Wang,H.Mamon,M.H.Kulke,R.Berbeco,andG.M.Makrigiorgos.2008.ReplacingPCRwithCOLD-PCRenrichesvariantDNAsequencesandredefinesthesensitivityofgenetictesting.NatMed.14:579-84.
44.Liu,C.,S.Yu,K.Zinn,J.Wang,L.Zhang,Y.Jia,J.C.Kappes,S.Barnes,R.P.Kimberly,W.E.Grizzle,andH.G.Zhang.2006a.MurinemammarycarcinomaexosomespromotetumorgrowthbysuppressionofNKcellfunction.JImmunol.176:1375-85.
45.Liu,Q.,J.C.Greimann,andC.D.Lima.2006b.Reconstitution,activities,andstructureoftheeukaryoticRNAexosome.Cell.127:1223-37.
46.Lo,Y.M.,N.B.Tsui,R.W.Chiu,T.K.Lau,T.N.Leung,M.M.Heung,A.Gerovassili,Y.Jin,K.H.Nicolaides,C.R.Cantor,andC.Ding.2007.PlasmaplacentalRNAallelicratiopermitsnoninvasiveprenatalchromosomalaneuploidydetection.NatMed.13:218-23.
47.Louis,D.N.,H.Ohgaki,O.D.Wiestler,W.K.Cavenee,P.C.Burger,A.Jouvet,B.W.Scheithauer,andP.Kleihues.2007.The2007WHOclassificationoftumoursofthecentralnervoussystem.ActaNeuropathol.114:97-109.
48.Mack,M.,A.Kleinschmidt,H.Bruhl,C.Klier,P.J.Nelson,J.Cihak,J.Plachy,M.Stangassinger,V.Erfle,andD.Schlondorff.2000.TransferofthechemokinereceptorCCR5betweencellsbymembrane-derivedmicroparticles:amechanismforcellularhumanimmunodeficiencyvirus1infection.NatMed.6:769-75.
49.Mallardo,M.,A.Deitinghoff,J.Muller,B.Goetze,P.Macchi,C.Peters,andM.A.Kiebler.2003.IsolationandcharacterizationofStaufen-containingribonucleoproteinparticlesfromratbrain.ProcNatlAcadSciUSA.100:2100-5.
50.Maron,J.L.,K.L.Johnson,D.Slonim,C.Q.Lai,M.Ramoni,G.Alterovitz,Z.Jarrah,Z.Yang,andD.W.Bianchi.2007.Geneexpressionanalysisinpregnantwomenandtheirinfantsidentifiesuniquefetalbiomarkersthatcirculateinmaternalblood.JClinInvest.117:3007-19.
51.Mazzocca,A.,R.Coppari,R.DeFranco,J.Y.Cho,T.A.Libermann,M.Pinzani,andA.Toker.2005.AsecretedformofADAM9promotescarcinomainvasionthroughtumor-stromalinteractions.CancerRes.65:4728-38.
52.McLendon,R.,A.Friedman,D.Bigner,E.G.VanMeir,D.J.Brat,G.MarieMastrogianakis,J.J.Olson,T.Mikkelsen,N.Lehman,K.Aldape,W.K.AlfredYung,O.Bogler,S.Vandenberg,M.Berger,M.Prados,D.Muzny,M.Morgan,S.Scherer,A.Sabo,L.Nazareth,L.Lewis,O.Hall,Y.Zhu,Y.Ren,O.Alvi,J.Yao,A.Hawes,S.Jhangiani,G.Fowler,A.SanLucas,C.Kovar,A.Cree,H.Dinh,J.Santibanez,V.Joshi,M.L.Gonzalez-Garay,C.A.Miller,A.Milosavljevic,L.Donehower,D.A.Wheeler,R.A.Gibbs,K.Cibulskis,C.Sougnez,T.Fennell,S.Mahan,J.Wilkinson,L.Ziaugra,R.Onofrio,T.Bloom,R.Nicol,K.Ardlie,J.Baldwin,S.Gabriel,E.S.Lander,L.Ding,R.S.Fulton,M.D.McLellan,J.Wallis,D.E.Larson,X.Shi,R.Abbott,L.Fulton,K.Chen,D.C.Koboldt,M.C.Wendl,R.Meyer,Y.Tang,L.Lin,J.R.Osborne,B.H.Dunford-Shore,T.L.Miner,K.Delehaunty,C.Markovic,G.Swift,W.Courtney,C.Pohl,S.Abbott,A.Hawkins,S.Leong,C.Haipek,H.Schmidt,M.Wiechert,T.Vickery,S.Scott,D.J.Dooling,A.Chinwalla,G.M.Weinstock,E.R.Mardis,R.K.Wilson,G.Getz,W.Winckler,R.G.Verhaak,M.S.Lawrence,M.O′Kelly,J.Robinson,G.Alexe,R.Beroukhim,S.Carter,D.Chiang,J.Gould,etal.2008.Comprehensivegenomiccharacterizationdefineshumanglioblastomagenesandcorepathways.Nature.
53.Mellinghoff,I.K.,M.Y.Wang,I.Vivanco,D.A.Haas-Kogan,S.Zhu,E.Q.Dia,K.V.Lu,K.Yoshimoto,J.H.Huang,D.J.Chute,B.L.Riggs,S.Horvath,L.M.Liau,W.K.Cavenee,P.N.Rao,R.Beroukhim,T.C.Peck,J.C.Lee,W.R.Sellers,D.Stokoe,M.Prados,T.F.Cloughesy,C.L.Sawyers,andP.S.Mischel.2005.MoleculardeterminantsoftheresponseofglioblastomastoEGFRkinaseinhibitors.NEnglJMed.353:2012-24.
54.Miele,E.A.,D.R.Mills,andF.R.Kramer.1983.AutocatalyticreplicationofarecombinantRNA.JMolBiol.171:281-95.
55.Millimaggi,D.,M.Mari,S.D′Ascenzo,E.Carosa,E.A.Jannini,S.Zucker,G.Carta,A.Pavan,andV.Dolo.2007.Tumorvesicle-associatedCD147modulatestheangiogeniccapabilityofendothelialcells.Neoplasia.9:349-57.
56.Mosse,Y.P.,M.Laudenslager,L.Longo,K.A.Cole,A.Wood,E.F.Attiyeh,M.J.Laquaglia,R.Sennett,J.E.Lynch,P.Perri,G.Laureys,F.Speleman,C.Kim,C.Hou,H.Hakonarson,A.Torkamani,N.J.Schork,G.M.Brodeur,G.P.Tonini,E.Rappaport,M.Devoto,andJ.M.Maris.2008.IdentificationofALKasamajorfamilialneuroblastomapredispositiongene.Nature.
57.Muerkoster,S.,K.Wegehenkel,A.Arlt,M.Witt,B.Sipos,M.L.Kruse,T.Sebens,G.Kloppel,H.Kalthoff,U.R.Folsch,andH.Schafer.2004.Tumorstromainteractionsinducechemoresistanceinpancreaticductalcarcinomacellsinvolvingincreasedsecretionandparacrineeffectsofnitricoxideandinterleukin-1beta.CancerRes.64:1331-7.
58.Myers,R.M.,Z.Larin,andT.Maniatis.1985.DetectionofsinglebasesubstitutionsbyribonucleasecleavageatmismatchesinRNA:DNAduplexes.Science.230:1242-6.
59.Nagrath,S.,L.V.Sequist,S.Maheswaran,D.W.Bell,D.Irimia,L.Ulkus,M.R.Smith,E.L.Kwak,S.Digumarthy,A.Muzikansky,P.Ryan,U.J.Balis,R.G.Tompkins,D.A.Haber,andM.Toner.2007.Isolationofrarecirculatingtumourcellsincancerpatientsbymicrochiptechnology.Nature.450:1235-9.
60.Nakanishi,H.,J.Groskopf,H.A.Fritsche,V.Bhadkamkar,A.Blase,S.V.Kumar,J.W.Davis,P.Troncoso,H.Rittenhouse,andR.J.Babaian.2008.PCA3molecularurineassaycorrelateswithprostatecancertumorvolume:implicationinselectingcandidatesforactivesurveillance.JUrol.179:1804-9;discussion1809-10.
61.Nakazawa,H.,D.English,P.L.Randell,K.Nakazawa,N.Martel,B.K.Armstrong,andH.Yamasaki.1994.UVandskincancer:specificp53genemutationinnormalskinasabiologicallyrelevantexposuremeasurement.ProcNatlAcadSciUSA.91:360-4.
62.Ng,E.K.,T.N.Leung,N.B.Tsui,T.K.Lau,N.S.Panesar,R.W.Chiu,andY.M.Lo.2003a.Theconcentrationofcirculatingcorticotropin-releasinghormonemRNAinmaternalplasmaisincreasedinpreeclampsia.ClinChem.49:727-31.
63.Ng,E.K.,N.B.Tsui,T.K.Lau,T.N.Leung,R.W.Chiu,N.S.Panesar,L.C.Lit,K.W.Chan,andY.M.Lo.2003b.mRNAofplacentaloriginisreadilydetectableinmaternalplasma.ProcNatlAcadSciUSA.100:4748-53.
64.Nishikawa,R.,T.Sugiyama,Y.Narita,F.Furnari,W.K.Cavenee,andM.Matsutani.2004.Immunohistochemicalanalysisofthemutantepidermalgrowthfactor,deltaEGFR,inglioblastoma.BrainTumorPathol.21:53-6.
65.Orita,M.,H.Iwahana,H.Kanazawa,K.Hayashi,andT.Sekiya.1989.DetectionofpolymorphismsofhumanDNAbygelelectrophoresisassingle-strandconformationpolymorphisms.ProcNatlAcadSciUSA.86:2766-70.
66.Pan,B.T.,andR.M.Johnstone.1983.Fateofthetransferrinreceptorduringmaturationofsheepreticulocytesinvitro:selectiveexternalizationofthereceptor.Cell.33:967-78.
67.Parsons,D.W.,S.Jones,X.Zhang,J.C.Lin,R.J.Leary,P.Angenendt,P.Mankoo,H.Carter,I.M.Siu,G.L.Gallia,A.Olivi,R.McLendon,B.A.Rasheed,S.Keir,T.Nikolskaya,Y.Nikolsky,D.A.Busam,H.Tekleab,L.A.Diaz,Jr.,J.Hartigan,D.R.Smith,R.L.Strausberg,S.K.Marie,S.M.Shinjo,H.Yan,G.J.Riggins,D.D.Bigner,R.Karchin,N.Papadopoulos,G.Parmigiani,B.Vogelstein,V.E.Velculescu,andK.W.Kinzler.2008.AnIntegratedGenomicAnalysisofHumanGlioblastomaMultiforme.Science.
68.Pelloski,C.E.,K.V.Ballman,A.F.Furth,L.Zhang,E.Lin,E.P.Sulman,K.Bhat,J.M.McDonald,W.K.Yung,H.Colman,S.Y.Woo,A.B.Heimberger,D.Suki,M.D.Prados,S.M.Chang,F.G.Barker,2nd,J.C.Buckner,C.D.James,andK.Aldape.2007.EpidermalgrowthfactorreceptorvariantIIIstatusdefinesclinicallydistinctsubtypesofglioblastoma.JClinOncol.25:2288-94.
69.Raposo,G.,H.W.Nijman,W.Stoorvogel,R.Liejendekker,C.V.Harding,C.J.Melief,andH.J.Geuze.1996.Blymphocytessecreteantigen-presentingvesicles.JExpMed.183:1161-72.
70.Roe,M.A.,C.Spinks,A.L.Heath,L.J.Harvey,R.Foxall,J.Wimperis,C.Wolf,andS.J.Fairweather-Tait.2007.Serumprohepcidinconcentration:noassociationwithironabsorptioninhealthymen;andnorelationshipwithironstatusinmencarryingHFEmutations,hereditaryhaemochromatosispatientsundergoingphlebotomytreatment,orpregnantwomen.BrJNutr.97:544-9.
71.Schetter,A.J.,S.Y.Leung,J.J.Sohn,K.A.Zanetti,E.D.Bowman,N.Yanaihara,S.T.Yuen,T.L.Chan,D.L.Kwong,G.K.Au,C.G.Liu,G.A.Calin,C.M.Croce,andC.C.Harris.2008.MicroRNAexpressionprofilesassociatedwithprognosisandtherapeuticoutcomeincolonadenocarcinoma.JAMA.299:425-36.
72.Singer,C.F.,D.Gschwantler-Kaulich,A.Fink-Retter,C.Haas,G.Hudelist,K.Czerwenka,andE.Kubista.2007.Differentialgeneexpressionprofileinbreastcancer-derivedstromalfibroblasts.BreastCancerResTreat.
73.Steemers,F.J.,W.Chang,G.Lee,D.L.Barker,R.Shen,andK.L.Gunderson.2006.Whole-genomegenotypingwiththesingle-baseextensionassay.NatMethods.3:31-3.
74.Stupp,R.,W.P.Mason,M.J.vandenBent,M.Weller,B.Fisher,M.J.Taphoorn,K.Belanger,A.A.Brandes,C.Marosi,U.Bogdahn,J.Curschmann,R.C.Janzer,S.K.Ludwin,T.Gorlia,A.Allgeier,D.Lacombe,J.G.Cairncross,E.Eisenhauer,andR.O.Mirimanoff.2005.Radiotherapyplusconcomitantandadjuvanttemozolomideforglioblastoma.NEnglJMed.352:987-96.
75.Taylor,D.D.,andC.Gercel-Taylor.2008.MicroRNAsignaturesoftumor-derivedexosomesasdiagnosticbiomarkersofovariancancer.GynecolOncol.110:13-21.
76.Thery,C.,S.Amigorena,G.Raposo,andA.Clayton.2006.Isolationandcharacterizationofexosomesfromcellculturesupernatantsandbiologicalfluids.CurrProtocCellBiol.Chapter3:Unit322.
77.Thery,C.,L.Zitvogel,andS.Amigorena.2002.Exosomes:composition,biogenesisandfunction.NatRevImmunol.2:569-79.
78.Tomlins,S.A.,D.R.Rhodes,S.Perner,S.M.Dhanasekaran,R.Mehra,X.W.Sun,S.Varambally,X.Cao,J.Tchinda,R.Kuefer,C.Lee,J.E.Montie,R.B.Shah,K.J.Pienta,M.A.Rubin,andA.M.Chinnaiyan.2005.RecurrentfusionofTMPRSS2andETStranscriptionfactorgenesinprostatecancer.Science.310:644-8.
79.Valadi,H.,K.Ekstrom,A.Bossios,M.Sjostrand,J.J.Lee,andJ.O.Lotvall.2007.Exosome-mediatedtransferofmRNAsandmicroRNAsisanovelmechanismofgeneticexchangebetweencells.NatCellBiol.9:654-9.
80.vanDijk,E.L.,G.Schilders,andG.J.Pruijn.2007.Humancellgrowthrequiresafunctionalcytoplasmicexosome,whichisinvolvedinvariousmRNAdecaypathways.RNA.13:1027-35.
81.Velculescu,V.E.,L.Zhang,B.Vogelstein,andK.W.Kinzler.1995.Serialanalysisofgeneexpression.Science.270:484-7.
82.Weiss,G.,andL.T.Goodnough.2005.Anemiaofchronicdisease.NEnglJMed.352:1011-23.
83.Went,P.T.,A.Lugli,S.Meier,M.Bundi,M.Mirlacher,G.Sauter,andS.Dirnhofer.2004.FrequentEpCamproteinexpressioninhumancarcinomas.HumPathol.35:122-8.
84.Wieckowski,E.,andT.L.Whiteside.2006.Humantumor-derivedvsdendriticcell-derivedexosomeshavedistinctbiologicrolesandmolecularprofiles.ImmunolRes.36:247-54.
85.Wong,B.C.,R.W.Chiu,N.B.Tsui,K.C.Chan,L.W.Chan,T.K.Lau,T.N.Leung,andY.M.Lo.2005.CirculatingplacentalRNAinmaternalplasmaisassociatedwithapreponderanceof5′mRNAfragments:implicationsfornoninvasiveprenataldiagnosisandmonitoring.ClinChem.51:1786-95.
86.Wood,L.D.,D.W.Parsons,S.Jones,J.Lin,T.Sjoblom,R.J.Leary,D.Shen,S.M.Boca,T.Barber,J.Ptak,N.Silliman,S.Szabo,Z.Dezso,V.Ustyanksky,T.Nikolskaya,Y.Nikolsky,R.Karchin,P.A.Wilson,J.S.Kaminker,Z.Zhang,R.Croshaw,J.Willis,D.Dawson,M.Shipitsin,J.K.Willson,S.Sukumar,K.Polyak,B.H.Park,C.L.Pethiyagoda,P.V.Pant,D.G.Ballinger,A.B.Sparks,J.Hartigan,D.R.Smith,E.Suh,N.Papadopoulos,P.Buckhaults,S.D.Markowitz,G.Parmigiani,K.W.Kinzler,V.E.Velculescu,andB.Vogelstein.2007.Thegenomiclandscapesofhumanbreastandcolorectalcancers.Science.318:1108-13.
87.Wright,J.L.,andP.H.Lange.2007.Newerpotentialbiomarkersinprostatecancer.RevUrol.9:207-13.
88.Zehentner,B.K.,H.Secrist,X.Zhang,D.C.Hayes,R.Ostenson,G.Goodman,J.Xu,M.Kiviat,N.Kiviat,D.H.Persing,andR.L.Houghton.2006.Detectionofalpha-methylacyl-coenzyme-Aracemasetranscriptsinbloodandurinesamplesofprostatecancerpatients.MolDiagnTher.10:397-403.
89.Zielie,P.J.,J.A.Mobley,R.G.Ebb,Z.Jiang,R.D.Blute,andS.M.Ho.2004.Anoveldiagnostictestforprostatecanceremergesfromthedeterminationofalpha-methylacyl-coenzymearacemaseinprostaticsecretions.JUrol.172:1130-3。
表1:可以将成胶质细胞瘤微泡中的RNA用作敏感生物标志物。
使用巢式RT-PCR监测神经胶质瘤活检组织中以及从相同患者的冷冻血清样本纯化的外来体中的EGFRvIIImRNA。以蒙眼方式分析了来自30位患者的样本并且PCR反应对每个样本至少重复3次。在来自30位正常对照的血清微泡中未发现EGFRvIIImRNA。PP1表示由SEQIDNo:13和14组成的引物对。PP2表示由SEQIDNo:15和16组成的引物对。“-”表示“不可获得”。
*肿瘤移除手术后的天数
表2:表3中使用的缩写
缩写术语
A扩增
AEL急性嗜酸细胞白血病
AL急性白血病
ALCL间变性大细胞淋巴瘤
ALL急性淋巴细胞性白血病
AML急性髓性白血病
AML*急性髓性白血病(主要为治疗相关的)
APL急性早幼粒细胞白血病
B-ALLB-细胞急性淋巴细胞性白血病
B-CLLB-细胞淋巴细胞性白血病
B-NHLB-细胞非霍奇金淋巴瘤
CLL慢性淋巴细胞性白血病
CML慢性粒细胞性白血病
CMML慢性骨髓单核细胞性白血病
CNS中枢神经系统
D大片段缺失
DFSP隆凸性皮肤纤维肉瘤
DLBL弥漫性大B细胞淋巴瘤
DLCL弥漫性大细胞淋巴瘤
Dom显性
E上皮的
F框架
GIST胃肠道间质瘤
JMML幼年型粒单核细胞白血病
L白血病/淋巴瘤
M间充质的
MALT粘膜相关性淋巴组织淋巴瘤
MDS骨髓发育异常综合征
Mis错义
MLCLS伴硬化的纵隔大细胞淋巴瘤
MM多发性骨髓瘤
MPD骨髓增生殖性疾病
N无义
NHL非霍奇金淋巴瘤
NK/T自然杀伤T细胞
NSCLC非小细胞肺癌
O其他
PMBL原发性纵隔B细胞淋巴瘤
pre-BAll前B细胞急性淋巴细胞白血病
Rec隐性
S拼接位点
T易位
T-ALLT-细胞急性淋巴母细胞性白血病
T-CLLT-细胞慢性淋巴细胞性白血病
TGCT睾丸生殖细胞瘤
T-PLLT细胞前淋巴细胞性白血病
没有研究(癌症类型)对测试基因具有可用的表达数据。
其测试基因的表达被上调或下调的癌症类型的上调#或下调#数。
在大多数癌症类型中,所有这些基因被显著性一致地上调(P<10)。
doi:10.137/journalpone.0001149.001
在大多数癌类型中,所有这些基因被显著性一致地下调(P<10-5)。
doi:10.1371/journal.pone.0001149.t002
注意:登录号“NM_XXXX”是美国国家生物技术信息中心(NCBI)唯一地分配给每个基因的(http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore)。
注意:登录号“NM_XXXX”是美国国家生物技术信息中心(NCBI)唯一地分配给每个基因的(http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore)。
表8:成胶质细胞瘤细胞中上调的微小RNA。
表9:成胶质细胞瘤细胞中下调的微小RNA。
表10.从成胶质细胞瘤细胞系中分离的微泡内包含的MMP基因。
注:基因符号是EntrzGene(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene)分配的标准符号。
登录号是美国国家生物技术信息中心(NCBI)唯一地分配给每个基因的(http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore)。
注:Hugo基因符号是HUGO基因命名委员会分配给各个基因的(http://www.genenames.org/)。Entrez_Gene_Ids是EntrzGene分配给各个基因的(http://www.ncbi.nlm.nih.g ov/sites/entrez?db=gene)。
注:基因符号是EntrzGene分配的标准符号(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene)。登录号“NM_XXXX”是美国国家生物技术信息中心(NCBI)唯一地分配给每个基因的(http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore)。登录号“CCDSXXXX”是美国国家生物技术信息中心(NCBI)唯一地分配给每个基因的(http://www.ncbi.nlm.nih.gov/CCDS/)。登录号“ENSTXXXXXXXXXXX”是Ensembl唯一地分配给每个基因的(http://www.ensembl.org/index.html)。
基因符号登录号基因符号登录号基因符号登录号
C2orf10CCDS2291.1CD86CCDS3009.1COL14A1NM_021110
C2orf29CCDS2050.1CDC42BPACCDS1558.1COL17A1CCDS7554.1
C3NM_000064CDH1CCDS10869.1COL22A1CCDS6376.1
C3orf15CCDS2994.1CDH10CCDS3892.1COL4A1CCDS9511.1
C3orf18CCDS2829.1CDH20CCDS11977.1COL4A4NM_000092
C4orf9NM_003703CDH7CCDS11993.1COL5A1CCDS6982.1
C6orf103ENST00000326916CDKN2ACCDS6510.1COL6A3NM_004369
C6orf213NM_001010852CDSNNM_001264COLEC12NM_130386
C6orf54CCDS5304.1CEBPZCCDS1787.1CORO2ACCDS6735.1
C6orf60NM_024581CEECAM1CCDS6901.1CPAMD8NM_015692
C7orf27CCDS5334.1CELNM_001807CPLX2ENST00000274615
C9orf138CCDS6487.1CELSR1CCDS14076.1CPN1CCDS7486.1
C9orf39NM_017738CENTD1CCDS3441.1CPT1CCCDS12779.1
C9orf45CCDS6850.1Cep192NM_032142CPZCCDS3404.1
C9orf91CCDS6808.1CEP290NM_025114CREBBPCCDS10509.1
C9orf98CCDS6954.1CFHR4NM_006684CSF2RBCCDS13936.1
CABLES2NM_031215CGI-09CCDS13093.1CSMD1NM_033225
CACNA1ANM_000068CGNCCDS999.1CSMD2CCDS380.1
CACNA1ENM_000721CHD1NM_001270CSS3NM_175856
CACNA2D1CCDS5598.1CHD5CCDS57.1CTAG2CCDS14759.1
CACNG5CCDS11666.1CHD7NM_017780CTNNA2NM_004389
CADCCDS1742.1CHI3L1CCDS1435.1CTNNA3CCDS7269.1
CALB1CCDS6251.1CHMP1BNM_020412CTNND2CCDS3881.1
CALCRCCDS5631.1CHPPRCCDS6182.1CUBNCCDS7113.1
CAMSAP1NM_015447CHST1CCDS7913.1CUL4BNM_003588
CAMTA1NM_015215CHURC1NM_145165CUTL1CCDS5720.1
CAND2ENST00000295989CIAS1CCDS1632.1CX40.1CCDS7191.1
CAPN12CCDS12519.1CILPCCDS10203.1CXorf9CCDS14614.1
CARD9CCDS6997.1CKLFSF4CCDS10817.1CYFIP1CCDS10009.1
CASKIN2CCDS11723.1CLEC4MCCDS12187.1CYFIP2NM_014376
CASP10CCDS2338.1CLIPR-59CCDS12486.1CYP1A1CCDS10268.1
CATCCDS7891.1CLK1CCDS2331.1DACH2CCDS14455.1
CBFA2T2CCDS13221.1CLSTN2CCDS3112.1DAXXCCDS4776.1
CBLN4CCDS13448.1CLUAP1NM_015041DBTCCDS767.1
CCDC11CCDS11940.1CMASCCDS8696.1DCC1CCDS6330.1
CCDC18NM_206886CMYA1CCDS2683.1DCHS1CCDS7771.1
CCKARCCDS3438.1CMYA3NM_152381DCHS2CCDS3785.1
CCL2CCDS11277.1CMYA5NM_153610DCTCCDS9470.1
CCNB3CCDS14331.1CNGB1NM_001297DDX51NM_175066
CCNYL3ENST00000332505CNGB3CCDS6244.1DDX58CCDS6526.1
CCR1CCDS2737.1CNTN4CCDS2558.1DEPDC2CCDS6201.1
CCT6ACCDS5523.1CNTN5NM_014361DEPDC5NM_014662
CCT6BNM_006584CNTN6CCDS2557.1DET1NM_017996
CD163CCDS8578.1CNTNAP2CCDS5889.1DFNB31CCDS6806.1
CD1ACCDS1174.1CNTNAP4CCDS10924.1DGKACCDS8896.1
CD200R1CCDS2969.1COBLL1CCDS2223.1DGKDCCDS2504.1
CD44CCDS7897.1COCHCCDS9640.1DGKKNM_001013742
CD6CCDS7999.1COH1CCDS6280.1DGKZCCDS7918.1
CD79ACCDS12589.1COL11A1CCDS778.1DHCR24CCDS600.1
基因符号登录号基因符号登录号基因符号登录号
DHX33CCDS11072.1EME2NM_001010865FAM53BCCDS7641.1
DHX8CCDS11464.1EMILIN1CCDS1733.1FAM54BNM_019557
DICER1CCDS9931.1EML1NM_004434FAM55CCCDS2945.1
DIP2BNM_173602ENC1CCDS4021.1FATNM_005245
DKFZp313G1735CCDS4073.1ENST00000294635ENST00000294635FAT3ENST00000298047
DKFZP434B0335NM_015395ENST00000298876ENST00000298876FAT4CCDS3732.1
DKFZP434G1415CCDS8743.1ENST00000309390ENST00000309390FBN2NM_001999
DKFZP434L1717CCDS3805.1ENST00000322493ENST00000322493FBN3CCDS12196.1
DKFZp434O0527CCDS2430.1ENST00000324303ENST00000324303FBXO15CCDS12002.1
DKFZP564J0863NM_015459ENST00000326382ENST00000326382FBXO3CCDS7887.1
DKFZp566O084CCDS11215.1ENST00000326952ENST00000326952FBXO41ENST00000295133
DKFZP586P0123NM_015531ENST00000332477ENST00000332477FBXO9NM_033481
DKFZp761A052CCDS14313.1ENST00000333971ENST00000333971FBXW7CCDS3777.1
DLC1CCDS5989.1ENST00000334548ENST00000334548FBXW8CCDS9182.1
DLEC1ENST00000337335ENST00000336168ENST00000336168FGD2CCDS4829.1
DLG2NM_001364ENST00000340260ENST00000340260FGD5NM_152536
DLG3CCDS14403.1ENST00000356555ENST00000356555FKRPCCDS12691.1
DLGAP1CCDS11836.1ENTHNM_014666FKSG44CCDS8102.1
DMDCCDS14228.1EP300CCDS14010.1FLJ10324NM_018059
DMP1CCDS3623.1EPB41L1CCDS13271.1FLJ10407CCDS583.1
DNA2LENST00000358410EPC2NM_015630FLJ10521CCDS182.1
DNAH11NM_003777EPHA3CCDS2922.1FLJ10647CCDS406.1
DNAH5CCDS3882.1EPHA7CCDS5031.1FLJ12886NM_019108
DNAH8CCDS4838.1EPHB1NM_004441FLJ14011CCDS12944.1
DNAH9CCDS11160.1EPHB2CCDS229.1FLJ14299CCDS6094.1
DNAPTP6NM_015535EPHB6CCDS5873.1FLJ14490CCDS446.1
DNHD2NM_178504EPM2ACCDS5206.1FLJ14640NM_032816
DNM1LCCDS8728.1EPPK1NM_031308FLJ20032CCDS3666.1
DOCK2CCDS4371.1EPS8L2NM_022772FLJ20035NM_017631
DOT1LNM_032482ERCC2NM_000400FLJ20244CCDS12293.1
DP58NM_001004441ERCC4NM_005236FLJ20245CCDS7041.1
DPP6NM_130797ERCC6CCDS7230.1FLJ20457CCDS6774.1
DRD2CCDS8361.1EST1BCCDS1137.1FLJ20580CCDS576.1
DRD3CCDS2978.1ETS2CCDS13659.1FLJ21628CCDS4440.1
DUOX2CCDS10117.1ETV6CCDS8643.1FLJ21816NM_024675
DUSP15CCDS13193.1EVI1CCDS3205.1FLJ21986NM_024913
DUSP19CCDS2289.1EVPLCCDS11737.1FLJ23420CCDS12189.1
DYSFCCDS1918.1EXOC2NM_018303FLJ23577ENST00000303168
EBFCCDS4343.1EXOSC8NM_181503FLJ23588CCDS14049.1
EBF3NM_001005463F10CCDS9530.1FLJ25006CCDS11237.1
EDG8CCDS12240.1F13A1CCDS4496.1FLJ25530CCDS8456.1
EFEMP1CCDS1857.1F8NM_000132FLJ26175NM_001001668
EHMT1CCDS70500.1FAD158CCDS725.1FLJ31295CCDS8763.1
EIF2AK2CCDS1786.1FADDCCDS8196.1FLJ32110CCDS5613.1
EIF5CCDS9980.1FADS1CCDS8013.1FLJ32112CCDS587.1
EIF5BNM_015904FADS2CCDS8012.1FLJ32416CCDS12086.1
ELA2CCDS12045.1FAM132BENST00000344233FLJ32685CCDS2645.1
ELAVL4CCDS553.1FAM47BENST00000329357FLJ34969NM_152678
ELNCCDS5562.1FAM50BCCDS4487.1FLJ35220NM_173627
基因符号登录号基因符号登录号基因符号登录号
FLJ35843CCDS9151.1GLP1RCCDS4839.1HPCAL1CCDS1671.1
FLJ36180CCDS3851.1GLTSCR1NM_015711HPS5CCDS7836.1
FLJ36748NM_152406GNAT1CCDS2812.1HRB2CCDS9012.1
FLJ37396CCDS5072.1GOLGA3CCDS9281.1HRPT2CCDS1382.1
FLJ38020NM_001039775GPC2CCDS5689.1HS3ST2CCDS10606.1
FLJ38377CCDS2164.1GPRCCDS10051.1HS3ST5NM_153612
FLJ39155CCDS3924.1GPR110ENST00000326374HSGT1CCDS7321.1
FLJ39501CCDS12331.1GPR133CCDS9272.1HTR1ANM_000524
FLJ39502CCDS2281.1GPR151NM_194251HYPCCCDS8789.1
FLJ40235CCDS12827.1GPR154CCDS5443.1IER5CCDS1343.1
FLJ41046NM_207479GPR158NM_020752IL12RB1NM_153701
FLJ41993NM_001001694GPR35CCDS2541.1IL17RBCCDS2874.1
FLJ45231NM_001039778GPR54CCDS12049.1IL17RCCCDS2590.1
FLJ45909CCDS12522.1GPR73L1CCDS13089.1IL18R1CCDS2060.1
FLJ46072CCDS6410.1GPR82CCDS14259.1IL2RGCCDS14406.1
FLJ46365CCDS6144.1GPRC5CCCDS11699.1ILKCCDS7768.1
FLJ46481CCDS3384.1GPS2CCDS11100.1IMP5NM_175882
FLJ46536NM_198483GPX6NM_182701INHBBCCDS2132.1
FLJ90805CCDS12603.1GRCACCDS8563.1INO80CCDS10071.1
FMN2NM_020066GRHL1NM_198182INPP5DNM_001017915
FMNL1CCDS11497.1GRIA3CCDS14604.1INTS2NM_020748
FMNL3NM_175736GRIK2CCDS5048.1IQGAP1CCDS10362.1
FMR1CCDS14682.1GRIN3ACCDS6758.1IRGQNM_001007561
FMR2CCDS14684.1GRIP2ENST00000273083IRS4CCDS14544.1
FN1CCDS2399.1GRM6CCDS4442.1IRX1NM_024337
FOXJ1NM_001454GRM8CCDS5794.1ISYNA1CCDS12379.1
FOXP2CCDS5760.1GSDMLCCDS11354.1ITGA11NM_001004439
FREM1NM_144966GSRNM_000637ITGA3CCDS11557.1
FREM2NM_207361GTF3C1NM_001520ITGA4NM_000885
FRMPD4NM_014728GTF3C3CCDS2316.1ITGA9CCDS2669.1
FSTL5CCDS3802.1GUCA2ACCDS465.1ITGAENM_002208
FTCDCCDS13731.1GUCY1A2CCDS8335.1ITGB4BPCCDS13249.1
FTHL17CCDS14227.1H1T2CCDS8762.1ITIH2NM_002216
GABRA1CCDS4357.1HAPLN4CCDS12398.1ITLN1CCDS1211.1
GABRR1CCDS5019.1HAS1CCDS12838.1ITPR1NM_002222
GALNT13CCDS2199.1HBXIPCCDS824.1IXLNM_017592
GALNT4NM_003774HCKNM_002110JAG1CCDS13112.1
GALNT8CCDS8533.1HECW1CCDS5469.1JM11CCDS14316.1
GAS7CCDS11152.1HECW2NM_020760JMJD3ENST00000254846
GBP3CCDS717.1HELBCCDS8976.1JPH3CCDS10962.1
GDF6NM_001001557HELZNM_014877JPH4CCDS9603.1
GFAPCCDS11491.1HIP1NM_005338K6IRS2CCDS8833.1
GFRA1CCDS7593.1HIST1H3ACCDS4570.1KAL1CCDS14130.1
GH2CCDS11648.1HIST1H4ICCDS4620.1KBTBD11NM_014867
GIMAP7CCDS5903.1HKR2CCDS12975.1KCNA3CCDS828.1
GJA3CCDS9289.1HMGCLL1NM_019036KCNA4NM_002233
GLB1L3ENST00000299136HOXC10CCDS8868.1KCNB1CCDS13418.1
GLI1CCDS8940.1HOXC9CCDS8869.1KCNB2CCDS6209.1
GLI3CCDS5465.1HOXD4CCDS2269.1KCNC2CCDS9005.1
基因符号登录号基因符号登录号基因符号登录号
KCNC3CCDS12793.1LENG8CCDS12894.1LRRC48NM_031294
KCNJ3CCDS2200.1LGI4CCDS12444.1LRRK2NM_198578
