CA2848699A1 - Methods and compositions for weed control targeting 7,8-dihydropteroate synthase (dhps) - Google Patents

Methods and compositions for weed control targeting 7,8-dihydropteroate synthase (dhps) Download PDF

Info

Publication number
CA2848699A1
CA2848699A1 CA2848699A CA2848699A CA2848699A1 CA 2848699 A1 CA2848699 A1 CA 2848699A1 CA 2848699 A CA2848699 A CA 2848699A CA 2848699 A CA2848699 A CA 2848699A CA 2848699 A1 CA2848699 A1 CA 2848699A1
Authority
CA
Canada
Prior art keywords
herbicides
polynucleotide
plant
composition
dhps
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Abandoned
Application number
CA2848699A
Other languages
French (fr)
Inventor
Daniel ADER
John J. Finnessy
Zhaolong Li
Ronak Hasmukh Shah
Nengbing Tao
Christina Marie Taylor
Jennifer Chou Taylor
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Monsanto Technology LLC
Original Assignee
Monsanto Technology LLC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Monsanto Technology LLC filed Critical Monsanto Technology LLC
Publication of CA2848699A1 publication Critical patent/CA2848699A1/en
Abandoned legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/11DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
    • C12N15/113Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
    • C12N15/1137Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing against enzymes
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N33/00Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds
    • A01N33/16Biocides, pest repellants or attractants, or plant growth regulators containing organic nitrogen compounds containing nitrogen-to-oxygen bonds
    • A01N33/18Nitro compounds
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N41/00Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom
    • A01N41/02Biocides, pest repellants or attractants, or plant growth regulators containing organic compounds containing a sulfur atom bound to a hetero atom containing a sulfur-to-oxygen double bond
    • A01N41/04Sulfonic acids; Derivatives thereof
    • A01N41/06Sulfonic acid amides
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N57/00Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds
    • A01N57/10Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds
    • A01N57/16Biocides, pest repellants or attractants, or plant growth regulators containing organic phosphorus compounds having phosphorus-to-oxygen bonds or phosphorus-to-sulfur bonds containing heterocyclic radicals

Landscapes

  • Life Sciences & Earth Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Biomedical Technology (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Biotechnology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Pest Control & Pesticides (AREA)
  • Agronomy & Crop Science (AREA)
  • Environmental Sciences (AREA)
  • Dentistry (AREA)
  • Physics & Mathematics (AREA)
  • Microbiology (AREA)
  • Virology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Enzymes And Modification Thereof (AREA)
  • Catching Or Destruction (AREA)

Abstract

Novel compositions for use to enhance weed control. Specifically, methods and compositions that modulate dihydropteroate synthase in weed species. The present invention also provides for combinations of compositions and methods that enhance weed control.

Description

METHODS AND COMPOSITIONS FOR WEED CONTROL
This application claims benefit under 35USC 119(e) of United States provisional application serial no. 61/534,097 filed 09/13/2011, herein incorporated by reference in it's entirety. The sequence listing that is contained in the file named "40_21(58641)B seq listing.txt", which is 513,100 bytes (measured in operating system MS-Windows) and was created on 4 Sept 2012, is filed herewith and incorporated herein by reference.
Table 1 is provided herewith as a part of this U.S. patent application via the USPTO's EFS
system in file named "40_21(58641)Btable 1.doxc " which is 39,989 bytes in size (measured in MS-Windows ). Table 1 (file "40_21(58641)Btablel.doxc" comprises 54 sequences and is herein incorporated by reference in its entirety.
Table 2 is provided herewith as a part of this U.S. patent application via the USPTO's EFS
system in file named "40_21(58641)Btable2.doxc" which is 107,841 bytes in size (measured in MS-Windows ). Table 2 (file "40_21(58641)Btable2.doxc" comprises 848 sequences and is herein incorporated by reference in its entirety.
Table 3 is provided herewith as a part of this U.S. patent application via the USPTO's EFS
system in file named "40_21(58641)Btable3.doxc" which is 21,718 bytes in size (measured in MS-Windows ). Table 3 (file "40_21(58641)Btable3.doxc" comprises 269 sequences and is herein incorporated by reference in its entirety.
FIELD
The methods and compositions generally relate to the field of weed management.
More specifically, relate to 7,8-dihydropteroate synthase inhibitors (DHPS) genes in plants and compositions containing polynucleotide molecules for modulating and/or regulating their expression. Further provided are methods and compositions useful for weed control.
BACKGROUND
Weeds are plants that compete with cultivated plants in an agronomic environment and cost farmers billions of dollars annually in crop losses and the expense of efforts to keep weeds under control. Weeds also serve as hosts for crop diseases and insect pests.
The losses caused by weeds in agricultural production environments include decreases in crop yield, reduced crop quality, increased irrigation costs, increased harvesting costs, reduced land value, injury to livestock, and crop damage from insects and diseases harbored by the weeds.
The principal means by which weeds cause these effects are: 1) competing with crop plants for water, nutrients, sunlight and other essentials for growth and development, 2) production of toxic or irritant chemicals that cause human or animal health problem, 3) production of immense quantities of seed or vegetative reproductive parts or both that contaminate agricultural products and perpetuate the species in agricultural lands, and 4) production on agricultural and nonagricultural lands of vast amounts of vegetation that must be disposed of.
Herbicide tolerant weeds are a problem with nearly all herbicides in use, there is a need to effectively manage these weeds. There are over 365 weed biotypes currently identified as being herbicide resistant to one or more herbicides by the Herbicide Resistance Action Committee (HRAC), the North American Herbicide Resistance Action Committee (NAHRAC), and the Weed Science Society of America (WSSA).
The 7,8-dihydropteroate synthase inhibitors (DHPS) is an enzyme involved in folic acid synthesis which is needed for purine nucleotide biosynthesis. This enzyme is the target of herbicides that include the carbamate chemical family.
BRIEF DESCRIPTION OF THE FIGURES
The following drawings form part of the present specification and are included to further demonstrate certain methods, compositions or results. They may be better understood by reference to one or more of these drawings in combination with the detailed description of specific embodiments presented herein. The invention can be more fully understood from the following description of the figures:
FIGURE 1. Treatment with oligonucleotide pools followed by Prowl (pendimethalin) FIGURE 2. Treatment of Palmer Amaranth with 3 oligonucleotide pools followed by Prowl herbicide at 121b/ac rate SUMMARY
In one aspect, the invention provides a method of plant control comprising an external application to a plant or plant part a composition comprising a polynucleotide and a transfer
2 agent, wherein the polynucleotide is essentially identical or essentially complementary to a DHPS (dihydropteroate synthase, DHP or DHPS) gene sequence or fragment thereof, or to the RNA transcript of said DHPS gene sequence or fragment thereof, wherein said DHPS gene sequence is selected from the group consisting of SEQ ID NO:1-54 or a polynucleotide fragment thereof. As a result of such application, the plant growth or development or reproductive ability is reduced or the plant is made more sensitive to a DHPS inhibitor herbicide relative to a plant not treated with said composition. In this manner, plants that have become resistant to the application of DHPS inhibitor containining herbicides are made more susceptible to the herbicidal effects the herbicides, thus potentiating the effect of the herbicides. The polynucleotide fragment is at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a DHPS gene sequence selected from the group consisting of SEQ ID NO:1-54 and the transfer agent comprises an organosilicone composition or compound.
The polynucleotide fragment can be sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids. The composition can include various components that include more than one polynucleotide fragments, a DHPS inhibitor herbicide and/or other herbicides that enhance the plant control activity of the composition.
In another aspect, polynucleotide molecules and methods for modulating DHPS
gene expression in a plant species are provided. The method reduces, represses or otherwise delays expression of a DHPS gene in a plant comprising an external application to such plant of a composition comprising a polynucleotide and a transfer agent, wherein the polynucleotide is essentially identical or essentially complementary to a DHPS gene sequence or fragment thereof, or to the RNA transcript of the DHPS gene sequence or fragment thereof, wherein the DHPS
gene sequence is selected from the group consisting of SEQ ID NO:1-54 or a polynucleotide fragment thereof. The polynucleotide fragment is at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to a DHPS gene sequence selected from the group consisting of SEQ ID NO:1-54 and the transfer agent is an organosilicone compound. The polynucleotide fragment can be sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids. Polynucleotide molecules comprising SEQ ID NOs 55-1175 are fragments of the DHPS gene.
3 In a further aspect, the polynucleotide molecule composition may be combined with other herbicidal compounds to provide additional control of unwanted plants in a field of cultivated plants.
In a further aspect, the polynucleotide molecule composition may be combined with any one or more additional agricultural chemicals, such as, insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, biopesticides, microbial pesticides or other biologically active compounds to form a multi-component pesticide giving an even broader spectrum of agricultural protection.
DETAILED DESCRIPTION
Provided are methods and compositions containing a polynucleotide that provide for regulation, repression or delay of 7,8-dihydropteroate synthase (DHPS) gene expression and enhanced control of weedy plant species amd importantly DHPS inhibitor resistant weed biotypes. Aspects of the method can be applied to manage various weedy plants in agronomic and other cultivated environments.
The following definitions and methods are provided to better define the present invention and to guide those of ordinary skill in the art. Unless otherwise noted, terms are to be understood according to conventional usage by those of ordinary skill in the relevant art. Where a term is provided in the singular, the inventors also contemplate aspects described by the plural of that term.
By "non-transcribable" polynucleotides is meant that the polynucleotides do not comprise a complete polymerase II transcription unit.
As used herein "solution" refers to homogeneous mixtures and non-homogeneous mixtures such as suspensions, colloids, micelles, and emulsions.
Weedy plants are plants that compete with cultivated plants, those of particular importance include, but are not limited to important invasive and noxious weeds and herbicide resistant biotypes in crop production, such as, Amaranthus species -A. albus, A. blitoides, A.
hybridus, A. palmeri, A. powellii, A. retroflexus, A. spinosus, A.
tuberculatus, and A. viridis;
Ambrosia species - A. trifida, A. artemisifolia; Lolium species -L.
multiflorum, L. rigidium, L
perenne; Digitaria species -D. insularis; Euphorbia species -E. heterophylla;
Kochia species -
4 K scoparia; Sorghum species -S. halepense; Conyza species -C. bonariensis, C.
canadensis, C.
sumatrensis; Chloris species -C. truncate,. Echinochola species - E. colona, E. crus-galli;
Eleusine species -E. indica; Poa species -P. annua; Plantago species -P.
lanceolata; Avena species - A. fatua; Chenopodium species - C. album; Setaria species ¨ S.
viridis, Abutilon theophrasti, Ipomoea species, Sesbania, species, Cassia species, Sida species, Brachiaria, species and Solanum species.
Additional weedy plant species found in cultivated areas include Alopecurus myosuroides, Avena sterilis, Avena sterilis ludoviciana, Brachiaria plantaginea, Bromus diandrus, Bromus rigidus, Cynosurus echinatus, Digitaria ciliaris, Digitaria ischaemum, Digitaria sanguinalis, Echinochloa oryzicola, Echinochloa phyllopogon, Eriochloa punctata, Hordeum glaucum, Hordeum leporinum, Ischaemum rugosum, Leptochloa chinensis, Lolium persicumõ Phalaris minor, Phalaris paradoxa, Rottboellia exalta, Setaria faberi, Setaria viridis var, robusta-alba schreiber, Setaria viridis var, robusta -purpurea, Snowdenia polystachea, Sorghum sudanese, Alisma plantago-aquatica, Amaranthus lividus, Amaranthus quitensis, Ammania auriculata, Ammania coccinea, Anthemis cotula, Apera spica-venti, Bacopa rotundifolia, Bidens pilosa, Bidens subaltemans, Brassica tournefortii, Bromus tectorum, Camelina microcarpa, Chrysanthemum coronarium, Cuscuta campestris, Cyperus difformis, Damasonium minus, Descurainia sophia, Diplotaxis tenuifolia, Echium plantagineum, Elatine triandra var, pedicellata, Euphorbia heterophylla, Fallopia convolvulus, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Helianthus annuus, Iva xanthifolia, Ixophorus unisetus, Ipomoea indica, Ipomoea purpurea, Ipomoea sepiaria, Ipomoea aquatic, Ipomoea triloba, Lactuca serriola, Limnocharis flava, Limnophila erecta, Limnophila sessiliflora, Lindemia dubia, Lindemia dubia var, major, Lindernia micrantha, Lindemia procumbens, Mesembryanthemum crystallinum, Monochoria korsakowii, Monochoria vaginalis, Neslia paniculata, Papaver rhoeas, Parthenium hysterophorus, Pentzia suffruticosa, Phalaris minor, Raphanus raphanistrum, Raphanus sativus, Rapistrum rugosum, Rotala indica var, uliginosa, Sagittaria guyanensis, Sagittaria montevidensis, Sagittaria pygmaea, Salsola iberica, Scirpus juncoides var, ohwianus, Scirpus mucronatus, Setaria lutescens, Sida spinosa, Sinapis arvensis, Sisymbrium orientale, Sisymbrium thellungii, Solanum ptycanthum, Sonchus asper, Sonchus oleraceus, Sorghum bicolor, Stellaria media, Thlaspi arvense, Xanthium strumarium, Arctotheca calendula, Conyza sumatrensis, Crassocephalum crepidiodes, Cuphea carthagenenis, Epilobium adenocaulon, Erigeron philadelphicus, Landoltia punctata, Lepidium virginicum, Monochoria korsakowii, Solanum americanum, Solanum nigrum, Vulpia bromoides, Youngia japonica, Hydrilla verticillata, Carduus nutans, Carduus pycnocephalus, Centaurea solstitialis, Cirsium arvense, Commelina diffusa, Convolvulus arvensis, Daucus carota, Digitaria ischaemum, Echinochloa crus-pavonis, Fimbristylis miliacea, Galeopsis tetrahit, Galium spurium, Limnophila erecta, Matricaria perforate, Papaver rhoeas, Ranunculus acris, Soliva sessilis, Sphenoclea zeylanica, Stellaria media, Nassella trichotoma, Stipa neesiana, Agrostis stolonifera, Polygonum aviculare, Alopecurus japonicus, Beckmannia syzigachne, Bromus tectorum, Chloris inflate, Echinochloa erecta, Portulaca oleracea, and Senecio vulgaris. It is believed that all plants contain an DHPS gene in their genome, which can be isolated and polynucleotides made according to the methods that are useful for regulating, suppressing or delaying the expression of the target DHPS gene in the plants and the growth or development of the treated plants.
Some cultivated plants may also be weedy plants when they occur in unwanted environments. For example, corn plants growing in a soybean field. Transgenic crops with one or more herbicide tolerances will need specialized methods of management to control weeds and volunteer crop plants.
A "trigger" or "trigger polynucleotide" is a polynucleotide molecule that is homologous or complementary to a target gene polynucleotide. The trigger polynucleotide molecules modulate expression of the target gene when topically applied to a plant surface with a transfer agent, whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a DHPS
inhibitor herbicide or mitosis inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with a composition containing the trigger molecule.
It is contemplated that the compositions will contain one or more polynucleotides and one or more herbicides that include but not limited to DHPS gene trigger polynucleotides and a DHPS inhibitor herbicide and anyone or more additional herbicide target gene trigger polynucleotides and the related herbicides and anyone or more additional essential gene trigger polynucleotides. Essential genes are genes in a plant that provide key enzymes or other proteins, for example, a biosynthetic enzyme, metabolizing enzyme, receptor, signal transduction protein, structural gene product, transcription factor, or transport protein; or regulating RNAs, such as, microRNAs, that are essential to the growth or survival of the organism or cell or involved in the normal growth and development of the plant (Meinke, et al., Trends Plant Sci.