KCNK10CCDS9880.1LGR6CCDS1424.1LRRN3CCDS5754.1
KCNMA1CCDS7352.1LIG3CCDS11284.1LRRTM4NM_024993
KCNT1NM_020822LIMRCCDS8780.1MAGEE1CCDS14433.1
KCTD15CCDS12434.1LIPHCCDS3272.1MAMDC1NM_182830
KEAP1CCDS12239.1LMOD1NM_012134MAN2A1NM_002372
KIAA0082CCDS4835.1LMTK2CCDS5654.1MAP1ANM_002373
KIAA0317ENST00000338772LMX1ACCDS1247.1MAP1BCCDS4012.1
KIAA0367NM_015225LOC113179CCDS12076.1MAP2CCDS2384.1
KIAA0372CCDS4072.1LOC113386NM_138781MAP2K6CCDS11686.1
KIAA0590CCDS10439.1LOC123872CCDS10943.1MAP4K2CCDS8082.1
KIAA0774NM_001033602LOC126147NM_145807MAP4K3CCDS1803.1
KIAA1024NM_015206LOC128153CCDS1519.1MAP4K4ENST00000302217
KIAA1086ENST00000262961LOC130951NM_138804MAPKBP1NM_014994
KIAA1102NM_014988LOC131873ENST00000358511MAPTCCDS11499.1
KIAA1109ENST00000264501LOC163131NM_001005851MARLIN1CCDS3385.1
KIAA1219CCDS13305.1LOC167127CCDS3914.1MARSCCDS8942.1
KIAA1543ENST00000160298LOC222967ENST00000297186MASP2CCDS123.1
KIAA1704CCDS9394.1LOC283219NM_001029859MASS1NM_032119
KIAA1751ENST00000270720LOC283398ENST00000342823MAST2NM_015112
KIAA1755NM_001029864LOC284434NM_001007525MAT2BCCDS4365.1
KIAA1944CCDS9266.1LOC339768CCDS2525.1MBD3CCDS12072.1
KIAA1957ENST00000332235LOC340578NM_001013628MCM7CCDS5683.1
KIAA1961NM_133372LOC342979ENST00000340790MCTP2NM_018349
KIAA2013ENST00000329923LOC343521NM_001013632MEGF11CCDS10213.1
KIF21ANM_017641LOC387720NM_001013633MEP1ACCDS4918.1
KIF25CCDS5305.1LOC388135NM_001039614METT3NM_019852
KIF3ANM_007054LOC392617ENST00000333066MGC10731CCDS171.1
KINCCDS7080.1LOC399706NM_001010910MGC13125CCDS8374.1
KIRRELCCDS1172.1LOC441136NM_001013719MGC15523CCDS11780.1
KITCCDS3496.1LOC441476NM_001004353MGC15875CCDS4434.1
KLF5CCDS9448.1LOC441722ENST00000311061MGC20806CCDS11797.1
KLHDC1CCDS9692.1LOC51334CCDS4127.1MGC2494CCDS10423.1
KLHDC4CCDS10963.1LOC63920NM_022090MGC26598CCDS9036.1
KLP1CCDS12926.1LOC89944NM_138342MGC26988CCDS4335.1
KPNB1CCDS11513.1LPAL2ENST00000342479MGC29649CCDS8033.1
KRASCCDS8702.1LPHN3NM_015236MGC33407CCDS12207.1
KRT13CCDS11396.1LPLCCDS6012.1MGC34713CCDS4070.1
KRT9NM_000226LRFN5CCDS9678.1MGC35138CCDS7701.1
KRTAP11-1CCDS13608.1LRP1CCDS8932.1MGC35555CCDS6307.1
L3MBTL4CCDS11839.1LRP1BCCDS2182.1MGC39581CCDS12149.1
LAMA1NM_005559LRP2CCDS2232.1MGC4266CCDS8522.1
LAMA4NM_002290LRP3CCDS12430.1MGC50721CCDS10602.1
LAMA5NM_005560LRP5CCDS8181.1MGC5297CCDS3873.1
LAMC3CCDS6938.1LRRC16NM_017640MID1CCDS14138.1
LARPCCDS4328.1LRRC18NM_001006939MIZFCCDS8414.1
LASS3CCDS10384.1LRRC3BCCDS2644.1MKL2NM_014048
LCTCCDS2178.1LRRC4CCDS5799.1MLC1CCDS14083.1
基因符号登录号基因符号登录号基因符号登录号
MLLNM_005933NALP10CCDS7784.1OGDHLCCDS7234.1
MLL2NM_003482NALP13NM_176810OGFOD2NM_024623
MLL3CCDS5931.1NALP14CCDS7776.1OGTCCDS14414.1
MLL5NM_182931NALP4CCDS12936.1OR10A3ENST00000360759
MMP9CCDS13390.1NAV2CCDS7850.1OR10K2NM_001004476
MOBKL2CCCDS539.1NAV3NM_014903OR10P1NM_206899
MORCCCDS2955.1NCDNCCDS392.1OR10R2NM_001004472
MORC2NM_014941NCK1CCDS3092.1OR10Z1NM_001004478
MOXD1CCDS5152.1NCLNM_005381OR11L1NM_001001959
MPHOSPH1CCDS7407.1NCOA2NM_006540OR13C3NM_001001961
MPLCCDS483.1NEBNM_004543OR13C5NM_001004482
MPN2CCDS1563.1NEK8NM_178170OR1J2NM_054107
MPOCCDS11604.1NEO1CCDS10247.1OR2AJ1ENST00000318244
MPZCCDS1229.1NFATC3CCDS10860.1OR2T1NM_030904
MRGPRDENST00000309106NFIACCDS615.1OR2W3NM_001001957
MRGX1CCDS7846.1NIDCCDS1608.1OR4A16NM_001005274
MRPL38CCDS11733.1NID2CCDS9706.1OR4B1NM_001005470
MRPS7CCDS11718.1NIF3L1BP1CCDS2900.1OR4E2NM_001001912
MSLNNM_013404NIPSNAP3BCCDS6761.1OR4L1NM_001004717
MTF1NM_005955NKX2-2CCDS13145.1OR4X1NM_001004726
MTMR12NM_019061NLGN1CCDS3222.1OR51B4CCDS7757.1
MTMR2CCDS8305.1NMUR1CCDS2486.1OR51E1NM_152430
MTO1CCDS4979.1NOD3NM_178844OR51F2NM_001004753
MTRCCDS1614.1NOL5ACCDS13030.1OR52I2NM_001005170
MUC1CCDS1098.1NOPECCDS10206.1OR52L1ENST00000332249
MUC15CCDS7859.1NOR1CCDS409.1OR5C1NM_001001923
MUC16NM_024690NOS1NM_000620OR5D13NM_001001967
MUC2NM_002457NOX5NM_024505OR5D3PENST00000333984
MUF1CCDS533.1NP_0010358261ENST00000331090OR5F1NM_003697
MUM1L1NM_152423NP_0010743111ENST00000326096OR5J2NM_001005492
MYBL1ENST00000331406NPD014CCDS260.1OR5T1NM_001004745
MYBPHLNM_001010985NPHP4NM_015102OR6A2CCDS7772.1
MYCBPAPNM_032133NPY1RNM_000909OR6K2NM_001005279
MYH2CCDS11156.1NRG2CCDS4217.1OR8D2NM_001002918
MYH3CCDS11157.1NRXN2CCDS8077.1OR8H1NM_001005199
MYH6CCDS9600.1NRXN3CCDS9870.1OR8K1NM_001002907
MYH9CCDS13927.1NSE1CCDS1684.1OR8K5NM_001004058
MYLIPCCDS4536.1NTF3CCDS8538.1OR9I1NM_001005211
MYO10NM_012334NTRK3CCDS10340.1OR9K2NM_001005243
MYO15ANM_016239NUDT5CCDS7089.1ORC5LCCDS5734.1
MYO1GNM_033054ENST00000318605ENST00000318605OSBPL6CCDS2277.1
MYO3ACCDS7148.1NUP210NM_024923OSCARCCDS12873.1
MYO6NM_004999NURITCCDS9399.1OSMRCCDS3928.1
MYO7BENST00000272666NXNCCDS10998.1OSTNCCDS3299.1
MYO9ACCDS10239.1NXPH3CCDS11550.1OTOFCCDS1724.1
MYOM1NM_003803OBSCNCCDS1570.1OTPCCDS4039.1
MYST3CCDS6124.1OBSL1ENST00000265318OTX1CCDS1873.1
NAALAD2CCDS8288.1OCA2CCDS10020.1OVCA2NM_001383
NAALADL2NM_207015ODZ4ENST00000278550OVCH1NM_183378
基因符号登录号基因符号登录号基因符号登录号
P11CCDS8754.1PLCB2NM_004573PUM1CCDS338.1
PABPC5CCDS14460.1PLCB3CCDS8064.1PWP2HNM_005049
PACS2NM_015197PLCB4CCDS13104.1PXDNENST00000252804
PADI2CCDS177.1PLEC1NM_201380PXDNLNM_144651
PALMDCCDS758.1PLEC1NM_201378PYHIN1CCDS1178.1
PAPPACCDS6813.1PLEK2CCDS9782.1Q08AG5_HUMANENST00000334213
PARP10NM_032789PLEKHA6CCDS1444.1Q5JX50_HUMANENST00000325076
PARP14NM_017554PLEKHG2NM_022835Q5SYT8_HUMANENST00000279434
PARP2NM_005484PLK5_HUMANENST00000334770Q6ZMX6_HUMANENST00000269197
PARP9CCDS3014.1PLXNA1NM_032242Q6ZT40_HUMANENST00000296564
PAX6NM_000280PLXNB1CCDS2765.1Q7Z2Q7_HUMANENST00000334994
PB1CCDS2859.1PMP22CDNM_001013743Q7Z7L8_HUMANENST00000339446
PCDH15CCDS7248.1PNPLA1NM_001039725Q8N2V9_HUMANENST00000324414
PCDH17NM_014459PODNCCDS573.1Q8N5S4_HUMANENST00000326474
PCDH18NM_019035PODXLNM_001018111Q8N6V7_HUMANENST00000324928
PCDH9CCDS9443.1POLR2ANM_000937Q8N800_HUMANENST00000322516
PCDHA13NM_031864POLRMTCCDS12036.1Q8N9F6_HUMANENST00000317122
PCDHB16CCDS4251.1PON1CCDS5638.1Q8N9G5_HUMANENST00000313957
PCDHB2CCDS4244.1PPA2CCDS3667.1Q8N9S5_HUMANENST00000329388
PCDHB3CCDS4245.1PPFIA2NM_003625Q8N9V7_HUMANENST00000309765
PCDHGA1NM_031993PPP1CACCDS8160.1Q8N9Z1_HUMANENST00000326413
PCDHGA11NM_032091PPP1R15BCCDS1445.1Q8NCK2_HUMANENST00000325720
PCDHGA8NM_014004PPP1R3ACCDS5759.1Q8NGP7_HUMANENST00000341231
PCDHGC4CCDS4260.1PPP2R1ACCDS12849.1Q8NH06_HUMANENST00000324144
PCNTNM_006031PPP2R3ACCDS3087.1Q8NH08_HUMANENST00000327198
PCNXL2ENST00000344698PPP2R4CCDS6920.1Q96GK3_HUMANENST00000315264
PCSK2CCDS13125.1PPP5CCCDS12684.1Q96M18_HUMANENST00000335239
PCSK6NM_138321PRDM10CCDS8484.1Q96MJ2_HUMANENST00000327832
PDE6ACCDS4299.1PRDM5CCDS3716.1Q96QE0_HUMANENST00000301647
PDZRN3NM_015009PRDM9NM_020227Q96RX8_HUMANENST00000301719
PDZRN4CCDS8739.1PRELPCCDS1438.1Q96S27_HUMANENST00000301682
PEG3CCDS12948.1PREX1CCDS13410.1Q9H557_HUMANENST00000237253
PER3CCDS89.1PRG-3CCDS6751.1Q9H5F0_HUMANENST00000360484
PFASCCDS11136.1PRKACGCCDS6625.1Q9H8A7_HUMANENST00000053084
PGM5CCDS6622.1PRKCGCCDS12867.1Q9HA39_HUMANENST00000329980
PGRCCDS8310.1PRKD1CCDS9637.1Q9HCM3_HUMANENST00000242365
PHACTR3CCDS13480.1ProSAPiP1CCDS13049.1Q9NSI0_HUMANENST00000328881
PHB2NM_007273PRR12ENST00000246798Q9NT86_HUMANENST00000314272
PIAS4CCDS12118.1PRSS23CCDS8278.1Q9P169_HUMANENST00000342338
PIGKCCDS674.1PSMD3CCDS11356.1Q9P193_HUMANENST00000359406
PIGTCCDS13353.1PSME4NM_014614Q9P1M5_HUMANENST00000303007
PIK3CGCCDS5739.1PTCHD2ENST00000294484Q9Y6V0-3ENST00000333891
PIK3R2CCDS12371.1PTCHD3NM_001034842QRICH2NM_032134
PIP5K3CCDS2382.1PTF1ACCDS7143.1RAB6BCCDS3082.1
PITRM1NM_014889PTGER3CCDS652.1RAD9BCCDS9148.1
PKD1L2NM_182740PTNCCDS5844.1RAG1CCDS7902.1
PKHD1L1NM_177531PTPN12CCDS5592.1RAG2CCDS7903.1
PKIACCDS6222.1PTPRKCCDS5137.1RaLPCCDS10130.1
PKP2CCDS8731.1PTPRZ1NM_002851RANBP2CCDS2079.1
基因符号登录号基因符号登录号基因符号登录号
RARBCCDS2642.1SCN5ANM_000335SLC6A15CCDS9026.1
RARRES2CCDS5902.1SCN5ANM_198056SLC6A17NM_001010898
RASEFENST00000330861SCN7ANM_002976SLC6A2CCDS10754.1
RASGRP3NM_170672SCNM1CCDS987.1SLC6A3CCDS3863.1
RASGRP4NM_170603SCNN1BCCDS10609.1SLC9A5NM_004594
RASIP1CCDS12731.1SCNN1GCCDS10608.1SLCO1A2CCDS8686.1
RASSF6CCDS3558.1SCRIBCCDS6411.1SLCO1B1CCDS8685.1
RBAF600CCDS189.1SDPRCCDS2313.1SLCO1C1CCDS8683.1
RBBP6CCDS10621.1SDSCCDS9169.1SLCO4C1NM_180991
RBM27ENST00000265271SEC14L3CCDS13877.1SLITRK2CCDS14680.1
RC74NM_018250SEMA4DCCDS6685.1SLITRK3CCDS3197.1
RCHY1CCDS3567.1SEMA5BCCDS3019.1SLITRK5CCDS9465.1
RDH8CCDS12223.1SENP1NM_014554SMAD3CCDS10222.1
RELNNM_005045SESN2CCDS321.1SMAD4CCDS11950.1
RENBPCCDS14738.1SEZ6LCCDS13833.1SMARCA4CCDS12253.1
REPIN1NM_013400SF3A1CCDS13875.1SMOC1CCDS9798.1
RFX1CCDS12301.1SF3B1NM_012433SMTNCCDS13886.1
RFX3CCDS6449.1SFRS12CCDS3991.1SNCCDS13060.1
RFXDC1CCDS5113.1SFRS16CCDS12652.1SNCAIPCCDS4131.1
RGS11CCDS10403.1SGEFNM_015595SNRPCNM_003093
RGS17CCDS5244.1SH2D1BNM_053282SNX16CCDS6234.1
RHBDF1NM_022450SH3GL3CCDS10325.1SNX26CCDS12477.1
RHOT2CCDS10417.1SH3TC1CCDS3399.1SORL1CCDS8436.1
RIC3CCDS7788.1SHANK2CCDS8198.1SOX3CCDS14669.1
RIMBP2NM_015347SHKBP1CCDS12560.1SP8CCDS5372.1
RIMS1NM_014989SICCDS3196.1SPAP1CCDS1168.1
RIMS2NM_014677SIDT1CCDS2974.1SPATA13ENST00000360220
RLFCCDS448.1SIGLEC11CCDS12790.1SPINLW1CCDS13359.1
RNF175NM_173662SIPA1L2NM_020808SPTAN1CCDS6905.1
RNUT1CCDS10281.1SIX2CCDS1822.1SPTBN2CCDS8150.1
RODHCCDS8925.1SKD3CCDS8215.1SR140_HUMANENST00000319822
RP1CCDS6160.1SLC14A1CCDS11925.1SRCRB4DCCDS5585.1
RPGRIP1NM_020366SLC17A1CCDS4565.1SRRM2NM_016333
RREB1NM_001003699SLC17A7CCDS12764.1SSTCCDS3288.1
RTL1ENST00000331067SLC1A6CCDS12321.1ST6GAL2CCDS2073.1
RTTNNM_173630SLC22A15NM_018420ST6GALNAC5CCDS673.1
RUNX1T1CCDS6256.1SLC22A7CCDS4893.1ST8SIA5CCDS11930.1
RYR1NM_000540SLC25A26CCDS2905.1STAB1NM_015136
RYR2NM_001035SLC28A3CCDS6670.1STACCCDS2662.1
SACSCCDS9300.1SLC2A1CCDS477.1STAC2CCDS11335.1
SARS2NM_017827SLC2A3CCDS8586.1STAMBPCCDS1929.1
SART3CCDS9117.1SLC2A5CCDS99.1STARD13CCDS9348.1
SBLFCCDS1840.1SLC33A1CCDS3173.1STARD8CCDS14390.1
SCAP2CCDS5400.1SLC39A10NM_020342STAT4CCDS2310.1
SCFD2NM_152540SLC39A6NM_012319STIM1CCDS7749.1
SCGNCCDS4561.1SLC45A1ENST00000289877STK10NM_005990
SCN11ANM_014139SLC4A10NM_022058STK23NM_014370
SCN2A2NM_021007SLC4A8CCDS8814.1STK33CCDS7789.1
SCN4ANM_000334SLC4A9NM_031467STMN4CCDS6055.1
基因符号登录号基因符号登录号基因符号登录号
STN2CCDS9875.1TMEM63BNM_018426VIMCCDS7120.1
SULF1CCDS6204.1TMEM8CCDS10407.1VITNM_053276
SULF2CCDS13408.1TMEPAICCDS13462.1VLDLRCCDS6446.1
SV2ACCDS940.1TMPOCCDS9064.1VMD2L1NM_017682
SYNE1CCDS5236.1TMPRSS13NM_032046VPS13ACCDS6655.1
SYNE1CCDS5237.1TNFCCDS4702.1VPS13DNM_018156
SYNE2CCDS9761.1TNFRSF8CCDS144.1VPS16CCDS13036.1
SYPCCDS14321.01TNK1NM003985VPS39CCDS10083.1
SYT1CCDS9017.1TNNI3NM_000363VSIG1CCDS14535.1
SYT6CCDS871.1TNRCCDS1318.1VWFCCDS8539.1
SYT7NM_004200TOR3ACCDS1329.1WASF3CCDS9318.1
TCCDS5290.1TP53CCDS11118.1WBSCR14CCDS5553.1
TAF1BNM_005680TP53BP1CCDS10096.1WBSCR17CCDS5540.1
TAF1LNM_153809TPOCCDS1642.1WDR1NM_005112
TAF4NM_003185TREHNM007180WDR17CCDS3825.1
TAS2R41NM_176883TRERF1CCDS4867.1WDR27NM_182552
TATDN2NM_014760TRIM37NM_001005207WDR42BENST00000329763
TBC1D14CCDS3394.1TRIM58CCDS1636.1WDR44CCDS14572.1
TBX15NM_152380TRPM1CCDS10024.1WHSC1CCDS3357.1
TBX18ENST00000330469TRPM2CCDS13710.1WIRECCDS11364.1
TBX5CCDS9173.1TRPM3CCDS6634.1WNT9ANM_003395
TBX6CCDS10670.1TSC2CCDS10458.1WRNIP1CCDS4475.1
TCEB3BCCDS11932.1TSP-NYCCDS9237.1XKR4NM_052898
TCFL1CCDS989.1TSTA3CCDS6408.1XPNPEP1CCDS7560.1
TDRD7CCDS6725.1TTBK2NM_173500XPO7NM_015024
TENC1CCDS8842.1TTC12CCDS8360.1XR_017918.1ENST00000258651
TESSP2NM_182702TTC21BNM_024753XYLT2CCDS11563.1
TEX14NM_198393TTC24ENST00000340086YLPM1ENST00000238571
TFCP2L1CCDS2134.1TTF1CCDS6948.1YN002_HUMANENST00000334389
TFF2CCDS13684.1TTKCCDS4993.1ZANNM_173059
TFPI2CCDS5632.1TTNNM_133378ZBTB24NM_014797
TFR2NM_003227TTNNM_133437ZBTB33CCDS14596.1
TFSM1HUMANENST00000314720TUBB3CCDS10988.1ZBTB7CCDS12119.1
TGNM_003235TXNDC6CCDS3099.1ZC3H12BNM_001010888
TGFBR2CCDS2648.1UBE1LCCDS2805.1ZC3HDC7CCDS10550.1
TGIF2CCDS13278.1UBE2MCCDS12987.1ZDHHC4CCDS5352.1
THNSL1CCDS7147.1UBQLN4CCDS1127.1ZFHX1BCCDS2186.1
THSD7BENST00000272643UBR2CCDS4870.1ZFP36CCDS12534.1
TIMELESSCCDS8918.1UBXD7ENST00000296328ZHX3CCDS13315.1
TJP1NM_175610UCP3CCDS8229.1ZIM3NM_052882
TLL2CCDS7449.1ULBP1CCDS5223.1ZMAT4NM_024645
TM7SF4CCDS6301.1UNC13CENST00000260323ZNF133CCDS13134.1
TM9SF4CCDS13196.1USP20NM_001008563ZNF136NM_003437
TMCC2NM_014858USP31CCDS10607.1ZNF148CCDS3031.1
TMEFF2CCDS2314.1USP38CCDS3758.1ZNF238CCDS1623.1
TMEM132BNM_052907USP42NM_032172ZNF253ENST00000327867
TMEM16ANM_018043UTRNNM_007124ZNF31NM_145238
TMEM16CNM_031418VDAC2CCDS7348.1ZNF333CCDS12316.1
TMEM16GNM_001001891VGCNL1CCDS9498.1ZNF334NM_199441
基因符号登录号
ZNF365CCDS7264.1
ZNF423NM_015069
ZNF443NM_005815
ZNF451CCDS4960.1
ZNF507NM_014910
ZNF537CCDS12421.1
ZNF560CCDS12214.1
ZNF614CCDS12847.1
ZNF638CCDS1917.1
ZNF645CCDS14205.1
ZNF648ENST00000339948
ZNF682NM_033196
ZYG11BNM_024646
注:基因符号是EntrzGene分配的标准符号(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene)。登录号“NM_XXXX”是美国国家生物技术信息中心(NCBI)唯一地分配给每个基因的(http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore)。登录号“CCDSXXXX”是美国国家生物技术信息中心(NCBI)唯一地分配给每个基因的(http://www.ncbi.nlm.nih.gov/CCDS/)。登录号“ENSTXXXXXXXXXXX”是Ensembl唯一地分配给每个基因的(http://www.ensembl.org /index.html)。
基因符号登录号基因符号登录号基因符号登录号
C9orf37NM_032937CNTN5NM_014361DGKBNM_004080
C9orf67NM_032728.2CNTN6NM_014461.2DGKENM_003647.1
CACNA1BNM_000718COG3NM_031431.2DGKGNM_001346.1
CACNA1FNM_005183COH1NM_017890.3DHX32NM_018180.2
CACNA1GNM_198385COL11A1NM_001854.2DIPNM_015124
CACNA1HNM_021098COL12A1NM_004370DIP2BNM_173602
CACNA1INM_001003406COL19A1NM_001858.3DKFZP564B1023NM_031306.1
CACNA2D3NM_018398COL4A4NM_000092DKFZP564J102NM_001006655
CAMTA1NM_015215COL7A1NM_000094.2DKFZp761I2123NM_031449
CAPN11NM_007058COMMD7NM_053041DKFZp779B1540NM_001010903
CBFBNM_001755.2COPGNM_016128DKK3NM_015881.4
CCDC16NM_052857COQ9NM_020312DLEC1NM_007335.1
CCDC18NM_206886CPA3NM_001870.1DMDNM_004006.1
CCDC66NM_001012506CPAMD8NM_015692DNAH17NM_003727
CD2NM_001767.2CPEB1NM_030594DNAH5NM_001369.1
CD74NM_001025159CPS1NM_001875.2DNAH9NM_001372.2
CD97NM_001784CPSF3NM_016207.2DNAJA3NM_005147.3
CDC27NM_001256.2CROCCNM_014675DNAJA5NM_194283.1
CDH10NM_006727.2CRR9NM_030782.2DNAJC10NM_018981
CDH20NM_031891.2CRSP2NM_004229.2DNAJC13NM_015268
CDH8NM_001796.2CRTC1NM_025021DNASE1L3NM_004944.1
CDKL2NM_003948.2CRXNM_000554.2DNM2NM_004945
CDONNM_016952.2CRYAANM_000394.2DNM3NM_015569
CDS1NM_001263.2CSENNM_013434.3DOCK1NM_001380
CENPENM_001813CSMD1NM_033225DPAGT1NM_001382.2
CENTB1NM_014716.2CSMD3NM_198123.1DPAGT1NM_203316.1
CENTD3NM_022481.4CSNK1DNM_001893.3DPP10NM_020868
CENTG1NM_014770.2CSPP1NM_024790DPP6NM_130797
CEP290NM_025114CST4NM_001899.2DPYDNM_000110
CFHL5NM_030787.1CTF8NM_001039690DRIMNM_014503.1
CFL2NM_138638.1CTNNA1NM_001903DSCR6NM_018962.1
CGI-14NM_015944.2CTNNA2NM_004389DSG2NM_001943
CGI-37NM_016101.2CTNND1NM_001331DTNANM_032978.4
CHD1NM_001270CUBNNM_001081.2DTX3LNM_138287.2
CHD5NM_015557.1CUTCNM_015960.1DUOX1NM_017434
CHD7NM_017780CUTL1NM_001913.2DVL3NM_004423.3
CHD8NM_020920CUTL2NM_015267DYSFNM_003494.2
CHD9NM_025134CYP1A1NM_000499.2ECT2NM_018098.4
CHRNDNM_000751.1CYP1A2NM_000761EDEM1NM_014674
CICNM_015125.2CYP26A1NM_000783.2EDNRANM_001957.1
CLCA2NM_006536.3CYP2D6NM_000106EEF1GNM_001404
CLCN1NM_000083.1CYP4A22NM_001010969EGFL6NM_015507.2
CLCN3NM_001829DACH1NM_080759EHBP1NM_015252.2
CLEC6ANM_001007033DAZAP1NM_018959.2EHMT1NM_024757.3
CLSPNNM_022111.2DBN1NM_004395.2EIF4A2NM_001967.2
CLUAP1NM_015041DC2NM_021227.2EIF4BNM_001417
CMYA1NM_194293.2DDONM_003649.2EIF5NM_183004.3
CMYA4NM_173167.1DDX10NM_004398.2ELA1NM_001971.3
CNGA2NM_005140.1DDX18NM_006773.3ELAVL3NM_001420
CNGB1NM_001297DDX3XNM_024005.1ENPEPNM_001977.2
CNNM4NM_020184.2DEFB128NM_001037732EOMESNM_005442.2
CNTN3NM_020872DENND2ANM_015689EP400NM_015409
基因符号登录号基因符号登录号基因符号登录号
EPC2NM_015630FLJ23584NM_024588GJB1NM_000166.2
ERCC3NM_000122.1FLJ25955NM_178821.1GKN1NM_019617.2
ERCC6NM_000124.1FLJ31413NM_152557.3GLG1NM_012201
EREGNM_001432.1FLJ32115NM_152321.1GLI1NM_005269.1
ETV5NM_004454FLJ32363NM_198566.1GLT25D2NM_015101.1
EVI2ANM_001003927FLJ32440NM_173685.1GMCL1LNM_022471.2
EVI5NM_005665FLJ32830NM_152781.1GNB1LNM_053004.1
EXOC2NM_018303FLJ34521NM_001039787GNPATNM_014236.1
EXOC5NM_006544FLJ36180NM_178556.3GOLGA7NM_016099
EXOSC3NM_016042FLJ36748NM_152406GOLGB1NM_004487.1
FAAHNM_001441.1FLJ40342NM_152347.3GOLPH4NM_014498.2
FABP4NM_001442.1FLJ40869NM_182625.2GORASP2NM_015530
FAM44ANM_148894.1FLJ41821NM_001001697GP5NM_004488.1
FAM47BNM_152631.1FLJ45455NM_207386GPC1NM_002081.1
FAM80BNM_020734FLJ46321NM_001001670GPC2NM_152742.1
FANCANM_000135FLJ46354NM_198547.1GPHB5NM_145171
FANCMNM_020937FLJ46481NM_207405.1GPNMBNM_002510.1
FARP1NM_005766.1FLJ90579NM_173591.1GPR115NM_153838.1
FBXO40NM_016298FLNANM_001456GPR45NM_007227.3
FBXO8NM_012180.1FLNBNM_001457.1GPR7NM_005285.1
FBXW11NM_012300FLNCNM_001458GPR81NM_032554.2
FCHO1NM_015122FMNL3NM_175736GRIK2NM_021956.2
FCMDNM_006731.1FMODNM_002023GRIK3NM_000831.2
FCRH3NM_052939.2FN1NM_002026.2GRIN2CNM_000835
FEM1CNM_020177.2FNDC3BNM_022763.2GRIN2DNM_000836.1
FER1L3NM_133337FOLR2NM_000803.2GRIPAP1NM_207672
FGD3NM_033086FOXP2NM_014491.1GRM6NM_000843.2
FGD6NM_018351FOXP4NM_138457.1GSDMLNM_018530.1
FGFR2NM_022970.1FREM1NM_144966GSNNM_000177.3
FHOD1NM_013241.1FRMPD1NM_014907.1GTF2A1NM_015859.2
FHOD3NM_025135FUCA1NM_000147.2GTF3C1NM_001520
FLG2NM_001014342FUSNM_004960.1GUCY2FNM_001522.1
FLJ10241NM_018035FXR1NM_005087.1HADHBNM_000183.1
FLJ10292NM_018048.2G3BP2NM_203505.1HCN3NM_020897.1
FLJ10324NM_018059G6PCNM_000151.1HDAC4NM_006037.2
FLJ10458NM_018096.2GA17NM_006360.2HDAC7ANM_015401.1
FLJ10726NM_018195.2GAB1NM_002039.2HDLBPNM_203346.1
FLJ10874NM_018252.1GABRA4NM_000809.2HEBP1NM_015987
FLJ13089NM_024953.2GABRPNM_014211.1HEL308NM_133636.1
FLJ13231NM_023073GALK2NM_001001556HIST1H4LNM_003546.2
FLJ13479NM_024706.3GALNT17NM_001034845HIST2H2ABNM_175065.2
FLJ13868NM_022744.1GALNT5NM_014568.1HK3NM_002115.1
FLJ14503NM_152780.2GALNTL2NM_054110HLCSNM_000411.4
FLJ14624NM_032813.1GARNL1NM_194301HM13NM_030789.2
FLJ16331NM_001004326GDF6NM_001001557HMG2L1NM_001003681
FLJ20152NM_019000GGA1NM_013365.2HOMER2NM_199331
FLJ20184NM_017700.1GGA3NM_014001.2HOOK1NM_015888.3
FLJ20422NM_017814.1GIMAP1NM_130759.2HOOK2NM_013312
FLJ20584NM_017891.2GIMAP8NM_175571HOOK3NM_032410.2
FLJ20604NM_017897.1GIOT-1NM_153257HOXA3NM_153631.1
FLJ21839NM_021831.3GIPC3NM_133261HOXA4NM_002141.2
FLJ21945NM_025203.1GJA8NM_005267HS3ST4NM_006040
基因符号登录号基因符号登录号基因符号登录号
HSD11B1NM_181755.1KIAA0703NM_014861LOC339745NM_001001664
HSD17B8NM_014234.3KIAA0774NM_001033602LOC340156NM_001012418
HSHIN1NM_199324.1KIAA0789NM_014653LOC374955NM_198546.1
HSPA14NM_016299.1KIAA0863NM_014913LOC388595NM_001013641
HSPA1BNM_005346KIAA0913NM_015037LOC388915NM_001010902
HSPC049NM_014149KIAA0934NM_014974.1LOC389151NM_001013650
HTF9CNM_182984.2KIAA0999NM_025164.3LOC389549NM_001024613
HUMCYT2ANM_015848.1KIAA1012NM_014939.2LOC440925NM_001013712
HUWE1NM_031407KIAA1117NM_015018.2LOC440944NM_001013713
ICAM5NM_003259.2KIAA1161NM_020702LOC441070NM_001013715
IFNA2NM_000605.2KIAA1324NM_020775.2LOC646870NM_001039790
IFNB1NM_002176.1KIAA1377NM_020802LOC652968NM_001037666
IKBKAPNM_003640.2KIAA1414NM_019024LOC88523NM_033111
IKBKBNM_001556.1KIAA1632NM_020964.1LOC90529NM_178122.2
IL1RAPL2NM_017416.1KIAA1797NM_017794LOC91461NM_138370
IL7RNM_002185.2KIAA1826NM_032424LOXL2NM_002318
INANM_032727.2KIAA1914NM_001001936LPONM_006151
INHBENM_031479.3KIAA1946NM_177454LRBANM_006726.1
IPLA2(GAMMA)NM_015723KIBRANM_015238.1LRRC16NM_017640
IPO7NM_006391KIF14NM_014875LRRC4NM_022143.3
IQSEC2NM_015075KIR2DS4NM_012314.2LRRC43NM_152759
IRF8NM_002163.1KLHL10NM_152467LRRC7NM_020794.1
IRS4NM_003604.1KLHL15NM_030624LRRFIP1NM_004735.1
IRTA2NM_031281.1KLK15NM_017509.2LUZP5NM_017760
ITGA9NM_002207.1KPNA5NM_002269.2LYSTNM_000081
ITGAENM_002208KRTAP10-8NM_198695.1LYSTNM_001005736
ITGALNM_002209KRTAP20-1NM_181615.1LZTS2NM_032429.1
ITGB2NM_000211.1KTN1NM_182926.1MACF1NM_012090.3
ITPR1NM_002222LAMA1NM_005559MAGEA1NM_004988.3
ITRNM_180989.3LAMA2NM_000426.2MAGEA4NM_002362.3
JARID1BNM_006618LAMA4NM_002290MAGEB10NM_182506
JMJD1ANM_018433.3LAMB4NM_007356MAGEC2NM_016249.2
JMJD1CNM_004241LAP1BNM_015602.2MAGED2NM_201222.1
JUPNM_021991.1LDHBNM_002300.3MAGEE1NM_020932.1
KCNA5NM_002234.2LEPREL1NM_018192.2MAGI1NM_173515.1
KCNC2NM_139136.2LGALS2NM_006498.1MANEANM_024641.2
KCNJ1NM_000220.2LHCGRNM_000233.1MAOANM_000240.2
KCNJ15NM_170737.1LIP8NM_053051.1MAP1ANM_002373
KCNQ3NM_004519LIPENM_005357.2MAP3K6NM_004672.3
KEAP1NM_203500.1LLGL1NM_004140MAPK13NM_002754.3
KIAA0100NM_014680LMO6NM_006150.3MAPKBP1NM_014994
KIAA0143NM_015137LOC112703NM_138411MASP1NM_001879
KIAA0256NM_014701LOC113179NM_138422.1MAZNM_002383
KIAA0284NM_015005LOC113828NM_138435.1MCAMNM_006500
KIAA0367NM_015225LOC123876NM_001010845MCART1NM_033412.1
KIAA0427NM_014772.1LOC126248NM_173479.2MCF2L2NM_015078.2
KIAA0467NM_015284LOC200420NM_145300MCOLN1NM_020533.1
KIAA0513NM_014732LOC220929NM_182755.1MDC1NM_014641
KIAA0528NM_014802LOC253012NM_198151.1MED12NM_005120
KIAA0664NM_015229LOC255374NM_203397MEF2CNM_002397
KIAA0672NM_014859LOC283849NM_178516.2MFAP5NM_003480.2
KIAA0676NM_015043.3LOC339123NM_001005920MGC11332NM_032718.2
基因符号登录号基因符号登录号基因符号登录号
MGC17299NM_144626.1NAV3NM_014903OR2M4NM_017504
MGC21688NM_144635.3NCAM1NM_000615OR2W3NM_001001957
MGC24047NM_178840.2NCB5ORNM_016230.2OR2W5NM_001004698
MGC27019NM_144705.2NCOA6NM_014071.2OR4D2NM_001004707
MGC33212NM_152773NDRG2NM_201541.1OR52A1NM_012375
MGC33370NM_173807.2NDST1NM_001543OR52H1NM_001005289
MGC33657NM_001029996NDUFA2NM_002488.2OR56A1NM_001001917
MGC34837NM_152377.1NDUFA3NM_004542.1OR5H1NM_001005338
MGC42174NM_152383NDUFA8NM_014222.2OR5J2NM_001005492
MGC5297NM_024091.2NEBNM_004543OR5M11NM_001005245
MIA2NM_054024.3NEDD4NM_198400.1OR8B12NM_001005195
MICAL1NM_022765.2NEF3NM_005382.1OR8D2NM_001002918
MICAL-L1NM_033386.1NET1NM_005863.2OR8I2NM_001003750
MKLN1NM_013255NF1NM_000267.1OR9Q2NM_001005283
MLL4NM_014727NF2NM_000268.2OSBP2NM_030758
MLLT2NM_005935.1NFASCNM_015090OSBPL11NM_022776.3
MMP10NM_002425.1NFIXNM_002501OTCNM_000531.3
MMP15NM_002428.2NFKB1NM_003998.2OTOFNM_194323.1
MOGAT1NM_058165NFKBIANM_020529.1P15RSNM_018170.2
MOSPD1NM_019556.1NFKBIENM_004556PADI3NM_016233.1
MPFLNM_001025190NFYCNM_014223.2PADI6NM_207421
MRE11ANM_005590.2NGLY1NM_018297PANX2NM_052839.2
MSI1NM_002442.2NHSNM_198270.2PAPPA2NM_020318
MTA1NM_004689NID2NM_007361.2PARP1NM_001618.2
MTAC2D1NM_152332.2NIPBLNM_133433.2PCDH19NM_020766
MTL5NM_004923.2NOD27NM_032206.2PCDH20NM_022843.2
MTMR3NM_021090.2NOS2ANM_000625.3PCDH8NM_002590.2
MTMR8NM_017677.2NOTCH1NM_017617PCDHA10NM_031859
MUC16NM_024690NOTCH4NM_004557PCDHA11NM_031861
MUC2NM_002457NOX5NM_024505PCDHA5NM_031501
MUF1NM_006369.3NRCAMNM_005010.2PCDHB15NM_018935.2
MULKNM_018238.2NRKNM_198465PCDHGA1NM_031993
MYBPC2NM_004533NRXN3NM_004796.3PCDHGA3NM_032011
MYCBP2NM_015057NUFIP2NM_020772PCDHGA6NM_032086
MYH1NM_005963.2NUP133NM_018230.2PCDHGB1NM_032095
MYH7BNM_020884NUP188NM_015354PCDHGB5NM_032099
MYH9NM_002473.2NUP205NM_015135PCM1NM_006197
MYLC2PLNM_138403NUP214NM_005085.2PCNTNM_006031
MYO15ANM_016239NUP98NM_016320.2PDCD11NM_014976
MYO18BNM_032608NXNNM_022463.3PDCD4NM_014456.3
MYO1GNM_033054NYD-SP21NM_032597PDCD6NM_013232.2
MYO7ANM_000260OATL1NM_002536PDE2ANM_002599.1
MYO9BNM_004145OBSCNNM_052843.1PDLIM7NM_005451.3
MYOD1NM_002478.3OCA2NM_000275.1PDPRNM_017990
MYR8NM_015011ODZ1NM_014253.1PDZD7NM_024895
MYST4NM_012330.1OR10A2NM_001004460PDZK2NM_024791.2
N4BP2NM_018177.2OR10H4NM_001004465PDZK4NM_032512.2
NAG6NM_022742OR12D3NM_030959.2PEBP4NM_144962
NALP1NM_014922OR1J2NM_054107PER1NM_002616.1
NALP14NM_176822.2OR1N1NM_012363.1PER2NM_022817.1
NALP8NM_176811.2OR1S1NM_001004458PEX14NM_004565
NALP9NM_176820.2OR2AK2NM_001004491PFCNM_002621.1
基因符号登录号基因符号登录号基因符号登录号
PFKFB4NM_004567.2PRODHNM_016335.2ROR1NM_005012.1
PGBD3NM_170753.1PRPF39NM_017922.2RP1L1NM_178857
PHACSNM_032592.1PRPF4BNM_176800.1RPGRIP1NM_020366
PHC1NM_004426.1PRPS1NM_002764.2RPL3NM_000967.2
PHF19NM_015651PRPS1L1NM_175886RPRC1NM_018067
PHF7NM_016483.4PRRG1NM_000950.1RPS26NM_01029
PHKBNM_000293.1PRSS7NM_002772.1RPS6KA3NM_004586.1
PIGNNM_176787PSDNM_002779RPS9NM_001013.2
PIGSNM_033198.2PSME4NM_014614RPUSD4NM_032795.1
PIK3C2GNM_004570PSPC1NM_018282RREB1NM_001003699
PIK3CANM_006218PSRC2NM_144982RSNNM_002956.2
PIK3R1NM_181523.1PTD004NM_013341.2RTP1NM_153708.1
PIK3R4NM_014602.1PTHLHNM_198964.1RTTNNM_173630
PKD1L1NM_138295PTPN14NM_005401.3RUFY1NM_025158.2
PKD1L2NM_052892PTPN6NM_080548RYR1NM_000540
PKDREJNM_006071.1PTPRCNM_002838.2RYR2NM_001035
PKHD1L1NM_177531PTRFNM_012232.2SAMD9NM_017654
PKN1NM_213560PURGNM_013357.2SAPS1NM_014931
PLA2G4ANM_024420.1PUS1NM_025215.3SATL1NM_001012980
PLB1NM_153021PUS7NM_019042SBNO1NM_018183.2
PLCB1NM_015192.2RAB41NM_001032726SCARF2NM_153334.3
PLCB2NM_004573RABEP2NM_024816SCGB3A2NM_054023.2
PLCD3NM_133373RAC2NM_002872.3SCML1NM_006746.2
PLCG1NM_002660.2RAI17NM_020338.1SCN2A2NM_021007
PLD2NM_002663.2RANBP1NM_002882.2SCN3ANM_006922
PLEKHA8NM_032639.2RANBP3NM_007321SCNN1BNM_000336.1
PLEKHG2NM_022835RANBP3NM_007322SCP2NM_002979.2
PLOD1NM_000302.2RAP1GA1NM_002885.1SEC31L1NM_014933.2
PLS3NM_005032.3RAPH1NM_213589.1SEMA3ANM_006080.1
PLXNB1NM_002673.3RARGNM_000966.3SEMA4BNM_198925
PNCKNM_198452.1RASAL2NM_170692.1SEMA4GNM_017893.2
PNLIPRP1NM_006229.1RASGRF2NM_006909.1SEMA5BNM_018987.1
PNPLA1NM_001039725RASL10BNM_033315.2SEMA6DNM_153616
PODXLNM_001018111RBAF600NM_020765.1SEMA7ANM_003612.1
POLHNM_006502.1RBM25NM_021239SEPHS2NM_012248
POLR2FNM_021974.2RCE1NM_005133.1SERPINB1NM_030666.2
POP1NM_015029.1RFC4NM_181573.1SERPINB11NM_080475
POU2F1NM_002697.2RFX2NM_000635.2SERPINE2NM_006216.2
POU4F2NM_004575RG9MTD2NM_152292.2SF3B1NM_012433
PPNM_021129.2RGL1NM_015149.2SF3B2NM_006842
PPAPDC1ANM_001030059RGS22NM_015668SFRS1NM_006924.3
PPFIBP2NM_003621RHAGNM_000324.1SFRS16NM_007056.1
PPHLN1NM_201439.1RHDNM_016124.2SGKLNM_013257.3
PPM1ENM_014906.3RIF1NM_018151.1SH2D3ANM_005490.1
PPM1FNM_014634.2RIMS1NM_014989SH3RF1NM_020870
PPP1R12ANM_002480RIMS2NM_014677SHCBP1NM_024745.2
PPP1R3ANM_002711.2RLTPRNM_001013838SIGLEC5NM_003830
PRDM13NM_021620RNF123NM_022064SIPA1L1NM_015556.1
PRDM4NM_012406.3RNF127NM_024778.3SIX4NM_017420.1
PRDX5NM_012094.3RNF149NM_173647.2SKIPNM_016532.2
PRKAA1NM_006251.4RNU3IP2NM_004704.2SKIV2LNM_006929.3
PRKAA2NM_006252.2ROBO3NM_022370SLAMF1NM_003037.1
基因符号登录号基因符号登录号基因符号登录号
SLC12A3NM_000339.1ST8SIA3NM_015879TM4SF7NM_003271.3
SLC16A2NM_006517.1STAB1NM_015136TMED1NM_006858.2
SLC17A6NM_020346.1STARD8NM_014725.2TMEM123NM_052932
SLC22A2NM_003058.2STAT1NM_007315.2TMEM132BNM_052907
SLC22A9NM_080866.2STAT4NM_003151.2TMEM28NM_015686
SLC25A30NM_001010875STATIP1NM_018255.1TMEM37NM_183240
SLC35A2NM_005660.1STRBPNM_018387.2TMEM39ANM_018266.1
SLC35F1NM_001029858STX12NM_177424.1TMEM62NM_024956
SLC38A3NM_006841STX5ANM_003164.2TMEM63ANM_014698
SLC39A12NM_152725.1SULF2NM_018837.2TMPRSS3NM_024022.1
SLC4A3NM_005070.1SULT6B1NM_001032377TMPRSS6NM_153609.1
SLC6A3NM_001044.2SUPT3HNM_181356TNFRSF25NM_003790.2
SLC6A5NM_004211.1SURF1NM_003172.2TNSNM_022648.2
SLC7A7NM_003982.2SUSD3NM_145006.2TOP1NM_003286.2
SLC8A3NM_033262.3SUV39H2NM_024670.3TOP2BNM_001068
SLC8A3NM_182932.1SYNE2NM_182914.1TP53NM_000546.2
SLC9A10NM_183061SYT3NM_032298.1TPM4NM_003290.1
SLC9A2NM_003048.3SYTL2NM_032943TPTENM_199261.1
SLCO2B1NM_007256.2TAC4NM_170685TRADNM_007064.1
SLFN13NM_144682TACC2NM_206862.1TREM1NM_018643.2
SLICKNM_198503.2TAF1NM_004606.2TREML1NM_178174.2
SMARCAL1NM_014140.2TAF1BNM_005680TREML4NM_198153
SMC4L1NM_005496.2TA-KRPNM_032505.1TRIAD3NM_207116
SMC6L1NM_024624.2TAS2R13NM_023920.1TRIFNM_182919.1
SMOXNM_175839.1TAX1BP1NM_006024.4TRIM25NM_005082.3
SNNM_023068.2TBC1D19NM_018317.1TRIM29NM_012101.2
SNTG2NM_018968TBC1D2BNM_015079TRIM36NM_018700.2
SNX25NM_031953TBX1NM_005992.1TRIOBPNM_001039141
SOHLH1NM_001012415TBXAS1NM_001061.2TRIP12NM_004238
SORBS1NM_015385.1TCEAL5NM_001012979TRPC4NM_016179.1
SORCS1NM_052918.2TCF1NM_000545.3TRPM5NM_014555
SORL1NM_003105.3TCF7L1NM_031283.1TSNNM_004622
SOX13NM_005686TCFL1NM_005997.1TTC15NM_016030.5
SOX15NM_006942TCP1NM_030752.1TTC21BNM_024753
SP110NM_004509.2TCP10NM_004610TTC3NM_003316.2
SPAG6NM_012443.2TDRD6NM_001010870TTC7ANM_020458
SPATS2NM_023071TECTANM_005422.1TTNNM_133378
SPCS2NM_014752TEKNM_000459.1TXNDC3NM_016616.2
SPENNM_015001.2TESK1NM_006285.1UBE2INM_194261.1
SPG4NM_014946.3TESK2NM_007170UBE2ONM_022066
SPINK5NM_006846TEX11NM_031276UGT1A9NM_021027.2
SPO11NM_012444.2TFAP2DNM_172238.1UNQ9356NM_207410.1
SPOCD1NM_144569.3TGNM_003235UQCRNM_006830.2
SPTA1NM_003126TGM3NM_003245USP29NM_020903
SPTAN1NM_003127.1THBS3NM_007112.3USP34NM_014709
SPTBN1NM_178313THG-1NM_030935.3USP54NM_152586.2
SPTLC1NM_006415.2TIAM2NM_001010927UTP14CNM_021645
SPTY2D1NM_194285TIFANM_052864UTS2RNM_018949.1
SREBF2NM_004599.2TIMELESSNM_003920.1VAV3NM_006113.3
SRGAP3NM_014850.1TLL1NM_012464.3VEPH1NM_024621.1
SSFA2NM_006751.3TLN1NM_006289VGCNL1NM_052867.1
SSNA1NM_003731.1TLN2NM_015059VWFNM_000552.2
基因符号登录号基因符号登录号
WARSNM_173701.1ZNF10NM_015394.4
WBP4NM_007187.3ZNF124NM_003431
WBSCR28NM_182504ZNF142NM_005081
WDR48NM_020839ZNF161NM_007146
WDR53NM_182627.1ZNF183NM_006978.1
WDR60NM_018051ZNF22NM_006963.2
WDSOF1NM_015420ZNF25NM_145011.2
WFDC1NM_021197.2ZNF267NM_003414
WNK1NM_018979.1ZNF277NM_021994.1
WNT2NM_003391.1ZNF281NM_012482.3
XAB2NM_020196ZNF318NM_014345.1
XBP1NM_005080.2ZNF37ANM_001007094
XDHNM_000379.2ZNF425NM_001001661
XKR7NM_001011718ZNF432NM_014650.2
XPO5NM_020750ZNF436NM_030634.1
XPO7NM_015024ZNF529NM_020951
YY2NM_206923.1
ZBTB3NM_024784.2
ZBTB39NM_014830
ZCCHC14NM_015144.1
ZCSL3NM_181706.3
ZDHHC4NM_018106.2
ZFHX4NM_024721
ZFP64NM_199427.1
ZFYVE26NM_015346.2
ZIC3NM_003413.2
ZNF532NM_018181.3
ZNF541NM_032255.1
ZNF546NM_178544.2
ZNF548NM_152909
ZNF569NM_152484.2
ZNF644NM_201269.1
ZNF646NM_014699.2
ZNF674NM_001039891
ZNF694NM_001012981
ZNF707NM_173831
ZNF75ANM_153028.1
ZNHIT2NM_014205.2
注:基因符号是EntrzGene分配的标准符号(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene)。登录号“NM_XXXX”是美国国家生物技术信息中心(NCBI)唯一地分配给每个基因的(http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore)。
基因符号登录号基因符号登录号基因符号登录号
COL3A1NM_000090.2DPEP1NM_004413.1FLJ10665NM_018173.1
COL4A6NM_001847.1DPP10NM_020868FLJ10996NM_019044.2
CORO1BNM_020441.1DPYSL2NM_001386.3FLJ11000NM_018295.1
CORO2BNM_006091.1DSCAML1NM_020693.2FLJ12770NM_032174.3
CPAMD8NM_015692DSTNNM_006870.2FLJ13305NM_032180
CPENM_001873.1DTNBNM_183361FLJ14803NM_032842
CPONM_173077.1DUSP21NM_022076.2FLJ16171NM_001004348
CRB1NM_201253.1DUX4CNM_001023569FLJ16542NM_001004301
CRNKL1NM_016652EDANM_001399.3FLJ20294NM_017749
CSDANM_003651.3EDD1NM_015902FLJ20729NM_017953.2
CSE1LNM_001316.2EFSNM_005864.2FLJ21019NM_024927.3
CSMD1NM_033225EIF2S2NM_003908.2FLJ21986NM_024913
CSMD3NM_198123.1EIF4G1NM_198241.1FLJ22679NM_032227.1
CSNK1A1LNM_145203.2EML1NM_004434FLJ25477NM_199138.1
CTCFLNM_080618.2EML2NM_012155.1FLJ32252NM_182510
CTENNM_032865.3EN1NM_001426.2FLJ32312NM_144709.1
CTNNA1NM_001903ENPP2NM_006209.2FLJ33534NM_182586.1
CTNND2NM_001332.2EPHA3NM_005233.3FLJ34633NM_152365.1
CTSHNM_004390.2EPHA4NM_004438.3FLJ34922NM_152270.2
CUBNNM_001081.2EPHA7NM_004440.2FLJ35834NM_178827.3
CUTL1NM_001913.2EPHB1NM_004441FLJ36119NM_153254.1
CX40.1NM_153368.1EPHB6NM_004445.1FLJ38964NM_173527
CXorf53NM_024332ERCC6NM_000124.1FLJ40142NM_207435.1
CYP4F8NM_007253ESSPLNM_183375FLJ42418NM_001001695
DACT1NM_016651.4ETAA16NM_019002.2FLJ43339NM_207380.1
DBC1NM_014618.1ETFDHNM_004453.1FLJ43980NM_001004299
DCCNM_005215.1EVC2NM_147127.2FLJ44653NM_001001678
DCHS1NM_003737.1EVLNM_016337.1FLJ45273NM_198461.1
DDEFL1NM_017707.2EYA4NM_004100.2FLJ46082NM_207417.1
DDHD2NM_015214EZH2NM_004456.3FLJ46154NM_198462.1
DDI1NM_001001711F5NM_000130.2FLNCNM_001458
DDIT3NM_004083.3F8NM_000132FMN2NM_020066
DDNNM_015086FAM102BNM_001010883FN1NM_002026.2
DDX53NM_182699FAM19A5NM_015381FNDC1NM_032532
DEFA4NM_001925.1FAM26ANM_182494FOLH1NM_004476.1
DEFB111NM_001037497FAM3ANM_021806FRAS1NM_025074
DENND1CNM_024898FAM40ANM_033088FRAS1NM_032863
DEPDC2NM_024870.2FANCGNM_004629.1FRMPD2NM_152428.2
DGCR2NM_005137FATNM_005245FRMPD4NM_014728
DHRS2NM_005794.2FBN1NM_000138FRYNM_023037
DJ167A19.1NM_018982.3FBN2NM_001999FSTL5NM_020116.2
DKFZp761I21FBXL2NM_012157.2FZD4NM_012193.2
NM_031449
23FBXO30NM_032145.3GAB4NM_001037814
DLG3NM_021120.1FBXW7NM_033632.1GABPB2NM_016654.2
DMDNM_004021.1FCN1NM_002003.2GABRA6NM_000811.1
DMDNM_004006.1FCN2NM_004108.1GALGT2NM_153446.1
DMRTA1NM_022160.1FERD3LNM_152898.2GALNSNM_000512.2
DNAH1NM_015512FGF13NM_033642.1GDAP1L1NM_024034.3
DNAH11NM_003777FGF14NM_175929.1GFI1NM_005263
DNAH3NM_017539.1FHOD3NM_025135GFI1BNM_004188.2
DNAH8NM_001371.1FIGNNM_018086.1GHRHRNM_000823.1
DNAJC10NM_018981FLJ10241NM_018035GJA8NM_005267
DNAJC6NM_014787FLJ10404NM_019057GLB1NM_000404
DNALI1NM_003462.3FLJ10490NM_018111GLI3NM_000168.2
DNAPTP6NM_015535FLJ10521NM_018125.2GLIPR1NM_006851.1
DNASE1L3NM_004944.1FLJ10560NM_018138.1GMCL1LNM_022471.2
基因符号登录号基因符号登录号基因符号登录号
GNASNM_000516.3KCNB2NM_004770.2LOC167127NM_174914.2
GNRH1NM_000825KCNC4NM_004978.2LOC223075NM_194300.1
GPBP1NM_022913KCND3NM_004980.3LOC388199NM_001013638
GPR112NM_153834KCNH4NM_012285.1LOC91807NM_182493.1
GPR124NM_032777.6KCNQ5NM_019842.2LPIN1NM_145693.1
GPR158NM_020752KCNT1NM_020822LPPR2NM_022737.1
GPR50NM_004224KCTD16NM_020768LRCH4NM_002319
GPR8NM_005286.2KDRNM_002253.1LRP1NM_002332.1
GPR87NM_023915.2KIAA0182NM_014615.1LRP2NM_004525.1
GPX1NM_000581KIAA0367NM_015225LRRC4NM_022143.3
GRID1NM_017551KIAA0415NM_014855LRRN6DNM_001004432
GRID2NM_001510.1KIAA0528NM_014802LRTM2NM_001039029
GRIK1NM_175611KIAA0555NM_014790.3LSP1NM_001013253
GRIK3NM_000831.2KIAA0556NM_015202LZTS2NM_032429.1
GRM1NM_000838.2KIAA0789NM_014653MAMDC1NM_182830
GTF2BNM_001514.2KIAA0934NM_014974.1MAN2A2NM_006122
GUCY1A2NM_000855.1KIAA1078NM_203459.1MAP1BNM_005909.2
HAPIPNM_003947.1KIAA1185NM_020710.1MAP2NM_002374.2
HAPLN1NM_001884.2KIAA1285NM_015694MAP2K7NM_145185
HAT1NM_003642.1KIAA1409NM_020818.1MAPK8IP2NM_012324
HBXIPNM_006402.2KIAA1468NM_020854.2MARLIN1NM_144720.2
HCAP-GNM_022346.2KIAA1529NM_020893MAST1NM_014975
HDCNM_002112.1KIAA1727NM_033393MCF2L2NM_015078.2
HECTD1NM_015382KIAA1875NM_032529MCM3APNM_003906.3
HIC1NM_006497KIAA2022NM_001008537MCPNM_172350.1
HIST1H1BNM_005322.2KIF13ANM_022113MCRS1NM_006337.3
HIST1H1ENM_005321.2KLNM_004795.2MED12LNM_053002
HIST1H2BMNM_003521.2KLF5NM_001730.2MEF2CNM_002397
HIVEP1NM_002114KLRF1NM_016523MEGF6NM_001409
HIVEP3NM_024503.1KRASNM_004985.3METNM_000245
HK3NM_002115.1KRT20NM_019010.1MFN1NM_033540.2
HOXC9NM_006897.1KRTAP10-2NM_198693MGC13125NM_032725.2
HPS3NM_032383.3KRTAP10-8NM_198695.1MGC15730NM_032880.2
HRNM_005144.2KSR2NM_173598MGC16943NM_080663.1
HRH1NM_000861.2LAMA1NM_005559MGC20470NM_145053
HS3ST4NM_006040LAMA4NM_002290MGC26733NM_144992
HSPG2NM_005529LAMB3NM_000228.1MGC29671NM_182538.3
HTR3CNM_130770.2LAMB4NM_007356MGC32124NM_144611.2
HTR5ANM_024012.11LAMC1NM_002293.2MGC33407NM_178525.2
HUWE1NM_031407LAS1LNM_031206.2MGC33846NM_175885
IDH1NM_005896.2LCN10NM_001001712MGC39325NM_147189.1
IGFBP3NM_000598.2LCN9NM_001001676MGC39545NM_203452.1
IGSF22NM_173588LDB1NM_003893.3MGC48628NM_207491
IGSF9NM_020789.2LDLRAD1NM_001010978MGC52022NM_198563.1
IKNM_006083LEF1NM_016269.2MGC52282NM_178453.2
IL6STNM_002184.2LGR6NM_021636.1MGC5242NM_024033.1
IQSEC3NM_015232LIFRNM_002310.2MGC8685NM_178012.3
IREM2NM_181449.1LIG1NM_000234.1MKRN3NM_005664.1
IRS2NM_003749.2LIG3NM_013975.1MLF2NM_005439.1
IRS4NM_003604.1LILRB1NM_006669MLL3NM_170606.1
ISLRNM_201526.1LMNB2NM_032737.2MMP11NM_005940.2
ITGAENM_002208LMO7NM_005358.3MMP2NM_004530.1
ITGB3NM_000212.2LOC122258NM_145248.2MMRN2NM_024756.1
ITPR1NM_002222LOC126147NM_145807MN1NM_002430
K6IRS3NM_175068.2LOC129531NM_138798.1MPONM_000250.1
KCNA10NM_005549.2LOC157697NM_207332.1MPP3NM_001932
基因符号登录号基因符号登录号基因符号登录号
MRGPRENM_001039165OSBPL5NM_145638PRIMA1NM_178013.1
MRPL23NM_021134OTOP2NM_178160.1PRKCENM_005400.2
MS4A5NM_023945.2OVCH1NM_183378PRKCZNM_002744.2
MTHFD1LNM_015440.3OVGP1NM_002557.2PRKD1NM_002742.1
MUC1NM_002456.3OXCT1NM_000436.2PRKDCNM_006904
MUC16NM_024690P2RX7NM_002562.4PRNPIPNM_024066
MYADMLNM_207329.1P2RY14NM_014879.2PRO0149NM_014117.2
MYO18BNM_032608PAK6NM_020168.3PROL1NM_021225
MYO1BNM_012223.2PANK4NM_018216.1PROS1NM_000313.1
MYO1DNM_015194PAOXNM_207128.1PRPS1NM_002764.2
MYO5CNM_018728PARP8NM_024615.2PRSS1NM_002769.2
MYOHD1NM_001033579PBEF1NM_005746.1PRTGNM_173814
MYR8NM_015011PBX4NM_025245.1PSMA2NM_002787.3
NALP7NM_139176.2PBXIP1NM_020524.2PSMC5NM_002805.4
NALP8NM_176811.2PCDH11XNM_032968.2PTENNM_000314
NAV3NM_014903PCDHA9NM_014005PTPRDNM_130391.1
NBEANM_015678PCDHGA7NM_032087PTPRHNM_002842
NCDNNM_014284.1PCDHGB4NM_032098PTPRN2NM_002847.2
NCR1NM_004829.3PCP4NM_006198PTPRSNM_130853.1
NDST3NM_004784.1PCSK2NM_002594.2PTPRUNM_005704.2
NDUFA1NM_004541.2PDE11ANM_016953PTPRZ1NM_002851
NEBNM_004543PDGFDNM_033135.2PZPNM_002864.1
NELL1NM_006157.2PDILTNM_174924.1QKINM_006775.1
NEUGRINNM_016645.1PDZD2NM_178140RAB38NM_022337.1
NF1NM_000267.1PDZRN3NM_015009RAB5CNM_201434.1
NFATC1NM_006162.3PDZRN4NM_013377.2RABEP1NM_004703
NIDNM_002508.1PEBP4NM_144962RALGDSNM_006266.2
NLGN4XNM_181332.1PEG3NM_006210.1RAPGEF4NM_007023
NODALNM_018055.3PER1NM_002616.1RARBNM_000965.2
NOS3NM_000603.2PERQ1NM_022574RASAL2NM_170692.1
NR3C2NM_000901.1PEX5LNM_016559.1RASGRF2NM_006909.1
NTNG1NM_014917PF6NM_206996.1RASGRP1NM_005739
NUP210NM_024923PHIPNM_017934.4RASSF2NM_170774.1
NUP210LNM_207308PHKBNM_000293.1RASSF4NM_032023.3
OBSCNNM_052843.1PIGONM_032634.2RAVER2NM_018211
ODZ1NM_014253.1PIK3CANM_006218RB1CC1NM_014781
OLFM2NM_058164.1PIK3R5NM_014308.1RBM10NM_005676.3
OMA1NM_145243.2PKHD1NM_138694.2RBP3NM_002900.1
OR10G3NM_001005465PKHD1L1NM_177531RCN1NM_002901.1
OR13F1NM_001004485PKNOX1NM_004571.3RDH13NM_138412
OR1E2NM_003554.1PLA2G4BNM_005090RELNNM_005045
OR2T33NM_001004695PLA2G4DNM_178034RETNM_020975.2
OR2T34NM_001001821PLB1NM_153021REV3LNM_002912.1
OR4A16NM_001005274PLCG2NM_002661RFC4NM_181573.1
OR4K14NM_001004712PLEC1NM_201378RHEBNM_005614.2
OR51E1NM_152430PLXND1NM_015103RHPN1NM_052924
OR51T1NM_001004759PNLIPRP2NM_005396RIC3NM_024557.2
OR5H6NM_001005479PNMA3NM_013364RIMBP2NM_015347
OR5J2NM_001005492PNPLA1NM_001039725RIMS2NM_014677
OR5K1NM_001004736PPM1FNM_014634.2RNF182NM_152737.1
OR6C1NM_001005182PPP1R12ANM_002480RNF31NM_017999
OR6C6NM_001005493PQBP1NM_005710.1RNPEPL1NM_018226.2
OR6C75NM_001005497PQLC1NM_025078.3ROBO1NM_002941
OR8K3NM_001005202PRDM9NM_020227ROBO2NM_002942
OSBPNM_002556.2PRF1NM_005041.3RORANM_002943.2
OSBPL5NM_020896PRG2NM_002728.4RPA3NM_002947.2
基因符号登录号基因符号登录号基因符号登录号
RPAP1NM_015540.2SNRPB2NM_198220.1TRIM3NM_033278.2
RPL6NM_000970.2SNTG2NM_018968TRIM71NM_001039111
RPS6KB1NM_003161.1SNX5NM_152227.1TRMT5NM_020810
RREB1NM_001003699SNX8NM_013321.1TSKSNM_021733.1
RTN4NM_207521.1SOCS6NM_004232.2TSNNM_004622
RUNX1T1NM_175634.1SORL1NM_003105.3TSP-NYNM_032573.3
RYR2NM_001035SPOCK3NM_016950TSPYL5NM_033512
SACSNM_014363.3SPTBN2NM_006946.1TTIDNM_006790.1
SALL2NM_005407ST8SIA4NM_005668.3TTLL3NM_015644.1
SALL3NM_171999.1STAB1NM_015136TTNNM_133378
SCN10ANM_006514STAMNM_003473.2TTYH2NM_032646
SCN1ANM_006920STK32CNM_173575.2TXLNBNM_153235
SCN3BNM_018400.2STMN4NM_030795.2TYSND1NM_173555
SCN7ANM_002976STX17NM_017919.1UBE3CNM_014671
SCNN1BNM_000336.1SUHW4NM_001002843UGDHNM_003359.1
SCNN1GNM_001039.2SYNE1NM_182961.1UHRF2NM_152896.1
SDBCAG84NM_015966.2SYNPONM_007286.3UNC13BNM_006377.2
SDCBP2NM_080489.2SYT9NM_175733.2UNC84BNM_015374.1
SDK1NM_152744SYTL2NM_206927UNQ689NM_212557.1
SEC24BNM_006323T3JAMNM_025228.1UQCRC2NM_003366.1
SEC8L1NM_021807.2TAF1LNM_153809USP28NM_020886
SEMA3DNM_152754TAF2NM_003184USP32NM_032582
SERPINA3NM_001085TAIP-2NM_024969.2USP52NM_014871.2
SETBP1NM_015559.1TA-KRPNM_032505.1UTP14CNM_021645
SEZ6NM_178860TBC1D2BNM_015079UTXNM_021140.1
SF3A1NM_005877.3TBX1NM_005992.1VEST1NM_052958.1
SFMBT2NM_001029880TBX15NM_152380VIMNM_003380.1
SFRS6NM_006275.4TBX22NM_016954.2VPS13ANM_033305.1
SGEFNM_015595TCEB3BNM_016427.2WACNM_016628.2
SH3TC1NM_018986.2TCERG1LNM_174937.1WDR19NM_025132
SHANK1NM_016148.1TCF3NM_003200.1WDR49NM_178824.3
SHQ1NM_018130TCF7L2NM_030756.1WNK1NM_018979.1
SIGLEC7NM_014385.1TCFL5NM_006602.2WNT16NM_016087.2
SKIPNM_030623TCOF1NM_000356.1WNT8BNM_003393.2
SKIV2LNM_006929.3TFECNM_012252.1WRNNM_000553.2
SLBNM_015662.1TFGNM_006070.3XKR3NM_175878
SLC11A2NM_000617.1TGFBR2NM_003242.3XPO4NM_022459
SLC12A5NM_020708.3TGM2NM_004613.2XRCC1NM_006297.1
SLC12A7NM_006598TGM3NM_003245YEATS2NM_018023
SLC1A7NM_006671.3THAP9NM_024672.2ZANNM_173059
SLC22A15NM_018420THRAP1NM_005121ZBTB8NM_144621.2
SLC22A9NM_080866.2TIAM1NM_003253.1ZD52F10NM_033317.2
SLC26A10NM_133489.1TLR8NM_138636.2ZDHHC7NM_017740.1
SLC29A1NM_004955.1TLR9NM_017442.2ZFHX1BNM_014795.2
SLC33A1NM_004733.2TM7SF4NM_030788.2ZFHX4NM_024721
SLC37A4NM_001467TMEM132BNM_052907ZFPM2NM_012082
SLC39A7NM_006979TMEM16BNM_020373ZNF155NM_198089.1
SLC4A9NM_031467TMPRSS4NM_019894ZNF217NM_006526.2
SLCO1A2NM_134431.1TNFRSF9NM_001561.4ZNF232NM_014519.2
SLCO1B3NM_019844.1TNNNM_022093ZNF235NM_004234
SLITRK4NM_173078.2TNNI3KNM_015978.1ZNF262NM_005095.2
SLITRK6NM_032229TOP2ANM_001067ZNF291NM_020843
SMAD2NM_005901.2TP53NM_000546.2ZNF43NM_003423.1
SMAD3NM_005902.2TP53BP1NM_005657.1ZNF435NM_025231.1
SMAD4NM_005359.3TPX2NM_012112.4ZNF442NM_030824.1
SMTNNM_006932.3TREX2NM_080701ZNF471NM_020813.1
基因符号登录号
ZNF480NM_144684.1
ZNF521NM_015461
ZNF536NM_014717
ZNF540NM_152606.2
ZNF560NM_152476.1
ZNF568NM_198539
ZNF572NM_152412.1
ZNF582NM_144690
ZNF624NM_020787.1
ZNF659NM_024697.1
ZNF714NM_182515
ZNHIT1NM_006349.2
ZNRF4NM_181710
ZSCAN5NM_024303.1
ZZZ3NM_015534.3
注:基因符号是EntrzGene分配的标准符号(http://www.ncbi.nlm.nih.gov/sites/entrez?db=gene)。登录号“NM_XXXX”是美国国家生物技术信息中心(NCBI)唯一地分配给每个基因的(http://www.ncbi.nlm.nih.gov/sites/entrez?db=nuccore)。