Sep;13(9):483-91). The suppression of an essential gene enhances the effect of a herbicide that affects the function of a gene product different than the suppressed essential gene. The compositions can include various trigger polynucleotides that modulate the expression of an essential gene other than DHPS.
Herbicides, for which transgenes for plant tolerance have been demonstrated, include but are not limited to: auxin-like herbicides, glyphosate, glufosinate, sulfonylureas, imidazolinones, bromoxynil, delapon, dicamba, cyclohezanedione, protoporphyrionogen oxidase inhibitors, 4-hydroxyphenyl-pyruvate-dioxygenase inhibitors herbicides. For example, transgenes and their polynucleotide molecules that encode proteins involved in herbicide tolerance are known in the art, and include, but are not limited to an 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS), for example, as more fully described in U.S. Pat. Nos. 7,807,791 (SEQ ID
NO:5); 6,248,876 Bl;
5,627,061; 5,804,425; 5,633,435; 5,145,783; 4,971,908; 5,392,910; 5,188,642;
4,940,835;
5,866,775; 6,225,114 B1; 6,130,366; 5,390,667; 4,535,060; 4,769,061;
5,633,448; 5,510,471;
U.S. Pat. No. RE36,449; U.S. Pat. Nos. RE37,287 E; and 5,491,288; tolerance to sulfonylurea and/or imidazolinone, for example, as described more fully in U.S. Pat. Nos.
5,605,011;
5,013,659; 5,141,870; 5,767,361; 5,739,180; 5,304,732; 4,761,373; 5,339,107;
5,928,937; and 5,378,824; and international publication WO 96/33270; tolerance to hydroxyphenylpyruvatedioxygenases inhibitiong herbicides in plants are described in U.S. Pat.
Nos. 6,245,968 Bl; 6,268,549, and 6,069,115; US Pat.Pub. 20110191897 and US7,392,379 SEQ
ID NO:3; U57,935,869; U57,304,209, SEQ ID NO:1, 3,5 and 15; aryloxyalkanoate dioxygenase polynucleotides, which confer tolerance to 2,4-D and other phenoxy auxin herbicides as well as to aryloxyphenoxypropionate herbicides as described, for example, in W02005/107437;
U57,838,733 SEQ ID NO:5;) and dicamba-tolerance polynucleotides as described, for example, in Herman et al. (2005) J. Biol. Chem. 280: 24759-24767. Other examples of herbicide-tolerance traits include those conferred by polynucleotides encoding an exogenous phosphinothricin acetyltransferase, as described in U.S. Pat. Nos. 5,969,213; 5,489,520;
5,550,398; 5,874,265;
5,919,675; 5,561,236; 5,648,477; 5,639,024; 6,177,616; and 5,879,903. Plants containing an exogenous phosphinothricin acetyltransferase can exhibit improved tolerance to glufosinate herbicides, which inhibit the enzyme glutamine synthase. Additionally, herbicide-tolerance polynucleotides include those conferred by polynucleotides conferring altered protoporphyrinogen oxidase (protox) activity, as described in U.S. Pat. Nos.
6,288,306 Bl;
6,282,837 Bl; and 5,767,373; and WO 01/12825. Plants containing such polynucleotides can exhibit improved tolerance to any of a variety of herbicides which target the protox enzyme (also referred to as protox inhibitors). Polynucleotides encoding a glyphosate oxidoreductase and a glyphosate-N-acetyl transferase (GOX described in U.S. Patent 5,393,175 and GAT described in U.S. Patent publication 20030083480, dicamba monooxygenase U.S. Patent publication 20030135879, all of which are incorporated herein by reference); a polynucleotide molecule encoding bromoxynil nitrilase (Bxn described in U.S. Patent No. 4,810,648 for Bromoxynil tolerance, which is incorporated herein by reference); a polynucleotide molecule encoding phytoene desaturase (crtl) described in Misawa et al, (1993) Plant J. 4:833-840 and Misawa et al, (1994) Plant J. 6:481-489 for norflurazon tolerance; a polynucleotide molecule encoding acetohydroxyacid synthase (AHAS, aka ALS) described in Sathasiivan et al.
(1990) Nucl. Acids Res. 18:398-2193 for tolerance to sulfonylurea herbicides; and the bar gene described in DeBlock, et al. (1987) EMBO J. 6:2513-2519 for glufosinate and bialaphos tolerance. The transgenic coding regions and regulatory elements of the herbicide tolerance genes are targets in which polynucleotide triggers and herbicides can be included in the compositions.
DHPS inhibitor herbicides include but are not limited to carbamates and asulam. Mitosis inhibitor herbicides include but are not limited to dinitroaniline herbicides for example benfluralin, butralin, dinitramine, ethalfluralin, oryzalin, pendimethalin, and trifluralin.
Additional mitosis inhibitor herbicides also include but are not limited to Phosphoroamidates, Pyridines, Benzamides, and Benzenedicarboxylic acids.
Numerous herbicides with similar or different modes of action (herein referred to as co-herbicides) are available that can be added to the compositions, for example, members of the herbicide families that include but are not limited to amide herbicides, aromatic acid herbicides, arsenical herbicides, benzothiazole herbicides, benzoylcyclohexanedione herbicides, benzofuranyl alkylsulfonate herbicides, carbamate herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, dicarboximide herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenyl ether herbicides, dithiocarbamate herbicides, halogenated aliphatic herbicides, imidazolinone herbicides, inorganic herbicides, nitrile herbicides, organophosphorus herbicides, oxadiazolone herbicides, oxazole herbicides, phenoxy herbicides, phenylenediamine herbicides, pyrazole herbicides, pyridazine herbicides, pyridazinone
7 PCT/US2012/054980 herbicides, pyridine herbicides, pyrimidinediamine herbicides, pyrimidinyloxybenzylamine herbicides, quaternary ammonium herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, triazine herbicides, triazinone herbicides, triazole herbicides, triazolone herbicides, triazolopyrimidine herbicides, uracil herbicides, and urea herbicides. In particular, the rates of use of the added herbicides can be reduced in compositions comprising the polynucleotides. Use rate reductions of the additional added herbicides can be 10-25 percent, 26-50 percent, 51-75 percent or more can be achieved that enhance the activity of the polynucleotides and herbicide composition and is contemplated. Representative co-herbicides of the families include but are not limited to acetochlor, acifluorfen, acifluorfen-sodium, aclonifen, acrolein, alachlor, alloxydim, allyl alcohol, ametryn, amicarbazone, amidosulfuron, aminopyralid, amitrole, ammonium sulfamate, anilofos, asulam, atraton, atrazine, azimsulfuron, BCPC, beflubutamid, benazolin, benfluralin, benfuresate, bensulfuron, bensulfuron-methyl, bensulide, bentazone, benzfendizone, benzobicyclon, benzofenap, bifenox, bilanafos, bispyribac, bispyribac-sodium, borax, bromacil, bromobutide, bromoxynil, butachlor, butafenacil, butamifos, butralin, butroxydim, butylate, cacodylic acid, calcium chlorate, cafenstrole, carbetamide, carfentrazone, carfentrazone-ethyl, CDEA, CEPC, chlorflurenol, chlorflurenol-methyl, chloridazon, chlorimuron, chlorimuron-ethyl, chloroacetic acid, chlorotoluron, chlorpropham, chlorsulfuron, chlorthal, chlorthal-dimethyl, cinidon-ethyl, cinmethylin, cinosulfuron, cisanilide, clethodim, clodinafop, clodinafop-propargyl, clomazone, clomeprop, clopyralid, cloransulam, cloransulam-methyl, CMA, 4-CPB, CPMF, 4-CPP, CPPC, cresol, cumyluron, cyanamide, cyanazine, cycloate, cyclosulfamuron, cycloxydim, cyhalofop, cyhalofop-butyl, 2,4-D, 3,4-DA, daimuron, dalapon, dazomet, 2,4-DB, 3,4-DB, 2,4-DEB, desmedipham, dicamba, dichlobenil, ortho-dichlorobenzene, para-dichlorobenzene, dichlorprop, dichlorprop-P, diclofop, diclofop-methyl, diclosulam, difenzoquat, difenzoquat metilsulfate, diflufenican, diflufenzopyr, dimefuron, dimepiperate, dimethachlor, dimethametryn, dimethenamid, dimethenamid-P, dimethipin, dimethylarsinic acid, dinitramine, dinoterb, diphenamid, diquat, diquat dibromide, dithiopyr, diuron, DNOC, 3,4-DP, DSMA, EBEP, endothal, EPTC, esprocarb, ethalfluralin, ethametsulfuron, ethametsulfuron-methyl, ethofumesate, ethoxyfen, ethoxysulfuron, etobenzanid, fenoxaprop-P, fenoxaprop-P-ethyl, fentrazamide, ferrous sulfate, flamprop-M, flazasulfuron, florasulam, fluazifop, fluazifop-butyl, fluazifop-P, fluazifop-P-butyl, flucarbazone, flucarbazone-sodium, flucetosulfuron, fluchloralin, flufenacet, flufenpyr, flufenpyr-ethyl, flumetsulam, flumiclorac, flumiclorac-pentyl, flumioxazin, fluometuron, fluoroglycofen, fluoroglycofen-ethyl, flupropanate, flupyrsulfuron, flupyrsulfuron-methyl-sodium, flurenol, fluridone, fluorochloridone, fluoroxypyr, flurtamone, fluthiacet, fluthiacet-methyl, fomesafen, foramsulfuron, fosamine, glufosinate, glufosinate-ammonium, glyphosate, halosulfuron, halosulfuron-methyl, haloxyfop, haloxyfop-P, HC-252, hexazinone, imazamethabenz, imazamethabenz-methyl, imazamox, imazapic, imazapyr, imazaquin, imazethapyr, imazosulfuron, indanofan, iodomethane, iodosulfuron, iodosulfuron-methyl-sodium, ioxynil, isoproturon, isouron, isoxaben, isoxachlortole, isoxaflutole, karbutilate, lactofen, lenacil, linuron, MAA, MAMA, MCPA, MCPA-thioethyl, MCPB, mecoprop, mecoprop-P, mefenacet, mefluidide, mesosulfuron, mesosulfuron-methyl, mesotrione, metam, metamifop, metamitron, metazachlor, methabenzthiazuron, methylarsonic acid, methyldymron, methyl isothiocyanate, metobenzuron, metolachlor, S-metolachlor, metosulam, metoxuron, metribuzin, metsulfuron, metsulfuron-methyl, MK-66, molinate, monolinuron, MSMA, naproanilide, napropamide, naptalam, neburon, nicosulfuron, nonanoic acid, norflurazon, oleic acid (fatty acids), orbencarb, orthosulfamuron, oryzalin, oxadiargyl, oxadiazon, oxasulfuron, oxaziclomefone, oxyfluorfen, paraquat, paraquat dichloride, pebulate, pendimethalin, penoxsulam, pentachlorophenol, pentanochlor, pentoxazone, pethoxamid, petrolium oils, phenmedipham, phenmedipham-ethyl, picloram, picolinafen, pinoxaden, piperophos, potassium arsenite, potassium azide, pretilachlor, primisulfuron, primisulfuron-methyl, prodiamine, profluazol, profoxydim, prometon, prometryn, propachlor, propanil, propaquizafop, propazine, propham, propisochlor, propoxycarbazone, propoxycarbazone-sodium, propyzamide, prosulfocarb, prosulfuron, pyraclonil, pyraflufen, pyraflufen-ethyl, pyrazolynate, pyrazosulfuron, pyrazosulfuron-ethyl, pyrazoxyfen, pyribenzoxim, pyributicarb, pyridafol, pyridate, pyriftalid, pyriminobac, pyriminobac-methyl, pyrimisulfan, pyrithiobac, pyrithiobac-sodium, quinclorac, quinmerac, quinoclamine, quizalofop, quizalofop-P, rimsulfuron, sethoxydim, siduron, simazine, simetryn, SMA, sodium arsenite, sodium azide, sodium chlorate, sulcotrione, sulfentrazone, sulfometuron, sulfometuron-methyl, sulfosate, sulfosulfuron, sulfuric acid, tar oils, 2,3,6-TBA, TCA, TCA-sodium, tebuthiuron, tepraloxydim, terbacil, terbumeton, terbuthylazine, terbutryn, thenylchlor, thiazopyr, thifensulfuron, thifensulfuron-methyl, thiobencarb, tiocarbazil, topramezone, tralkoxydim, tri-allate, triasulfuron, triaziflam, tribenuron, tribenuron-methyl, tricamba, triclopyr, trietazine, trifloxysulfuron, trifloxysulfuron-sodium, trifluralin, triflusulfuron, triflusulfuron-methyl, trihydroxytriazine, tritosulfuron, [3-[2-chloro-4-fluoro-5-(-methy1-6-trifluoromethy1-2,4-dioxo-,2,3,4-t- etrahydropyrimidin-3-yl)phenoxy]-2-pyridyloxy]acetic acid ethyl ester (CAS
RN 353292-3-6), 4-[(4,5-dihydro-3-methoxy-4-methy1-5-oxo)-H-,2,4-triazol--ylcarbonyl-sulfamoy1]-5-methylthiophene-3-carboxylic acid (BAY636), BAY747 (CAS RN 33504-84-2), topramezone (CAS RN 2063-68-8), 4-hydroxy-3-[[2-[(2-methoxyethoxy)methy1]-6-(trifluoro-methyl)-3-pyridi- nyllcarbonyll-bicyclo[3.2.1oct-3-en-2-one (CAS RN 35200-68-5), and 4-hydroxy-3-[[2-(3-methoxypropy1)-6-(difluoromethyl)-3-pyridinyl]carbon- y1]-bicyclo[3.2.]oct-3-en-2-one. Additionally, including herbicidal compounds of unspecified modes of action as described in CN101279950A, CN101279951A, DE10000600A1, DE10116399A1, DE102004054666A1, DE102005014638A1, DE102005014906A1, DE102007012168A1, DE102010042866A1, DE10204951A1, DE10234875A1, DE10234876A1, DE10256353A1, DE10256354A1, DE10256367A1, EP1157991A2, EP1238586A1, EP2147919A1, EP2160098A2, JP03968012B2, JP2001253874A, JP2002080454A, JP2002138075A, JP2002145707A, JP2002220389A, JP2003064059A, JP2003096059A, JP2004051628A, JP2004107228A, JP2005008583A, JP2005239675A, JP2005314407A, JP2006232824A, JP2006282552A, JP2007153847A, JP2007161701A, JP2007182404A, JP2008074840A, JP2008074841A, JP2008133207A, JP2008133218A, JP2008169121A, JP2009067739A, JP2009114128A, JP2009126792A, JP2009137851A, U520060111241A1, U520090036311A1, US20090054240A1, US20090215628A1, U520100099561A1, U520100152443A1, U520110105329A1, U520110201501A1, W02001055066A2, W02001056975A1, W02001056979A1, W02001090071A2, W02001090080A1, W02002002540A1 , W02002028182A1, W02002040473A1, W02002044173A2, W02003000679A2, W02003006422A1 , W02003013247A1, W02003016308A1, W02003020704A1, W0200302205 1A1, W0200302283 1A1, W02003022843A1, W02003029243A2, W02003037085A1, W02003037878A1, W02003045878A2, W02003050087A2, W02003051823A1, W02003051824A1, W02003051846A2, W02003076409A1, W02003087067A1, W02003090539A1, W02003091217A1, W02003093269A2, W02003104206A2, W02004002947A1, W02004002981A2, W02004011429A1, W02004029060A1, W02004035545A2, W02004035563A1, W02004035564A1, W02004037787A1, W02004067518A1, W02004067527A1, W02004077950A1, W02005000824A1, W02005007627A1, W02005040152A1, W02005047233A1, W02005047281A1, W02005061443A2, W02005061464A1, W02005068434A1, W02005070889A1, W02005089551A1, W02005095335A1, W02006006569A1, W02006024820A1, W02006029828A1, W02006029829A1, W02006037945A1, W02006050803A1, W02006090792A1, W02006123088A2, W02006125687A1, W02006125688A1, W02007003294A1, W02007026834A1, W02007071900A1, W02007077201A1, W02007077247A1, W02007096576A1, W02007119434A1, W02007134984A1, W02008009908A1, W02008029084A1, W02008059948A1, W02008071918A1, W02008074991A1, W02008084073A1, W02008100426A2, W02008102908A1, W02008152072A2, W02008152073A2, W02009000757A1, W02009005297A2, W02009035150A2, W02009063180A1, W02009068170A2, W02009068171A2, W02009086041A1, W02009090401A2, W02009090402A2, W02009115788A1, W02009116558A1, W02009152995A1, W02009158258A1, W02010012649A1, W02010012649A1, W02010026989A1, W02010034153A1, W02010049270A1, W02010049369A1, W02010049405A1, W02010049414A1, W02010063422A1, W02010069802A1, W02010078906A2, W02010078912A1, W02010104217A1, W02010108611A1, W02010112826A3, W02010116122A3, W02010119906A1, W02010130970A1, W02011003776A2, W02011035874A1, W02011065451A1, all of which are incorporated herein by reference.
An agronomic field in need of plant control is treated by application of the composition directly to the surface of the growing plants, such as by a spray. For example, the method is applied to control weeds in a field of crop plants by spraying the field with the composition..
The composition can be provided as a tank mix, a sequential treatment of components (generally the polynucleotide containing composition followed by the herbicide), or a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families through utilization of specific polynucleotides or polynucleotide compositions capable of selectively targeting the specific species or plant family to be controlled.
The composition can be applied at effective use rates according to the time of application to the field, for example, preplant, at planting, post planting, postharvest. DHPS inhibitor herbicides can be applied to a field at rates of 500 to 3000 g ai/ha (active ingredient per hectare) or more.
The polynucleotides of the composition can be applied at rates of 1 to 30 grams per acre depending on the number of trigger molecules needed for the scope of weeds in the field.
Crop plants in which weed control is needed include but are not limited to, i) corn, soybean, cotton, canola, sugar beet, alfalfa, sugarcane, rice, and wheat; ii) vegetable plants including, but not limited to, tomato, sweet pepper, hot pepper, melon, watermelon, cucumber, eggplant, cauliflower, broccoli, lettuce, spinach, onion, peas, carrots, sweet corn, Chinese cabbage, leek, fennel, pumpkin, squash or gourd, radish, Brussels sprouts, tomatillo, garden beans, dry beans, or okra; iii) culinary plants including, but not limited to, basil, parsley, coffee, or tea; or, iv) fruit plants including but not limited to apple, pear, cherry, peach, plum, apricot, banana, plantain, table grape, wine grape, citrus, avocado, mango, or berry;
v) a tree grown for ornamental or commercial use, including, but not limited to, a fruit or nut tree; or, vi) an ornamental plant (e. g., an ornamental flowering plant or shrub or turf grass). The methods and compositions provided herein can also be applied to plants produced by a cutting, cloning, or grafting process (i. e., a plant not grown from a seed) include fruit trees and plants that include, but are not limited to, citrus, apples, avocados, tomatoes, eggplant, cucumber, melons, watermelons, and grapes as well as various ornamental plants.
Pesticidal Mixtures The polynucleotide compositions may also be used as mixtures with various agricultural chemicals and/or insecticides, miticides and fungicides, pesticidal and biopesticidal agents.
Examples include but are not limited to azinphos-methyl, acephate, isoxathion, isofenphos, ethion, etrimfos, oxydemeton-methyl, oxydeprofos, quinalphos, chlorpyrifos, chlorpyrifos-methyl, chlorfenvinphos, cyanophos, dioxabenzofos, dichlorvos, disulfoton, dimethylvinphos, dimethoate, sulprofos, diazinon, thiometon, tetrachlorvinphos, temephos, tebupirimfos, terbufos, naled, vamidothion, pyraclofos, pyridafenthion, pirimiphos-methyl, fenitrothion, fenthion, phenthoate, flupyrazophos, prothiofos, propaphos, profenofos, phoxime, phosalone, phosmet, formothion, phorate, malathion, mecarbam, mesulfenfos, methamidophos, methidathion, parathion, methyl parathion, monocrotophos, trichlorphon, EPN, isazophos, isamidofos, cadusafos, diamidaphos, dichlofenthion, thionazin, fenamiphos, fosthiazate, fosthietan, phosphocarb, DSP, ethoprophos, alanycarb, aldicarb, isoprocarb, ethiofencarb, carbaryl, carbosulfan, xylylcarb, thiodicarb, pirimicarb, fenobucarb, furathiocarb, propoxur, bendiocarb, benfuracarb, methomyl, metolcarb, XMC, carbofuran, aldoxycarb, oxamyl, acrinathrin, allethrin, esfenvalerate, empenthrin, cycloprothrin, cyhalothrin, gamma-cyhalothrin, lambda-cyhalothrin, cyfluthrin, beta-cyfluthrin, cypermethrin, alpha-cypermethrin, zeta-cypermethrin, silafluofen, tetramethrin, tefluthrin, deltamethrin, tralomethrin, bifenthrin, phenothrin, fenvalerate, fenpropathrin, furamethrin, prallethrin, flucythrinate, fluvalinate, flubrocythrinate, permethrin, resmethrin, ethofenprox, cartap, thiocyclam, bensultap, acetamiprid, imidacloprid, clothianidin, dinotefuran, thiacloprid, thiamethoxam, nitenpyram, chlorfluazuron, diflubenzuron, teflubenzuron, triflumuron, novaluron, noviflumuron, bistrifluoron, fluazuron, flucycloxuron, flufenoxuron, hexaflumuron, lufenuron, chromafenozide, tebufenozide, halofenozide, methoxyfenozide, diofenolan, cyromazine, pyriproxyfen, buprofezin, methoprene, hydroprene, kinoprene, triazamate, endosulfan, chlorfenson, chlorobenzilate, dicofol, bromopropylate, acetoprole, fipronil, ethiprole, pyrethrin, rotenone, nicotine sulphate, BT
(Bacillus Thuringiensis) agent, spinosad, abamectin, acequinocyl, amidoflumet, amitraz, etoxazole, chinomethionat, clofentezine, fenbutatin oxide, dienochlor, cyhexatin, spirodiclofen, spiromesifen, tetradifon, tebufenpyrad, binapacryl, bifenazate, pyridaben, pyrimidifen, fenazaquin, fenothiocarb, fenpyroximate, fluacrypyrim, fluazinam, flufenzin, hexythiazox, propargite, benzomate, polynactin complex, milbemectin, lufenuron, mecarbam, methiocarb, mevinphos, halfenprox, azadirachtin, diafenthiuron, indoxacarb, emamectin benzoate, potassium oleate, sodium oleate, chlorfenapyr, tolfenpyrad, pymetrozine, fenoxycarb, hydramethylnon, hydroxy propyl starch, pyridalyl, flufenerim, flubendiamide, flonicamid, metaflumizole, lepimectin, TPIC, albendazole, oxibendazole, oxfendazole, trichlamide, fensulfothion, fenbendazole, levamisole hydrochloride, morantel tartrate, dazomet, metam-sodium, triadimefon, hexaconazole, propiconazole, ipconazole, prochloraz, triflumizole, tebuconazole, epoxiconazole, difenoconazole, flusilazole, triadimenol, cyproconazole, metconazole, fluquinconazole, bitertanol, tetraconazole, triticonazole, flutriafol, penconazole, diniconazole, fenbuconazole, bromuconazole, imibenconazole, simeconazole, myclobutanil, hymexazole, imazalil, furametpyr, thifluzamide, etridiazole, oxpoconazole, oxpoconazole fumarate, pefurazoate, prothioconazole, pyrifenox, fenarimol, nuarimol, bupirimate, mepanipyrim, cyprodinil, pyrimethanil, metalaxyl, mefenoxam, oxadixyl, benalaxyl, thiophanate, thiophanate-methyl, benomyl, carbendazim, fuberidazole, thiabendazole, manzeb, propineb, zineb, metiram, maneb, ziram, thiuram, chlorothalonil, ethaboxam, oxycarboxin, carboxin, flutolanil, silthiofam, mepronil, dimethomorph, fenpropidin, fenpropimorph, spiroxamine, tridemorph, dodemorph, flumorph, azoxystrobin, kresoxim-methyl, metominostrobin, orysastrobin, fluoxastrobin, trifloxystrobin, dimoxystrobin, pyraclostrobin, picoxystrobin, iprodione, procymidone, vinclozolin, chlozolinate, flusulfamide, dazomet, methyl isothiocyanate, chloropicrin, methasulfocarb, hydroxyisoxazole, potassium hydroxyisoxazole, echlomezol, D-D, carbam, basic copper chloride, basic copper sulfate, copper nonylphenolsulfonate, oxine copper, DBEDC, anhydrous copper sulfate, copper sulfate pentahydrate, cupric hydroxide, inorganic sulfur, wettable sulfur, lime sulfur, zinc sulfate, fentin, sodium hydrogen carbonate, potassium hydrogen carbonate, sodium hypochlorite, silver, edifenphos, tolclofos-methyl, fosetyl, iprobenfos, dinocap, pyrazophos, carpropamid, fthalide, tricyclazole, pyroquilon, diclocymet, fenoxanil, kasugamycin, validamycin, polyoxins, blasticiden S, oxytetracycline, mildiomycin, streptomycin, rape seed oil, machine oil, benthiavalicarbisopropyl, iprovalicarb, propamocarb, diethofencarb, fluoroimide, fludioxanil, fenpiclonil, quinoxyfen, oxolinic acid, chlorothalonil, captan, folpet, probenazole, acibenzolar-S-methyl, tiadinil, cyflufenamid, fenhexamid, diflumetorim, metrafenone, picobenzamide, proquinazid, famoxadone, cyazofamid, fenamidone, zoxamide, boscalid, cymoxanil, dithianon, fluazinam, dichlofluanide, triforine, isoprothiolane, ferimzone, diclomezine, tecloftalam, pencycuron, chinomethionat, iminoctadine acetate, iminoctadine albesilate, ambam, polycarbamate, thiadiazine, chloroneb, nickel dimethyldithiocarbamate, guazatine, dodecylguanidine-acetate, quintozene, tolylfluanid, anilazine, nitrothalisopropyl, fenitropan, dimethirimol, benthiazole, harpin protein, flumetover, mandipropamide and penthiopyrad.
Polynucleotides As used herein, the term "DNA", "DNA molecule", "DNA polynucleotide molecule"
refers to a single-stranded DNA (ssDNA) or double-stranded DNA (dsDNA) molecule of genomic or synthetic origin, such as, a polymer of deoxyribonucleotide bases or a DNA
polynucleotide molecule. As used herein, the term "DNA sequence", "DNA
nucleotide sequence" or "DNA polynucleotide sequence" refers to the nucleotide sequence of a DNA
molecule. As used herein, the term "RNA", "RNA molecule", "RNA polynucleotide molecule"
refers to a single-stranded RNA (ssRNA) or double-stranded RNA (dsRNA) molecule of genomic or synthetic origin, such as, a polymer of ribonucleotide bases that comprise single or double stranded regions. Unless otherwise stated, nucleotide sequences in the text of this specification are given, when read from left to right, in the 5' to 3' direction. The nomenclature used herein is that required by Title 37 of the United States Code of Federal Regulations 1.822 and set forth in the tables in WIPO Standard ST.25 (1998), Appendix 2, Tables 1 and 3.
As used herein, "polynucleotide" refers to a DNA or RNA molecule containing multiple nucleotides and generally refers both to "oligonucleotides" (a polynucleotide molecule of typically 50 or fewer nucleotides in length) and polynucleotides of 51 or more nucleotides.
Embodiments include compositions including oligonucleotides having a length of nucleotides (18-mers, 19-mers, 20-mers, 21-mers, 22-mers, 23-mers, 24-mers, or 25-mers), for example, oligonucleotides of Table 3 (SEQ ID NO:907-1175) pr fragments thereof or medium-length polynucleotides having a length of 26 or more nucleotides (polynucleotides of 26, 27, 28, 29, 30, 39, 32, 33, 34, 35, 36, 37, 38, 39, 40, 41, 42, 43, 44, 45, 39, 47, 48, 49, 50, 51, 52, 53, 54, 55, 56, 57, 58, 59, 60, about 65, about 70, about 75, about 80, about 85, about 90, about 95, about 100, about 110, about 120, about 130, about 140, about 150, about 160, about 170, about 180, about 190, about 200, about 210, about 220, about 230, about 240, about 250, about 260, about 270, about 280, about 290, or about 300 nucleotides), for example, polynucleotides of Table 2 (SEQ ID NO: 55-906) or fragments thereof or long polynucleotides having a length greater than about 300 nucleotides (for example, polynucleotides of between about 300 to about 400 nucleotides, between about 400 to about 500 nucleotides, between about 500 to about 600 nucleotides, between about 600 to about 700 nucleotides, between about 700 to about 800 nucleotides, between about 800 to about 900 nucleotides, between about 900 to about 1000 nucleotides, between about 300 to about 500 nucleotides, between about 300 to about 600 nucleotides, between about 300 to about 700 nucleotides, between about 300 to about 800 nucleotides, between about 300 to about 900 nucleotides, or about 1000 nucleotides in length, or even greater than about 1000 nucleotides in length, for example up to the entire length of a target gene including coding or non-coding or both coding and non-coding portions of the target gene), for example, polynucleotides of Table 1 (SEQ ID NO:1-54), wherein the selected polynucleotides or fragments thereof homologous or complementary to SEQ ID
NO:1-54 suppresses, represses or otherwise delay the expression of the target DHPS
gene. A target gene comprises any polynucleotide molecule in a plant cell or fragment thereof for which the modulation of the expression of the target gene is provided by the methods and compositions.
Where a polynucleotide is double-stranded, its length can be similarly described in terms of base pairs. Oligonucleotides and polynucleotides can be made that are essentially identical or essentially complementary to adjacent genetic elements of a gene, for example, spanning the junction region of an intron and exon, the junction region of a promoter and a transcribed region, the junction region of a 5' leader and a coding sequence, the junction of a 3' untranslated region and a coding sequence.
Polynucleotide compositions used in the various embodiments include compositions including oligonucleotides or polynucleotides or a mixture of both, including RNA or DNA or RNA/DNA hybrids or chemically modified oligonucleotides or polynucleotides or a mixture thereof. In some embodiments, the polynucleotide may be a combination of ribonucleotides and deoxyribonucleotides, for example, synthetic polynucleotides consisting mainly of ribonucleotides but with one or more terminal deoxyribonucleotides or synthetic polynucleotides consisting mainly of deoxyribonucleotides but with one or more terminal dideoxyribonucleotides. In some embodiments, the polynucleotide includes non-canonical nucleotides such as inosine, thiouridine, or pseudouridine. In some embodiments, the polynucleotide includes chemically modified nucleotides. Examples of chemically modified oligonucleotides or polynucleotides are well known in the art; see, for example, US Patent Publication 20110171287, US Patent Publication 20110171176, and US Patent Publication 20110152353, US Patent Publication, 20110152339, US Patent Publication 20110160082, herein incorporated by reference. For example, including but not limited to the naturally occurring phosphodiester backbone of an oligonucleotide or polynucleotide can be partially or completely modified with phosphorothioate, phosphorodithioate, or methylphosphonate internucleotide linkage modifications, modified nucleoside bases or modified sugars can be used in oligonucleotide or polynucleotide synthesis, and oligonucleotides or polynucleotides can be labeled with a fluorescent moiety (for example, fluorescein or rhodamine) or other label (for example, biotin).
The polynucleotides can be single- or double-stranded RNA or single- or double-stranded DNA or double-stranded DNA/RNA hybrids or modified analogues thereof, and can be of oligonucleotide lengths or longer. In more specific embodiments, the polynucleotides that provide single-stranded RNA in the plant cell are selected from the group consisting of (a) a single-stranded RNA molecule (ssRNA), (b) a single-stranded RNA molecule that self-hybridizes to form a double-stranded RNA molecule, (c) a double-stranded RNA
molecule (dsRNA), (d) a single-stranded DNA molecule (ssDNA), (e) a single-stranded DNA
molecule that self-hybridizes to form a double-stranded DNA molecule, and (f) a single-stranded DNA
molecule including a modified Pol III gene that is transcribed to an RNA
molecule, (g) a double-stranded DNA molecule (dsDNA), (h) a double-stranded DNA molecule including a modified Pol III gene that is transcribed to an RNA molecule, (i) a double-stranded, hybridized RNA/DNA
molecule, or combinations thereof. In some embodiments these polynucleotides include chemically modified nucleotides or non-canonical nucleotides. In some embodiments, the oligonucleotides may be blunt-ended or may comprise a 3' overhang of from 1-5 nucleotides of at least one or both of the strands. Other configurations of the oligonucleotide are known in the field and are contemplated herein. In embodiments of the method the polynucleotides include double-stranded DNA formed by intramolecular hybridization, double-stranded DNA formed by intermolecular hybridization, double-stranded RNA formed by intramolecular hybridization, or double-stranded RNA formed by intermolecular hybridization. In one embodiment the polynucleotides include single-stranded DNA or single-stranded RNA that self-hybridizes to form a hairpin structure having an at least partially double-stranded structure including at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. Not intending to be bound by any mechanism, it is believed that such polynucleotides are or will produce single-stranded RNA with at least one segment that will hybridize to RNA transcribed from the gene targeted for suppression. In certain other embodiments the polynucleotides further includes a promoter, generally a promoter functional in a plant, for example, a pol II promoter, a pol III promoter, a pol IV promoter, or a pol V promoter.
The term "gene" refers to components that comprise chromosomal DNA, plasmid DNA, cDNA, intron and exon DNA, artificial DNA polynucleotide, or other DNA that encodes a peptide, polypeptide, protein, or RNA transcript molecule, and the genetic elements flanking the coding sequence that are involved in the regulation of expression, such as, promoter regions, 5' leader regions, 3' untranslated region that may exist as native genes or transgenes in a plant genome. The gene or a fragment thereof is isolated and subjected to polynucleotide sequencing methods that determines the order of the nucleotides that comprise the gene.
Any of the components of the gene are potential targets for a trigger oligonucleotide and polynucleotides.