Claims (6)

1.检测mRNA中PCA-3和/或TMPRSS2-ERG的存在的试剂在制备用于诊断、预后或监测受试者的前列腺癌的药剂中的应用,所述试剂用于检测来自来源于所述受试者的尿液样本的微泡制备物的非外源核酸的提取物,其中所述尿液样本被处理以排除蛋白质、脂质、死细胞碎片以及其他污染物。
2.根据权利要求1所述的应用,其中,使所述尿液样本经受尺寸排阻色谱、密度梯度离心、差速离心、纳米膜超滤、免疫吸附捕获、亲和纯化、微流体分离或它们的组合。
3.根据权利要求1所述的应用,其中使所述尿液样本经受过滤。
4.根据权利要求3所述的应用,其中,通过0.8μm过滤器进行过滤。
5.根据权利要求3或4所述的应用,其中,过滤接着进行超滤浓缩。
6.根据权利要求3或4所述的应用,其中,过滤接着进行超速离心。
CN200980111107.0A 2008-02-01 2009-02-02 微泡在医学疾病和病况的诊断、预后以及治疗中的用途 Active CN102084000B (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201610110030.7A CN105734128B (zh) 2008-02-01 2009-02-02 微泡在医学疾病和病况的诊断、预后以及治疗中的用途