The trigger polynucleotide molecules are designed to modulate expression by inducing regulation or suppression of an endogenous DHPS gene in a plant and are designed to have a nucleotide sequence essentially identical or essentially complementary to the nucleotide sequence of an endogenous DHPS gene of a plant or to the sequence of RNA
transcribed from an endogenous DHPS gene of a plant, including a transgene in a plant that provides for a herbicide resistant DHPS enzyme, which can be coding sequence or non-coding sequence.
Effective molecules that modulate expression are referred to as "a trigger molecule, or trigger polynucleotides". By "essentially identical" or "essentially complementary" is meant that the trigger polynucleotides (or at least one strand of a double-stranded polynucleotide or portion thereof, or a portion of a single strand polynucleotide) are designed to hybridize to the endogenous gene noncoding sequence or to RNA transcribed (known as messenger RNA or an RNA transcript) from the endogenous gene to effect regulation or suppression of expression of the endogenous gene. Trigger molecules are identified by "tiling" the gene targets with partially overlapping probes or non-overlapping probes of antisense or sense polynucleotides that are essentially identical or essentially complementary to the nucleotide sequence of an endogenous gene. Multiple target sequences can be aligned and sequence regions with homology in common are identified as potential trigger molecules for the multiple targets.
Multiple trigger molecules of various lengths, for example 18-25 nucleotides, 26-50 nucleotides, 51-100 nucleotides, 101-200 nucleotides, 201-300 nucleotides or more can be pooled into a few treatments in order to investigate polynucleotide molecules that cover a portion of a gene sequence (for example, a portion of a coding versus a portion of a noncoding region, or a 5' versus a 3' portion of a gene) or an entire gene sequence including coding and noncoding regions of a target gene. Polynucleotide molecules of the pooled trigger molecules can be divided into smaller pools or single molecules inorder to identify trigger molecules that provide the desired effect.
The target gene RNA and DNA polynucleotide molecules (Table 1, SEQ ID NO:1-54) are sequenced by any number of available methods and equipment. Some of the sequencing technologies are available commercially, such as the sequencing-by-hybridization platform from Affymetrix Inc. (Sunnyvale, Calif.) and the sequencing-by-synthesis platforms from 454 Life Sciences (Bradford, Conn.), Illumina/Solexa (Hayward, Calif.) and Helicos Biosciences (Cambridge, Mass.), and the sequencing-by-ligation platform from Applied Biosystems (Foster City, Calif.), as described below. In addition to the single molecule sequencing performed using sequencing-by-synthesis of Helicos Biosciences, other single molecule sequencing technologies are encompassed by the method and include the SMRTTm technology of Pacific Biosciences, the Ion TorrentTm. technology, and nanopore sequencing being developed for example, by Oxford Nanopore Technologies. A DHPS target gene comprising DNA or RNA can be isolated using primers or probes essentially complementary or essentially homologous to SEQ
ID NO:1-54 or a fragment thereof. A polymerase chain reaction (PCR) gene fragment can be produced using primers essentially complementary or essentially homologous to SEQ ID NO:1-54 or a fragment thereof.that is useful to isolate a DHPS gene from a plant genome.
Embodiments of functional single-stranded polynucleotides functional have sequence complementarity that need not be 100 percent, but is at least sufficient to permit hybridization to RNA transcribed from the target gene or DNA of the target gene to form a duplex to permit a gene silencing mechanism. Thus, in embodiments, a polynucleotide fragment is designed to be essentially identical to, or essentially complementary to, a sequence of 18 or more contiguous nucleotides in either the target DHPS gene sequence or messenger RNA
transcribed from the target gene. By "essentially identical" is meant having 100 percent sequence identity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence identity when compared to the sequence of 18 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene; by "essentially complementary" is meant having 100 percent sequence complementarity or at least about 83, 84, 85, 86, 87, 88, 89, 90, 91, 92, 93, 94, 95, 96, 97, 98, or 99 percent sequence complementarity when compared to the sequence of 18 or more contiguous nucleotides in either the target gene or RNA transcribed from the target gene.
In some embodiments, polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to one allele or one family member of a given target gene (coding or non-coding sequence of a gene); in other embodiments the polynucleotide molecules are designed to have 100 percent sequence identity with or complementarity to multiple alleles or family members of a given target gene. The trigger polynucleotide sequences in the sequence listing SEQ ID NO: 1-1222 or table 1, 2 or 3 maybe complementary or homologous to a portion of the DHPS target gene sequence.
In certain embodiments, the polynucleotides used in the compositions that are essentially identical or essentially complementary to the target gene or transcript will comprise the predominant nucleic acid in the composition. Thus in certain embodiments, the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript will comprise at least about 50%, 75%, 95%, 98% or 100% of the nucleic acids provided in the composition by either mass or molar concentration. However, in certain embodiments, the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript can comprise at least about 1% to about 50%, about 10% to about 50%, about 20% to about 50%, or about 30% to about 50% of the nucleic acids provided in the composition by either mass or molar concentration. Also provided are compositions where the polynucleotides that are essentially identical or essentially complementary to the target gene or transcript can comprise at least about 1% to 100%, about 10% to 100%, about 20% to about 100%, about 30%
to about 50%, or about 50% to a 100% of the nucleic acids provided in the composition by either mass or molar concentration.
"Identity" refers to the degree of similarity between two polynucleic acid or protein sequences. An alignment of the two sequences is performed by a suitable computer program. A
widely used and accepted computer program for performing sequence alignments is CLUSTALW v1.6 (Thompson, et al. Nucl. Acids Res., 22: 3973-3980, 1994). The number of matching bases or amino acids is divided by the total number of bases or amino acids, and multiplied by 100 to obtain a percent identity. For example, if two 580 base pair sequences had 145 matched bases, they would be 25 percent identical. If the two compared sequences are of different lengths, the number of matches is divided by the shorter of the two lengths. For example, if there are 100 matched amino acids between a 200 and a 400 amino acid protein, they are 50 percent identical with respect to the shorter sequence. If the shorter sequence is less than 150 bases or 50 amino acids in length, the number of matches are divided by 150 (for nucleic acid bases) or 50 (for amino acids), and multiplied by 100 to obtain a percent identity.
Trigger molecules for specific gene family members can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the least homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA
or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in inducing the herbicidal phenotype. The effective segments are further subdivided into 50-60 polynucleotide fragments, prioritized by least homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by least homology, and again evaluated for induction of the yield/quality phenotype. Once relative effectiveness is determined, the fragments are utilized singly, or again evaluated in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the yield/quality phenotype.
Trigger molecules for broad activity can be identified from coding and/or non-coding sequences of gene families of a plant or multiple plants, by aligning and selecting 200-300 polynucleotide fragments from the most homologous regions amongst the aligned sequences and evaluated using topically applied polynucleotides (as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA) to determine their relative effectiveness in inducing the yield/quality phenotype. The effective segments are subdivided into 50-60 polynucleotide fragments, prioritized by most homology, and reevaluated using topically applied polynucleotides. The effective 50-60 polynucleotide fragments are subdivided into 19-30 polynucleotide fragments, prioritized by most homology, and again evaluated for induction of the yield/quality phenotype.
Once relative effectiveness is determined, the fragments may be utilized singly, or in combination with one or more other fragments to determine the trigger composition or mixture of trigger polynucleotides for providing the yield/quality phenotype.
Methods of making polynucleotides are well known in the art. Chemical synthesis, in vivo synthesis and in vitro synthesis methods and compositions are known in the art and include various viral elements, microbial cells, modified polymerases, and modified nucleotides.
Commercial preparation of oligonucleotides often provides two deoxyribonucleotides on the 3' end of the sense strand. Long polynucleotide molecules can be synthesized from commercially available kits, for example, kits from Applied Biosystems/Ambion (Austin, TX) have DNA
ligated on the 5' end in a microbial expression cassette that includes a bacterial T7 polymerase promoter that makes RNA strands that can be assembled into a dsRNA and kits provided by various manufacturers that include T7 RiboMax Express (Promega, Madison, WI), AmpliScribe T7-Flash (Epicentre, Madison, WI), and TranscriptAid T7 High Yield (Fermentas, Glen Burnie, MD). dsRNA molecules can be produced from microbial expression cassettes in bacterial cells (Ongvarrasopone et al. ScienceAsia 33:35-39; Yin, Appl. Microbiol. Biotechnol 84:323-333, 2009; Liu et al., BMC Biotechnology 10:85, 2010) that have regulated or deficient RNase III

enzyme activity or the use of various viral vectors to produce sufficient quantities of dsRNA.
DHPS gene fragments are inserted into the microbial expression cassettes in a position in which the fragments are express to produce ssRNA or dsRNA useful in the methods described herein to regulate expression on a target DHPS gene. Long polynucleotide molecules can also be assembled from multiple RNA or DNA fragments. In some embodiments design parameters such as Reynolds score (Reynolds et al. Nature Biotechnology 22, 326 - 330 (2004),Tuschl rules (Pei and Tuschl, Nature Methods 3(9): 670-676, 2006), i-score (Nucleic Acids Res 35: e123, 2007), i-Score Designer tool and associated algorithms (Nucleic Acids Res 32:
936-948, 2004.
Biochem Biophys Res Commun 316: 1050-1058, 2004, Nucleic Acids Res 32: 893-901, 2004, Cell Cycle 3: 790-5, 2004, Nat Biotechnol 23: 995-1001, 2005, Nucleic Acids Res 35: e27, 2007, BMC Bioinformatics 7: 520, 2006, Nucleic Acids Res 35: e123, 2007, Nat Biotechnol 22:
326-330, 2004) are known in the art and may be used in selecting polynucleotide sequences effective in gene silencing. In some embodiments random design or empirical selection of polynucleotide sequences is used in selecting polynucleotide sequences effective in gene silencing. In some embodiments the sequence of a polynucleotide is screened against the genomic DNA of the intended plant to minimize unintentional silencing of other genes.
The polynucleotide compositions are useful in compositions, such as solutions of polynucleotide molecules, at low concentrations, alone or in combination with other components either in the same solution or in separately applied solutions that provide a permeability-enhancing agent. While there is no upper limit on the concentrations and dosages of polynucleotide molecules that can useful in the methods, lower effective concentrations and dosages will generally be sought for efficiency. The concentrations can be adjusted in consideration of the volume of spray or treatment applied to plant leaves or other plant part surfaces, such as flower petals, stems, tubers, fruit, anthers, pollen, or seed. In one embodiment, a useful treatment for herbaceous plants using 25-mer oligonucleotide molecules is about 1 nanomole (nmol) of oligonucleotide molecules per plant, for example, from about 0.05 to 1 nmol per plant. Other embodiments for herbaceous plants include useful ranges of about 0.05 to about 100 nmol , or about 0.1 to about 20 nmol, or about 1 nmol to about 10 nmol of polynucleotides per plant. Very large plants, trees, or vines may require correspondingly larger amounts of polynucleotides. When using long dsRNA molecules that can be processed into multiple oligonucleotides, lower concentrations can be used. To illustrate embodiments, the factor 1X, when applied to oligonucleotide molecules is arbitrarily used to denote a treatment of 0.8 nmol of polynucleotide molecule per plant; 10X, 8 nmol of polynucleotide molecule per plant; and 100X, 80 nmol of polynucleotide molecule per plant.
The trigger polynucleotide and oligonucleotide molecule compositions are useful in compositions, such as liquids that comprise these polynucleotide molecules, alone or in combination with other components, for example one or more herbicide molecules, either in the same liquid or in separately applied liquids that also provide a transfer agent. As used herein, a transfer agent is an agent that, when combined with a polynucleotide in a composition that is topically applied to a target plant surface, enables the polynucleotide to enter a plant cell. In certain embodiments, a transfer agent is an agent that conditions the surface of plant tissue, e. g., leaves, stems, roots, flowers, or fruits, to permeation by the polynucleotide molecules into plant cells. The transfer of polynucleotides into plant cells can be facilitated by the prior or contemporaneous application of a polynucleotide-transferring agent to the plant tissue. In some embodiments the transferring agent is applied subsequent to the application of the polynucleotide composition. The polynucleotide transfer agent enables a pathway for polynucleotides through cuticle wax barriers, stomata and/or cell wall or membrane barriers into plant cells. Suitable transfer agents to facilitate transfer of the polynucleotide into a plant cell include agents that increase permeability of the exterior of the plant or that increase permeability of plant cells to oligonucleotides or polynucleotides. Such agents to facilitate transfer of the composition into a plant cell include a chemical agent, or a physical agent, or combinations thereof. Chemical agents for conditioning or transfer include (a) surfactants, (b) an organic solvent or an aqueous solution or aqueous mixtures of organic solvents, (c) oxidizing agents, (d) acids, (e) bases, (f) oils, (g) enzymes, or combinations thereof. Embodiments of the method can optionally include an incubation step, a neutralization step (e.g., to neutralize an acid, base, or oxidizing agent, or to inactivate an enzyme), a rinsing step, or combinations thereof. Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include emulsions, reverse emulsions, liposomes, and other micellar-like compositions.
Embodiments of agents or treatments for conditioning of a plant to permeation by polynucleotides include counter-ions or other molecules that are known to associate with nucleic acid molecules, e.
g., inorganic ammonium ions, alkyl ammonium ions, lithium ions, polyamines such as spermine, spermidine, or putrescine, and other cations. Organic solvents useful in conditioning a plant to permeation by polynucleotides include DMSO, DMF, pyridine, N-pyrrolidine, hexamethylphosphoramide, acetonitrile, dioxane, polypropylene glycol, other solvents miscible with water or that will dissolve phosphonucleotides in non-aqueous systems (such as is used in synthetic reactions).
Naturally derived or synthetic oils with or without surfactants or emulsifiers can be used, e. g., plant-sourced oils, crop oils (such as those listed in the 9th Compendium of Herbicide Adjuvants, publicly available on the worldwide web (internet) at herbicide.adjuvants.com can be used, e. g., paraffinic oils, polyol fatty acid esters, or oils with short-chain molecules modified with amides or polyamines such as polyethyleneimine or N-pyrrolidine. Transfer agents include, but are not limited to, organosilicone preparations.
Ligands can be tethered to a polynucleotide, for example a dsRNA, ssRNA, dsDNA
or ssDNA. Ligands in general can include modifiers, e.g., for enhancing uptake;
diagnostic compounds or reporter groups e.g., for monitoring distribution; cross-linking agents; nuclease-resistance conferring moieties; and natural or unusual nucleobases. General examples include lipophiles, lipids (e.g., cholesterol, a bile acid, or a fatty acid (e.g., lithocholic-oleyl, lauroyl, docosnyl, stearoyl, palmitoyl, myristoyl oleoyl, linoleoyl), steroids (e.g., uvaol, hecigenin, diosgenin), terpenes (e.g., triterpenes, e.g., sarsasapogenin, Friedelin, epifriedelanol derivatized lithocholic acid), vitamins (e.g., folic acid, vitamin A, biotin, pyridoxal), carbohydrates, proteins, protein binding agents, integrin targeting molecules, polycationics, peptides, polyamines, and peptide mimics. The ligand may also be a recombinant or synthetic molecule, such as a synthetic polymer, e.g., polyethylene glycol (PEG), PEG-40K, PEG-20K and PEG-5K. Other examples of ligands include lipophilic molecules, e.g, cholesterol, cholic acid, adamantane acetic acid, 1-pyrene butyric acid, dihydrotestosterone, glycerol (e.g., esters and ethers thereof, e.g., C10, C11, C12, C13, C14, C15, C16, C17, C18, C19, or C20 alkyl; e.g., lauroyl, docosnyl, stearoyl, oleoyl, linoleoyl 1,3-bis-0(hexadecyl)glycerol, 1,3-bis-0(octaadecyl)glycerol), geranyloxyhexyl group, hexadecylglycerol, borneol, menthol, 1,3-propanediol, heptadecyl group, palmitic acid, myristic acid, 03-(oleoyl)lithocholic acid, 03-(oleoyl)cholenic acid, dodecanoyl, lithocholyl, 5.beta.-cholanyl, N,N-distearyl-lithocholamide, 1,2-di-O-stearoylglyceride, dimethoxytrityl, or phenoxazine) and PEG (e.g., PEG-5K, PEG-20K, PEG-40K). Preferred lipophilic moieties include lipid, cholesterols, oleyl, retinyl, or cholesteryl residues.

Conjugating a ligand to a dsRNA can enhance its cellular absorption, lipophilic compounds that have been conjugated to oligonucleotides include 1-pyrene butyric acid, 1,3-bis-0-(hexadecyl)glycerol, and menthol. One example of a ligand for receptor-mediated endocytosis is folic acid. Folic acid enters the cell by folate-receptor-radiated endocytosis. dsRNA
compounds bearing folic acid would be efficiently transported into the cell via the folate-receptor-mediated endocytosis. Other ligands that have been conjugated to oligonucleotides include polyethylene glycols, carbohydrate clusters, cross-linking agents, porphyrin conjugates, delivery peptides and lipids such as cholesterol. In certain instances, conjugation of a cationic ligand to oligonucleotides results in improved resistance to nucleases.
Representative examples of cationic ligands are propylammonium and dimethylpropylammonium.
Interestingly, antisense oligonucleotides were reported to retain their high binding affinity to mRNA
when the cationic ligand was dispersed, throughout the oligonucleotide. See M. Manoharan Antisense & Nucleic Acid Drug Development 2002, 12, 103 and references therein.
A biologic delivery can be accomplished by a variety of methods including, without limitation, (1) loading liposomes with a dsRNA acid molecule provided herein and (2) complexing a dsRNA molecule with lipids or liposomes to form nucleic acid-lipid or nucleic acid-liposome complexes. The liposome can be composed of cationic and neutral lipids commonly used to transfect cells in vitro. Cationic lipids can complex (e.g., charge-associate) with negatively charged, nucleic acids to form liposomes. Examples of cationic liposomes include, without limitation, lipofectin, lipofectamine, lipofectace, and DOTAP. Procedures for forming liposomes are well known in the art. Liposome compositions can be formed, for example, from phosphatidylcholine, dimyristoyl phosphatidylcholine, dipalmitoyl phosphatidylcholine, dimyristoyl phosphatidyl glycerol, dioleoyl phosphatidylethanolamine or liposomes comprising dihydrosphingomyelin (DHSM) Numerous lipophilic agents are commercially available, including Lipofectin® (Invitrogen/Life Technologies, Carlsbad, Calif.) and EffecteneTM (Qiagen, Valencia, Calif.), In addition, systemic delivery methods can be optimized using commercially available cationic lipids such as DDAB or DOTAP, each of which can be mixed with a neutral lipid such as DOPE or cholesterol. In some eases, liposomes such as those described by Templeton et al. Nature Biotechnology, 15:647-652 (1997) can be used. In other embodiments, polycations such as polyethyleneimine can be used to achieve delivery in vivo and ex vivo (Boletta et al., J. Am Soc. Nephrol. 7:1728, 1996).
Additional information regarding the use of liposomes to deliver nucleic acids can be found in U.S.
Pat. No. 6,271,359, PCT Publication WO 96/40964 and Morrissey, D. et al., 2005. Nature Biotechnol.
23(8):1002-7.
In certain embodiments, an organosilicone preparation that is commercially available as Silwet L-77 surfactant having CAS Number 27306-78-1 and EPA Number:
CAL.REG.NO.
5905-50073-AA, and currently available from Momentive Performance Materials, Albany, New York can be used to prepare a polynucleotide composition. In certain embodiments where a Silwet L-77 organosilicone preparation is used as a pre-spray treatment of plant leaves or other plant surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e. g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation comprising Silwet L-77 in the range of about 0.015 to about 2 percent by weight (wt percent) (e. g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.
In certain embodiments, any of the commercially available organosilicone preparations provided such as the following Breakthru S 321, Breakthru S 200 Cat# 67674-67-3, Breakthru OE 441 Cat#68937-55-3, Breakthru S 278 Cat #27306-78-1, Breakthru S 243, Breakthru S 233 Cat#134180-76-0, available from manufacturer Evonik Goldschmidt (Germany), Silwet HS
429, Silwet HS 312, Silwet HS 508, Silwet HS 604 (Momentive Performance Materials, Albany, New York) can be used as transfer agents in a polynucleotide composition. In certain embodiments where an organosilicone preparation is used as a pre-spray treatment of plant leaves or other surfaces, freshly made concentrations in the range of about 0.015 to about 2 percent by weight (wt percent) (e. g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) are efficacious in preparing a leaf or other plant surface for transfer of polynucleotide molecules into plant cells from a topical application on the surface. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and an organosilicone preparation in the range of about 0.015 to about 2 percent by weight (wt percent) (e. g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.
Organosilicone preparations used in the methods and compositions provided herein can comprise one or more effective organosilicone compounds. As used herein, the phrase "effective organosilicone compound" is used to describe any organosilicone compound that is found in an organosilicone preparation that enables a polynucleotide to enter a plant cell. In certain embodiments, an effective organosilicone compound can enable a polynucleotide to enter a plant cell in a manner permitting a polynucleotide mediated suppression of a target gene expression in the plant cell. In general, effective organosilicone compounds include, but are not limited to, compounds that can comprise: i) a trisiloxane head group that is covalently linked to, ii) an alkyl linker including, but not limited to, an n-propyl linker, that is covalently linked to, iii) a poly glycol chain, that is covalently linked to, iv) a terminal group. Trisiloxane head groups of such effective organosilicone compounds include, but are not limited to, heptamethyltrisiloxane.
Alkyl linkers can include, but are not limited to, an n-propyl linker. Poly glycol chains include, but are not limited to, polyethylene glycol or polypropylene glycol. Poly glycol chains can comprise a mixture that provides an average chain length "n" of about "7.5".
In certain embodiments, the average chain length "n" can vary from about 5 to about 14.
Terminal groups can include, but are not limited to, alkyl groups such as a methyl group.
Effective organosilicone compounds are believed to include, but are not limited to, trisiloxane ethoxylate surfactants or polyalkylene oxide modified heptamethyl trisiloxane.
Si ,o si (Compound I: polyalkyleneoxide heptamethyltrisiloxane, average n=7.5).

In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a trisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone preparation that comprises an organosilicone compound comprising a heptamethyltrisiloxane head group is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments, an organosilicone composition that comprises Compound I is used in the methods and compositions provided herein. In certain embodiments of the methods and compositions provided herein, a composition that comprises a polynucleotide molecule and one or more effective organosilicone compound in the range of about 0.015 to about 2 percent by weight (wt percent) (e. g., about 0.01, 0.015, 0.02, 0.025, 0.03, 0.035, 0.04, 0.045, 0.05, 0.055, 0.06, 0.065, 0.07, 0.075, 0.08, 0.085, 0.09, 0.095, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8, 1.9, 2.0, 2.1, 2.2, 2.3, 2.5 wt percent) is used or provided.
Compositions include but are not limited components that are one or more polynucleotides essentially identical to, or essentially complementary to a DHPS gene sequence (promoter, intron, exon, 5' untranslated region, 3' untranslated region), a transfer agent that provides for the polynucleotide to enter a plant cell, a herbicide that complements the action of the polynucleotide, one or more additional herbicides that further enhance the herbicide activity of the composition or provide an additional mode of action different from the complementing herbicide, various salts and stabilizing agents that enhance the utility of the composition as an admixture of the components of the composition.
The methods include one or more applications of a polynucleotide composition and one or more applications of a permeability-enhancing agent for conditioning of a plant to permeation by polynucleotides. When the agent for conditioning to permeation is an organosilicone composition or compound contained therein, embodiments of the polynucleotide molecules are double-stranded RNA oligonucleotides, single-stranded RNA oligonucleotides, double-stranded RNA polynucleotides, single-stranded RNA polynucleotides, double-stranded DNA
oligonucleotides, single-stranded DNA oligonucleotides, double-stranded DNA
polynucleotides, single-stranded DNA polynucleotides, chemically modified RNA or DNA
oligonucleotides or polynucleotides or mixtures thereof.

Compositions and methods are useful for modulating the expression of an endogenous DHPS gene or transgenic DHPS gene (for example US Patent No. 6,121,513) in a plant cell. In various embodiments, a DHPS gene includes coding (protein-coding or translatable) sequence, non-coding (non-translatable) sequence, or both coding and non-coding sequence. Compositions can include polynucleotides and oligonucleotides designed to target multiple genes, or multiple segments of one or more genes. The target gene can include multiple consecutive segments of a target gene, multiple non-consecutive segments of a target gene, multiple alleles of a target gene, or multiple target genes from one or more species.
An aspect provides a method for modulating expression of a DHPS gene in a plant including (a) conditioning of a plant to permeation by polynucleotides and (b) treatment of the plant with the polynucleotide molecules, wherein the polynucleotide molecules include at least one segment of 18 or more contiguous nucleotides cloned from or otherwise identified from the target DHPS gene in either anti-sense or sense orientation, whereby the polynucleotide molecules permeate the interior of the plant and induce modulation of the target gene. The conditioning and polynucleotide application can be performed separately or in a single step.
When the conditioning and polynucleotide application are performed in separate steps, the conditioning can precede or can follow the polynucleotide application within minutes, hours, or days. In some embodiments more than one conditioning step or more than one polynucleotide molecule application can be performed on the same plant. In embodiments of the method, the segment can be cloned or identified from (a) coding (protein-encoding), (b) non-coding (promoter and other gene related molecules), or (c) both coding and non-coding parts of the target gene. Non-coding parts include DNA, such as promoter regions or the RNA
transcribed by the DNA that provide RNA regulatory molecules, including but not limited to: introns, 5' or 3' untranslated regions, and microRNAs (miRNA), trans-acting siRNAs, natural anti-sense siRNAs, and other small RNAs with regulatory function or RNAs having structural or enzymatic function including but not limited to: ribozymes, ribosomal RNAs, t-RNAs, aptamers, and riboswitches.
All publications, patents and patent applications are herein incorporated by reference to the same extent as if each individual publication or patent application was specifically and individually indicated to be incorporated by reference.