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US2553608P 2008-02-01 2008-02-01
US61/025,536 2008-02-01
US10029308P 2008-09-26 2008-09-26
US61/100,293 2008-09-26
PCT/US2009/032881 WO2009100029A1 (en) 2008-02-01 2009-02-02 Use of microvesicles in diagnosis, prognosis and treatment of medical diseases and conditions

Related Child Applications (1)

Application Number Title Priority Date Filing Date
CN201610110030.7A Division CN105734128B (zh) 2008-02-01 2009-02-02 微泡在医学疾病和病况的诊断、预后以及治疗中的用途

Publications (2)

Publication Number Publication Date
CN102084000A CN102084000A (zh) 2011-06-01
CN102084000B true CN102084000B (zh) 2016-03-16

Family

ID=40566310

Family Applications (2)

Application Number Title Priority Date Filing Date
CN201610110030.7A Active CN105734128B (zh) 2008-02-01 2009-02-02 微泡在医学疾病和病况的诊断、预后以及治疗中的用途
CN200980111107.0A Active CN102084000B (zh) 2008-02-01 2009-02-02 微泡在医学疾病和病况的诊断、预后以及治疗中的用途

Family Applications Before (1)

Application Number Title Priority Date Filing Date
CN201610110030.7A Active CN105734128B (zh) 2008-02-01 2009-02-02 微泡在医学疾病和病况的诊断、预后以及治疗中的用途

Country Status (13)

Country Link
US (9) US20110053157A1 (zh)
EP (6) EP4219762A1 (zh)
JP (3) JP5676277B2 (zh)
KR (3) KR101970908B1 (zh)
CN (2) CN105734128B (zh)
AU (1) AU2009212543B2 (zh)
BR (1) BRPI0907050B1 (zh)
CA (1) CA2713909C (zh)
DK (1) DK2245199T3 (zh)
ES (3) ES2703363T3 (zh)
HK (1) HK1158705A1 (zh)
SG (2) SG10201609507TA (zh)
WO (1) WO2009100029A1 (zh)