The following examples are included to demonstrate examples of certain preferred embodiments. It should be appreciated by those of skill in the art that the techniques disclosed in the examples that follow represent approaches the inventors have found function well in the practice, and thus can be considered to constitute examples of preferred modes for its practice.
However, those of skill in the art should, in light of the present disclosure, appreciate that many changes can be made in the specific embodiments that are disclosed and still obtain a like or similar result without departing from the spirit and scope.
EXAMPLES
Example 1. Polynucleotides related to the DHPS gene sequences.
The target DHPS polynucleotide molecule naturally occurs in the genome of plants that include but are not limited to Amaranthus palmeri, Amaranthus rudis, Amaranthus hybridus, Amaranthus lividus, Amaranthus viridis, Ambrosia trifida, Conyza candensis, Digitaria sanguinalis, Euphorbia heterophylla, Kochia scoparia, Lolium multiflorum, and include molecules related to the expression of a polypeptide identified as a DHPS, that include genomic DNA (gDNA) and coding cDNAs comprising coding and noncoding regions of a DHPS
gene and fragments thereof as shown in Table 1.
Polynucleotide molecules were extracted from these plant species by methods standard in the field, for example, total RNA was extracted using Trizol Reagent (Invitrogen Corp, Carlsbad, CA Cat. No. 15596-018), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted RNA. Briefly, start with 1 gram of ground plant tissue for extraction. Prealiquot 10 milliliters (mL) Trizol reagent to 15 mL conical tubes, add ground powder to tubes and shake to homogenize. Incubate the homogenized samples for 5 minutes (min) at room temperature (RT) and then add 3 mL of chloroform. Shakes tubes vigorously by hand for 15-30 seconds (sec) and incubate at RT for 3 min. Centrifuge the tubes at 7,000 revolutions per minute (rpm) for 10 min at 4 degrees C. Transfer the aqueous phase to a new 1.5 mL tube and add 1 volume of cold isopropanol. Incubate the samples for 20-30 min at RT and centrifuge at 10,000 rpm for 10 min at 4 degrees C. Wash pellet with Sigma-grade 80 percent ethanol. Remove the supernatant and briefly air-dry the pellet. Dissolve the RNA pellet in approximately 200 microliters of DEPC

treated water. Heat briefly at 65C to dissolve pellet and vortex or pipet to resuspend RNA pellet and then adjust RNA concentration to 1-2 microgram/microliter.
DNA was extracted using EZNA SP Plant DNA Mini kit (Omega Biotek, Norcross GA, Cat#D5511) and Lysing Matrix E tubes (Q-Biogen, Cat#6914), following the manufacturer's protocol or modifications thereof by those skilled in the art of polynucleotide extraction that may enhance recover or purity of the extracted DNA. Briefly, aliquot ground tissue to a Lysing Matrix E tube on dry ice, add 8001,t1 Buffer SP1 to each sample, homogenize in a bead beater for 35-45sec, incubate on ice for 45-60 sec, centrifuge at >14000 rpm for lmin at RT, add 10 microliter RNase A to the lysate, incubate at 65 C for 10min, centrifuge for lmin at RT, add 2801,t1 Buffer SP2 and vortex to mix, incubate the samples on ice for 5min, centrifuge at >10,000g for 10 min at RT, transfer the supernatant to a homogenizer column in a 2m1 collection tube, centrifuge at 10,000g for 2 min at RT, transfer the cleared lysate into a 1.5ml microfuge tube, add 1.5 volumes Buffer 5P3 to the cleared lysate, vortex immediately to obtain a homogeneous mixture, transfer up to 6501,t1 supernatant to the Hi-Bind column, centrifuge at 10,000g for lmin, repeat, apply 1001,t1 65 C Elution Buffer to the column, centrifuge at 10,000g for 5min at RT.
Next-generation DNA sequencers, such as the 454-FLX (Roche, Branford, CT), the SOLiD (Applied Biosystems, ), and the Genome Analyzer (HiSeq2000, Illumina, San Diego, CA) were used to provide polynucleotide sequence from the DNA and RNA
extracted from the plant tissues. Raw sequence data was assembled into contigs. The contig sequence was used to identify trigger molecules that can be applied to a plant to enable regulation of the gene expression.
The target DNA sequence isolated from genomic (gDNA) and coding DNA (cDNA) from the various weedy plant species for the DHPS gene and the assembled contigs as set forth in SEQ ID NOs 1-54 and Table 1 (See supplemental attachment 40_21(58641)Btablel.doxc) Example 2. Polynucleotides related to the trigger molecules The gene sequences and fragments of Table 1 were divided into 200 polynucleotide (200-mer) lengths with 25 polynucleotide overlapping regions and are shown in Table 2, SEQ ID

NO:55-906. These polynucleotides are tested to select the most efficacious trigger regions across the length of any target sequence. The trigger polynucleotides are constructed as sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA hybrids and combined with an organosilicone based transfer agent to provide a polynucleotide preparation.
The polynucleotides are combined into sets of two to three polynucleotides per set, using 4-8 nmol of each polynucleotide. Each polynucleotide set is prepared with the transfer agent and applied to a plant or a field of plants in combination with a DHPS inhibitor containing herbicide, or followed by a DHPS inhibitor treatment one to three days after the polynucleotide application, to determine the effect on the plant's susceptibility to an DHPS inhibitor. The effect is measured as stunting the growth and/or killing of the plant and is measured 8-14 days after treatment with the polynucleotide set and DHPS inhibitor. The most efficacious sets are identified and the individual polynucleotides are tested in the same methods as the sets are and the most efficacious single 200-mer identified. The 200-mer sequence is divided into smaller sequences of 50-70-mer regions with 10-15 polynucleotide overlapping regions and the polynucleotides tested individually. The most efficacious 50-70-mer is further divided into smaller sequences of 25-mer regions with a 12 to 13 polynucleotide overlapping region and tested for efficacy in combination with DHPS inhibitor treatment. By this method it is possible to identify an oligonucleotide or several oligonucleotides that are the most efficacious trigger molecule to effect plant sensitivity to a DHPS inhibitor or modulation of an DHPS gene expression. The modulation of DHPS gene expression is determined by the detection of DHPS
siRNA moleclules specific to a DHPS gene or by an observation of a reduction in the amount of DHPS RNA
transcript produced relative to an untreated plant or by merely observing the anticipated phenotype of the application of the trigger with the DHPS inhibitor containing herbicide.
Detection of siRNA can be accomplished, for example, using kits such as mirVana (Ambion, Austin TX) and mirPremier (Sigma-Aldrich, St Louis, MO).
The target DNA sequence isolated from genomic (gDNA) and coding DNA (cDNA) from the various weedy plant species for the DHPS gene and the assembled contigs as set forth in SEQ ID NOs 1-54 were divided into polynucleotide fragments as shown in Table 2 (See supplemental attachment 40_21(58641)Btable2.doxc) and as set forth in SEQ ID
NOs 55-906.
The gene sequences and fragments of Table 1 were compared and 21-mers of contiguous polynucleotides were identified that had homology across the various DHPS gene sequences.

The purpose is to identify trigger molecules that are useful as herbicidal molecules or in combination with a DHPS inhibitor herbicide across a broad range of weed species. The sequences shown in Table 3 represent the 21-mers that were present in the DHPS
gene of at least eight of the weed species of Table 1. It is contemplated that additional 21-mers can be selected from the sequences of Table 1 that are specific for a single weed species or a few weeds species within a genus or trigger molecules that are at least 18 contiguous nucleotides, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an DHPS gene sequence selected from the group consisting of SEQ ID NO:1-54 or fragment thereof.
By this method it is possible to identify an oligonucleotide or several oligonucleotides that are the most efficacious trigger molecule to effect plant sensitivity to DHPS inhibitor or modulation of DHPS gene expression. The modulation of DHPS gene expression is determined by the detection of DHPS siRNA moleclules specific to DHPS gene or by an observation of a reduction in the amount of DHPS RNA transcript produced relative to an untreated plant.
Detection of siRNA can be accomplished, for example, using kits such as mirVana (Ambion, Austin TX) and mirPremier (Sigma-Aldrich, St Louis, MO).
The target DNA sequence isolated from genomic (gDNA) and coding DNA (cDNA) from the various weedy plant species for the DHPS gene and the assembled contigs as set forth in SEQ ID NOs 1-54 were divided into fragments as shown in Table 3 (See supplemental attachment 40_21(58641)Btable3.doxc) and as set forth in SEQ ID NOs 907-1175.
Example 3. Methods related to treating plants or plant parts with a topical mixture of the trigger molecules.
Glyphosate-sensitive Palmer amaranth (A. palmeri R-22) plants were grown in the greenhouse (30 / 20 C day/night T; 14 hour photoperiod) in 4 inch square pots containing Sun Gro Redi-Earth and 3.5 kg/cubic meter Osmocote 14-14-14 fertilizer. Palmer amaranth plants at 5 to 10 cm in height were pre-treated with a mixture of short (25mer) dsDNA trigger oligonucleotides targeting DHPS coding or noncoding regions using 4 nmol of each oligonucleotids and pooling 5-6 oligonucleotides in each treatment, formulated in 20 millimolar sodium phosphate buffer (pH 6.8) containing 2% ammonium sulfate and 1% Silwet L-77. Plants were treated manually by pipetting 10 [t.L of polynucleotide solution on four fully expanded mature leaves, for a total of 40 microliters of solution per plant. There were eight treatment pools, DHPS1-6, DHPS7-12, DHPS13-18, DHPS19-24, DHPS25-30, DHPS31-36, DHPS37-42, and DHPS43-47 (Table 4). Twenty-four hours later, the plants were treated with pendimethalin (Prowl , BASF, this herbicide functions as a mitosis inhibitor similar to asulam a known DHPS
inhibitor, other dinitroaniline herbicides that function to inhibit mitosis include but are not limited to Sonalan (ethalfluralin), Squadronl , Steell , Treflan /Trilin /Tri-4) at a rate of 121b/ac. Four replications of each treatment was conducted. Plant height was determined just before polynucleotide treatment and at intervals upto fourteen days after herbicide treatments to determine effect of the oligonucleotide and herbicide treatments. The results were expressed as percent reduction in height relative to the untreated control (no formulation and no trigger molecules), another treatment was the formulation control which is herbicide plus buffer plus ammonium plus Silwet. Figure 1 illustrates the results of this test. Three of the pooled oligonucleotides demonstrated an enhancement of the herbicide activity, these are DHPS1-6, DHPS7-12, and DHPS13-18. Further testing of single oligonucleotides from DHPS1-6 and DHPS7-12 demonstrated that DHPS1 (SEQ ID NO:1176) and DHPS11(SEQ ID NO:1186) had the highest activity among the oligonucleotides in those respective pools with these 2 oligonucleotides providing greater than 15 percent increase in herbicide injury.
Table 4. DHPS dsDNA oligonucleotides.
SEQ
trigger ID
name NO: Sense sequence Antisense sequence DHPS1 1176 TTTTATTCTAAAGTTGCttcGGAGG CCTCCGAAGCAACTTTAGAATAAAA

DHPS3 1178 GAATGATGTCTCtaGTGGgAAACTC GAGTTTCCCACTAGAGACATCATTC

DHPS9 1184 GGCTTCGGAGTTGAGTTCTAGGGTc GACCCTAGAACTCAACTCCGAAGCC

DHPS21 1196 AAACATTGTAAGAGTACATAATGTt AACATTATGTACTCTTACAATGTTT

DHPS27 1202 TTAGTTTGCTCGAAAGtaGAGCTTT AAAGCTCTACTTTCGAGCAAACTAA
DHPS28 1203 AGCCCGTAAGGctATAGTTCTTACA TGTAAGAACTATAGCCTTACGGGCT

DHPS38 1213 GGGCAAGCTTGATCgaGTTACTTGG CCAAGTAACTCGATCAAGCTTGCCC
DHPS39 1214 ACAaGCAGATAACAGCAGGCTCTGG CCAGAGCCTGCTGTTATCTGCTTGT
DHPS40 1215 CGACcATTAGACATACATATCATTt AAATGATATGTATGTCTAATGGTCG
DHPS41 1216 GTTTTTtGAAGTCAGATCTGCAATC GATTGCAGATCTGACTTCAAAAAAC
DHPS42 1217 AATCAGTTGCAATGGACAAaCCATA TATGGTTTGTCCATTGCAACTGATT
DHPS43 1218 TACGGTTaTTagTTGTTCCTGTCAC GTGACAGGAACAACTAATAACCGTA
DHPS44 1219 TgTTTGAGTTGAATTAGATCATGCA TGCATGATCTAATTCAACTCAAACA

Example 4. A method to control weeds in a field.
A method to control weeds in a field comprises the use of trigger polynucleotides that can modulate the expression of a DHPS gene in one or more target weed plant species. In Table 3, an analysis of DHPS gene sequences from multiple plant species provided a collection of 21-mer polynucleotides that were common to at least 4 of the species and can be used in compositions to affect the growth or develop or sensitivity to DHPS inhibitor herbicide to control multiple weed species in a field. Other oligonucleotide segments can be selected from the disclosed gene sequences that are more specific to a particular weed species, for example, an oligonucleotide that has a sequence that is homologous or complementary to a DHPS gene of three weeds species, or of two weed species, or of only one weed species. A composition containing 1 or 2 or 3 or 4 or more of the polynucleotides of Table 3 would enable broad activity of the composition against the multiple weed species that occur in a field environment.
The method includes creating a composition that comprises components that include at least one polynucleotide of Table 3 (SEQ ID NO:907-1175) or any other effective gene expression modulating polynucleotide essentially identical or essentially complementary to SEQ
ID NO:1-54 or fragment thereof, a transfer agent that mobilizes the polynucleotide into a plant cell and a DHPS inhibiting herbicide and optionally a polynucleotide that modulates the expression of an essential gene and optionally a co-herbicide that has a different mode of action relative to a DHPS inhibitor. The polynucleotide of the composition includes a dsRNA, ssDNA
or dsDNA or a combination thereof. A composition containing a polynucleotide can have a use rate of about 1 to 30 grams or more per acre depending on the size of the polynucleotide and the number of polynucleotides in the composition. The composition may include one or more additional co-herbicides as needed to provide effective multi-species weed control. Crop safety can be enhanced by reducing the amount of effective herbicide needed to control weeds in the field. A field of crop plants or a turf grass environment in need of weedy plant control is treated by spray application of the composition. The composition can be provided as a tank mix, a sequential treatment of components (generally the polynucleotide followed by the herbicide), a simultaneous treatment or mixing of one or more of the components of the composition from separate containers. Treatment of the field can occur as often as needed to provide weed control and the components of the composition can be adjusted to target specific weed species or weed families.
Example 5. Herbicidal Compositions comprising pesticidal agents A method of controlling weeds and plant pest and pathogens in a field of DHPS
inhibitor tolerant crop plants is provided, wherein the method comprises applying a composition comprising a DHPS trigger oligonucleotide, a DHPS inhibitor composition and an admixture of a pest control agent. For example, the admixture comprises insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants or other biologically active compounds or biological agents, such as, microorganisms.
For example, the admixture comprises a fungicide compound for use on a DHPS
inhibitor tolerant crop plant to prevent or control plant disease caused by a plant fungal pathogen, The fungicide compound of the admixture may be a systemic or contact fungicide or mixtures of each. More particularly the fungicide compound includes, but is not limited to members of the chemical groups strobilurins, triazoles, chloronitriles, carboxamides and mixtures thereof. The composition may additional have an admixture comprises an insecticidal compound or agent.
The DHPS trigger oligonucleotides and DHPS inhibitor or mitosis inhibitor herbicide (for example, asulam, or other dinitroaniline herbicides) tank mixes with fungicides, insecticides or both are tested for use in soybean and corn for control of foliar diseases and pests. Testing is conducted to develop a method for use of mixtures of the trigger oligonucleotides and asulam formulation and various commercially available fungicides for weed control and pest control.
The field plots are planted with soybeans or corn. All plots receive a post plant application of the DHPS trigger + asulam about 3 weeks after planting. The mixtures of trigger + asulam or trigger + asulam + fungicide + insecticides are used to treat the plots at the R1 stage of soybean development (first flowering) or tassel stage of corn. Data is taken for percent weed control at 7 and 21 days after R1 treatment, soybean safety (% necrosis, chlorosis, growth rate): 5 days after treatment, disease rating, pest ratings and yield (bushels/Acre). These mixtures and treatments are designed to provide simultaneous weed and pest control, such as fungal pest control, for example, leaf rust disease; and insect pest control, for example, aphids, armyworms, loopers, beetles, stinkbugs, and leaf hoppers.
Agricultural chemicals are provided in containers suitable for safe storage, transportation and distribution, stability of the chemical compositions, mixing with solvents and instructions for use. A container of a mixture of a trigger oligonucleotide + herbicice +
fungicide compound, or a mixture of a trigger oligonucleotide + herbicide compound and an insecticide compound, or a trigger oligonucleotide + a herbicide compound and a fungicide compound and an insecticide compound (for example, lambda-cyhalothrin, Warrier ). The container may further provide instructions on the effective use of the mixture. Containers of the present invention can be of any material that is suitable for the storage of the chemical mixture.
Containers of the present invention can be of any material that is suitable for the shipment of the chemical mixture. The material can be of cardboard, plastic, metal, or a composite of these materials. The container can have a volume of 0.5 liter, 1 liter, 2 liter, 3-5 liter, 5-10 liter, 10-20 liter, 20-50 liter or more depending upon the need. A tank mix of a trigger oligonucleotide + herbicide compound and a fungicide compound is provided, methods of application to the crop to achieve an effective dose of each compound are known to those skilled in the art and can be refined and further developed depending on the crop, weather conditions, and application equipment used.
Insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants or other biologically active compounds can be added to the trigger oligonucleotide to form a multi-component pesticide giving an even broader spectrum of agricultural protection. Examples of such agricultural protectants with which compounds of this invention can be formulated are:
insecticides such as abamectin, acephate, azinphos-methyl, bifenthrin, buprofezin, carbofuran, chlorfenapyr, chlorpyrifos, chlorpyrifos-methyl, cyfluthrin, beta-cyfluthrin, cyhalothrin, lambda-cyhalothrin, deltamethrin, diafenthiuron, diazinon, diflubenzuron, dimethoate, esfenvalerate, fenoxycarb, fenpropathrin, fenvalerate, fipronil, flucythrinate, tau-fluvalinate, fonophos, imidacloprid, isofenphos, malathion, metaldehyde, methamidophos, methidathion, methomyl, methoprene, methoxychlor, methyl 7-chloro-2,5-dihydro-2-[[N-(methoxycarbony1)-N-[4-(trifluoromethoxy)phenyl ]amino]carbonyl]indeno[1,2-e][1,3,4]oxadiazine-4a(3H)-carboxylate (DPX-JW062), monocrotophos, oxamyl, parathion, parathion-methyl, permethrin, phorate, phosalone, phosmet, phosphamidon, pirimicarb, profenofos, rotenone, sulprofos, tebufenozide, tefluthrin, terbufos, tetrachlorvinphos, thiodicarb, tralomethrin, trichlorfon and triflumuron; most preferably a DHPS inhibitor compound is formulated with a fungicide compound or combinations of fungicides, such as azoxystrobin, benomyl, blasticidin-S, Bordeaux mixture (tribasic copper sulfate), bromuconazole, captafol, captan, carbendazim, chloroneb, chlorothalonil, copper oxychloride, copper salts, cymoxanil, cyproconazole, cyprodinil (CGA
219417), diclomezine, dicloran, difenoconazole, dimethomorph, diniconazole, diniconazole-M, dodine, edifenphos, epoxiconazole (BAS 480F), famoxadone, fenarimol, fenbuconazole, fenpiclonil, fenpropidin, fenpropimorph, fluazinam, fluquinconazole, flusilazole, flutolanil, flutriafol, folpet, fosetyl-aluminum, furalaxyl, hexaconazole, ipconazole, iprobenfos, iprodione, isoprothiolane, kasugamycin, kresoxim-methyl, mancozeb, maneb, mepronil, metalaxyl, metconazole, S-methyl 7-benzothiazolecarbothioate (CGA 245704), myclobutanil, neo-asozin (ferric methanearsonate), oxadixyl, penconazole, pencycuron, probenazole, prochloraz, propiconazole, pyrifenox, pyroquilon, quinoxyfen, spiroxamine (KWG4168), sulfur, tebuconazole, tetraconazole, thiabendazole, thiophanate-methyl, thiram, triadimefon, triadimenol, tricyclazole, trifloxystrobin, triticonazole, validamycin and vinclozolin;
combinations of fungicides are common for example, cyproconazole and azoxystrobin, difenoconazole, and metalaxyl-M, fludioxonil and metalaxyl-M, mancozeb and metalaxyl-M, copper hydroxide and metalaxyl-M, cyprodinil and fludioxonil, cyproconazole and propiconazole; commercially available fungicide formulations for control of Asian soybean rust disease include, but are not limited to Quadris (Syngenta Corp), Bravo (Syngenta Corp), Echo 720 (Sipcam Agro Inc), Headline 2.09EC (BASF Corp), Tilt 3.6EC
(Syngenta Corp), PropiMaxTm 3.6EC (Dow AgroSciences), Bumper 41.8EC (MakhteshimAgan), Folicur 3.6F
(Bayer CropScience), Laredo 25EC (Dow AgroSciences), LaredoTM 25EW (Dow AgroSciences), Stratego 2.08F (Bayer Corp), DomarkTM 1255L (Sipcam Agro USA), and Pristine 38%WDG (BASF Corp) these can be combined with DHPS inhibitor compositions as described in the present invention to provide enhanced protection from fungal disease;
nematocides such as aldoxycarb and fenamiphos; bactericides such as streptomycin; acaricides such as amitraz, chinomethionat, chlorobenzilate, cyhexatin, dicofol, dienochlor, etoxazole, fenazaquin, fenbutatin oxide, fenpropathrin, fenpyroximate, hexythiazox, propargite, pyridaben and tebufenpyrad; and biological agents such as Bacillus thuringiensis, Bacillus thuringiensis delta endotoxin, baculovirus, and entomopathogenic bacteria, virus and fungi.

Table 1 SEQ ID SPECIES TYPE LENGTH SEQ
NO
1 Amaranthus cDNAContig 672 AGATTTGTGAGCGCCCTGTAGCAGCTGATAGGGATC
hybrid us CTGCTACCGTTGCTTCAATAACTGCTGGAGTTTTAGG
TGGTGCAAACATTGTAAGAGTACATAATGTGAGGGA
TAACCTTGATGCTGTCAAGTTATGTGATGCCATACTC
GGAAAAACTGATTAACTGCTTATTTGTACCACCTTGT
GAATGACGTCTAGTGGAAAGTTCGATTGGGATATTG
ATGAAGTCCGTTAGTTTGCTCGAAAGTAGAGCTTTAG
CCCGTAAGGTTATAGTTCTTACAGATGTAGAATCATT
GGCTATTTGCCTATTCCTGCTTAGAAGATCATAGCATT
GATCCAGACTTTGGATTCCATGTAGAATTATGTTGCG
ACTCATGGTCGAATTGGCCCTTTGAGGAATTGTTGAA
GTTCCTTGATCTATGGTTCAATCGGCTCGGTTCGATG
AAGGTTGGACTGTGTCGAGACAAGATGGGTCAAAGA
GACCAATGGACAAGAAGTCGACCTTGGGAAAGCTTG
ATCAAGTTACTTGGACGAGCAGATAGCAGCAGGACT
CTGGCGAGCATTAGACATACATATCATTTGTTTTGGA
GTCAGATCTGCAATCAATCAGTTGCAATGGACAAACC
ATATACGGTTGTTAGTTGTTACTGTCACTGCTTGAGTT
GAATTAGATC
2 Amaranthus cDNAContig 458 AAGGGAATAAGGTATGGTCCTAGGCCAATTGACTTG
lividus GACATACTATTTTATGGGAAATTTAGGGTGAGCTCTG
AGAGCCTCACTATCCCCCATGAAAGGATATGGGAAA
GACCATTTGTGATGGCACCATTGATTGATTGTATTGG
GTCTGATGTAGAAAATGACACTATTTGTACATGGCAT
TCATTATCAAATTTTTTGGGTGGAATCTTTGAAGCATG
GGGTAAACTCGGTGGAAGTTCCCTAATCGGGAAGGA
TGGAATGAAAAGGGTTTTGCCCGTTGGAAATCGCTTA
TGGGATTGGTCTCATAAAACCTCTGTAATGGGAGTCT
TGAACTTGACTCCTGATAGCTTTAGTGATGGCGGAAG
TTTTCAATCTGTCGATACTGCGGTTGCTAAGGTTCGTC
AGATGATCTCAGATGGGGCAGATATAATTGACATCG
GGGCACAATCAACCAG
3 Amaranthus gDNAContig 5590 GGTGTTTATTTGGGCATGGCCTTATGTGTGATGTTGG
pal meri TAAATTTTGTGGCTTCGTCCACTAATCTGATGTATCGG
ATCTGTTAAAGGGAGCCCTCTCATCCTATGCTTATCAA
TGACTTTTTCATATGCCTATCAAACAGATCAGATTGG
ATCGGGTTCGAGTTCAGGTCATATATAAACATGTCAG
CAAACCCTTGACCCATACCCAACCCATTTAGTTAATTG
GCTTGAAAATCACAACCTTAATTCGACCAGCGACAGA
TCAGGTTGACCTGATTTCGACCCACTTAACCCATTTAT
AATTTTTTTTTCGATTTAAGTTTTTTAACATTGATTAAA
TCTAATTTTTTAGGCTTTAATTTTAATTTTATGTTTTTTT
GTTTAATTTGTATTTACTATGAAAAATAAGAAACTATT
ATATGAACTGAGTTTAGCTTACACTTATTAATTTAACT

CGAAATTAACACATTTAATTAAATGGTTATATAGGGT
TTTTTAGTTTTAAAATTTCAACCTGAACCTAATCTATTT
AATAAAAAGATCAGATCTGATCAACCCATATAATTAA
TTGGGTCAAAATCTCAACTCAAACCCATTTATTTCGAA
TTAAATTCAGATCAAATTAGCAGGTCGGATCAACTAG
CGCTAATTTTTCCTCTCAAGTTTTTTCATATGATGCCCC
TTGTTTTCTTTGAATAAAATTCACCAATTTAAAATCCC
TGCCCTTGATCCGTTGGTATTGGTATTTGGTAAAGCA
CATATGGTAAATTCTACTCCATTGTTATCTGTAGTTTT
GGTTCTAAACCCCAAACAAATCCTACTCCTAGCACCA
CTAATCCTCATTACTTTCTGTTTGCTGTCTTTCTCTACA
TTCCTACTAAATTAAGACCTAGATGCAGTGTTATTCTG
TTCGAGGTTGCCGAAAACGGTACAATAGTTGCCTAAT
TTGCAATTCATGTTTGTTCTTGCGTTTTCTACATTGTTT
ACTCTATTGGAACAAAGGTTGAACTTTCAGCCTTTCA
GGGAGTATTTTGATTTTTCTGTCAAATTACCTTGCCAG
ATTTATTTGGCTATTTTGATTGTGTGTATTTCTTTGTCC
CTTGTTTCCATGGGGCTAAACTCCTTTTGGTTAATCTT
AAACATTTCTTCTAATTTTGAATTGCAGTGGTATGAA
GTGTTGTTTAATATACAATCAATTTTTCTGAACTGGGT
TAATGAAGAGAAGCATTGTAGACATGAGGAATGTGT
TCAAGCATCTCAAAACAACCAAATTAATCCCAAATGG
GATCTTCAACTGTAATAGAGGTAAATCACATATATTC
TCATTTAATGGTTATTGTTTTATTTTAAGGATGTTATT
ATGTTGTTATCAATGATAGAAATAAGAGAAGCTTGA
GCATTCAAATGTATCTATCACTCACTGGTTGTGGACA
TCTAAAATATGGACCAAGAGTTTTCTTCATTTCTTGTA
CCAGAATTTGCAAATGTATGATTAAAGTTTAGGTTGG
AGTTGCAATAAAATTTCATTACCCCGACGCTATTAAG
TGGCTCACACTGAGGCGGGGTTTGAGGGTCGGATGG
TGCAACCTTCAGGAGAGGTTCTAAGCATTTTCAACAT
GTTCAACCGCAGAGGGTCCCGTAAAATTGGAGGCTT
CAATATTAAATTATGTAGTATGTGTTAAGTGTTTAAA
GATATAAAAATGTTAATGAATACATAATTTTTAAAATT
GCACAGGGCTTTCAAAGAAATTTTTGATTTTGCTCCG
CCCATG G CAACCTTTG G CAAATCTG G ATAG AATTAG A
GAAATTTACTTTTATGTATGTATAATCTGATGAATGAA
TGAATGAACAATGAAGTTCATTTCTGAGTCAATGACC
TATATACTATCGAGGTTTCGTTAAATAGGATATATAA
ATAAAATTAGAGACATCTTTTATCCCTAATGTTGTCTG
TTTTCTTTTCTGGGCGAGACTGTTTTTGGAGAAAAAC
GTTATGTTGAATGCTTGATTTACTCAGAACTGATGCA
AACAGATGGATAAAAAATGGTGTTTTCCTAGTGTTTA
TGTTTCATAAAAGGATTTCAAATTCCAATCGTATGAA
GTTTGAAATACTGCTTTTTGTTTTTGTAGCTTCGTGTT
TTGCTTTCCTTCACTCTTCACCAGGGAACGTTGTTGAA
GTTTGTTCCAAGAAGCAAGAAGTCGTAATTGCAATCG
GGAGCAATGTTGGTGACAGATTAGAAAATTTCAACC