Families Citing this family (308)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1766053A4 (en) * 2004-06-02 2007-12-12 Sourcepharm Inc MICROVESICLES CONTAINING RNA AND METHODS
US8021847B2 (en) 2004-06-02 2011-09-20 Proxy Life Science Holdings, Inc. Microvesicle-based compositions and methods
CA2607455A1 (en) * 2005-04-22 2006-11-02 Morphotek, Inc. Antibodies with immune effector activity and that internalize in endosialin-positive cells
US9424392B2 (en) 2005-11-26 2016-08-23 Natera, Inc. System and method for cleaning noisy genetic data from target individuals using genetic data from genetically related individuals
CA2617581A1 (en) 2005-08-01 2007-02-08 The Ohio State University Research Foundation Microrna-based methods for the diagnosis of breast cancer
ES2523989T3 (es) 2005-09-12 2014-12-03 The Ohio State University Research Foundation Composiciones para la terapia de cánceres asociados con BCL2
ES2461189T3 (es) 2006-01-05 2014-05-19 The Ohio State University Research Foundation Métodos basados en microARN y composiciones para el diagnóstico y el tratamiento de cánceres sólidos de mama o pulmón
EP1968622B1 (en) 2006-01-05 2014-08-27 The Ohio State University Research Foundation Microrna expression abnormalities in pancreatic endocrine and acinar tumors
CN102943108B (zh) 2006-01-05 2014-05-21 俄亥俄州立大学研究基金会 用于肺癌的诊断、预后和治疗的基于微小rna的方法和组合物
ES2736726T3 (es) * 2006-03-09 2020-01-07 Aethlon Medical Inc Eliminación extracorpórea de partículas microvesiculares
EP2369012A1 (en) 2006-03-20 2011-09-28 The Ohio State University Research Foundation Micro-RNA fingerprints during human megakaryocytopoiesis
ES2425387T3 (es) 2006-07-13 2013-10-15 The Ohio State University Research Foundation Mir-106a para diagnosticar adenocarcinoma de colon de pronóstico de supervivencia pobre
WO2008097277A2 (en) 2006-09-19 2008-08-14 The Ohio State University Research Foundation Tcl1 expression in chronic lymphocytic leukemia (cll) regulated by mir-29 and mir-181
AU2007314212B2 (en) 2006-11-01 2014-05-29 The Govt. Of The Usa As Represented By The Secretary Of The Department Of Health And Human Services MicroRNA expression signature for predicting survival and metastases in Hepatocellular carcinoma
US8034560B2 (en) 2007-01-31 2011-10-11 The Ohio State University Research Foundation MicroRNA-based methods and compositions for the diagnosis, prognosis and treatment of acute myeloid leukemia (AML)
AU2008237296B2 (en) 2007-04-05 2013-07-04 Eisai, Inc. Methods for inhibiting the binding of endosialin to ligands
CA2685840C (en) * 2007-04-30 2016-12-13 The Ohio State University Research Foundation Methods for differentiating pancreatic cancer from normal pancreatic function and/or chronic pancreatitis
ES2527648T3 (es) 2007-06-08 2015-01-28 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Métodos para determinar el subtipo de carcinoma hepatocelular
CN101918424A (zh) 2007-06-15 2010-12-15 俄亥俄州立大学研究基金会 用于靶向由Drosha介导的微小RNA加工的致癌ALL-1融合蛋白
CN101809169B (zh) 2007-07-31 2013-07-17 俄亥俄州立大学研究基金会 通过靶向dnmt3a和dnmt3b恢复甲基化的方法
ES2627059T3 (es) 2007-08-03 2017-07-26 The Ohio State University Research Foundation Regiones ultraconservadas que codifican ARNnc
CA2733672C (en) 2007-08-16 2018-09-11 The Royal Institution For The Advancement Of Learning/Mcgill University Tumor cell-derived microvesicles
US20100255514A1 (en) 2007-08-16 2010-10-07 The Royal Institution For The Advancement Of Learning/Mcgill University Tumor cell-derived microvesicles
JP5770472B2 (ja) 2007-08-22 2015-08-26 ジ・オハイオ・ステイト・ユニバーシティ・リサーチ・ファウンデイションThe Ohio State University Research Foundation ヒト急性白血病におけるepha7及びerkリン酸化の調節解除を誘発するための方法及び組成物
AU2008310704B2 (en) * 2007-10-11 2014-03-20 The Government Of The United States Of America As Represented By The Secretary Of The Department Of Health And Human Services Methods and compositions for the diagnosis and treatment of esphageal adenocarcinomas
WO2009055773A2 (en) 2007-10-26 2009-04-30 The Ohio State University Research Foundation Methods for identifying fragile histidine triad (fhit) interaction and uses thereof
US20120058492A1 (en) * 2008-01-25 2012-03-08 Hansabiomed Ou Method and a Kit To Detect Malignant Tumors and Provide a Prognosis
EP3112477A1 (en) * 2008-02-28 2017-01-04 The Ohio State University Research Foundation Microrna-based methods and compositions for the diagnosis, prognosis and treatment of prostate related disorders
CN102007223B (zh) * 2008-02-28 2014-06-18 俄亥俄州立大学研究基金会 用于胃癌的诊断、预后和治疗的基于微rna的方法和组合物
US11266736B2 (en) 2008-04-17 2022-03-08 Vin De Bona Trading Company Pte Ltd Method of painting micro vesicles
EP2307028B1 (en) 2008-06-11 2013-10-02 The Government of the United States of America as represented by The Secretary of the Department of Health and Human Services Use of mir-26 family as a predictive marker of hepatocellular carcinoma and responsiveness to therapy
AU2009281969A1 (en) * 2008-08-12 2010-02-18 The Ohio State University Research Foundation Micro-RNA-based compositions and methods for the diagnosis, prognosis and treatment of multiple myeloma
CA2736124A1 (en) * 2008-09-03 2010-03-11 The Johns Hopkins University Pathways underlying pancreatic tumorigenesis and an hereditary pancreatic cancer gene
EP3216874A1 (en) 2008-09-05 2017-09-13 TOMA Biosciences, Inc. Methods for stratifying and annotating cancer drug treatment options
US9487837B2 (en) * 2008-10-06 2016-11-08 Morehouse School Of Medicine Exosome-mediated diagnosis of hepatitis virus infections and diseases
US20110301221A1 (en) * 2008-10-10 2011-12-08 Swedish Health Services Diagnosis, prognosis and treatment of glioblastoma multiforme
CA2742324A1 (en) 2008-10-30 2010-06-03 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Methods for assessing rna patterns
EP2350320A4 (en) 2008-11-12 2012-11-14 Caris Life Sciences Luxembourg Holdings METHODS AND SYSTEMS FOR USING EXOSOMES TO DETERMINE PHENOTYPES
GB0822836D0 (en) * 2008-12-15 2009-01-21 Oxford Biomedica Ltd Method
EP2202522A1 (en) * 2008-12-23 2010-06-30 Universiteit Leiden Methods for immobilizing microvesicles, means and methods for detecting them, and uses thereof
CA2767616A1 (en) 2009-07-09 2011-01-13 The Scripps Research Institute Gene expression profiles associated with chronic allograft nephropathy
KR20120037992A (ko) * 2009-07-16 2012-04-20 더 제너럴 하스피탈 코포레이션 핵산 분석
US8825412B2 (en) 2010-05-18 2014-09-02 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US20130029339A1 (en) 2009-09-09 2013-01-31 The General Hospital Corporation Use of microvesicles in analyzing kras mutations
WO2011031877A1 (en) * 2009-09-09 2011-03-17 The General Hospital Corporation Use of microvesicles in analyzing nucleic acid profiles
US20130012409A1 (en) * 2009-10-08 2013-01-10 M Frank Diagnostic and Prognostic Markers for Cancer
WO2011044513A1 (en) * 2009-10-08 2011-04-14 Wake Forest University Health Sciences Diagnostic and prognostic markers for cancer
WO2011063324A2 (en) * 2009-11-20 2011-05-26 The General Hospital Corporation Microfluidic systems for isolating microvesicles
EP2504452A4 (en) 2009-11-23 2014-06-11 Univ Ohio State Res Found SUBSTANCES AND METHODS THAT CAN BE USED TO ACT ON THE GROWTH, MIGRATION, AND INVASION OF TUMOR CELLS
CA2782284A1 (en) * 2009-11-30 2011-06-03 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Methods and systems for isolating, storing, and analyzing vesicles
US9315802B2 (en) 2009-12-30 2016-04-19 Quest Diagnostics Investments Incorporated RNA isolation from soluble urine fractions
ES2704701T3 (es) 2010-01-19 2019-03-19 Verinata Health Inc Nuevo protocolo de preparación de bibliotecas de secuenciación
US20120100548A1 (en) * 2010-10-26 2012-04-26 Verinata Health, Inc. Method for determining copy number variations
JP2011149859A (ja) * 2010-01-22 2011-08-04 Igaku Seibutsugaku Kenkyusho:Kk 食道癌マーカー
US20130052647A1 (en) * 2010-02-10 2013-02-28 Marianna Goldrick Methods for fractionating and processing microparticles from biological samples and using them for biomarker discovery
EP2415877A3 (en) * 2010-02-17 2012-02-15 Deutsches Krebsforschungszentrum Means and methods for diagnosing pancreatic cancer
CA2791905A1 (en) 2010-03-01 2011-09-09 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Biomarkers for theranostics
WO2011107962A1 (en) 2010-03-03 2011-09-09 Consiglio Nazionale Delle Ricerche Increase of myeloid microvesicles in the cerebrospinal fluid as biomarker of microglia/macrophage activation in neurological disorders
JP2013526852A (ja) 2010-04-06 2013-06-27 カリス ライフ サイエンシズ ルクセンブルク ホールディングス 疾患に対する循環バイオマーカー
WO2011128900A2 (en) * 2010-04-15 2011-10-20 Hadasit Medical Research Services And Development Ltd. Early detection and staging of colorectal cancer using a panel of micro rnas
EP2569418B1 (en) 2010-05-12 2016-11-02 RegenMed (Cayman) Ltd. Bioactive renal cells
WO2011140662A1 (en) * 2010-05-13 2011-11-17 The Royal Institution For The Advancement Of Learning / Mcgill University Cux1 signature for determination of cancer clinical outcome
US11408031B2 (en) 2010-05-18 2022-08-09 Natera, Inc. Methods for non-invasive prenatal paternity testing
US20190010543A1 (en) 2010-05-18 2019-01-10 Natera, Inc. Methods for simultaneous amplification of target loci
US9677118B2 (en) 2014-04-21 2017-06-13 Natera, Inc. Methods for simultaneous amplification of target loci
US11332793B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for simultaneous amplification of target loci
US11326208B2 (en) 2010-05-18 2022-05-10 Natera, Inc. Methods for nested PCR amplification of cell-free DNA
US11322224B2 (en) 2010-05-18 2022-05-03 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11339429B2 (en) 2010-05-18 2022-05-24 Natera, Inc. Methods for non-invasive prenatal ploidy calling
US11939634B2 (en) 2010-05-18 2024-03-26 Natera, Inc. Methods for simultaneous amplification of target loci
US10316362B2 (en) 2010-05-18 2019-06-11 Natera, Inc. Methods for simultaneous amplification of target loci
US11332785B2 (en) 2010-05-18 2022-05-17 Natera, Inc. Methods for non-invasive prenatal ploidy calling
CN102858375B (zh) * 2010-05-26 2016-08-10 江苏命码生物科技有限公司 载有干扰核糖核酸的细胞微粒子、其制备方法及其应用
EP2578236B1 (en) 2010-05-26 2016-03-30 Micromedmark Biotech Co., Ltd PREPARATION OF MICROVESICLE-siRNA COMPLEXES AND USE THEREOF IN AIDS TREATMENT
WO2011156734A2 (en) 2010-06-11 2011-12-15 Hitachi Chemical Co., Ltd. Method of characterizing vascular diseases
WO2011156763A1 (en) * 2010-06-11 2011-12-15 Hitachi Chemical Co., Ltd. Methods for characterizing kidney function
CN103002879B (zh) * 2010-07-01 2016-04-20 阿昂梅迪克斯公司 来自细胞原生质体的微泡及其应用
US8980549B2 (en) 2010-08-01 2015-03-17 Ramot At Tel Aviv University Ltd. MicroRNA patterns for the diagnosis, prognosis and treatment of melanoma
WO2012020308A2 (en) * 2010-08-13 2012-02-16 The University Court Of The University Of Glasgow Cellular and molecular therapies
WO2012024543A1 (en) * 2010-08-18 2012-02-23 Caris Life Sciences Luxembourg Holdings Circulating biomarkers for disease
US20120053062A1 (en) * 2010-08-24 2012-03-01 Bio Dx, Inc. Defining diagnostic and therapeutic targets of conserved free floating fetal dna in maternal circulating blood
WO2012031008A2 (en) 2010-08-31 2012-03-08 The General Hospital Corporation Cancer-related biological materials in microvesicles
US9982304B2 (en) * 2010-09-03 2018-05-29 The Johns Hopkins University ARID1A and PPP2R1A mutations in cancer
EP3572528A1 (en) 2010-09-24 2019-11-27 The Board of Trustees of the Leland Stanford Junior University Direct capture, amplification and sequencing of target dna using immobilized primers
US20140147839A1 (en) * 2010-10-15 2014-05-29 The General Hospital Corporation Microvesicle-based assays
WO2012054975A1 (en) * 2010-10-28 2012-05-03 Clinical Genomics Pty. Ltd. Method of microvesicle enrichment
US20130295574A1 (en) * 2010-11-10 2013-11-07 Exosome Diagnostics, Inc. Method for Isolation of Nucleic Acid Containing Particles and Extraction of Nucleic Acids Therefrom
KR101913874B1 (ko) 2010-11-10 2018-10-31 인리젠 장기 확대를 위한 주사가능 제제
AU2011326032B2 (en) 2010-11-12 2016-10-06 The Ohio State University Research Foundation Materials and methods related to microRNA-21, mismatch repair, and colorectal cancer
BR112013011942A2 (pt) 2010-11-15 2016-11-01 Univ Michigan formulação, forma de dosagem de droga para administração transmucosa oral, sistema transmucoso de fornecimento de droga, método de tratamento e profilaxia de uma doença ou distúrbio, método de tratamento, formulação, método para tratamento ou prevenção de carcinoma de célula escamosa de cabeça e pescoço (hnscc), método para quimioprevenção de um câncer oral ou condição pré-cancerosa, método para aumentar a concentração de uma composição de retinida, método de tratamento e profilaxia de uma doença ou condição, método de ratamento de um sujeito apresentando uma condição médica sintomática, método de tratamento de um câncer oral ou condição pré-cancerosa num paciente, método para fazer um sistema de fornecimento de droga bucal, método para aumentar a liberação e permeação de uma composição de retinida.
US20130295590A1 (en) * 2010-11-15 2013-11-07 The Regents Of The University Of Colorado, A Body Corporate Foxa1 as a marker for invasive bladder cancer
WO2012071525A2 (en) * 2010-11-24 2012-05-31 Yale University Compositions and methods for diagnosing and treating diseases and disorders associated with d-dt
US9663781B2 (en) 2010-12-30 2017-05-30 Quest Diagnostics Investments Incorporated Diagnosis of prostate cancer
WO2012097047A1 (en) * 2011-01-11 2012-07-19 The Ohio State University Research Foundation Methods to identify chronic lymphocytic leukemia disease progression
WO2012100023A1 (en) * 2011-01-19 2012-07-26 Thomas Jefferson University Detection of pancreatic ductal adenocarcinoma
CA2826111A1 (en) * 2011-01-31 2012-08-09 Esoterix Genetic Laboratories, Llc Methods for enriching microparticles or nucleic acids in a complex mixture using size exclusion filtration
US20120196285A1 (en) * 2011-01-31 2012-08-02 Esoterix Genetic Laboratories, Llc Methods for Enriching Microparticles or Nucleic Acids Using Binding Molecules
EP2484779A1 (en) 2011-02-03 2012-08-08 Medizinische Hochschule Hannover Device and method for analysis of kidney failure
SG183579A1 (en) * 2011-02-11 2012-09-27 Agency Science Tech & Res Methods of detecting therapeutic exosomes
CN103477225A (zh) * 2011-02-17 2013-12-25 康奈尔大学 防止细胞转化和癌症转移的组合物和方法
JP2014509852A (ja) 2011-03-07 2014-04-24 ジ・オハイオ・ステート・ユニバーシティ マイクロRNA−155(miR−155)により誘導される変異誘発活性は炎症および癌を結び付ける
WO2012135814A2 (en) * 2011-03-31 2012-10-04 University Of Houston Microrna29a,b,c as a tumor suppressor and sensitizing agent for chemotherapy
US9816998B2 (en) 2011-04-01 2017-11-14 Cornell University Circulating exosomes as diagnostic/prognostic indicators and therapeutic targets of melanoma and other cancers
RU2626540C2 (ru) 2011-04-18 2017-07-28 Диамир, Ллс Способы обнаружения патологических изменений в органе или системе органов
WO2012155014A1 (en) 2011-05-11 2012-11-15 Exosome Diagnostics, Inc. Nucleic acid extraction from heterogeneous biological materials
KR20140076543A (ko) * 2011-06-07 2014-06-20 카리스 라이프 사이언스 룩셈부르크 홀딩스, 에스.에이.알.엘. 암에 대한 순환하는 생물지표들
JP5823031B2 (ja) 2011-06-10 2015-11-25 日立化成株式会社 小胞捕捉デバイスおよびそれを用いるための方法
AU2012272908A1 (en) * 2011-06-21 2013-12-19 Alnylam Pharmaceuticals, Inc. Assays and methods for determining activity of a therapeutic agent in a subject
US20150018227A1 (en) * 2011-08-05 2015-01-15 University Of Louisville Research Foundation, Inc. Microrna biomarkers
RU2014110231A (ru) * 2011-08-18 2015-09-27 Мин-Чун ЦЗЯН Мембранный белок микровезикул и его применение
EP3492606B1 (en) * 2011-08-22 2023-10-04 Exosome Diagnostics, Inc. Urine biomarkers
US9939442B2 (en) * 2011-09-08 2018-04-10 The Regents Of The University Of California Salivary biomarkers for gastric cancer detection
BR112014006741A2 (pt) * 2011-09-22 2017-03-28 Univ Los Andes método para monitorização, diagnóstico e/ou prognóstico de lesão renal aguda no estágio inicial
WO2013048734A1 (en) * 2011-09-28 2013-04-04 Tufts Medical Center, Inc. Treatment and prevention of cardiovascular disease with cell derived lipid vesicles, microvesicles and exosomes
JP2014530612A (ja) 2011-10-14 2014-11-20 ジ・オハイオ・ステート・ユニバーシティ 卵巣がんに関する方法および材料
US10378060B2 (en) 2011-10-14 2019-08-13 Dana-Farber Cancer Institute, Inc. ZNF365/ZFP365 biomarker predictive of anti-cancer response
FR2981662A1 (fr) * 2011-10-20 2013-04-26 Assist Publ Hopitaux De Paris Methode de quantification de marqueurs renaux par dosage urinaire.
AU2011320021B2 (en) * 2011-10-26 2018-02-22 Clinical Genomics Pty. Ltd. Method of microvesicle enrichment
US9493840B2 (en) 2011-10-27 2016-11-15 University Of Louisville Research Foundation, Inc. Characterizing melanoma
WO2013067048A1 (en) * 2011-10-31 2013-05-10 The Ohio State University Materials and methods related to mir-221 and hepatocellular carcinoma
EP2776587A4 (en) * 2011-11-10 2015-07-15 Exosome Diagnostics Inc LIQUOR ASSAY
CN104619353A (zh) 2011-12-13 2015-05-13 俄亥俄州国家创新基金会 与miR-21和miR-29a相关的方法和组合物、外切体抑制和癌症转移
ITRM20110685A1 (it) 2011-12-23 2013-06-24 Internat Ct For Genetic En Gineering And Microrna per la rigenerazione cardiaca attraverso l induzione della proliferazione dei miociti cardiaci
JP2015511121A (ja) 2012-01-20 2015-04-16 ジ・オハイオ・ステート・ユニバーシティ 浸潤性および予後に関する乳がんバイオマーカーシグネチャー
US9737480B2 (en) 2012-02-06 2017-08-22 President And Fellows Of Harvard College ARRDC1-mediated microvesicles (ARMMs) and uses thereof
CA2865335A1 (en) * 2012-03-09 2013-09-12 Caris Life Sciences Luxembourg Holdings, S.A.R.L. Biomarker compositions and methods
US9428813B2 (en) 2012-03-26 2016-08-30 The United States Of America, As Represented By The Secretary, Dept. Of Health & Human Services DNA methylation analysis for the diagnosis, prognosis and treatment of adrenal neoplasms
CN103374625B (zh) * 2012-04-27 2016-04-13 中国科学院上海生命科学研究院 先天性心脏病相关基因dlc1及其应用
US9334498B2 (en) 2012-05-10 2016-05-10 Uab Research Foundation Methods and compositions for modulating MIR-204 activity
EP3591071A1 (en) 2012-05-21 2020-01-08 The Penn State Research Foundation Compositions and methods relating to dennd1a variant 2 and polycystic ovary syndrome
WO2013184905A1 (en) 2012-06-06 2013-12-12 Myriad Genetics, Inc. Hereditary cancer genes
WO2014004424A1 (en) 2012-06-26 2014-01-03 Temple University - Of The Commonwealth System Of Higher Education Method for detecting injury to the brian
BR112014032728A2 (pt) 2012-06-27 2017-11-28 Berg Llc uso de marcadores no diagnóstico e tratamento de câncer de próstata
US20140018299A1 (en) * 2012-07-10 2014-01-16 Banyan Biomarkers, Inc. Method and device to detect, monitor and promote neural regeneration and improvement of cognitive function in a subject suffering from neural injury
US20150176073A1 (en) * 2012-07-18 2015-06-25 Exosome Diagnostics, Inc. Use of microvesicles in diagnosis, prognosis, and treatment of medical diseases and conditions
CA2879337C (en) * 2012-07-19 2021-11-30 Atlantic Cancer Research Institute Method for the isolation of microvesicles
WO2014028862A1 (en) 2012-08-17 2014-02-20 Cornell University Use of dna in circulating exosomes as a diagnostic marker for metastasic disease
CN104995311A (zh) 2012-08-30 2015-10-21 外来体诊断公司 用于核酸测定的对照
WO2014041087A1 (en) 2012-09-12 2014-03-20 INSERM (Institut National de la Santé et de la Recherche Médicale) Muscle secretome and uses thereof
EP2903597B1 (en) * 2012-10-03 2019-12-18 Exosome Diagnostics Inc. Use of microvesicles in diagnosis, prognosis, and treatment of medical diseases and conditions
TWI485159B (zh) * 2012-10-11 2015-05-21 Ming Chung Jiang 一個微泡膜蛋白及其應用
EP2906717B8 (en) 2012-10-11 2019-03-27 Vin-de-Bona Trading Company Pte Ltd Method of painting microvesicles
WO2014062218A1 (en) * 2012-10-16 2014-04-24 University Of Southern California Colorectal cancer dna methylation markers
BR112015009138A2 (pt) * 2012-10-23 2020-10-20 Caris Life Sciences Switzerland Holdings, S.A.R.L. métodos para caracterizar um câncer
US10942184B2 (en) 2012-10-23 2021-03-09 Caris Science, Inc. Aptamers and uses thereof
WO2014066699A1 (en) 2012-10-24 2014-05-01 Tengion, Inc. Renal cell populations and uses thereof
WO2014072468A1 (en) * 2012-11-09 2014-05-15 Velin-Pharma A/S Compositions for pulmonary delivery
US20150292030A1 (en) * 2012-11-27 2015-10-15 Board Of Regents, The University Of Texas System Methods of characterizing and treating molecular subset of muscle-invasive bladder cancer
EP2746406B1 (en) 2012-12-18 2017-08-23 Samsung Electronics Co., Ltd. Composition and kit for diagnosing breast cancer including miRNAs within vesicle, and method of diagnosing breast cancer using the same
AU2013361323B2 (en) * 2012-12-19 2018-09-06 Caris Science, Inc. Compositions and methods for aptamer screening
CN105026911B (zh) 2013-01-03 2019-01-22 外来体诊断公司 用于分离微囊泡的方法
EP2959016A4 (en) * 2013-02-21 2016-10-12 Toma Biosciences Inc METHOD, COMPOSITIONS AND NUCLEIC ACID ANALYSIS KITS
CN109136364A (zh) 2013-02-28 2019-01-04 香港中文大学 通过大规模平行rna测序分析母亲血浆转录组
US10793913B2 (en) * 2013-03-08 2020-10-06 City Of Hope Methods and compositions for treatment of breast cancer
WO2014160032A1 (en) * 2013-03-13 2014-10-02 University Of Louisville Research Foundation, Inc. Exosome-associated rna as a diagnostic marker
WO2014159662A1 (en) 2013-03-13 2014-10-02 University Of Miami Method for isolation and purification of microvesicles from cell culture supernatants and biological fluids
MX2015013141A (es) 2013-03-15 2016-06-21 Univ Texas Biogénesis de miarn en exosomas para diagnóstico y terapia.
KR101473557B1 (ko) * 2013-03-29 2014-12-24 포항공과대학교 산학협력단 원심력을 이용한 세포유래 인공 마이크로베시클 제조 장치
CN105431552B (zh) * 2013-04-12 2020-03-03 香港中文大学 多组学标记在预测糖尿病中的用途
EP2986326B1 (en) 2013-04-15 2018-09-05 Cedars-Sinai Medical Center Methods for detecting cancer metastasis
US9662649B2 (en) 2013-05-06 2017-05-30 Hitachi Chemical Company America, Ltd. Devices and methods for capturing target molecules
EP2999967B1 (en) * 2013-05-21 2020-05-20 NX Pharmagen Use of tenascin-c as an extracellular marker of tumor-derived microparticles
CA2916202C (en) 2013-06-24 2019-07-02 Hanwha Chemical Corporation Antibody-drug conjugate having improved stability and use thereof
CN103272248B (zh) * 2013-06-28 2016-03-30 上海市内分泌代谢病研究所 miR-15b在制备糖尿病诊疗制剂中的应用
US10338061B2 (en) 2013-07-12 2019-07-02 Young Ah Kwon Method for diagnosis of diseases using morphological characteristics of luterial
CN106029900B (zh) 2013-08-06 2020-02-28 外来体诊断公司 尿生物标志物群、基因表达特征及其使用方法
KR20150043937A (ko) 2013-10-15 2015-04-23 삼성전자주식회사 개체의 간암 진단용 조성물, 개체의 간암 진단하는 방법 및 개체의 간암 진단에 필요한 정보를 얻는 방법
TWI708058B (zh) * 2013-10-24 2020-10-21 美商納諾索米克斯公司 阿茲海默症及其他神經退化性疾病之生物標記及診斷方法
EP3066215B1 (en) * 2013-11-06 2019-04-24 The United States of America, represented by the Secretary, Department of Health and Human Services Method for subtyping lymphoma types by means of expression profiling
EP3071712B1 (en) 2013-11-18 2020-06-24 DiamiR, LLC Methods of using mirnas from bodily fluids for detection and monitoring of parkinson's disease (pd)
EP3071231A4 (en) 2013-11-19 2017-07-26 Virginia Commonwealth University Compositions and methods for prophylaxis and/or therapy of disorders that correlate with dennd1a variant 2
CA2936100A1 (en) * 2013-12-04 2015-06-11 Board Of Regents, The University Of Texas System Analysis of genomic dna, rna, and proteins in exosomes for diagnosis and theranosis
JP6128621B2 (ja) * 2013-12-04 2017-05-17 国立研究開発法人産業技術総合研究所 マイクロベシクルに対する核酸アプタマー
JP2017505448A (ja) * 2014-01-14 2017-02-16 チョイ ウォンチョルCHOI, Won Cheol ルテリアルの形態特性を用いた癌予防剤または抗癌剤のスクリーニング方法
US10590384B2 (en) 2014-01-14 2020-03-17 Luterion Co., Ltd. Luterial and method for isolating and culturing the same
JP6862182B2 (ja) * 2014-01-14 2021-04-21 チョイ ウォンチョルCHOI, Won Cheol ルテリアル、並びにその分離および培養方法
WO2015120150A1 (en) * 2014-02-05 2015-08-13 Stc.Unm Exosomes as a therapeutic for cancer
AU2015229270B2 (en) 2014-03-12 2020-12-24 Icahn School Of Medicine At Mount Sinai Method for identifying kidney allograft recipients at risk for chronic injury
WO2015153732A2 (en) * 2014-04-01 2015-10-08 Cornell University Use of double-stranded dna in exosomes: a novel biomarker in cancer detection
EP3957749A1 (en) 2014-04-21 2022-02-23 Natera, Inc. Detecting tumour specific mutations in biopsies with whole exome sequencing and in cell-free samples
US10443100B2 (en) 2014-05-22 2019-10-15 The Scripps Research Institute Gene expression profiles associated with sub-clinical kidney transplant rejection
US11104951B2 (en) 2014-05-22 2021-08-31 The Scripps Research Institute Molecular signatures for distinguishing liver transplant rejections or injuries
US11268085B2 (en) 2014-05-27 2022-03-08 Exosome Diagnostics, Inc. Methods for isolating microvesicles and extracting nucleic acids from biological samples
BR112016029634A2 (pt) 2014-06-18 2017-10-24 Nat Cancer Ct kit, dispositivo e método para a detecção de câncer de fígado
EP3161165B1 (en) 2014-06-26 2020-11-18 Icahn School of Medicine at Mount Sinai Method for diagnosing subclinical and clinical acute rejection by analysis of predictive gene sets, therapeutic agent for use in the treatment and kits for determining the expression
CN113699143A (zh) 2014-07-09 2021-11-26 外来体诊断公司 从生物样品中分离微泡和提取核酸的方法
WO2016011383A1 (en) * 2014-07-17 2016-01-21 The Trustees Of The University Of Pennsylvania Methods for using exosomes to monitor transplanted organ status
CA2956712A1 (en) * 2014-08-05 2016-02-11 Ymir Genomics Llc Methods for the isolation of extracellular vesicles and other bioparticles from urine and other biofluids
US20170298352A1 (en) 2014-09-30 2017-10-19 Research Institute at Nationwide Children's Hospit al Compositions and methods for treating hepatic fibrosis
US10260067B2 (en) * 2014-10-01 2019-04-16 The Brigham And Women's Hospital, Inc. Enhancing dermal wound healing by downregulating microRNA-26a
US11397182B2 (en) 2014-10-07 2022-07-26 Cornell University Methods for prognosing and preventing metastatic liver disease
CN104535766B (zh) * 2014-10-30 2016-04-13 中国人民解放军总医院第一附属医院 外周血exosome来源的肝癌诊断和预后标志物及其应用
US9816080B2 (en) 2014-10-31 2017-11-14 President And Fellows Of Harvard College Delivery of CAS9 via ARRDC1-mediated microvesicles (ARMMs)
US10266895B2 (en) 2014-11-05 2019-04-23 Hitachi Chemical Company Ltd. Exosomes and microvesicles in intestinal luminal fluids and stool and use of same for the assessment of inflammatory bowel disease
JP6631852B2 (ja) 2014-11-12 2020-01-15 日立化成株式会社 臓器障害を診断するための方法および装置
US20170319649A1 (en) * 2014-11-19 2017-11-09 The Board of Regents of the University of Texsas System Novel peptide activator of cyclin c-dependent kinase 8 (cdk8)
CN104372004B (zh) * 2014-12-04 2018-04-27 广东医学院 一个与心肌梗死易感相关的miR-27a基因单核苷酸多态位点的检测方法及其应用
CN104404044B (zh) * 2014-12-04 2018-04-27 广东医学院 与心肌梗死易感相关的anril基因外显子区单核苷酸多态位点的检测方法及其应用
SG11201704660YA (en) 2014-12-08 2017-07-28 Berg Llc Use of markers including filamin a in the diagnosis and treatment of prostate cancer
EP3034623A1 (en) * 2014-12-18 2016-06-22 Centro de Investigación Biomédica en Red (CIBER) Method for predicting response to continuous positive air pressure treatment
CN107429226A (zh) 2015-01-06 2017-12-01 株式会社露太利温 luterion及其分离和培养方法
CN107405377B (zh) * 2015-03-12 2021-08-06 三井化学株式会社 外泌体的破坏方法、外泌体的破坏试剂盒及来自正常细胞的外泌体的分离方法
JP2016192906A (ja) * 2015-03-31 2016-11-17 シスメックス株式会社 乳がんに関する情報の取得方法、ならびに乳がんに関する情報を取得するためのマーカー及び乳がん検出用キット
WO2016172710A2 (en) 2015-04-24 2016-10-27 Cornell University Methods and reagents for determination and treatment of organotropic metastasis
WO2016183106A1 (en) 2015-05-11 2016-11-17 Natera, Inc. Methods and compositions for determining ploidy
JP2018520125A (ja) 2015-06-10 2018-07-26 ボード・オブ・リージエンツ,ザ・ユニバーシテイ・オブ・テキサス・システム 疾患の処置のためのエキソソームの使用
US11028443B2 (en) 2015-08-31 2021-06-08 Showa Denko Materials Co., Ltd. Molecular methods for assessing urothelial disease
KR102078310B1 (ko) * 2015-09-11 2020-02-19 주식회사 압타머사이언스 비소세포성 폐암 진단용 단백질 바이오마커 패널 및 이를 이용한 비소세포성 폐암 진단 방법
WO2017066390A1 (en) * 2015-10-13 2017-04-20 The Trustees Of The University Of Pennsylvania Methods for using enriched exosomes as a platform for monitoring organ status
WO2017079736A1 (en) * 2015-11-06 2017-05-11 The Trustees Of Columbia University In The City Of New York Exosomal protein profiling for detection of cardiac transplant rejection
US11111279B2 (en) 2015-11-20 2021-09-07 Grand Valley State University Nato3 mutant polypeptides and uses thereof
CN105296488B (zh) * 2015-12-02 2018-05-01 中国人民解放军第三军医大学第三附属医院 超声微泡介导的siRNA干扰GRK4在靶向调节尿钠排泄及血压水平中的应用
US10975436B2 (en) 2016-01-05 2021-04-13 Diamir, Llc Methods of using miRNA from bodily fluids for diagnosis and monitoring of neurodevelopmental disorders
CN105505918B (zh) * 2016-01-12 2018-03-02 广州赛哲生物科技股份有限公司 一种血清外泌体中rna的提取方法
WO2017155894A1 (en) * 2016-03-07 2017-09-14 Cfgenome, Llc Noninvasive molecular controls
US11149313B2 (en) 2016-03-21 2021-10-19 Diamir, Llc Methods of using miRNAs from bodily fluids for detection and differentiation of neurodegenerative diseases
WO2017181161A1 (en) 2016-04-15 2017-10-19 Predicine, Inc. Systems and methods for detecting genetic alterations
WO2017181183A1 (en) * 2016-04-15 2017-10-19 Exosome Diagnostics, Inc. Plasma-based detection of anaplastic lymphoma kinase (alk) nucleic acids and alk fusion transcripts and uses thereof in diagnosis and treatment of cancer
CN109072277A (zh) * 2016-04-19 2018-12-21 凸版印刷株式会社 癌化可能性的评价方法及试剂盒
EP3455355B1 (en) 2016-05-13 2022-04-13 Exosome Diagnostics, Inc. Automated and manual methods for isolation of extracellular vesicles and co-isolation of cell-free dna from biofluids
US11123372B2 (en) 2016-07-29 2021-09-21 Prokidney Bioactive renal cells for the treatment of chronic kidney disease
US10914748B2 (en) 2016-09-08 2021-02-09 UNIVERSITé LAVAL Erythrocyte-derived extracellular vesicles as a biomarker for clinically assessing Parkinson's disease
US11174503B2 (en) 2016-09-21 2021-11-16 Predicine, Inc. Systems and methods for combined detection of genetic alterations
CA3002520A1 (en) 2016-09-30 2018-04-05 Cellex Life Sciences, Incorporated Compositions containing protein loaded exosome and methods for preparing and delivering the same
WO2018067546A1 (en) 2016-10-03 2018-04-12 President And Fellows Of Harvard College Delivery of therapeutic rnas via arrdc1-mediated microvesicles
US11485996B2 (en) 2016-10-04 2022-11-01 Natera, Inc. Methods for characterizing copy number variation using proximity-litigation sequencing
JP2019535307A (ja) 2016-10-21 2019-12-12 エクソサム ダイアグノスティクス,インコーポレイティド エキソソーム結合型核酸の配列決定および分析
CN107058475B (zh) * 2016-11-03 2020-10-27 中国人民解放军陆军军医大学 一种联合miR-676、miR-181b和miR-193b诊断急性高山病的试剂盒
CN107058469B (zh) * 2016-11-03 2020-09-01 中国人民解放军陆军军医大学 一种通过循环microRNA-449b-3p表达水平预测急性高山病发病风险的试剂盒
CN107058472B (zh) * 2016-11-03 2020-10-27 中国人民解放军陆军军医大学 一种通过四种血浆microRNA联合诊断急性高山病的诊断试剂盒
CN107058471B (zh) * 2016-11-03 2020-09-01 中国人民解放军陆军军医大学 一种通过四种microRNA生物标志物联合预测急性高山病发病风险的试剂盒
CN107058468B (zh) * 2016-11-03 2020-09-01 中国人民解放军陆军军医大学 一种通过循环microRNA-369-3p表达水平预测急性高山病发病风险的试剂盒
US11274349B2 (en) 2016-11-08 2022-03-15 Cedars-Sinai Medical Center Methods for diagnosing cancer
EP3538069A4 (en) 2016-11-09 2020-07-22 Benedetta Bussolati EXTRACELLULAR VESICLES FROM STEM CELLS TO TREAT AND / OR PREVENT DISEASE
CN110446790B (zh) * 2016-11-30 2023-03-31 外来体诊断公司 使用外来体rna和无细胞dna检测血浆中的突变的方法和组合物
US20200080997A1 (en) * 2016-12-05 2020-03-12 The Penn State Research Foundation Lipid-based probes for extracellular isolation
US10011870B2 (en) 2016-12-07 2018-07-03 Natera, Inc. Compositions and methods for identifying nucleic acid molecules
KR101942197B1 (ko) 2016-12-28 2019-01-24 주식회사 엠디헬스케어 세균 메타게놈 분석을 통한 전립선질환 진단 방법
WO2018126278A2 (en) 2017-01-02 2018-07-05 Exosome Diagnostics, Inc. Methods to distinguish rna and dna in a combined preparation
CN108300783A (zh) * 2017-01-11 2018-07-20 上海易毕恩基因科技有限公司 用于筛选肠癌和/或胃癌的基因标志物的方法、用该方法筛选的基因标志物及其用途
EP3570032B1 (en) * 2017-01-12 2023-04-12 THEORIA Science Inc. Method of examining subject's possibility of suffering from pancreatic cancer
JP6873460B2 (ja) * 2017-01-12 2021-05-19 テオリアサイエンス株式会社 被検者が膵臓癌に罹患している可能性を試験する方法
WO2018143896A1 (en) * 2017-02-02 2018-08-09 Agency For Science, Technology And Research Ovarian cancer biomarker
US20200056225A1 (en) * 2017-02-24 2020-02-20 Md Healthcare Inc. Method for diagnosing chronic obstructive airway disease through bacterial metagenome analysis
CN106906287B (zh) * 2017-03-10 2020-10-27 北京昊源生物医学科技有限公司 Prima1基因在制备椎间盘退行性疾病诊断试剂中的应用
CN110462064A (zh) * 2017-04-18 2019-11-15 深圳华大生命科学研究院 基于外泌体核酸进行微生物检测的方法及其应用
CN110520140A (zh) * 2017-04-19 2019-11-29 菲格内有限责任公司 成纤维细胞衍生的外泌体刺激血管生成
CN110945145A (zh) 2017-05-17 2020-03-31 外来体诊断公司 微泡核酸和/或蛋白及其作为肾移植排斥的标志物的应用
WO2019008414A1 (en) * 2017-07-05 2019-01-10 Datar Rajan GENE EXPRESSION ANALYSIS BASED ON EXOSOMES FOR THE CARE OF CANCER
CN111133106A (zh) 2017-07-12 2020-05-08 外来体诊断公司 用于分离和富集生物流体来源的细胞外囊泡的方法及其使用方法
US11345957B2 (en) 2017-07-18 2022-05-31 Exosome Diagnostics, Inc. Methods of treating glioblastoma in a subject informed by exosomal RNA signatures
US10781487B2 (en) 2017-07-24 2020-09-22 Diamir, Llc miRNA-based methods for detecting and monitoring aging
JP7293194B2 (ja) 2017-08-22 2023-06-19 シーダーズ-サイナイ・メディカル・センター 癌治療のための組成物および方法
WO2019055337A1 (en) * 2017-09-13 2019-03-21 Children's Hospital Medical Center ROLE OF EXOSOMES, EXTRACELLULAR VESICLES IN THE REGULATION OF METABOLIC HOMÉOSTASIE
SG11202003588QA (en) * 2017-09-20 2020-05-28 Molecular Stethoscope Inc Methods and systems for detecting tissue conditions
WO2019066501A1 (ko) * 2017-09-27 2019-04-04 ㈜로제타엑소좀 크기 배제 크로마토그래피를 이용한 세포밖 소포체의 분석 방법 및 이의 용도
KR102109921B1 (ko) * 2017-09-27 2020-05-12 ㈜로제타엑소좀 크기 배제 크로마토그래피를 이용한 세포밖 소포체의 순도 분석 방법
CN111386458B (zh) 2017-09-27 2023-04-14 罗塞塔外排体株式会社 利用尺寸排阻色谱法的细胞外囊泡的分析方法及其用途
CN107858430B (zh) * 2017-11-20 2019-01-04 武汉迈特维尔生物科技有限公司 一种用于诊断预示Her-2过表达型乳腺癌骨转移的基因诊断试剂盒
ES2724215B2 (es) * 2018-03-01 2020-04-14 Univ Alcala Henares Microvesículas endoteliales con efecto microbicida
JP7088572B2 (ja) * 2018-04-05 2022-06-21 ゲノム アンド カンパニー 抗がんおよび免疫増強用新規ターゲット
US11572589B2 (en) 2018-04-16 2023-02-07 Icahn School Of Medicine At Mount Sinai Method for prediction of acute rejection and renal allograft loss using pre-transplant transcriptomic signatures in recipient blood
WO2019236123A1 (en) * 2018-06-04 2019-12-12 Memorial Sloan Kettering Cancer Center Methods of detecting cancer via assessment of extracellular vesicle- mediated horizontal transfer of dna: rna hybrids
WO2019236853A1 (en) 2018-06-06 2019-12-12 Exosome Diagnostics, Inc. Methods for developing urine biomarkers and for detecting bladder cancer
CN108588224A (zh) * 2018-06-14 2018-09-28 大连医科大学附属第医院 一种用于嗜铬细胞瘤/副神经节瘤早期诊断和术前评估的生物标志物及其应用
US11525159B2 (en) 2018-07-03 2022-12-13 Natera, Inc. Methods for detection of donor-derived cell-free DNA
CN110872624A (zh) * 2018-08-29 2020-03-10 深圳大学 一种结直肠癌标志物及其应用
CN110885830A (zh) * 2018-09-07 2020-03-17 安徽华大医学检验所有限公司 Fn1基因突变及其应用
JP2022501438A (ja) 2018-09-21 2022-01-06 アウフバウ・メディカル・イノベイションズ・リミテッドAufbau Medical Innovations Limited 緑内障用の組成物および方法
WO2020106853A1 (en) 2018-11-20 2020-05-28 Exosome Diagnostics, Inc. Compositions and methods for internal controls of microvesicle isolations
KR102178922B1 (ko) * 2018-11-26 2020-11-13 순천향대학교 산학협력단 당뇨병성 신증 진단을 위한 마이크로RNA let-7 또는 마이크로RNA-150 바이오마커 및 이의 용도
RU2709651C1 (ru) * 2018-11-29 2019-12-19 Федеральное государственное бюджетное учреждение "Ростовский научно-исследовательский онкологический институт" Министерства здравоохранения Российской Федерации Способ дифференциальной диагностики глиом на основании анализа экспрессии генов и микро-рнк
CN109402262B (zh) * 2018-12-18 2022-01-25 上海交通大学医学院附属上海儿童医学中心 辅助诊断神经母细胞瘤的PCR检测试剂盒及检测miR-199a-3p表达水平的方法
CA3137525A1 (en) * 2019-04-23 2020-10-29 Children's Medical Center Corporation Use of rab7 gtpase (rab7) inhibitors in enhancing permeability of the blood brain barrier (bbb)
US11607428B2 (en) 2019-06-06 2023-03-21 Spiritus Therapeutics, Inc. Mesenchymal stem cell-derived extracellular vesicles and uses thereof for treating and diagnosing fibrotic diseases
WO2020247675A1 (en) * 2019-06-06 2020-12-10 Spiritus Therapeutics, Inc. Methods for attenuating viral infection and for treating lung injury
CN112535726B (zh) * 2019-09-05 2023-09-12 南京安吉生物科技有限公司 一种肿瘤标志物aquaporin 2蛋白及其应用
CN110412299B (zh) * 2019-09-05 2022-11-04 四川大学华西第二医院 Hectd3自身抗体检测试剂在制备肺癌筛查试剂盒中的用途
CN110609141A (zh) * 2019-09-30 2019-12-24 中山大学孙逸仙纪念医院 Gltscr1前列腺癌预后检测试剂及其试剂盒
CN110954701B (zh) * 2019-12-18 2023-07-21 重庆医科大学 一种肝纤维化或肝硬化的诊断试剂盒
EP4117702A4 (en) * 2020-03-06 2024-03-13 Mayo Found Medical Education & Res METHODS AND MATERIALS FOR IDENTIFYING AND TREATING MEMBRANOUS NEPHROPATHY
MX2022011619A (es) * 2020-03-18 2023-02-09 Molecular Stethoscope Inc Sistemas y métodos para detectar un riesgo de enfermedad de alzheimer utilizando un ensayo de perfil de arnm libre de circulación.
EP4158065A1 (en) 2020-05-29 2023-04-05 Exosome Diagnostics, Inc. Use of microvesicle signature for the diagnosis and treatment of kidney transplant rejection
WO2022030626A1 (ja) 2020-08-06 2022-02-10 株式会社Lsiメディエンス 膀胱癌診断方法
AU2021328501A1 (en) 2020-08-15 2023-04-13 Regeneron Pharmaceuticals, Inc. Treatment of obesity in subjects having variant nucleic acid molecules encoding calcitonin receptor (CALCR)
WO2022064162A1 (en) * 2020-09-22 2022-03-31 The Secretary Of State For Defence Dstl Apparatus, kits and methods for predicting the development of sepsis
CN112415199B (zh) * 2020-11-20 2023-09-08 四川大学华西医院 Cetp检测试剂在制备肺癌筛查试剂盒中的用途
US20220073992A1 (en) * 2020-11-24 2022-03-10 Hossein Abdul Tehrani Abdul Tehrani Diagnosis of chronic kidney disease (ckd) and its subgroups
CN112458104A (zh) * 2020-12-04 2021-03-09 哈尔滨医科大学 与非综合征型唇腭裂相关的突变的n4bp2基因及其应用
CN113005146A (zh) * 2021-03-10 2021-06-22 香港理工大学深圳研究院 一种重组质粒及其构建方法、重组影像系统与应用
CN113281515A (zh) * 2021-05-14 2021-08-20 青岛大学附属医院 一种tipe3免疫组织化学检测试剂盒及其使用方法和应用
EP4370712A1 (en) * 2021-07-16 2024-05-22 Exosome Diagnostics, Inc. Methods of detecting sjögren's syndrome using salivary exosomes
CN113564252B (zh) * 2021-07-22 2022-09-02 中国医学科学院北京协和医院 甲基化酶mettl3的新用途
CN113717930A (zh) * 2021-09-07 2021-11-30 复旦大学附属华山医院 携带fbn1突变的颅颈动脉夹层特异诱导多能干细胞系
CN113866413B (zh) * 2021-09-29 2023-05-30 上海市同济医院 一种结直肠癌诊断标志物及其应用
CN113995840B (zh) * 2021-10-12 2022-07-05 武汉大学中南医院 Tifa抑制剂在制备用于治疗和/或预防脓毒症急性肾损伤的药物中的应用
WO2023076949A1 (en) * 2021-10-26 2023-05-04 Ohio State Innovation Foundation Designer extracellular vesicles for targeted delivery to schwann cells
CN113789388B (zh) * 2021-11-15 2022-03-25 苏州艾米森生物科技有限公司 一种食管癌基因甲基化水平检测试剂及其应用
CN113913522B (zh) * 2021-11-18 2023-03-10 武汉艾米森生命科技有限公司 子宫内膜癌检测的试剂及试剂盒
CN114231643B (zh) * 2022-01-07 2023-07-07 新疆畜牧科学院畜牧研究所 影响鄂尔多斯细毛羊羊毛纤维直径变异系数性状的分子标记、获得方法及其特异性引物对和应用
WO2023158869A1 (en) 2022-02-18 2023-08-24 Exosome Diagnostics, Inc. Use of microvesicle signatures in the identification and treatment of renal disorders
CN115786501B (zh) * 2022-07-02 2023-06-16 武汉大学 一种与结直肠癌早期筛查和辅助诊断相关的增强子功能位点及其应用
WO2024014580A1 (ko) * 2022-07-13 2024-01-18 이왕재바이오연구소 주식회사 엑소좀에서 발현되는 바이오 마커를 이용하는 인공지능 기반 암 진단용 정보제공 방법
WO2024054572A1 (en) 2022-09-07 2024-03-14 Exosome Diagnostics, Inc. Methods of detecting sjögren's syndrome using salivary exosomes
CN115927591A (zh) * 2022-11-03 2023-04-07 广州市金域转化医学研究院有限公司 用于非tsc1/tsc2突变结节性硬化症的生物标志物及其应用
CN116219017B (zh) * 2023-02-17 2024-04-30 安徽同科生物科技有限公司 生物标志物在制备卵巢癌诊断和/或预后的产品中的应用
CN117092354B (zh) * 2023-10-18 2023-12-29 亿航(苏州)生物医药有限公司 一种用于识别脑源性细胞的细胞外囊泡的蛋白标志物
CN117965433A (zh) * 2024-03-29 2024-05-03 四川大学华西第二医院 一种提高体外精子存活率和活性的方法、产品及应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011018A1 (en) * 1992-11-12 1994-05-26 Biomeasure, Inc. Opioid peptides
WO2001036601A1 (en) * 1999-11-18 2001-05-25 Chiron S.P.A. Method for the preparation of purified hcv rna by exosome separation
WO2005121369A2 (en) * 2004-06-02 2005-12-22 Sourcepharm, Inc. Rna-containing microvesicles and methods therefor
US20070104738A1 (en) * 2003-07-15 2007-05-10 Irene Tatischeff Extracellular vesicles from non-pathogenic amoebae useful as vehicle for transferring a molecule of interest to an eukaryotic cell