AAGCTCTGCAACAAATGAAGAAATTAGGCATAGACA
TCACAAGGCATGGTTGTTTATATGAGACGGAACCTGC
ATACGTGACTGATCAACCGAAGTTTCTTAACTCTGCTT
TAAGAGGCTTTACAAGACTTGGACCTCATGAATTATT
AGGGGTATTGAAGAAAATTGAGAAGGATATGGGTA
GAACCAAGGGAATAAGGTATGGTCCTAGGCCAATTG
ACTTG G ACATACTATTTTATG G G AAGTTTAG G GTG AG
CTCTGAGAGCCTCACTATCCCCCATGAAAGGATATGG
GAAAGACCATTTGTGATGGCACCATTGATTGATTGTA
TTGGGTCTGATGTAGAAAATGACACTATTTGTACGTG
GCATTCATTATCAAATTTTTCGGGTGGAATCTTTGAA
GCATGGGGTAAACTCGGTGGAAGCTCCCTAATCGGG
AAGGATGGAATGAAAAGGGTTTTGCCCGTTGGAAAT
CTCTTATGGGATTGGTCTCATAAAACCTCTGTTATGG
GAGTCTTGAACTTGACTCCTGATAGCTTTAGTGATGG
CGGAAGTTTTCAATCTGTCAATACTGCGGTTGCTAAG
GTTCGTCAGATGATCTCAGATGGGGCAGATATAATTG
ACATCGGGGCACAATCAACCAGACCCATGGCAACTA
G AATTTCG G CTG AAG AAG AG CTAG CAAG AGTAGTAC
CTGTATTAGAAGCTGTCAAGGATTTGATCGAGGAAG
AAGGAAGAATCTTGTCAGTGGATACGTTTTATTCTAA
AGTTGCTTTGGAGGCCGTCAAGAAGGGGGCACACAT
TGTGAATGATGTCTCTAGTGGTAAACTCGATTCCGAG
ATGTTTAATGTTGTTGCGGACCTTAAAGTTCCTTATAT
AGCAATGCACATGCGAGGAGATCCGACTTCAATGCA
AAACTCTGAGAACTTGACCTACAATGATGTTTGTAAG
CAAGTG G CTTC G G AGTTG AGTTCTAG G GTCATAG AT
GCAGAATTATCGGGAATTCCTGCTTGGAGGATAGTTA
TTGATCCCGGCATCGGATTTTCTAAGAATACGAATCA
AAATTTGGAAATTCTTAGTGGTTTACAAAAGATACGG
GAAGAGATAGCTAAGAAGAGTTTGGCGGTGGCTCAT
TG CC CCTTG CTAATTG G AC CTTCAAG AAAG AG GTTTC
TGGGCGAGATTTGTGAGCGCCCTGTAGCAGCTGACA
GGGATCCTGCTACCATTGCTTCTATAACTGCTGGAGT
TTTAGGTGGTGCAAACATTGTAAGAGTACATAATGTT
AG G G ATAAC CTTG ATG CTGTCAAGTTATGTG ATG CCA
TACTCGGAAAAACTGATTAACTGCTTGTTTGTACCAC
CTTGTGAATGATGTCTAGTGGAAGGTTCGATTGGGAT
TATGATGAAGTCCGTTAGTTTGCTCGAAAGAAGAGCT
TTAGCCCGTAAGGTTATAGTTCTTACAGATGTAGAAT
CATTGGCTATTTGCCTATTTCTGCTTAGAAGATCATAG
CATTGATCCAGACTTTGGATTCCATGTAGAATTATGTT
GCGACTCATGGTCGAATTGGCCCTTTGAGGAATTGTT
GAAGTTCCTTGAGTCTATGGTTCAATCGGCTCGGTTC
GATGAAGGTTGGACTGTGTCGAGACAAGATGGGTCA
AAGAGACCAATGGACAAGAAGTCGACCTTGGGCAAG
CTTGATCAAGTTACTTGGACGAGCAGATAACAGCAG
GCTCTGGCGAGCATTAGACATACATATCATTTGTTTTT

TGAAGTCAGATCTGCAATCAATCAGTTGCAATGGACA
GACCATATACGGTTGTTAGTTGTTCCTGTCACTCTTTG
AGTTGAATTAGATCATGCAAACACTGTAAGAGTCTTG
ATTTTGTGAAGCTATGTGATACTGTACTTCTCAAAATG
AAATCTTTGATATGATGTTAGCTTCAAGAGTTGTTTTT
CCCCCCCTCACATTCTGTTCTATGTTGTATTGTTGTGT
GCTTTTTGGAATTGTATTCCTGTAATTAGAATTATTCC
TGCAAAATGGTATTCCTTTATATCATCAAAGGAGTTTT
TGTACTTCTAATCATTGATCTTTAGATGCAAAACTGAA
TTAATACAAGTGTTCTTGATGAAGGCTTATTGAAGAA
CTCACTTTTTATTTATGTCTAAACTTGTTAAAGATGTTC
TGCTTCCGCCCTTGCCACGGGATGTCGGGATTGACTA
AGGGTGGTAATCGAGGGATTCCTATGCTTGAATTGA
CTCGTTTAAGATTTTGCGTTGATTTTAAGTCAAATGTT
TTGCTAAGCATAAACTATTCTAGCTCGACTTGAATAAT
GAAGTTTTCGAGTCAAGTCCGAGCTGTTCTGTAAGTT
TATGTATCTTGAAGCTTCTTAGTTCTTACTTCTTATCCT
TATTTGTTTGACACATTGAACCGCGTTGATGCTTGCTT
GACTCAACCCGTTAAAGTCTTGAATTCATCACGAATT
CGAGTCGAG CAAGTTTAAACCCAACATTAACTAAG CT
CTCGAGGCTTAATGAGGCAG GGGTAGCTCAAGTTTG
TTATTCAAGCAACTTACCATAGTATTCTTTTAAAAGGC
ATATAGTCAGTTAGTTATTTGTTAATTTCAGTAGAACG
AAAGAAGTACATTATTAAACTTGGCCATTGATGCTTG
AGCTAGAGAGCTTCGGTTGTGATCGAAACGAATCCT
GATTTCGCTCTTGATCTTTGATGTGAAGTGACAAGGC
CTTCATAAAACTCCTTTATTCTTCAGCAGTGCATACAA
AAATCATGTGTGCCCAGCTCCTAGCTCACATACCGCG
TTTTTCCCCTAATCTAGTGTGGTCAAATAAAAACAGC
AAGATGTGTTGATGTCATGTGCAATAGTAATTATCAG
GTGAAGTAATGCAATATGTAGCCAGTCACCTCATATC
AAAAAAATGTTGGGAGGAAAACGTATTCGTTCATCAC
TAAACCTGTGTTTATACATCTAACTGATCGATCAGGG
TTTCAAAATCCAAATTAATACAATGGCATTTGACGAA
GATATCCAGAACACATCCCCCTTGTTTCTGCTAGATAA
TCAACTATTCTGATTCTGCTGTAATACCTCAGCTTCGG
CCCTAGCCATGGGATCGTCCTCTTTTTCTCCTTCACGC
TCCTCGGCCAGTTTCTTTCTGTGCAGTTCTTCAGCAGC
TTCTATTGAAGCTTTGTTCTCGGCCTGAAGACGCTGC
ATTTCCTCTTCCATTTGCTGCCTCTCAAACCATGTATCA
GCATCCGCCCAAACTGCAGACAAGTATACAAAAGTTA
AATAACGAAAGTCTTCAAAACTGCAGATCCAGTGAAC
AA
4 Amaranthus gDNAContig 5515 CGGATCTGTTAAAGGGAGCCCTCTCATCCTATGCTTA
pal meri TCAATGACTTTTTCATATGCCTATCAAACAGATCAGAT
TGGATCGGGTTCGAGTTCAGGTCATATATAAACATGT
CAGCAAACCCTTGACCCATACCCAACCCATTTAGTTAA
TTGGCTTGAAAATCACAACCTTAATTCGACCAGCGAC

AGATCAGGTTGACCTGATTTCGACCCACTTAACCCAT
TTATAATTTTTTTTTCGATTTAAGTTTTTTAACATTGAT
TAAATCTAATTTTTTAGGCTTTAATTTTAATTTATGTTT
TTTTGTTTAATTTGTATTTACTATGAAAAATAAGAAAC
TATTATATGAACTGAGTTTAGCTTACACTTATTGATTT
AACTCGAAATTAACACATTTAATTAAATGGTTATATA
GGGTTTTTTAGTTTTAAAATTTCAACCTGAACCTAATC
TATTTAATAAAAAGATCAGATCTGATCAACCCATATA
ATTAATTGGGTCAAAATCTCAACTCAAACCCATTTATT
TCGAATTAAATTCAGATCAAATTAGCAGGTCGGATCA
ACTAGCGCTAATTTTTCCTCTCAAGTTTTTTCATATGAT
GCCCCTTGTTTTCTTTGAATAAAATTCACCAATTTAAA
ATCCCTGCCCTTGATCCGTTGGTATTGGTATTTGGTAA
AGCACATATGGTAAATTCTACTCCATTGTTATCTGTAG
TTTTGGTTCTAAACCCCAAACAAATCCTACTCCTAGCA
CCACTAATCCTCATTACTTTCTGTTTGCTGTCTTTCTCT
ACATTCCTACTAAATTAAGACCTAGATGCAGTGTTATT
CTGTTCGAGGTTGCCGAAAACGGTACAATAGTTGCCT
AATTTGCAATTCATGTTTGTTCTTGCGTTTTCTACATTG
TTTACTCTATTGGAACAAAGGTTGAACTTTCAGCCTTT
CAGGGAGTATTTTGATTTTTCTGTCAAATTACCTTGCC
AGATTTATTTGGCTATTTTGATTGTGTGTATTTCTTTG
TCCCTTGTTTCCATGGGGCTAAACTCCTTTTGGTTAAT
CTTAAACATTTCTTCTAATTTTGAATTGCAGTGGTATG
AAGTGTTGTTTAATATACAATCAATTTTTCTGAACTGG
GTTAATGAAGAGAAGCATTGTAGACATGAGGAATGT
GTTCAAGCATCTCAAAACAACCAAATTAATCCCAAAT
GGGATCTTCAACTGTAATAGAGGTAAATCACATATAT
TCTCATTTAATGGTTATTGTTTTATTTTAAGGATGTTAT
TATGTTGTTATCAATGATAGAAATAAGAGAAGCTTGA
GCATTCAAATTTATCTATCACTCACTGGTTGTGGACAT
CTAAAATATGGACCAAGAGTTTTCTTCATTTTTTGTAC
CAGAAGCTGCAAATGTATGATTAAAGTTTAGGTTGG
AGTTGCAATAAAATTTTATTACCCCGACGCTATTAAGT
GGCTCACACTGAGGCGGGGTTTGAGGGTCAGATGGT
GCAACCTTCAGAAGAGGTTCTAAGCATTTTCAACATG
TTCAACCG CATAG G GTCCCGTAAAATTG GAG G CTTCA
ATATTAAATTATGTAGTATGTGTTATGTGTTTAAAGAT
ATAAATATGTTAATGAATACATAATTTTTAAATTGCAC
AGGGCCTTCAAAGAAATTTTCGATTTTGCTCTGCCCCT
GGCAACCTTTGGCAAATTTGGATAGAATTAG AG AAG
TTTACTTTTATGTGTGTATAATATGATGAATGAATGA
GTGAACAATGAAGTTCATTTCTGAGTCAATGACCTAT
ATACTATCGAGGTTTCGTTAAAAAGGATATATAAATA
AAATTAGAGACATCTTTTATCCCTAATGTTGTCTGTTT
TCTTTTCTGGGCGAGACTGTTTTTGGAGAAAAACGTT
ATGTTGAATGCTTGATTTACTCAGAACTGATGCAAAC
AGATGGATAAAAATGGTGTTTTCCTATTGTTTATGTTT

CGATAACAGGTTTCAAATTCCACTCGTATGAAGTTTG
ATATACTGCTATGTGTTTTTGTAGCTTCGTGTTTTGCT
TTCCTTCACTCATCACCAGTGAATGATGTTGAAGTTTG
TTCCAAGAAGCAAGAAGTCGTAATTGCAATCGGGAG
CAATGTTGGTGACAGATTAGAAAATTTCAACCAAGCT
CTGCAACAAATGAAGAAATTAGGCATAGACATCACA
AGGCATGGGTGTTTATATGAGACGGAACCTGCATAC
GTGACTGATCAACCGAAGTTTCTTAACTCTGCTTTAA
GAGGCTTTACAAAACTTGGGCCTCATGAATTATTAGG
GGTATTAAAGAAAATTGAGAAGGATATGGGTAGAAC
CAAGGGAATAAGGTATGGTCCTAGGCCAATTGACTT
GGACATACTATTTTATGGGAAGTTTAGGGTGAGCTCT
GAGAGCCTCACTATCCCCCATGAAAGGATATGGGAA
AGACCATTTGTGATGGCACCATTGATTGATTGTATTG
GGTCTGATGTAGAAAATGACACTATTTGTACGTGGCA
TTCATTATCAAATTTTTCGGGTGGAATCTTTGAAGCAT
GGGGTAAACTCGGTGGAAGTTCCCTAATCGGGAAGG
ATGGAATGAAAAGGGTTTTGCCCGTTGGAAATCGCTT
ATGGGATTGGTCTCATAAAACCTCTGTTATGGGAGTC
TTGAACTTGACTCCTGATAGCTTTAGTGATGGCGGAA
GTTTTCAATCTGTCGATACTGCGGTTGCTAAGGTTCG
TCAGATGATCTCAGATGGGGCAGATATAATTGACATC
GGGGCACAATCAACCAGACCCATGGCAACTAGAATT
TCGGCTGAAGAAGAGCTAGAAAGAGTAGTACCTGTA
TTGGAAGCTGTCAAGGATTTGATCGAGGAAGAAGGA
AGAATCTTGTCAGTGGATACGTTTTATTCTAAAGTTG
CTTCGGAGGCCGTCAAGAAGGGGGCACACATTGTGA
ATGATGTCTCTAGTGGGAAACTCGATTCCGAGATGTT
TAATGTTGTTGCGGACCTTAAAGTTCCTTATATAGCA
ATGCACATGCGAGGAGATCCGACTTCAATGCAAAACT
CTGAGAACTTGACCTACAATGATGTTTGTAAGCAAGT
GGCTTTGGAGTTGAGTTCTAGGGTCATAGATGCAGA
ATTATCGGGAATTCCTGCTTGGAGGATAGTTATTGAT
CCCGGCATCGGATTTTCTAAGAATACGAATCAAAATT
TGGAAATTCTTAGTGGTTTACAAAAGATACGGGAAG
AGATAGCTAAGAAGAGTTTGGCGGTGGCTCATTG CC
CCTTGCTAATTGGACCTTCAAGAAAGAGGTTTCTGGG
CGAGATTTGTGAGCGCCCTGTAGCAGCTGACAGGGA
TCCTGCTACCATTGCTTCTATAACTGCTGGAGTTTTAG
GTGGTGCAAACATTGTAAGAGTACATAATGTGAGGG
ATAACCTTGATGCTGTCAAGTTATGTGATGCCATACT
CGGAAAAACTGATTAACTGCTTGTTTGTACCACCTTG
TGAATGATGTCTAGTGGAAGGTTCGATTGGGATTAT
GATGAAGTCCGTTAGTTTGCTCGAAAGAAGAGCTTTA
GCCCGTAAGGTTATAGTTCTTACAGATGTAGAATCAT
TGGCTATTTGCCTATTTCTGCTTAGAAGATCATAGCAT
TGATCCAGACTTTGGATTCCATGTAGAATTATGTTGC
GACTCATGGTCGAATTGGCCCTTTGAGGAATTGTTGA

AGTTCCTTGAGTCTATG GTTCAATCG G CTCG GTTCG A
TGAAGGTTG G ACTGTGTC GAG ACAAG ATG G GTCAAA
G AG ACCAATG G ACAAG AAGTC G AC CTTG G G CAAG CT
TGATCAAGTTACTTGGACAAGCAGATAACAGCAGGC
TCTGGCGAGCATTAGACATATCATTTGTTTTTTGGAGT
CAGATCTGCAATCAATCAGTTGCAATGGACAAACCAT
ATACGGTTGTTAGTTGTTACTGTCACTGTTTGAGTTGA
ATTAGATCATGCAAACACTGTAGGAGTCTTGATTATG
TGAAGCTATGTGACACTGTACTTCTCAAAATGAAATC
TTTGATATGATGTTAGTTTCAAGAGTTGTAATTCCCCC
CTCACATTTCTGTTCTATGTTGTATTGTTGTGTGCTTTT
TGGAATTGTATTCCTGCAATAGAATTATTCCCGCAAA
ATGGTATTCCTTTATATCATCAAAGGAGTTTTTGTACT
TCTAATCATTGATCTTTAGATGCAAAACTGAATTAATA
CAAGTATTCTTGATGAAGGCTTATTGAAGAACTCACT
TTTTATTTATGTCTAAACTTGTTAAAGATGTTCTGCTTC
CGCCCTTGCCACGGGATGTCGGGATTGACTAGGGGT
GGTAATCGAGGGATTCCTATGCTTGAATTGACTCGTT
TAAGATTTTGCGTTGATTTTAAGTCAAACGTTTTGCTA
AGCATAAACTATTCTAGCTCGACTTGAATAATGAAGT
TTTCGAGTCAAGTCCGAGCTGTTCTATAAGTTTACGT
ATCTTGAAGCTTCTTAGTTCTTACTTCTTATCCTTTATT
TTTTGACACATTGAACCGCATTGATGCTTGCTTGACTC
AACTCGTTAAAGTCTTGAGTTCATCACGAATTCGAGT
CGAGCAAGTTTAAACCCAACATTAACTAAGCTCTCGA
GGCTTAATGAGGCAGGGGTAGCTCAAGTTTGTTATTC
AAGCAACTTACCATAGTATTCTTTTAAAAGGCATATA
GTCAGTTAGTTATTTGTTAATTTCAGTAGAACGAAAG
AAGTACATTATTAAACTTGGCCATTGATGCTTGAGCT
AGAGAGTTTCGGTTGTGATCGAAACGAATCCTGATTT
CGCTCTTGATCTTTGATGTGAAGTGACAAGGCCTTCA
TAAAACTCCTTTATTCTTCAGCAGTGCATACAAAAATC
ATGTGTGCCCAGCTCCTAGCTCACATACCGCGTTTTTC
CCCTAATCTAGTGTGGTTAAATAAAAACAGCAAGATG
TGTTGATGTCATGTGCAATAGTAATTATCAGGTGAAG
TAATTCAATATGTAGCCAGTCACCTCATATCAAAAAA
ATGTTGGGAGGAAAACGTATTCGTTCATCACTAAACC
TGTTTTTATACATCTAACTGATCGATCAGGGTTTCAAA
ATCCAAATTAATACAATGGCATTTGACGAAGATATCC
AGAACACATCCCCCTTGTTTCTGCTAGATAATCAACTA
TTCTGATTCTGCTGTAATACCTCAGCTTCGGCCCTAGC
CATGGGATCGTCCTCTTTTTCTCCTTCACGCTCCTCGG
CCAGTTTCTTTCTGTGCAGTTCTTCAGCAGCTTCTATT
GAAGCTTTGTTCTCGGCCTGAAGACGCTGCATTTCCT
CTTCCATTTGCTGCCTCTCAAACCATGTATCAGCATCC
GCCCAAACTGCAGACAAGTATACAAAAGTTAAATAAC
GAAAGTCTTCAAAACTGCAGATCCAGTGAACAAAGTC
A

Amaranthus cDNAContig 1431 GCTTTCCTTCACTCATCACCAGTGAATGATGTTGAAGT
palmeri TTGTTCCAAGAAGCAAGAAGTCGTAATTGCAATCGG
GAGCAATGTTGGTGACAGATTAGAAAATTTCAACCAA
GCTCTGCAACAAATGAAGAAATTAGGCATAGACATC
ACAAGGCATGGGTGTTTATATGAGACGGAACCTGCA
TACGTGACTGATCAACCGAAGTTTCTTAACTCTGCTTT
AAG AG G CTTTACAAAACTTG G G CCTCATG AATTATTA
G G G GTATTAAAG AAAATTGAG AAG G ATATG G GTAG A
ACCAAGGGAATAAGGTATGGTCCTAGGCCAATTGAC
TTG G ACATACTATTTTATG GG AAGTTTAG G GTG AG CT
CTGAGAGCCTCACTATCCCCCATGAAAGGATATGGG
AAAGACCATTTGTGATGGCACCATTGATTGATTGTAT
TGGGTCTGATGTAGAAAATGACACTATTTGTACGTGG
CATTCATTATCAAATTTTTCGGGTGGAATCTTTGAAGC
ATGGGGTAAACTCGGTGGAAGTTCCCTAATCGGGAA
G G ATG G AATG AAAAG G GTTTTG C CC GTTG G AAATCG
CTTATG GG ATTG GTCTCATAAAAC CTCTGTTATG G G A
GTCTTGAACTTGACTCCTGATAGCTTTAGTGATGGCG
G AAGTTTTCAATCTGTCG ATACTG C G GTTG CTAAG GT
TCGTCAGATGATCTCAGATGGGGCAGATATAATTGAC
ATCGGGGCACAATCAACCAGACCCATGGCAACTAGA
ATTTCGGCTGAAGAAGAGCTAGAAAGAGTAGTACCT
GTATTGGAAGCTGTCAAG GATTTG ATC G AG G AAG AA
GGAAGAATCTTGTCAGTGGATACGTTTTATTCTAAAG
TTGCTTCGGAGGCCGTCAAGAAGGGGGCACACATTG
TGAATGATGTCTCTAGTGGGAAACTCGATTCCGAGAT
GTTTAATGTTGTTGCGGACCTTAAAGTTCCTTATATAG
CAATG CACATG CG AG G AG ATCC G ACTTCAATG CAAA
ACTCTGAGAACTTGACCTACAATGATGTTTGTAAGCA
AGTGGCTTTGGAGTTGAGTTCTAGGGTCATAGATGC
AGAATTATCGGGAATTCCTGCTTGGAGGATAGTTATT
GATCCCGGCATCGGATTTTCTAAGAATACGAATCAAA
ATTTGGAAATTCTTAGTGGTTTACAAAAGATACGGGA
AG AG ATAG CTAAG AAG AGTTTG G C G GTG G CTCATTG
CCCCTTGCTAATTGGACCTTCAAGAAAGAGGTTTCTG
GGCGAGATTTGTGAGCGCCCTGTAGCAGCTGACAGG
GATCCTGCTACCATTGCTTCTATAACTGCTGGAGTTTT
AGGTGGTGCAAACATTGTAAGAGTACATAATGTGAG
GGATAACCTTGATGCTGTCAAGTTATGTGATGCCATA
6 Amaranthus cDNAContig 1431 GCTTTCCTTCACTCTTCACCAGGGAACGTTGTTGAAGT
palmeri TTGTTCCAAGAAGCAAGAAGTCGTAATTGCAATCGG
GAGCAATGTTGGTGACAGATTAGAAAATTTCAACCAA
GCTCTGCAACAAATGAAGAAATTAGGCATAGACATC
ACAAGGCATGGTTGTTTATATGAGACGGAACCTGCAT
ACGTGACTGATCAACCGAAGTTTCTTAACTCTGCTTTA
AGAGGCTTTACAAGACTTGGACCTCATGAATTATTAG
G G GTATTG AAG AAAATTG AG AAG G ATATG G GTAG AA
CCAAG G G AATAAG GTATG GTC CTAG G C CAATTG ACT

TGGACATACTATTTTATGGGAAGTTTAGGGTGAGCTC
TGAGAGCCTCACTATCCCCCATGAAAGGATATGGGA
AAGACCATTTGTGATGGCACCATTGATTGATTGTATT
GGGTCTGATGTAGAAAATGACACTATTTGTACGTGGC
ATTCATTATCAAATTTTTCG G GTG GAATCTTTGAAG CA
TGGGGTAAACTCGGTGGAAGCTCCCTAATCGGGAAG
GATGGAATGAAAAGGGTTTTGCCCGTTGGAAATCTCT
TATGGGATTGGTCTCATAAAACCTCTGTTATGGGAGT
CTTGAACTTGACTCCTGATAGCTTTAGTGATGGCGGA
AGTTTTCAATCTGTCAATACTGCGGTTGCTAAGGTTC
GTCAGATGATCTCAGATGGGGCAGATATAATTGACA
TCGGGGCACAATCAACCAGACCCATGGCAACTAGAA
TTTCGGCTGAAGAAGAGCTAGCAAGAGTAGTACCTG
TATTAGAAGCTGTCAAGGATTTGATCGAGGAAGAAG
GAAGAATCTTGTCAGTGGATACGTTTTATTCTAAAGT
TGCTTTGGAGGCCGTCAAGAAGGGGGCACACATTGT
GAATGATGTCTCTAGTGGTAAACTCGATTCCGAGATG
TTTAATGTTGTTGCGGACCTTAAAGTTCCTTATATAGC
AATGCACATGCGAGGAGATCCGACTTCAATGCAAAA
CTCTGAGAACTTGACCTACAATGATGTTTGTAAGCAA
GTGGCTTCGGAGTTGAGTTCTAGGGTCATAGATGCA
GAATTATCG G GAATTCCTG CTTG GAG GATAGTTATTG
ATCCCGGCATCGGATTTTCTAAGAATACGAATCAAAA
TTTGGAAATTCTTAGTGGTTTACAAAAGATACGGGAA
GAGATAGCTAAGAAGAGTTTGGCGGTGGCTCATTGC
CCCTTGCTAATTGGACCTTCAAGAAAGAGGTTTCTGG
GCGAGATTTGTGAGCGCCCTGTAGCAGCTGACAGGG
ATCCTGCTACCATTGCTTCTATAACTGCTGGAGTTTTA
GGTGGTGCAAACATTGTAAGAGTACATAATGTTAGG
GATAACCTTGATGCTGTCAAGTTATGTGATGCCATA
7 Amaranthus cDNAContig 1163 GAAGCTGTCAAGGATTTGATCGAGGAAGAAGGAAG
pal meri AATCTTGTCAGTGGATACGTTTTATTCTAAAGTTGCTT
CGGAGGCCGTCAAGAAGGGGGCACACATTGTGAAT
GATGTCTCTAGTGGGAAACTCGATTCCGAGATGTTTA
ATGTTGTTGCGGACCTTAAAGTTCCTTATATAGCAAT
GCACATGCGAGGAGATCCGACTTCAATG CAAAACTCT
GAGAACTTGACCTACAATGATGTTTGTAAGCAAGTG
GCTTTGGAGTTGAGTTCTAGGGTCATAGATGCAGAAT
TATCG G GAATTCCTG CTTG GAG GATAGTTATTGATCC
CGGCATCGGATTTTCTAAGAATACGAATCAAAATTTG
GAAATTCTTAGTGGTTTACAAAAGATACGGGAAGAG
ATAGCTAAGAAGAGTTTGGCGGTGGCTCATTGCCCCT
TGCTAATTGGACCTTCAAGAAAGAGGTTTCTGGGCG
AGATTTGTGAGCGCCCTGTAGCAGCTGACAGGGATC
CTG CTACCATTG CTTCTATAACTG CTG GAGTTTTAG GT
G GTG CAAACATTGTAAGAGTACATAATGTTAG G GAT
AACCTTGATGCTGTCAAGTTATGTGATGCCATACTCG
GAAAAACTGATTAACTGCTTGTTTGTACCACCTTGTG

AATG ATGTCTAGTG G AAG GTTCG ATTG G G ATTATG AT
GAAGTCCGTTAGTTTG CTCGAAAGTAGAG CTTTAG CC
CGTAAGGCTATAGTTCTTACAGATGTAGAATCATTGG
CTATTTG CCTATTTCTG CTTAG AAG ATCATAG CATTG A
TCCAG ACTTTG G ATTCCATGTAG AATTATGTTG CG AC
TCATG GTCG AATTGG CCCTTTG AG G AATTGTTG AAGT
TCCTTGAGTCTATGGTTCAATCGGCTCGGTTCGATGA
AG GTTG GACTGTGTCGAGACAAGATG G GTCAAAGAG
ACCAATGGACAAGAAGTCGACCTTGGGCAAGCTTGA
TCAAGTTACTTGGACAAGCAGATAACAGCAGGCTCT
G G CG AG CATTAG ACATATCATTTGTTTTTTG G AGTCA
GATCTGCAATCAATCAGTTGCAATGGACAAACCATAT
ACGGTTGTTAGTTGTTACTGTCACTGTTTGAGTTGAAT
TAG ATCATG CAAACACTGTAG G AG
8 Am a ra nthus cDNAContig 1431 GCGTACCTTCACTCATCACCAGTGGACGATGTTGAAC
rudis TTTGTTCTAAGAAGCAAGAAGTCATAATTG CAATCGG
G AG CAATGTTG GTG ACAG ATTAG AAAATTTTAACCAA
GCTCTGCAACAAATGAAGAAATTAGGCATAGACATC
ACAAG G CATG GTTGTTTATATGAGACAGAACCCG CAT
ACGTGACTGATCAACCGAAGTTTCTTAACTCTGCTTTA
AG AG G CTTTACAAG ACTTG G G CCTCATG AATTATTAG
G G GTATTG AAG AAAATTG AG AAG AATATG G GTAG AA
CCAAG G G AATAAG GTATG GTCCTAG G CCAATTG ACT
TG G ACATACTATTTTATG G GAAGTTTAG G GTG AG CTC
TG AG AG CCTCACTATTCCCCATG AAAG G ATATGG G A
AAGACCATTTGTGATGGCACCATTAATTGATTGTATT
GGGTCTGGTGTAGAAAATGACACTATTTGTACATGGC
ATTCGTTATCAAATTTTTCGGGTGGAATCTTTGAAGC
ATG G G ATAAACTCG GTG G AAGTTCCCTAATCG G G AA
GGATGGAATGAAAAGGGTTTTGCCCGTTGGGAACCG
CTTATG GG ATTG GTCTCATAAAACCTCTGTAATG G G A
GTCTTG AACTTG ACTCCTG ATAG CTTTAGTG ATG G AG
G AAGTTTTCAATCTGTCG ATACTG CG GTTG CTAAG GT
TCGTCAGATGATATCAGATGGGGCCGACATAATTGA
CATTGGGGCACAGTCAACAAGACCCATGGCAACTAG
G ATTTCGG CTG AAG AAG AG CTAG AAAG AGTTGTACC
TGTATTG G AAG CTGTTAAGG ATGTG ATCG AG G AAG A
AG G AAG AATCTTATCG GTG G ATACTTTTTATTCAAAA
GTTGCTTCTGAGGCCGTCAAGAAGGGGGCACACATT
GTG AATG ATGTCTCTAGTGG G AAATTCG ATCCTG AG A
TGTTCAATGTTGTTGCGGACCTTAAAGTTCCTTATATA
G CAATG CACATG CG AG G AG ATCCG ACTTCAATG CAA
AATTCTG AG AACTTG ACGTACAGTG ATGTTTGTAAG C
AAGTGGCTTCGGAGTTGAGCTCTAGGGTCATAGATG
CAG AATTATCG G G AATTCCTG CTTG G AG AATAGTTAT
TG ATCCCG G CATTGG ATTTTCTAAG AATACG AAG CAA
AATTTGGAAATTCTTACTGGTTTACAAAAGATACGGC
TAG AG ATAG CTAAG AAG AGTTTG G CG GTG G CTCATT

GCCCCTTGCTAATTGGACCTTCACGAAAGAGGTTTCT
GGGTGAGATTTGTAATCGCCCTGTAGCAGCTGATAG
GGATCCTGCTACCGTCGCTTCTATCACTGCTGGAGTTT
TAG GTG GTG CAAACATTGTAAGAGTACATAATGTGA
GGGATAACCTTGATGCAGTCAAGTTATGTGATGCCAT
A
9 Am a ra nthus gDNAContig 1059 TGTTTCGATAAAAGGATTTCAAATCCCAATCGTATGA
rudis AGTTTGAAATACAACTATGTGTTTTTGCAGCTTTGTTT
TTTGCGTACCTTCACTCATCACCAGTGGACGATGTTG
AACTTTGTTCTAAGAAGCAAGAAGTCATAATTGCAAT
CG G GAG CAATGTTG GTGACAGATTAGAAAATTTTAA
CCAAGCTCTGCAACAAATGAAGAAATTAGGCATAGA
CATCACAAGGCATGGTTGTTTATATGAGACAGAACCC
GCATACGTGACTGATCAACCGAAGTTTCTTAACTCTG
CTTTAAGAGGCTTTACAAGACTTGGGCCTCATGAATT
ATTAG GGGTATTGAAGAAAATTGAGAAGAATATGGG
TAGAACCAAGGGAATAAGGTATGGTCCTAGGCCAAT
TGACTTGGACATACTATTTTATGGGAAGTTTAGGGTG
AG CTCTGAGAG CCTCACTATTCCCCATGAAAG GATAT
GGGAAAGACCATTTGTGATGGCACCATTAATTGATTG
TATTGGGTCTGGTGTAGAAAATGACACTATTTGTACA
TGGCATTCGTTATCAAATTTTTCGGGTGGAATCTTTGA
AG CATG G GATAAACTCG GTG GAAGTTCCCTAATCG G
GAAGGATGGAATGAAAAGGGTTTTGCCCGTTGGGAA
CCGCTTATGGGATTGGTCTCATAAAACCTCTGTAATG
GGAGTCTTGAACTTGACTCCTGATAGCTTTAGTGATG
GAGGAAGTTTTCAATCTGTCGATACTGCGGTTGCTAA
GGTTCGTCAGATGATATCAGATGGGGCCGACATAAT
TGACATTGGGGCACAGTCAACAAGACCCATGGCAAC
TAGGATTTCGGCTGAAGAAGAGCTAGAAAGAGTTGT
ACCTGTATTGGAAGCTGTTAAGGATGTGATCGAGGA
AGAAGGAAGAATCTTATCGGTGGATACTTTTTATTCA
AAAGTTGCTTCTGAGGCCGTCAAGAAGGGGGCACAC
ATTGTGAATGATGTCTCTAGTGGGAAATTCGATCCTG
AGATGTTCAATGTTGTTGCGGACCTTAAAGTT
Am a ra nthus gDNAContig 792 AATGGGAGTCTTGAACTTGACTCCTGATAGCTTTAGT
rudis GATGGCGGAAGGTTTCAATCTGTCGATACTGCGGTT
GCTAAGGTTCGTCAGATGATCTCTGACGGGGCGGAC
ATAATTGACATTGGG GCG CAGTCAACAAGACCCATG
GCAACTAGGATTTCGGCTGAAGAAGAGCTAGAAAGA
GTCGTACCTGTATTAGAAGCTGTCAAGGATTTGATCG
AG GAAGAAG GAAGAATCTTGTCAGTG GATACGTTTT
ATTCTAAAGTTGCTTCGGAGGCCGTCAAGAAGGGGG
CACACATTGTGAATGATGTCTCTAGTGGGAAACTCGA
TCCCGAGATGTTTAATGTTGTTGCGGACCTTAAAGTT
CCTTATATAGCAATGCACATGCGAGGAGATCCGACTT
CAATGCAAAATTCTGAGAACTTGACGTACAATGATGT
GTGTAAGCAAGTGGCTTCGGAGTTGAGCTCTAGGGT

CGTAG ATG CAG AATTATCG G G AATTCCTG CTTG G AG
GATGGTTATTGATCCCGGCATTGGATTTTCTAAGAAT
AC G AAG CAAAATTTGG AAATTCTTAGTG GTTTACAAA
AGATACGGCAAGAGATAGCTAAGAAGAGTTTGGCGG
TG G CTCATTG C CC CTTG CTAATTG G AC CTTCAAG AAA
GAG GTTTCTG G GCGAGATTTG CAATCG CCCTGTAGCA
GCTGATAGGGATCCTGCTACCGTTGCTTCTATCACTG
CTGGAGTTTTAGGTGGTGCAAACATTGTAAGAGTAC
ATAATGTG AG G G ATAACCTTG ATG C
11 Amaranthus gDNAContig 764 TG G CAACTAG G ATTTCG G CTG AAG AAG AG CTAG AAA
rud is G AGTCGTACCTGTATTAG AAG CTGTCAAG G ATTTG AT
CGAGGAAGAAGGAAGAATCTTGTCAGTGGATACGTT
TTATTCTAAAGTTG CTTCG GAG G CCGTCAAGAAG GG
GGCACACATTGTGAATGATGTTTCTAGTGGGAAACTC
G ATCCC G AG ATGTTTAATGTTGTTG CG G AC CTTAAAG
TTC CTTATATAG CAATG CACATG CG AG G AG ATCC G AC
TTCAATG CAAAATTCTG AG AACTTG AC GTACAATG AT
GTGTGTAAG CAAGTGGCTTCGGAGTTGAGCTCTAGG
GTCGTAG ATG CAG AATTATCG G G AATTC CTG CTTG G A
G G ATG GTTATTG ATCC CG G CATTG G ATTTTCTAAG AA
TACGAAGCAAAATTTGGAAATTCTTAGTGGTTTACAA
AAG ATAC G G CAAG AG ATAG CTAAG AAG AGTTTG G C G
GTG G CTCATTG C CCCTTGCTAATTG G AC CTTCAAG AA
AGAGGTTTCTGGGCGAGATTTGCAATCGCCCTGTAGC
AG CTG ATAG G G ATC CTG CTACC GTTG CTTCTATCACT
GCTGGAGTTTTAGGTGGTGCAAACATTGTAAGAGTA
CATAATGTGAGGGATAACCTTGATGCAGTCAAGTTAT
GTGATGCCATACTCAGAAAAACGGATTAGCCGATTTT
TTTGGATTCCAGAGCCGATGTTCCAGATTTTCCTTTGC
TTTCATGTGCCGAAGATTCTTAGTTTAGG
12 Amaranthus gDNAContig 755 GTAATGGGAGTCTTGAACTTGACTCCTGATAGCTTTA
rud is GTGATGGCGGAAGGTTTCAATCTGTCGATACTGCGG
TTGCTAAGGTTCGTCAGATGATCTCTGACGGGGCGG
ACATAATTGACATTGG GGCGCAGTCAACAAGACCCTT
G G CAACTAG G ATTTCG G CTG AAG AAG AG CTAG AAAG
AGTCGTACCTGTATTAGAAGCTGTCAAGGATTTGATC
G AG G AAG AAG G AAG AATCTTGTCAGTG G ATAC GTTT
TATTCTAAAGTTG CTTC G G AG G CC GTCAAG AAGG G G
GCACACATTGTGAATGATGTTTCTAGTGGGAAACTCG
ATCCC G AG ATGTTTAATGTTGTTG CG G AC CTTAAAGT
TCCTTATATAGCAATGCACATGCGAGGAGATCCGACT
TCAATG CAAAATTCTG AG AACTTG AC GTACAGTG ATG
TTTGTAAGCAAGTGGCTTCGGAGTTGAGCTCTAGGGT
CATAG ATG CAG AATTATC GG G AATTC CTG CTTG G AG A
ATAGTTATTGATCCCGGCATTGGATTTTCTAAGAATA
CGAAGCAAAATTTGGAAATTCTTACTGGTTTACAAAA
GATACG G CTAGAGATAG CTAAGAAGAGTTTG G CG GT
GGCTCATTGCCCCTTGCTAATTGGACCTTCACGAAAG

AG GTTTCTG G GTGAGATTTGTAATCG CCCTGTAG CAG
CTGATAGGGATCCTGCTACCGTCGCTTCTATCACTGCT
GGAGTTTTAGGTGGTGCAAA
13 Amaranthus cDNAContig 602 AG GATTTCG G CTGAAGAAGAG CTAGAAAGAGTTGTA
rudis CCTGTATTGGAAGCTGTTAAGGATGTGATCGAGGAA
GAAGGAAGAATCTTATCGGTGGATACGTTTTATTCTA
AAGTTGCTTCGGAGGCCGTCAAGAAGGGGGCACACA
TTGTGAATGATGTTTCTAGTGGGAAACTCGATCCCGA
GATGTTTAATGTTGTTGCGGACCTTAAAGTTCCTTATA
TAGCAATGCACATGCGAGGAGATCCGACTTCAATGC
AAAATTCTGAGAACTTGACGTACAATGATGTGTGTAA
GCAAGTGGCTTCGGAGTTGAGCTCTAGGGTCGTAGA
TG CAGAATTATCG G GAATTCCTG CTTG GAG GATGGTT
ATTGATCCCGGCATTGGATTTTCTAAGAATACGAAGC
AAAATTTGGAAATTCTTAGTG GTTTACAAAAGATACG
GCAAGAGATAGCTAAGAAGAGTTTGGCGGTGGCTCA
TTGCCCCTTGCTAATTGGACCTTCAAGAAAGAAGGTT
TCTGGGCGAGATTTGCAATCGCCCTGTAGCAGCTGAT
AG G GATCCTG CTACCGTTG CTTCTATCACTG CTG GAG
TTTTAGGTG GTG CAA
14 Am a ra nthus gDNAContig 584 ATTAG AG G CATCTTTTATCCCTAATG CTGTCCGTTTTC
rudis TTTTCTGGGTGAGACTATTTTGGAAGAAAAAAATTTA
TGTTCAATGTTTAATTTACTCAGAATTGATGCAAACA
GATGGATAAAAATGGTGTTTTCTTATGGTTTATGTTTC
AATAAAAGGATTTCAAATTCTAATCATATGAAGTTTG
AAATACTATGTGTTTTTGTAGCTTCTTGTATTGCTTTCC
TTCACTCATCACCAGTGAACGATGTTGAAGTTTGTTCC
AAGAAG CAAGAAGTCGTAATTG CAATCGG GAG CAAT
GTTGGTGACAGATTAGAAAATTTCAACGAAGCTCTGC
AACAAATGAAGAAATTAGGCATAGACATCACAAGGC
ATGGTTGTTTATACGAGACGGAACCTGCTTACGTGAC
TGATCAGCCGAAGTTTCTTAACTCTGCTTTAAGAGGC
TTTACAAGACTTGGGCCTCATGAATTATTAGGGGTAT
TGAAGAGAATCGAGAAGGATATGGGCAGAACCAAG
GGAATAAGGTATGGTCCTAGGCCAATTGACTTGGAC
ATACTATTTTATGGGAAGTTTAGGGTGAG
15 Am a ra nthus gDNAContig 570 TGATTTACTCAGAATTGATGCAAACAAATGGATAAAA
rudis ATG GTGTTTTCCTATG GTTTATGTTTCGATAAAAG GAT
TTCAAATCCCAATCGTATGAAGTTTGAAATACAACTA
TGTGTTTTTGTAGCTTCTTGTATTGCTTTCCTTCACTCA
TCACCAGTGAACGATGTTGAAGTTTGTTCCAAGAAGC
AAGAAGTCGTAATTGCAATCGGGAGCAATGTTGGTG
ACAGATTAGAAAATTTCAACGAAGCTCTGCAACAAAT
GAAGAAATTAGGCATAGACATCACAAGGCATGGTTG
TTTATACGAGACGGAACCTGCTTACGTGACTGATCAG
CCGAAGTTTCTTAACTCTGCTTTAAGAGGCTTTACAA
GACTTGGGCCTCATGAATTATTAGGGGTATTGAAGA
GAATCGAGAAGGATATGGGCAGAACCAAGGGAATA

AG GTATG GTCCTAG G CCAATTG ACTTG G ACATACTAT
TTTATGGGAAGTTTAGGGTGAGCTCTGAGAGCCTCAC
TATTCCCCATGAAAGGATATGGGAAAGACCATTTGTG
ATG G CACCATTAATTG A
16 Amaranthus cDNAContig 411 CTGAGAG CCTCACTATTCCCCATGAAAG GATATG G
GA
rudis AAGACCATTTGTGATGGCACCATTAATTGATTGTATT
GGGTCTGATGTAGAAAATGACACTATTTGTACATGGC
ATTCGTTATCAAATTTTTCGGGTGGAATATTTGAAGC
ATG G G ATAAACTCG G AG G AAGTTCCTTAATCG GG AA
GGATGGAATGAAAAGGGTTTTGCCCGTTGGGAACCG
TTTATGG G ATTG GTCTCATAAAACCTCAGTAATGG G A
GTCTTGAACTTGACTCCTGATAGCTTTAGTGATGGCG
GAAGGTTTCAATCTGTCGATACTGCGGTTGCTAAGGT
TCGTCAGATGATCTCTGACGGGGCGGACATAATTGA
CATTGGGGCGCAGTCAACAAGACCCATGGCAACTAG
GATTTCGG
17 Amaranthus gDNAContig 260 CGCTACTGCTGCAGCTGTCACCGCTGCAATTTTGAAT
rudis GGTGCTAACATAGTAAGGGTACATAATGTAGGATAT
AGTTCAGATGCTGCAAAGTTTTGTGATGCACCTATAC
TCATTTTACCCATCTCGCTCCTAATGGACCCCAGCCCC
TTAATAACGTCAATGTTGTG CCCACATTTCTTG G AG A
ACCCAATGCCAG GATCAAGAACTATCCTCCACAATGG
AATCCCAGATGGGTCTGCTTCTCACCTTTGCATATAGC
18 Am a ra nthus cDNAContig 1504 TCTGTATAACCTAAAGATTGAAACTTTTGAAGATATTT
viridis TTGAAGAAGTACTCTTTGGCTTTTTGATCCAGAAAAT
CATATTGGTATGAAGTGTTGTTTAATATACAATCAATT
TTTCTG AACTG G GTTATTAAAG AG AAG CATTGTAG AC
ATG AG G AATGTGTTCAAG CATCTCAAAACAACCAAAT
TAATCCCAAATG G G ATCTTCAACTGTAATAG AG CTTC
GTGTTTTGCTTTCCTTCACTCATCACCGGTGAACGATG
TTGAAGTTTGTTCCAAGAAGCAAGAAGTCGTAATTGC
AATCG G G AG CAATGTTG GTG ACAG ATTAG AAAATTT
CAACCAAG CTCTGCAACAAATG AAG AAATTAG G CAT
AG ACATCACAAG G CATG G GTGTTTATATG AG ACG G A
ACCTGCATACGTGACTGATCAACCGAAGTTTCTTAAC
TCTG CTTTAAG AG GCTTTACAAAACTTG G G CCTCATG
AATTATTAG GG GTTTTAAAG AAAATTG AG AAG G ATA
TGGGTAGAACCAAGGGAATAAGGTATGGTCCTAGGC
CAATTGACTTGGACATACTATTTTATGGGAAATTTAG
GGTGAGCTCTGAGAGCCTCACTATCCCCCATGAAAG
GATATGGGAAAGACCATTTGTGATGGCACCATTGATT
GATTGTATTGGGTCTGATGTAGAAAATGACACTATTT
GTACATGGCATTCATTATCAAATTTTTTGGGTGGAAT
CTTTGAAGCATGGGGTAAACTCGGTGGAAGTTCCCTA
ATCGGGAAGGATGGAATGAAAAGGGTTTTGCCCGTT
GGAAATCGCTTATGGGATTGGTCTCATAAAACCTCTG
TAATG GGAGTCTTGAACTTGACTCCTGATAGCTTTAG
TGATGGCGGAAGTTTTCAATCTGTCGATACTGCGGTT

GCTAAGGTTCGTCAGATGATCTCAGATGGGGCAGAT
ATAATTGACATCG GGGCACAATCAACCAGACCCATG
GCAACTAGGATTTCGGCTGAAGAAGAGCTAGAAAGA
GTAGTACCTGTATTGGAAGCTGTCAAGGATTTGATCG
AG GAAGAAG GAAGAATCTTGTCAGTG GATACGTTTT
ATTCTAAAGTTGCTTCGGAGGCCGTCAAGAAGGGGG
CACACATTGTGAATGATGTCTCTAGTGGGAAACTCGA
TTCCGAGATGTTTAATGTTGTTGCGGACCTTAAAGTT
CCTTATATAGCAATGCACATGCGAGGAGATCCGACTT
CAATGCAAAATTCTGAGAACTTGACGTACAATGATGT
TTGTAAGCAAGTG GCTACGGAGTTGAGCTCTAGGGT
CATAGATG CAGAATTATCGG GAATTCCTG CTTG GAG
GATAGTTATTGATCCCGGCATTGGATTTTCTAAGAAT
ACGAATCAAAATTTGGAAATTCTTCGTGGTTTACAAA
AGATACG G GAAGAGATAG CTAAGAAGAGTTTG G CA
GTGGCTCATTGCCCCTTGCTAATTGGACCTTCAAGAA
19 Amaranthus cDNAContig 655 GCAGCTGATAGGGATCCTGCTACCGTTGCTTCTATAA
viridis CTGCTGGAGTTTTAGGTGGTGCAAACATTGTAAGAGT
ACATAATGTGAGGGATAACCTTGATGCTGTCAAGTTA
TGTGATGCCATACTCGGAAAAACTGATTAACTGCTTA
TTTGTACCACCTTGTGAATGACGTCTAGTGGAAAGTT
CGATTGGGATATGATGAAGTCCGTTAGTTTGCTCGAA
AGTAGAGCTTTAGCCCGTAAGGTTATAGTTCTTACAG
ATGTAGAATCATTGG CTATTTGCCTATTTTTGCTTAGA
AGATCATAGCATTGATCCAGACTTTGGATTCCATCTA
GAATTATGTTGCGACTCATGGTCGAATTGGCCCTTTG
AG GAATTGTTGAAGTTCCTTGATCTATG GTTCAATCG
GCTTGGTTCGATGAAGGTTGGACTGTGTCGAGACAA
GATGGGTCAAAGAGACCAATGGACAAGAAGTCGACC
TTGGGAAAGCTTGATCAAGTTACTTGGACGAGCAG A
TAGCAGCAGGACTCTGGCGAGCATTAGACATACATA
TCATTTGTTTTTGGAGTCAGATCTGCAATCAATCAGTT
GCAATGGACAAACCATATACGGTTGTTAGTTGTTACT
GTCACTGCTTGAGTTGAATTAGATCATG
20 Am brosia cDNAContig 1413 TCGTTCTTTCATTTCTCTTCGGATGCTTCGATACAAGT
trifida CCATTCTCAAGAACAAGAAGTAGTAATTG CTTTAG GT
AG CAATGTG G GTGATAG G CTTAATAACTTTAATGAA
GCCTTAAGTCAAATGAAAAAATCAGGCATAGAAATA
ACAAGACATGCATGTTTATACGAAACCGAGCCAGCTT
ACGTGACTGATCAACCTCTTTTCCTCAATTCTGCCATC
AGAGGCGTTACAAAGCTGGGCCCACATGAGCTACTA
TCGGCCCTCAAGAAAATTGAAAAAGAAATGGGCCGA
ACCAAAGGTATTAGATACGGCCCGCGACCCATTGACT
TAGATATACTGTTTTATGGTAAACACAGAGTTAACTC
GGAAATTCTCACTGTTCCACATGAAAGAATCTTCGAG
AG G CCATTTGTTATG G CTCCGTTAGTTGACTTATTG G
GGTCGGAAATTGACAATGATACGGTTCTATGCTGGC
ATTCTTTCTCAAAAAGAGGACTTTTTGAATCTTG G GA