Family Cites Families (62)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5639611A (en) 1988-12-12 1997-06-17 City Of Hope Allele specific polymerase chain reaction
US5219727A (en) 1989-08-21 1993-06-15 Hoffmann-Laroche Inc. Quantitation of nucleic acids using the polymerase chain reaction
US5840867A (en) 1991-02-21 1998-11-24 Gilead Sciences, Inc. Aptamer analogs specific for biomolecules
CA2074214C (en) 1991-07-23 2000-02-22 Will Bloch Improvements in the in situ pcr
US5582981A (en) 1991-08-14 1996-12-10 Gilead Sciences, Inc. Method for identifying an oligonucleotide aptamer specific for a target
US5605798A (en) 1993-01-07 1997-02-25 Sequenom, Inc. DNA diagnostic based on mass spectrometry
GB9306053D0 (en) * 1993-03-24 1993-05-12 Nycomed Pharma As Method and assay
US5639606A (en) 1993-04-06 1997-06-17 The University Of Rochester Method for quantitative measurement of gene expression using multiplex competitive reverse transcriptase-polymerase chain reaction
US5547859A (en) 1993-08-02 1996-08-20 Goodman; Myron F. Chain-terminating nucleotides for DNA sequencing methods
US5556773A (en) 1993-08-06 1996-09-17 Yourno; Joseph Method and apparatus for nested polymerase chain reaction (PCR) with single closed reaction tubes
US6759217B2 (en) * 1996-03-26 2004-07-06 Oncomedx, Inc. Method enabling use of extracellular RNA extracted from plasma or serum to detect, monitor or evaluate cancer
US6607898B1 (en) * 1996-03-26 2003-08-19 Oncomedx, Inc. Method for detection of hTR and hTERT telomerase-associated RNA in plasma or serum
PT938320E (pt) * 1996-03-26 2010-09-22 Michael S Kopreski Método que permite a utilização de arn extracelular extraído de plasma ou de soro para detectar, monitorizar ou avaliar o cancro
US6794135B1 (en) * 1996-03-26 2004-09-21 Oncomedx, Inc. Method for detection of 5T4 RNA in plasma or serum
EP1164203B1 (en) 1996-11-06 2007-10-10 Sequenom, Inc. DNA Diagnostics based on mass spectrometry
EP0985148A4 (en) 1997-05-28 2004-03-10 Inst Medical W & E Hall DIAGNOSIS OF NUCLEIC ACIDS BY MASS SPECTROMETRY, MASS SEPARATION AND BASE-SPECIFIC CLEAVING
US6004755A (en) 1998-04-07 1999-12-21 Incyte Pharmaceuticals, Inc. Quantitative microarray hybridizaton assays
EP1100964A1 (en) 1998-07-20 2001-05-23 Variagenics, Inc. Gene sequence variances with utility in determining the treatment of disease
FR2788780B1 (fr) * 1999-01-27 2001-03-30 Ap Cells Inc Procede de preparation de vesicules membranaires
JP2003520843A (ja) 2000-01-28 2003-07-08 エムアイピー・テクノロジーズ・エービー 分子を認識および触媒するための官能性モノマー
US6812023B1 (en) 2000-04-27 2004-11-02 Anosys, Inc. Methods of producing membrane vesicles
US6913879B1 (en) 2000-07-10 2005-07-05 Telechem International Inc. Microarray method of genotyping multiple samples at multiple LOCI
US6525154B1 (en) 2000-07-20 2003-02-25 The Regents Of The University Of California Molecular imprinting for the recognition of peptides in aqueous solution
US6794447B1 (en) * 2000-07-28 2004-09-21 Taylor Made Golf Co., Inc. Golf balls incorporating nanocomposite materials
JP2004535765A (ja) * 2000-12-07 2004-12-02 カイロン コーポレイション 前立腺癌においてアップレギュレートされた内因性レトロウイルス
WO2002092763A2 (en) * 2001-05-11 2002-11-21 Regents Of The University Of Minnesota Intron associated with myotonic dystrophy type 2 and methods of use
US6696271B2 (en) 2001-08-23 2004-02-24 The Regents Of The University Of California Frozen tissue microarray technology for analysis of RNA, DNA, and proteins
WO2003023065A1 (en) 2001-09-06 2003-03-20 Syngenta Participations Ag Dna methylation patterns
US7671010B2 (en) * 2002-08-30 2010-03-02 The Board Of Regents Of The University Of Texas System Compositions and methods of use of targeting peptides for diagnosis and therapy of human cancer
US20030162190A1 (en) 2001-11-15 2003-08-28 Gorenstein David G. Phosphoromonothioate and phosphorodithioate oligonucleotide aptamer chip for functional proteomics
AU2003214566A1 (en) * 2002-03-14 2003-09-22 Anosys, Inc. Functionalization of T cell derived vesicles and use thereof for the preparation of immunogenic pharmaceutical compositions
EP1534865A4 (en) 2002-06-26 2005-12-21 Cold Spring Harbor Lab METHODS AND COMPOSITIONS FOR DETERMINING METHYLATION PROFILES
CA2497288A1 (en) 2002-09-02 2004-03-11 Pamgene B.V. Novel integrated microarray analysis
US7141371B2 (en) 2002-09-06 2006-11-28 State Of Oregon Acting By And Through The State Board Of Higher Education On Behalf Of The University Of Oregon Methods for detecting and localizing DNA mutations by microarray
WO2005020784A2 (en) * 2003-05-23 2005-03-10 Mount Sinai School Of Medicine Of New York University Surrogate cell gene expression signatures for evaluating the physical state of a subject
US7332552B2 (en) * 2003-05-30 2008-02-19 Rensselaer Polytechnic Institute Low odor chain transfer agents for controlled radical polymerization
US7384589B2 (en) 2003-08-01 2008-06-10 Lawrence Livermore National Security, Llc Nanoscale molecularly imprinted polymers and method thereof
US20050095218A1 (en) * 2003-10-29 2005-05-05 The Procter & Gamble Company Personal care composition containing a detersive surfactant, an antidandruff component, and ketoamide surfactants
CA2453198A1 (en) * 2004-01-07 2005-07-07 Wei-Ping Min Quantification and generation of immune suppressive exosomes
BRPI0508286B8 (pt) 2004-03-31 2021-05-25 Dana Farber Cancer Inst Inc método para determinar a probabilidade de eficácia de um inibidor da tirosina quinase egfr para tratar câncer, uso de um inibidor da tirosina quinase de egfr, sonda, kit, e, par de iniciadores
US8021847B2 (en) * 2004-06-02 2011-09-20 Proxy Life Science Holdings, Inc. Microvesicle-based compositions and methods
CN101022824A (zh) * 2004-07-01 2007-08-22 匹兹堡大学联邦系统高等教育 免疫抑制外体
BRPI0515850A (pt) * 2004-10-07 2008-08-12 Ananda Chakrabarty agentes de transportes derivados de cupredoxina e métodos de uso dos mesmos
US20060223072A1 (en) * 2005-03-31 2006-10-05 Boyes Barry E Methods of using a DNase I-like enzyme
EP1869221A2 (en) 2005-04-15 2007-12-26 Cedars-Sinai Medical Center Flow-cytometric heteroduplex analysis for detection of genetic alterations
ES2398709T5 (es) * 2005-06-28 2017-04-18 Genentech, Inc. Mutaciones en EGFR y KRAS para predecir la respuesta de un paciente al tratamiento con inhibidores de EGFR
WO2007015174A2 (en) * 2005-07-08 2007-02-08 Exothera L.L.C. Exosome-specific ligands, their preparartion and uses
EP1904642A4 (en) * 2005-07-19 2008-11-26 Univ Illinois TRANSPORT AGENTS USEFUL FOR CROSSING THE HEMATO-ENCEPHALIC BARRIER AND FOR PENETRATING IN CANCER CELLS OF THE BRAIN, METHODS OF USING THE SAME
ES2736726T3 (es) * 2006-03-09 2020-01-07 Aethlon Medical Inc Eliminación extracorpórea de partículas microvesiculares
WO2007127848A1 (en) * 2006-04-26 2007-11-08 University Of Louisville Research Foundation, Inc Isolation of membrane vesicles from biological fluids and methods of using same
US9085778B2 (en) * 2006-05-03 2015-07-21 VL27, Inc. Exosome transfer of nucleic acids to cells
CN101085349B (zh) * 2006-06-09 2011-05-25 项雯华 囊泡导向的免疫细胞及其在制备抗肿瘤药物上的应用
US20080287669A1 (en) * 2007-05-16 2008-11-20 Braman Jeffrey C Methods and compositions for identifying compounds useful in nucleic acid purification
EP2806273B1 (en) * 2007-07-25 2017-09-06 University of Louisville Research Foundation, Inc. Exosome-associated microRNA as a diagnostic marker
CA2733672C (en) * 2007-08-16 2018-09-11 The Royal Institution For The Advancement Of Learning/Mcgill University Tumor cell-derived microvesicles
US20100255514A1 (en) * 2007-08-16 2010-10-07 The Royal Institution For The Advancement Of Learning/Mcgill University Tumor cell-derived microvesicles
ES2575868T3 (es) * 2007-09-14 2016-07-01 The Ohio State University Research Foundation Expresión de miARN en microvesículas de sangre periférica humana y sus usos
US8617806B2 (en) * 2008-01-25 2013-12-31 Hansabiomed Ou Method to measure and characterize microvesicles in the human body fluids
US20120142001A1 (en) * 2008-02-01 2012-06-07 Exosome Diagnostics, Inc. Method for isolation of nucleic acid containing particles and extraction of nucleic acids therefrom
US20100008978A1 (en) * 2008-05-09 2010-01-14 The Regents Of The University Of California Nanoparticles effective for internalization into cells
US20110177054A1 (en) * 2008-06-06 2011-07-21 Derrick Gibbings Use of endo-lysosomal system and secreted vesicles (exosome-like) in treatments and diagnostics based on small rna and experimental study of small rna
EP2350320A4 (en) * 2008-11-12 2012-11-14 Caris Life Sciences Luxembourg Holdings METHODS AND SYSTEMS FOR USING EXOSOMES TO DETERMINE PHENOTYPES