AAAATTAGGTGGCGAATCTTTGATAGGCAAAGATGG
GTTAAGAAGAGTTTTACCAGTCAATAATCGGTTATGG
GATTGGTCAAAGAAAACCTCTGTCATGG G AATTTTG A
ACTTGACTCCCGATAGTTTTAG CGACG GAG GAAAGTT
TGACACTGTG G G GTCCG CTATATCTCGTGTTAG G G CC
ATGATATCTGAAG G G G CAGACATAATTGATCTG G GA
GCTCAATCGACACGTCCAATGGCAACCAAGATTTCAG
TCCAAG AAG AACTAG ATAG GTTAATCC CTGTTCTC G A
AAAGATTCTTGAATTACCCGAAATTGAAGGAAAACTG
CTCTCTATCG ACACGTTTTACTCAG AAGTTG CTTTAG A
AG C G ATTAAG AAAG G G G CTCATATAATCAATG ATGT
ATCGGGTGGAAATCTAGATTCTGATATGTTTCGGGTA
GTTGCTAATCTTGATGTTCCATATATTGCTATGCACAT
GAGAGGGGACCCATCCACAATGCAAAACAGTGAGAA
TTTGAAGTATGATGATGTTTGTAAAGAAGTTGGTGAT
G AGTTGTATG AG CGTGTAAG AG CTG CAGAGTTATG C
G GTGTG CCTG CATG GAG GATCATTCTTGACCCAGG G
ATCGGGTTTTCAAAGAAAACCGAAGATAATTTGGATA
TTTTG ATG G G ATTAAAG AG AATTAG G AGTG AG ATTG
CACGGAAGAGCTTAGGGGTGTCACGTGCACCTTTGTT
AATCGGTCCTTCAAGAAAGAGATTTTTGGGGGAGAT
TTGTGGTCGGGCTTCTGCTGTCGAGAGAGATCCAGC
G ACTGTTG CTG CTGTTACATGTG C G GTTTTG G GTG GT
G CTAATGTTGTTCG C GTTCATAAC GTTG G AG ATAATG
CGGATGCTGTAAAGCTT
21 Am brosia gDNAContig 1328 AATGAAGCCTTAAGTCAAATGAAAAAATCAGGCATA
trifida G AAATAACAAG ACATG CATGTTTATACG AAACC G
AG
CCAGCTTACGTGACTGATCAACCTCTTTTCCTCAATTC
TGCCATCAGAGGCGTTACAAAGCTGGGCCCACATGA
G CTACTATCG G CC CTCAAG AAAATTG AAAAAG AAAT
GGGCCGAACCAAAGGTATTAGATACGGCCCGCGACC
CATTG ACTTAG ATATACTGTTTTATG GTAAACACAG A
GTTAACTC G G AAATTCTCACTGTTCCACATG AAAG AA
TCTTC G AG AG G C CATTTGTTATG G CTCC GTTAGTTG A
CTTATTGGGGTCGGAAATTGACAATGATACGGTTCTA
TG CTG G CATTCTTTCTCAAAAAG AG G ACTTTTTG AATC
TTG G G AAAAATTAG GTG G CG AATCTTTG ATAG G CAA
AG ATG G GTTAAG AAG AGTTTTAC CAGTCAATAATC G
GTTATGGGATTGGTCAAAGAAAACCTCTGTCATGGG
AATTTTGAACTTGACTCCCGATAGTTTTAG CGACG GA
GGAAAGTTTGACACTGTG GGGTCCGCTATATCTCGTG
TTAGGGCCATGATATCTGAAGGGG CAGACATAATTG
ATCTG G G AG CTCAATC G ACAC GTC CAATG G CAACCAA
GATTTCAGTCCAAGAAGAACTAGATAGGTTAATCCCT
GTTCTCGAAAAGATTCTTGAATTACCCGAAATTGAAG
GAAAACTGCTCTCTATCGACACGTTTTACTCAGAAGT
TGCTTTAGAAGCGATTAAGAAAGGGGCTCATATAATC
AATGATGTATCG GGTGGAAATCTAGATTCTGATATGT

TTCG G GTAGTTG CTAATCTTGATGTTCCATATATTG CT
ATGCACATGAGAGGGGACCCATCCACAATGCAAAAC
AGTGAGAATTTGAAGTATGATGATGTTTGTAAAGAA
GTTG GTGATGAGTTGTATGAG CGTGTAAGAG CTG CA
GAGTTATGCG GTGTG CCTG CATG GAG GATCATTCTTG
ACCCAGGGATCGGGTTTTCAAAGAAAACCGAAGATA
ATTTG GATATTTTGATGG GATTAAAGAGAATTAG GA
GTGAGATTGCACGGAAGAGCTTAGGGGTGTCACGTG
CACCTTTGTTAATCGGTCCTTCAAGAAAGAGATTTTTG
GGGGAGATTTGTGGTCGGGCTTCTGCTGTCGAGAGA
GATCCAGCGACTGTTGCTGCTGTTACATGTGCGGTTT
TGGGTGGTGCTAATGTTGTTCGCGTTCATAACGTTGG
AGATAATGCGGATGCTGTAAAGCTTTGTGATTCAATG
TTGAACCG
22 Am brosia gDNAContig 486 GCCTTAAGTCAAATGAAGAAATCAGGCATAGAGATA
trifida ACAAGACATGCATGTTTATACAAAACCGAGCCAGCTT
ATGTAACTGATCAACCTCTTTTTCTTAATTCTGCCATC
AGAGGCGTTACAAAGCTGGGCCCACATGAACTACTA
TCGGCCCTCAAGAAAATCGAAAAAGAATTGGGCCGA
ACCAAAGGTATTAGATACGGCCCGCGACCCATTGACT
TAGATATACTGTTTTATGGTAAACACAGAATTAACTC
GGAAATTCTCACTGTTCCACATGAAAGAATCTTCGAG
AG G CCATTTGTTATG G CTCCGTTAGTTGACTTATTG G
G GTCG GATATTGACAATG ATACG GTTCTATG CTG G CA
TTCTTTCTCAAAAAGAGGACTTTTTGAATCTTGGGAA
AAATTAGGTGGCGAATCTTTGATAGGCAAAGATGGG
TTAAGAAGAGTTTTACCGGTCAATAATCGGTTATGGG
ATTGGTCA
23 Am brosia cDNAContig 486 GCCTTAAGTCAAATGAAGAAATCAGGCATAGAGATA
trifida ACAAGACATGCATGTTTATACAAAACCGAGCCAGCTT
ATGTAACTGATCAACCTCTTTTTCTTAATTCTGCCATC
AGAGGCGTTACAAAGCTGGGCCCACATGAACTACTA
TCGGCCCTCAAGAAAATCGAAAAAGAATTGGGCCGA
ACCAAAGGTATTAGATACGGCCCGCGACCCATTGACT
TAGATATACTGTTTTATGGTAAACACAGAATTAACTC
GGAAATTCTCACTGTTCCACATGAAAGAATCTTCGAG
AG G CCATTTGTTATG G CTCCGTTAGTTGACTTATTG G
G GTCG GATATTGACAATG ATACG GTTCTATG CTG G CA
TTCTTTCTCAAAAAGAGGACTTTTTGAATCTTGGGAA
AAATTAGGTGGCGAATCTTTGATAGGCAAAGATGGG
TTAAGAAGAGTTTTACCGGTCAATAATCGGTTATGGG
ATTGGTCA
24 Am brosia cDNAContig 410 GACCCATCCACAATGCAAAACAGTGAGAATTTGAAGT
trifida ATAATGATGTTTGTAAAGAAGTTGGTGATGAGTTGTA
TGAGCGTGTAAGAGCTGCAGAGTTATGCGGTGTGCC
TGCATGGAGGATCATTCTTGACCCAGGGATCGGGTTT
TCAAAGAAAACCGAAGATAATTTGGATATTTTGATGG
GATTAAAGAGAATTAGGAGTGAGATTGCCCGGAAGA

GCTTAGGGGTGTCACGTGCACCTTTGTTAATCGGTCC
TTCAAGAAAGAGATTTTTGGGAGAGATTTGTGGTCG
GGCTTCTGCTGGTGAGAGAGATCCAACAACTGTTGCT
GCTGTTACATGTGCGGTTTTGGGTGGTGCTAATGTTG
TTCGCGTTCATAATGTTGGAGATGATGCTGATGCTGT
AAAGCT
25 Am brosia gDNAContig 381 TTCGTGTATCTCATGATCTCTGTATAATGTTAAACTTA
trifida TTATAGTTCAATATAAGTCACTGTGTGATCTAATTTCG
TATACAATTACTTTATTTGTGTTGATTCTGATCCTAAA
TATTGCTAATAGTTTGTGCTTAACTATATATCCCGTTA
AACATCACATTTACTTTATCCCTAGAAGATTTGGGCA
AGTTTTTACAAATTTATGGCGACGTTATTGTAATTTTT
TAAATCATTTTCGTGCAGCATCTTTTTCGTTCTTTCATT
TCTCTTCGGATGCTTCGATACAAGTCCATTCTCAAGAA
CAAGAAGTAGTAATTGCTTTAGGTAGCAATGTGGGT
GATAGGCTTAATAACTTTAATGAAGCCTTAAGTCAAA
TGAA
26 Am brosia gDNAContig 304 GACCCATCCACAATGCAAAACAGTGAGAATTTGAAGT
trifida ATAATGATGTTTGTAAAGAAGTTGGTGATGAGTTGTA
TGAGCGTGTAAGAGCTGCAGAGTTATGCGGTGTGCC
TGCATGGAGGATCATTCTTGACCCAGGGATCGGGTTT
TCAAAGAAAACCGAAGATAATTTGGATATTTTGATGG
GATTAAAGAGAATTAGGAGTGAGATTGCCCGGAAGA
GCTTAGGGGTGTCACGTGCACCTTTGTTAATCGGTCC
TTCAAGAAAGAGATTTTTGGGAGAGATTTGTGGTCG
GGCTTCTGCTG
27 Am brosia gDNAContig 255 GATTTGTGGTCGGGCTTCTGCTGGTGAGAGAGATCC
trifida AACAACTGTTGCTGCTGTTACATGTGCGGTTTTGGGT
GGTGCTAATGTTGTTCGCGTTCATAATGTTGGAGATG
ATGCTGATGCTGTAAAGCTTTGTGATTCAATGTTGAA
CCGGGTTGGAAGAACGTAACAGCTTTTTGAAATTTGA
TTGTGGGTTTTGGTCCGGGTGGTGGTGCTCGGGTGT
GGTTTGGGTTTTGGTTCGAGTGGGTGGTTGCTGGT
28 Am brosia gDNAContig 201 ACCTCATCACCTCCACAAATCACCACCACCCATCTCCA
trifida CCCTCCACCACCACCCACTTCATTCTCCCCACCCACCG
TATCTCATCACCATCATACCTGGTGGATTGCAGTTTGA
CTCTGTGGGGTCCGCTATATCTCGTGTTAGGACCATG
ATATCTGAAGGGGCGGACATAATTGATCTGGGAGCT
CAATCGACACGTCC
29 Am brosia cDNAContig 101 GGATTGCAGTTTGACTCTGTGGGGTCCGCTATATCTC
trifida GTGTTAGGACCATGATATCTGAAGGGGCGGACATAA
TTGATCTGGGAGCTCAATCGACACGTCC
30 Conyza gDNAContig 5446 TTTCTTCTTCTAGTTGGAGCTCTTTTACGTGGTGTCTT
canadensis CTTTTCCGAGTCATCTTCTTCCCCATCAGATGGATTTT
CTGCAGCCTTTTTTCTACGAACTGCTGTAATAGCAAAT
GTACTACGCAATCTAACATCTGGGAATTGTACAAAGT
TTATTGAAGATAGTGAAGGCAGATTCGACTGCCACCT

ACACATATAAGAAACCATTAACTTCTATACTTAACTCA
CAATATAAAACATCATTTGCATGTTCGTCAAAAACAA
TACCATTTCTTATCTTTGCTCAATGGATATGAAATCTG
CCAATACAAGATTATTCATTTGACCTCAATCTAGCATC
TGATGTCTATTCAAGGTATCGTTTATAATGAAGATTAT
TGTACTTCAAAATACTTTCTTGTGTAGTGGTATCAAAT
TTTGAGTTAAAGTTACTCCATTTGACCTCAAAAGCCA
AATAATGAGCAACAAACAACACAATTTCACCTCCCTT
ATACCCTGCGACTATATTTTATCTTCAAATCAATCCAT
TTCCATGTTTATCCTCTCCATACAGCTACATAATAAGT
TTTAGGGAAAAAACAAAACTAAACTAAACTAAGTTTA
CAGAATTCCCATTTCTTATCCTAAAATTTACAAGCAAT
TCAACATATATTCTTTATTTACAACTATAAATAGCATA
TGGGTATGTTGGTATATAGATATAGATATAGATATAC
ATATGTAGATGTGTATTATATGTGTGTAAATG G G GAG
AAAAAAGGAAACATATATTACCTGTGTAAAGAACAA
AATTG AGTAAAAGAAGGCAAAGAAGCCATTTCTAAC
CACTAAAATCTTGGGCTTTCAAGAATCCCACTTCAAA
G CTACCATTTCACATACCAAACCCCCCTTTCTATG G GT
TTAAAGATGAGGGCTTTACATTTATCTCTTTTACAATC
CAAATTTTCCAAAACCGAAATAATGTACGACATTCGG
TGCACAAGGTACAAACAGAAAAAACTACTTTTGTATT
TTAGATCTCAAGAAAGGAGTGGCCTTTTTGGTAATAA
CATACTTTATTCAATTGCCACTTACCTTCAAGAAATTA
ACAAAATTACCCACAATTAAAAAAGGGTTTCCCAGTT
TCACTCACACTTATTCAAGATTGATGCAAAATAAACCC
ATAAATAAGAAGGTTAAAATAGTGTTAAAGCCTTAAA
GGTGCTTGCTTTTTGTGTTTTTTGTGATGCCTATAAAA
AGATTCTTATTGTTTTCAAATTTTTTTATGTCAAGTTTT
CGTTTTTAACAGTTTATATAGTTATATAATTTGCAGAA
AG CCATAAAG CTCTGAACTTGAATGTTTTATAG CAG C
TCTTTGCAGTAATATCTTGTAGAGGTAAACCTGTTAA
CCCATATTTATTAATTTGTACATAAAATTGTTGAATTG
AATAGAGCTACCACTGGGACTTGTGTAGTCAAACTGT
AG AG CATCCCTGTAATG CTGGAAG CTTTATG AC CTAA
AAGGATTTGTAGACTTGTTATCTGTGGATTGGTATAA
AGATTTTCAAGTTGTTATTTTGAAACTTTGAATAGTAT
ATTATGCTCATTACTGAATGATACAATAGGGAGTCGC
GAATGTTAGAATTGATAAGAATTAGGATGAAGTTTGT
GTTTGAACGTTCCTTCTGTTTATAATCTTCATGTCACTT
CCATAGTACCATAACCCTAGGGCAACACGAGCCTTTA
GATTATGAATGGGCACACCCAATTGTTTAGACCTTGT
ATAAATGAAGTGAATATCATTGTTATAAGCATTCTGG
TGGTGGTTTTGCAGATTTACCTTTCTCTATCTAATTTG
AAGGTTTGTTGATTAAGGTGATACAAATGAGTGTTTT
CAAGCAGCTAATAGCTTCAAGATTAGTACGCACTCAT
GTCTGTGGATCTTATAGAGGTACACTTCCTCGAACAT
TCATATAGCGATGTTATTGTTAAGTTTTGAATCTGTAG

CAACATTATATATAATTTTTTTTGCATTGTTTTCCTGCA
GCATCCTTTTCACTCTTTCATTCGTCCTCGGATACTTCA
ATACAAGTGCATTCTCCAGAACAAGAAGTAGTAATTG
CTTTAGGTAGCAATGTGGGTAATAGACTTAATAACTT
TAATGAAGCCTTATCCCAGATGAAGAAATCGGGGAT
AGAAATAACAAGGCATGCTTGTCTATACGAAACTGAA
CCAGCTTATGTGACGGACCAGCCTCTTTTTCTCAACTC
TGCCGTTAGAGCCACTACAAAGCTTGGCCCTCATGAG
CTACTGTCCATTCTCAAGAAAATTGAAAAGGAAATGG
GTCGAACCAAAGGGCTTAGGTACGGCCCACGACCCA
TTGACCTAGATATATTGTTCTATGGTAAATGCAAAGT
TAACTCTGATATTCTAACTGTTCCTCATGAAAGAATCT
TTGAGAGGCCATTCGTTATGGCTCCATTAGTTGACTT
GTTAGGATCAGATGTAGACAATGATACGGTTCTATGC
TGGCATTCTTTTTCAAAAAATGGGCTTTTTGGATCTTG
GGAAACATTAGGTGGTGAATCTTCCATAGGAAAAGA
TGGTTTAAGAAGGGTTTTACCTGTCAATGATCGTTTA
TGGGATTGGTCAAAGAAAACTTCCGTCATGGGTATTT
TGAATATAACTCCTGATAGTTTTAGTGATGGAGGGAA
GTTTGATTCCATGGGGTCCGCTTTATCTCGTGTTCAGA
CCATGATATCTGAAGGGGTTGACATAATTGATCTAGG
AGCTCAATCCACACGCCCAATGGCGACCAAGATCTCA
GTCGAAGAGGAACTAGATAGGCTAATACCCGTTCTT
GAAAAGATTCTTGAATTACCTGAAATTGAAGGAAAGT
TGTTGTCTGTGGACACATTTTACTCGGAAGTTGCTTCA
GAGGCAATCAAGAAAGGGGCTCATATGGTCAATGAT
GTATCGGGTGGAATGTTAGATTCTGATATGCTTCATG
TTGTGGCTGATCTAAATGTTCCATATATCACTATGCAC
ATGAGAGGGGACCCATCCACAATGCAAAACAGTGAG
AATTTGAAGTATGATGATGTTGTCAAAGAAGTTGGG
GAGGAATTGTATGAACGTGTAAGGAATGCAGAGTTA
TGTGGTGTTCCCGCATGGAGGATGGTTCTTGATCCAG
GGATCGGGTTTTCAAAGAAAACCGAAGATAATTTGG
AGATATTGATGGGACTAAAGAGGTTTAGAAGTGAGA
TTGGACAAAAGAGCTTAGGGGTGTCTCGTGCACCTTT
GTTAATCGGACCTTCAAGAAAAAGGTTTTTGGGTGA
GATTTGTGGTCGGCCTTCTGCTGTTGAGAGAGATCCA
GGGACTGTAGCTGCTGTTACCAGTGCGATTTTGGGTG
GTGCCAATATCGTTAGGGTTCATAACATTGGACATAA
TGTGGATGCTGTTAAGCTTTGTGATTCAATGTTGGAT
CGAGCTGGTAGATCTTAGTAGCTTAAAGTTATTTGAC
ATCTTGTTTTTTATTCAATTTTCTGGACATTACTTTTTG
TATTTCTGTCTGGCAAATGATTTTACAGGGATATCCTA
GAGGCTAAATTGTATATTACATTCTTGATTTTCTCACA
AAGTTTTACTTTTTCAGTTTTTCTTGTTCAGTTTTGTTT
TTGAAAATTTGCTAGATCAGATTAAATCGTTGCTTTAT
GATCTTCGTGTCTTTTTTGGGACGCTGCGAGTTTCATT
TAGTGGTATTGTAAACTCCTTTTAAAGTTTGTACACAC

TTG GTATTTATG CTTCTAGTTTTCGTCTATGTCTGTC CT
ATATTGTGTATAGTATGTTTAAAGTTCATAAAAAG AG
GATAAACGAATAGCACGTAAATCTTATAATTCGATTC
CACAGAGTG CAAGTTATG CTTTCCTAAATGAAAG CAA
GAGTCTAGACAGTTTG GTCAAC GTTAACATG AG ACTA
TTGTAGAATACAACACCACAAGAAACCAAAACTGTCT
TGTGCATTTCTCTCTTTTCCAGGTTTAAAACTCAATAC
CAAGACTTGATATCAACTATTATTCTGCTTCAATGATT
CAGCTTCAGCTATAGCCATAGGATCATCTTTGGTGTC
AG GTTCATCCTTCTCACCATCTCGTTCCTCTG CCAGTT
TTTTTCTGTGCAATTCCTCTGCAACTTGCTTTGATGCTT
GGTCTTCTTTTTGAAGGCGTTGCATCTCTTCTTCTTGT
TGCTGTCGTTCAAACCATGTATCCGCATCGGCCCAAA
CTGTAATTTAG AG CCAAAACAACATGATTAGAATG CA
GATTCCAGAAGCCAAATTCAAACTGTAAGAAAAAAA
ATGTAGTGATGATTTAACTCAAAACAACTCACACAGC
TCCAAAATG GATG G G G GTTCAAATTAG AG GATAGCC
TAATAGATAGAAGCTTCTAATTATGGGGAAAAAAAA
AC G ATCATG G CAATGTATTACACAATCTAAAG CAACC
ACTATG AATAATAAAG ATAAATCTTTCCG AG AGTCCA
CATG CCTTGATATTTCATAAGATAG G CTTTTTCAG AAA
TCAGAATCTTCTTGGCAAATATAACACTAAAATCAGT
CTAATGCATGTTATTAAGTAAATCTTTATTTGTCCATA
GTATAATGCCATAGATTATCGTCAATTATCCACATCGT
CATTAAATATCAAGTAACCACATTATGAATTGACTTGT
TTAATCAAAGTTCATCTTACTTCTTCATAGATGAAAAA
GAG CTATG CAAATACAGAACACATCAGTTGTTCTAAC
ATATAATTACTGCTAGCTGTAGGAAGAAACCAAGATG
AAACTTATCTAGGATTCAAATTCATGGGGATCTGTTA
TTTAG ATG AATTTAG AG AAATAAG AAAATAAGTTG A
GTG AAGTCAGTTTCG AG GTTCCAAATTTGTCTTTATTA
GTTG AG CTAACAATATTAACCTCTGAAG CATGTATAG
TGTACTTGTATGAACCACTTAAGGATATAAATGAAGC
CAAATCAGTTTCATTCG CTAATTG AG CAAATG CACGT
TCTGTTTGTTAGTATTGAAATTTCTTTACAGGATTTCTT
TCAACTAAAAG CATCACATGTCCGACTCTCG GTTTG A
TATTTGTGACAAGTCTAATTGGTTCATCAGATGTACTT
ATG G CTAAATTTCG AAACTTG AAACAATAAG AG CTTA
GCACTCTTAACCATAAAGGGTTGCTGTTAATCTTACTT
GTTCTTGAAAGCAATTCCACAGTGAAGCATTTGTTAA
TTG G GAAGTTTTG CAATGTTTCTAAAG CTTC G ATG AT
ATTTTATATTTTCAAACATTTTTCATCACATGTGTTAAC
AAAAGCCATAAGAATACCGGGGTAATCAACTAAAGT
CTATTTAAAGTTG CATG CTCG AG AG CAAGAAAAAACC
ATCAAATTTACATAAACTGAAGGGCAAATGTACG
31 Conyza gDNAContig 5446 TTTTCTTCTTCTAGTTG GAG CTCTTTTACGTG
GTGTCTT
canadensis CTTTTCCGAGTCATCTTCTTCCCCATCAGATGGATTTT
CTGCAGCCTTTTTTCTACGAACTGCTGTAATAGCAAAT

GTACTACGCAATCTAACATCTGGGAATTGTACAAAGT
TTATTGAAGATAGTGAAGGCAGATTCGACTGCCACCT
ACACATATAAGAAACCATTAACTTCTATACTTAACTCA
CAATATAAAACATCATTTGCATGTTCGTCAAAAACAA
TACCATTTCTTATCTTTGCTCAATGGATATGAAATCTG
CCAATACAAGATTATTCATTTGACCTCAATCTAGCATC
TGATGTCTATTCAAGGTATCGTTTATAATGAAGATTAT
TGTACTTCAAAATACTTTCTTGTGTAGTGGTATCAAAT
TTTGAGTTAAAGTTACTCCATTTGACCTCAAAAGCCA
AATAATG AG CAACAAACAACACAATTTCACCTCCCTT
ATACCCTGCGACTATATTTTATCTTCAAATCAATCCAT
TTCCATGTTTATCCTCTCCATACAGCTACATAATAAGT
TTTAGGGAAAAAACAAAACTAAACTAAACTAAGTTTA
CAGAATTCCCATTTCTTATCCTAAAATTTACAAGCAAT
TCAACATATATTCTTTATTTACAACTATAAATAGCATA
TGGGTATGTTGGTATATAGATATAGATATAGATATAC
ATATGTAG ATGTGTATTATATGTGTGTAAATG G G G AG
AAAAAAGGAAACATATATTACCTGTGTAAAGAACAA
AATTGAGTAAAAGAAGGCAAAGAAGCCATTTCTAAC
CACTAAAATCTTGGGCTTTCAAGAATCCCACTTCAAA
G CTACCATTTCACATACCAAACCCCCCTTTCTATG G GT
TTAAAGATGAGGGCTTTACATTTATCTCTTTTACAATC
CAAATTTTCCAAAACCGAAATAATGTACGACATTCGG
TGCACAAGGTACAAACAGAAAAAACTACTTTTGTATT
TTAGATCTCAAGAAAGGAGTGGCCTTTTTGGTAATAA
CATACTTTATTCAATTGCCACTTACCTTCAAGAAATTA
ACAAAATTACCCACAATTAAAAAAGGGTTTCCCAGTT
TCACTCACACTTATTCAAGATTGATGCAAAATAAACCC
ATAAATAAGAAGGTTAAAATAGTGTTAAAGCCTTAAA
GGTGCTTGCTTTTTGTGTTTTTTGTGATGCCTATAAAA
AG ATTCTTATTGTTTTCAAATTTTTTTATGTCAAGTTTT
CGTTTTTAACAGTTTATATAGTTATATAATTTG CAG AA
AG CCATAAAG CTCTG AACTTG AATGTTTTATAG CAG C
TCTTTG CAGTAATATCTTGTAG AG GTAAACCTGTTAA
CCCATATTTATTAATTTGTACATAAAATTGTTGAATTG
AATAG AG CTACCACTG G G ACTTGTGTAGTCAAACTGT
AG AG CATCCCTGTAATG CTGG AAG CTTTATGACCTAA
AAGGATTTGTAGACTTGTTATCTGTGGATTGGTATAA
AG ATTTTCAAGTTGTTATTTTG AAACTTTG AATAGTAT
ATTATGCTCATTACTGAATGATACAATAGGGAGTCGC
GAATGTTAGAATTGATAAGAATTAGGATGAAGTTTGT
GTTTGAACGTTCCTTCTGTTTATAATCTTCATGTCACTT
CCATAGTACCATAACCCTAGGGCAACACGAGCCTTTA
GATTATGAATGGGCACACCCAATTGTTTAGACCTTGT
ATAAATGAAGTGAATATCATTGTTATAAGCATTCTGG
TGGTGGTTTTGCAGATTTACCTTTCTCTATCTAATTTG
AAGGTTTGTTGATTAAGGTGATACAAATGAGTGTTTT
CAAGCAGCTAATAGCTTCAAGATTAGTACGCACTCAT