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1994011018A1 (en) * 1992-11-12 1994-05-26 Biomeasure, Inc. Opioid peptides
WO2001036601A1 (en) * 1999-11-18 2001-05-25 Chiron S.P.A. Method for the preparation of purified hcv rna by exosome separation
US20070104738A1 (en) * 2003-07-15 2007-05-10 Irene Tatischeff Extracellular vesicles from non-pathogenic amoebae useful as vehicle for transferring a molecule of interest to an eukaryotic cell
WO2005121369A2 (en) * 2004-06-02 2005-12-22 Sourcepharm, Inc. Rna-containing microvesicles and methods therefor

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes;Monika Baj-Krzyworzeka等;《Cancer Immunol Immunother》;20060701;第55卷(第7期);808–818 *

Also Published As

Publication number Publication date
US20130131194A1 (en) 2013-05-23
EP2604704B1 (en) 2018-10-03
DK2245199T3 (da) 2014-02-03
BRPI0907050A2 (pt) 2020-10-06
ES2703363T3 (es) 2019-03-08
CA2713909C (en) 2023-12-12
JP2011510663A (ja) 2011-04-07
KR101970908B1 (ko) 2019-04-19
CA2713909A1 (en) 2009-08-13
HK1158705A1 (zh) 2012-07-20
JP5676277B2 (ja) 2015-02-25
CN105734128A (zh) 2016-07-06
KR101810799B1 (ko) 2017-12-19
EP3239305A2 (en) 2017-11-01
EP3708682A2 (en) 2020-09-16
US20140194613A1 (en) 2014-07-10
SG190670A1 (en) 2013-06-28
EP3708682B1 (en) 2022-11-23
EP3239305A3 (en) 2017-11-29
CN102084000A (zh) 2011-06-01
US20110053157A1 (en) 2011-03-03
AU2009212543A1 (en) 2009-08-13
EP2245199A1 (en) 2010-11-03
EP3708682A3 (en) 2020-11-18
KR20160032727A (ko) 2016-03-24
EP2245199B1 (en) 2013-11-13
AU2009212543B2 (en) 2015-07-09
US20110003704A1 (en) 2011-01-06
WO2009100029A1 (en) 2009-08-13
BRPI0907050B1 (pt) 2022-03-22
EP3190192A1 (en) 2017-07-12
KR20100127768A (ko) 2010-12-06
JP6322132B2 (ja) 2018-05-09
US20170088898A1 (en) 2017-03-30
US20100196426A1 (en) 2010-08-05
CN105734128B (zh) 2021-05-18
ES2446301T3 (es) 2014-03-07
JP2015091251A (ja) 2015-05-14
ES2936256T3 (es) 2023-03-15
KR20170102043A (ko) 2017-09-06
US20160362678A1 (en) 2016-12-15
EP2604704A1 (en) 2013-06-19
JP2018088922A (ja) 2018-06-14
US20180051335A9 (en) 2018-02-22
US20170314075A1 (en) 2017-11-02
US20140194319A1 (en) 2014-07-10
EP4219762A1 (en) 2023-08-02
SG10201609507TA (en) 2017-01-27

Similar Documents

Publication Publication Date Title
CN102084000B (zh) 微泡在医学疾病和病况的诊断、预后以及治疗中的用途
CN102498397B (zh) 核酸分析
EP2971162B1 (en) Mirna biogenesis in exosomes for diagnosis and therapy
EP2510122B1 (fr) Utilisation de miarns comme biomarqueurs dans le diagnostic de gliomes
WO2012047631A2 (en) Compositions and methods useful for the treatment and diagnosis of inflammatory bowel disease
US20100323903A1 (en) Diagnosis and prognosis of specific cancers
US20160201121A1 (en) Microvesicle-based assays
CN109439745B (zh) 绝经后骨质疏松的诊疗标志物
CN107820519A (zh) 健康标志
CN104774966A (zh) 肺腺癌miRNA标记物
US20220162704A1 (en) Methods of preparing microvesicle micrornas from bodily fluids
JP7473941B2 (ja) 中皮腫の診断補助方法及び診断用キット
CN105886653B (zh) 一种子宫内膜癌的分子标记物
US20130330727A1 (en) Intra-tissue in vitro diagnosis method for diagnosing brain tumours
AU2017219022A1 (en) Nucleic acid analysis

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
REG Reference to a national code

Ref country code: HK

Ref legal event code: DE

Ref document number: 1158705

Country of ref document: HK

C14 Grant of patent or utility model
GR01 Patent grant
REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1158705

Country of ref document: HK