GTCTGTGGATCTTATAGAGGTACACTTCCTCGAACAT
TATATAGCGATGTTATTGTTAAGTTTTGAATCTGTAGC
AACATTATATATAATTTTTTTTGCATTGTTTTCCTGCAG
CATCCTTTTCACTCTTTCATTCGTCCTCGGATACTTCAA
TACAAGTGCATTCTCCAGAACAAGAAGTAGTAATTGC
TTTAGGTAGCAATGTGGGTAATAGACTTAATAACTTT
AATGAAGCCTTATCCCAGATGAAGAAATCGGGGATA
GAAATAACAAGGCATGCTTGTCTATACGAAACTGAAC
CAGCTTATGTGACGGACCAGCCTCTTTTTCTCAACTCT
GCCGTTAGAGCCACTACAAAGCTTGGCCCTCATGAGC
TACTGTCCATTCTCAAGAAAATTGAAAAGGAAATGGG
TCGAACCAAAGGGCTTAGGTACGGCCCACGACCCAT
TGACCTAGATATATTGTTCTATGGTAAATGCAAAGTT
AACTCTGATATTCTAACTGTTCCTCATGAAAGAATCTT
TGAGAGGCCATTCGTTATGGCTCCATTAGTTGACTTG
TTAGGATCAGATGTAGACAATGATACGGTTCTATGCT
GGCATTCTTTTTCAAAAAATGGGCTTTTTGGATCTTGG
GAAACATTAGGTGGTGAATCTTCCATAGGAAAAGAT
GGTTTAAGAAGGGTTTTACCTGTCAATGATCGTTTAT
GGGATTGGTCAAAGAAAACTTCCGTCATGGGTATTTT
GAATATAACTCCTGATAGTTTTAGTGATGGAGGGAA
GTTTGATTCCATGGGGTCCGCTTTATCTCGTGTTCAGA
CCATGATATCTGAAGGGGTTGACATAATTGATCTAGG
AGCTCAATCCACACGCCCAATGGCGACCAAGATCTCA
GTCGAAGAGGAACTAGATAGGCTAATACCCGTTCTT
GAAAAGATTCTTGAATTACCTGAAATTGAAGGAAAGT
TGTTGTCTGTGGACACATTTTACTCGGAAGTTGCTTCA
GAGGCAATCAAGAAAGGGGCTCATATGGTCAATGAT
GTATCGGGTGGAATGTTAGATTCTGATATGCTTCATG
TTGTGGCTGATCTAAATGTTCCATATATCACTATGCAC
ATGAGAGGGGACCCATCCACAATGCAAAACAGTGAG
AATTTGAAGTATGATGATGTTGTCAAAGAAGTTGGG
GAGGAATTGTATGAACGTGTAAGGAATGCAGAGTTA
TGTGGTGTTCCCGCATGGAGGATGGTTCTTGATCCAG
GGATCGGGTTTTCAAAGAAAACCGAAGATAATTTGG
AGATATTGATGGGACTAAAGAGGTTTAGAAGTGAGA
TTGGACAAAAGAGCTTAGGGGTGTCTCGTGCACCTTT
GTTAATCGGACCTTCAAGAAAAAGGTTTTTGGGTGA
GATTTGTGGTCGGCCTTCTGCTGTTGAGAGAGATCCA
GGGACTGTAGCTGCTGTTACCAGTGCGATTTTGGGTG
GTGCCAATATCGTTAGGGTTCATAACATTGGACATAA
TGTGGATGCTGTTAAGCTTTGTGATTCAATGTTGGAT
CGAGCTGGTAGATCTTAGTAGCTTAAAGTTATTTGAC
ATCTTGTTTTTTATTCAATTTTCTGGACATTACTTTTTG
TATTTCTGTCTGGCAAATGATTTTACAGGGATATCCTA
GAGGCTAAATTGTATATTACATTCTTGATTTTCTCACA
AAGTTTTACTTTTTCAGTTTTTCTTGTTCAGTTTTGTTT
TTGAAAATTTGCTAGATCAGATTAAATCGTTGCTTTAT

GATCTTCGTGTCTTTTTTGGGACGCTGCGAGTTTCATT
TAGTGGTATTGTAAACTCCTTTTAAAGTTTGTACACAC
TTG GTATTTATG CTTCTAGTTTTCGTCTATGTCTGTC CT
ATATTGTGTATAGTATGTTTAAAGTTCATAAAAAG AG
GATAAACGAATAGCACGTAAATCTTATAATTCGATTC
CACAGAGTG CAAGTTATG CTTTCCTAAATGAAAG CAA
GAGTCTAGACAGTTTG GTCAAC GTTAACATG AG ACTA
TTGTAGAATACAACACCACAAGAAACCAAAACTGTCT
TGTGCATTTCTCTCTTTTCCAGGTTTAAAACTCAATAC
CAAGACTTGATATCAACTATTATTCTGCTTCAATGATT
CAGCTTCAGCTATAGCCATAGGATCATCTTTGGTGTC
AG GTTCATCCTTCTCACCATCTCGTTCCTCTG CCAGTT
TTTTTCTGTGCAATTCCTCTGCAACTTGCTTTGATGCTT
GGTCTTCTTTTTGAAGGCGTTGCATCTCTTCTTCTTGT
TGCTGTCGTTCAAACCATGTATCCGCATCGGCCCAAA
CTGTAATTTAGAG CCAAAACAACATGATTAGAATG CA
GATTCCAGAAGCCAAATTCAAACTGTAAGAAAAAAA
ATGTAGTGATGATTTAACTCAAAACAACTCACACAGC
TCCAAAATGGATGGGGGTTCAAATTAGAGGATAGCC
TAATAGATAGAAGCTTCTAATTATGGGGAAAAAAAA
AC G ATCATG G CAATGTATTACACAATCTAAAG CAACC
ACTATG AATAATAAAG ATAAATCTTTCCG AG AGTCCA
CATG CCTTGATATTTCATAAGATAG G CTTTTTCAG AAA
TCAGAATCTTCTTGGCAAATATAACACTAAAATCAGT
CTAATGCATGTTATTAAGTAAATCTTTATTTGTCCATA
GTATAATGCCATAGATTATCGTCAATTATCCACATCGT
CATTAAATATCAAGTAACCACATTATGAATTGACTTGT
TTAATCAAAGTTCATCTTACTTCTTCATAGATGAAAAA
GAG CTATG CAAATACAGAACACATCAGTTGTTCTAAC
ATATAATTACTGCTAGCTGTAGGAAGAAACCAAGATG
AAACTTATCTAGG ATTCAAATTCATGGGGATCTGTTA
TTTAG ATG AATTTAG AG AAATAAG AAAATAAGTTG A
GTG AAGTCAGTTTCG AG GTTCCAAATTTGTCTTTATTA
GTTG AG CTAACAATATTAACCTCTGAAG CATGTATAG
TGTACTTGTATGAACCACTTAAGGATATAAATGAAGC
CAAATCAGTTTCATTCG CTAATTG AG CAAATG CACGT
TCTGTTTGTTAGTATTGAAATTTCTTTACAGGATTTCTT
TCAACTAAAAG CATCACATGTCCGACTCTCG GTTTG A
TATTTGTGACAAGTCTAATTGGTTCATCAGATGTACTT
ATG G CTAAATTTCG AAACTTG AAACAATAAG AG CTTA
GCACTCTTAACCATAAAGGGTTGCTGTTAATCTTACTT
GTTCTTGAAAGCAATTCCACAGTGAAGCATTTGTTAA
TTG G GAAGTTTTG CAATGTTTCTAAAG CTTC G ATG AT
ATTTTATATTTTCAAACATTTTTCATCACATGTGTTAAC
AAAAGCCATAAGAATACCGGGGTAATCAACTAAAGT
CTATTTAAAGTTG CATG CTCG AG ATCAAG AAAAAACC
ATCAAATTTACATAAACTGAAGGGCAAATGTACG
32 Conyza cDNAContig 1401 TCGTCCTCGGATACTTCAATACAAGTGCATTCTCCAG

canadensis AACAAGAAGTAGTAATTGCTTTAGGTAGCAATGTGG
GTAATAGACTTAATAACTTTAATGAAGCCTTATCCCA
GATGAAGAAATCGGGGATAGAAATAACAAGGCATGC
TTGTCTATACGAAACTGAACCAGCTTATGTGACGGAC
CAGCCTCTTTTTCTCAACTCTGCCGTTAGAGCCACTAC
AAAGCTTGGCCCTCATGAGCTACTGTCCATTCTCAAG
AAAATTGAAAAGGAAATGGGTCGAACCAAAGGGCTT
AGGTACGGCCCACGACCCATTGACCTAGATATATTGT
TCTATGGTAAATGCAAAGTTAACTCTGATATTCTAACT
GTTCCTCATGAAAGAATCTTTGAGAGGCCATTCGTTA
TGGCTCCATTAGTTGACTTGTTAGGATCAGATGTAGA
CAATGATACGGTTCTATGCTGGCATTCTTTTTCAAAAA
ATGGGCTTTTTGGATCTTGGGAAACATTAGGTGGTGA
ATCTTCCATAGGAAAAGATGGTTTAAGAAGGGTTTTA
CCTGTCAATGATCGTTTATGGGATTGGTCAAAGAAAA
CTTCCGTCATGGGTATTTTGAATATAACTCCTGATAGT
TTTAGTGATGGAGGGAAGTTTGATTCCATGGGGTCC
GCTTTATCTCGTGTTCAGACCATGATATCTGAAGGGG
TTGACATAATTGATCTAGGAGCTCAATCCACACGCCC
AATGGCGACCAAGATCTCAGTCGAAGAGGAACTAGA
TAGGCTAATACCCGTTCTTGAAAAGATTCTTGAATTA
CCTGAAATTGAAGGAAAGTTGTTGTCTGTGGACACAT
TTTACTCGGAAGTTGCTTCAGAGGCAATCAAGAAAG
GGGCTCATATGGTCAATGATGTATCGGGTGGAATGT
TAGATTCTGATATGCTTCATGTTGTGGCTGATCTAAAT
GTTCCATATATCACTATGCACATGAGAGGGGACCCAT
CCACAATGCAAAACAGTGAGAATTTGAAGTATGATG
ATGTTGTCAAAGAAGTTGGGGAGGAATTGTATGAAC
GTGTAAGGAATGCAGAGTTATGTGGTGTTCCCGCAT
GGAGGATGGTTCTTGATCCAGGGATCGGGTTTTCAA
AGAAAACCGAAGATAATTTGGAGATATTGATGGGAC
TAAAGAGGTTTAGAAGTGAGATTGGACAAAAGAGCT
TAGGGGTGTCTCGTGCACCTTTGTTAATCGGACCTTC
AAGAAAAAGGTTTTTGGGTGAGATTTGTGGTCGGCC
TTCTGCTGTTGAGAGAGATCCAGGGACTGTAGCTGCT
GTTACCAGTGCGATTTTGGGTGGTGCCAATATCGTTA
GGGTTCATAACATTGGACATAATGTGGATGCTGTTAA
GCTT
33 Conyza cDNAContig 1262 GAAATAACAAGGCATGCTTGTCTATACGAAACTGAAC
canadensis CAGCTTATGTGACGGACCAGCCTCTTTTTCTCAACTCT
GCCGTTAGAGCCACTACAAAGCTTGGCCCTCATGAGC
TACTGTCCATTCTCAAGAAAATTGAAAAGGAAATGGG
TCGAACCAAAGGGCTTAGGTACGGCCCACGACCCAT
TGACCTAGATATATTGTTCTATGGTAAATGCAAAGTT
AACTCTGATATTCTAACTGTTCCTCATGAAAGAATCTT
TGAGAGGCCATTCGTTATGGCTCCATTAGTTGACTTG
TTAGGATCAGATGTAGACAATGATACGGTTCTATGCT
GGCATTCTTTTTCAAAAAATGGGCTTTTTGGATCTTGG

GAAACATTAGGTGGTGAATCTTCCATAGGAAAAGAT
GGTTTAAGAAGGGTTTTACCTGTCAATGATCGTTTAT
GGGATTGGTCAAAGAAAACTTCCGTCATGGGTATTTT
GAATATAACTCCTGATAGTTTTAGTGATGGAGGGAA
GTTTG ATTCCATG G G GTC CG CTTTATCTC GTGTTCAG A
CCATGATATCTGAAGGGGTTGACATAATTGATCTAGG
AGCTCAATCCACACGCCCAATGGCGACCAAGATCTCA
GTCGAAGAGGAACTAGATAGGCTAATACCCGTTCTT
GAAAAGATTCTTGAATTACCTGAAATTGAAGGAAAGT
TGTTGTCTGTGGACACATTTTACTCGGAAGTTGCTTCA
G AG G CAATCAAG AAAG G G G CTCATATG GTCAATG AT
GTATCGGGTGGAATGTTAGATTCTGATATGCTTCATG
TTGTGGCTGATCTAAATGTTCCATATATCACTATGCAC
ATGAGAGGGGACCCATCCACAATGCAAAACAGTGAG
AATTTGAAGTATGATGATGTTGTCAAAGAAGTTGGG
GAGGAATTGTATGAACGTGTAAGGAATGCAGAGTTA
TGTGGTGTTCCCGCATGGAGGATGGTTCTTGATCCAG
GGATCGGGTTTTCAAAGAAAACCGAAGATAATTTGG
AGATATTGATGGGACTAAAGAGGTTTAGAAGTGAGA
TTGGACAAAAGAGCTTAGGGGTGTCTCGTGCACCTTT
GTTAATCG G ACCTTCAAG AAAAAG GTTTTTG G GTG A
GATTTGTGGTCGGCCTTCTGCTGTTGAGAGAGATCCA
GGGACTGTAGCTGCTGTTACCAGTGCGATTTTGGGTG
GTGCCAATATCGTTAGGGTTCATAACATTGGACATAA
TGTGGATGC
34 Euphorbia gDNAContig 4643 TTTGTATATTAAAACAATAAAAATGATCCAGATTAAT
heterophylla AAATAGAAAAAGTATTAATAACCCGAAAATATCAAAT
ATCAAAATATAATGAAACATGAACACGAAATCACAAT
AAAGAAGTTGGTATCACAAACACAAAGACACCCTTAA
AGCTCCTATGTTTGTGGAGAGTTGTAAGTCGACTAAT
TTCAGATTGCAAAAGTTAAAAATGGCCAACT IIIIIA
G CTATGAG GTTAGATTAGATACGAGAATG CCTTG GT
GAAAAGCTGGTCACTGTTTCTTCATTCGCGTGGCAAT
TAACCCGGCATAATCGATACCCAATTCACGGACAAGG
TCAAAGGTATCAGCTTTACTCAACCCTTCGCTTTGATA
CTAAATTGCTGATTCTTATTCTGATTATGCTTTATTTCG
TTACTTCATTTTATTGTCTATGCACATAAGCTGTTCGA
CAAAAAGCCTGAATGAAACTGTGAGTGCTGGTACGC
GGTTACAATACTCCTGATTATGTCCAATGATTATTTGG
GTACTTTAATACCCTAATTTGTGAAGTTCACTAGCGA
AAGGGTAGTTTCTTCCCCGGTTATTTATCATTTTATGA
ATCCCCAAGTCTTTGAAGTACAGCTGATTAAAATGCA
AGTACTCATAAGTTGTCATTGTATGTTTGAAGTCCTTA
CATTTTTGGTATTTTACAGAATTTGTACTGAAGAAGC
ATAAATTCATACCTAGTTAGGCTTCCTTGTTCCTAATA
TGCTTCTCCTCAAGCGGCTGGTGTCCACTAAACAAGG
GTTCAATAATGCCATCAACCGTTTTGGAGGTAATATA
GTTATGCCTATGATGCTTTAAGTCGCTTTTCATCGATT

TGTTACATTACCAGGCTAAGATTCTGCAATTGAAGTT
AGAAATCGACGAGTCTTGTCTTGAAAAGTATGGATTT
TGTTTTGTCACCCTGGGGCCGGTTCAAGATTGCTTTCC
CAGGTTGCTGTCTTGGCATCACGTCCTAATCCAAAAC
CCTAAGGTGATGGGTTAATGGGTCCCTTCGCAGTTAT
ATATCATTCACTTAACTCATTAACTTCCATGTGGATAA
TCAACTCCACACTTGCCCCAACACTGTATAAACGTAG
ATTTTGACCTTTGGAAATCATTAGCTGGACAAATCCT
AACTAATTAGTATCAAGAGCCAAAATCTTTTGACCAA
GACCAAAATATGTTGTTTCATTGTTGCAGCATTGTCAT
CATCCTTTCTCCATACCGAACCAAATAGTTCGGTGGA
AGTTCATTCTCAAGAGCAAGAAGTAGTAATTGCATTA
GGAAGCAATGTGGGAGATAGAGTTCATAATTTCAAC
CAAGCATTGCAATTAATGAAAAGTTCCGGCATTAACA
TAACTAGACATGGTTGTTTGTACCAGACAGCACCTGC
TTATGTCACTGACCAACCTCACTTTCTCAACTCAGCAG
TTCGAGCTTTCACGAAACTCGGACCCCACGAGTTATT
AGGAGTTTTAAAGCAGATCGAAAAGGACTTGGGCCG
TACCAAAGGGATTAGGTACGGACCAAGGCCAATCGA
TTTGGATATACTTTTCTATGGAAAGTTCCGGATTAATT
CCGATACACTTATTGTTCCTCATGAGAGAATATGGGA
GAGACCCTTTGTGATGGCCCCATTGGTGGATTTACTC
GGCTCGGAAATCGAGAATGACACGGTCGCCAGCTGG
CATTCCTTGTCCGGCGGTCTTTTTGAATCATGGGAAA
AGTTGGGCGGCGAAAGCCTGATCGGGAAGGACGGA
ATGAAAAGAGTTACCCCGATCGGAAACCATTTATGG
GATTGGTCGGAAAAGACTTCTGTAATGGGAATTATCA
ATTTAACCCCCGATAGTTTCAGCGATGGGGGCAAGTT
GACAACTATTGATTCTATAGTTTCTAAGGTTCGCTCGA
TGATTTCCGAAGGGGCGGATATTGTCGATTTTGGTGC
TCAATCGACACGCCCTATGGCTAAAAGGATATCCCCG
CAAGAGGAAATGGATAGGCTAATCCCTGTATTGGAA
GCGGTTGTGAAAATACCCGAGATGACCGAAAAGCTC
ATATCGGTCGACACATTTTACTCGGAAGTCGCCTTAG
AAGCGGTCCAAAGAGGAGCAAATCTCGTAAATGACG
TATCTGGGGGGCAATTAGATCCAAAAATGACGGAAA
ATGTCGCTAATCTCGAGGTACCATATATCTTAATGCA
CATGAGGGGGGACCCCACCACAATGCAGAACACTCA
GAATCTAAAATACGATAATGTTTGTAAAGAGGTTGCC
TTTGAGTTGTTTTCGAGGGTTAAAGAAGCCGAGATGT
CCGGAATTCCAGCCTGGCGAATGTTTATTGACCCTGG
AATTGGGTTTTCGAAGAACACGAATCAGAATCTGGA
AATCCTGATGGGAATTCCAAGGATCCGGGCCGAGAT
TGGGAGGAAAAGCGTGGGTATTTCTCGTGGGCCGAT
TCTTATTGGGCCTTCGAGAAAGAGGTTTTTGGGCGAA
ATTTGCGAACGCCCTGAAGCAACTGAAAGAGACCCG
GCAACTGTTGCTTCTGTTACTACTGGGATTCTGGGAG
GGGCAAATATTGTTAGAGTTCATAATGTTAGGGATAA

TGTGGATGCTGTGAAGCTATGTGACTCGATGATGAA
ACTAAAGAGGTCTACTTAAAAATTATCGGGTATAGTT
CGATTTCTTTCTTTCCGAATCTTTTGTTTGACTTTCAGA
TTGTCTTTGATTGGCAAAACAGTTTCGGCTGCGGTTA
CTGTTTGCTGTTGCAGTTTACCGTTGTTGTTTCTAATT
GTGATTTTAAGTTATTGTTGTTAGTTGATTTGTACTTA
GTGCTTGGTGAAAATATAATTCACGGTTGCGGTTGGA
GGTATAAATTACTAAAATAGACATATTTTAAATAAATT
AGAAGTTATATTGAAGGGTATTTAGGATAAATAAAA
GTCCAAACCACAAAAAAAAAAAACCGTAAAACTATTG
ATTTGGTGAGGTTTGGAAAAGGAGATAAATCCCTTAT
GAAAAGCAACTCCATATATGTTTTGAAACTTAACCAA
ACACTTGTATACCTCCTTTTCCTTTTCAAACCTCAAAA
GACCTTTTTATAGTAAGCTCTTTTGAAGTATATACGCT
ATTGTTTCCGAATCATTTTGGACTTTTCGTCGAAATCA
ACAATACTGTTAGCTAGTCATATTTCAAGATATTTGG
GATGTAAAGATCAAGGTAGTTGTTGTTGTATTCTGTT
CTCATCAGCAAAATTTGTTATAACTCCACCAAGATTTA
ATTTTTTCCAATCTGAAAATGTCTTATGTTATAGTAAG
AAGTGAGATGAGTTTATGTCTTTGTGAAAAGATTTTG
CCCAATTAATGCAAAAATTTTGTGACAAGACAAGAGG
GGTGAAAGAGACAAGCAACAAGAGAAAGCAGTGAA
AGGGGCAAATGTTAGGAAACTGTTAGCTAGAAAAGG
GTAGAGGGTGGCCTACTTTACCAATTTGAGCATTAAA
AAAGCACATGGCTATGTATTTTAGACCAAAGTCCCTA
TTGTTGGCAGATGAACTAAGCAACCATATGGTTCATT
AACTAACTAACTAGTTATTGCAAATTTGACTGTTCCAA
TTCATCAAAGGACTCTCCCCATAGACCATTCAACACTT
GGGTTCTAGCCCTCCCTCTCACCCTCAGACAACCCTTG
TGAACCTCATTTTCATCATTGGTCCCCTTTTTTGTTAG
GACTACACTTGTCTCTATAAAATCTCTTCTAGCCATGT
GTTATGTGTAGACTTTTTCGGTTTGAGGATTGGGTCG
GGTTCGGGCTGGGTCTCGTCGGGCTTTTTACTGCAAA
CATCAAACTAGGGTTCTAAACCCATACTTCAGTACTCT
GGTTCGGATTGAACTTGCGAGATCATTCTAAATTCAA
TTTACGGCTCATAGATTATATTTGAGAGTTTTGAGTTT

ATAAATATATCTAAAAAGTTATATAATTACATTCTTTA
TTGGAATTCATCAATATATATAAGAATTTGACTTTGTT
GTAGCCATTTTGAAAGTTCGATAAGCTACTCCCTTCGT
CTAGTTTCAATAGTTCATTTAAAAGTTTCATTAATTCT
GTTTTCAATTGTCAATTTAAATTTTCATAATATTTTTCA
CCATTTTTTTTTCCAATTTGCCCTTGTATTTATTGAGAA
AGAGATTATGTTATGATGAAAGTATAAGTTGCTAATC
AAGAAGAAAGAGATTTTAATGTAATTATTTAAATAAT
AAATTCCTACCATTTTAATTGTGTGACAATTGGTTATA
ATGATTCCGTTGCATCGACAACTAAAACTAGATAGAA
GGATCAAAATATAAAATTTTAACATAATTAATACATAT

AATATATAAATGTATAATAGATACAATTATTATTCCTC
GAATTAAAATTGGCTAATTATATAATAATATAATCCA
ACCTATAAAAACTTTTGAGCTTTTAAGCTTGAGATGA
GCTTTGTAAAAATGATTGTACAAGCCCGACCATGAAA
GAGAGCCAAGTAGGGTCAAATGCATACCCCGGCTTG
AATATAAATTCAATATATGTTCTTTCAAATCTTGCC
35 Euphorbia gDNAContig 4556 AAATATAAATATAAATATAAAAATAAAAATAAATTAT
heterophylla AATAATATAAAATATAAAAATTAATTTAAACCATGTTT
TAAAAATAGTGTTATGAAAAACTCCGCTTGGGCGCCG
TCTAGATAGTTTACTTAGGCTGATTTTTAAAACAAAAC
CCCCCGCTTAACCCGCCTAAATCGGTCAATTGTTTATA
TCCTTATGACTACTTAAAATCG CAG CG GTGTTATG GT
GAATTATCATGTTTTAATGAGCTTATGAAATGCAATA
ATAAAAAAATAACCATTAATAATTTGATATACATTTAT
CGGGAAAAATGAAATAATAAAAAATAAAAAAATATC
AAAAAAATCTATAAAATATTTGTACCTTTTTCAATTAG
TACCCATTTTGTATATTAAAACAATAAAAATGATCCAG
ATTAATAAATAGAAAAAGTATTAATAACCCGAAAATA
TCAAATATCAAAATATAATGAAACATGAACACGAAAA
CACAATAAAGAAGTTGGTATCACAAACACAAAGACA
CCCTTAAAGCTCCTATGTTTGCGGAGAGTTGTAAGTC
GACTAATTTCAGATTGAAAAAGTTAAAAATGGCCAAC
TTTTTTAGCTATGAGGTTAGATTAGATACGAGAATGC
CTTTGTGAAAAGCTGGTCACTATTTCTTCATTCGCGTG
GCAATTAACCCGGCATAATCGATAGCCAATTCACGGA
CAAG GTCAAAG GTATCAG CTTTACTCAAC CCTTC G CT
TTGATACTAAATTGCTGATTCTTATTCTGATTATGCTTT
ATTTCGTTACTTCATTTTATTGTCTATGCACATAAGCT
GTTCGACAAAAAGCCTGAATGAAACTGTGAGTGCTG
GTACGCGGTTACAATACTCCTGATTATGTCCAATGAT
TATTTGGGTACTTTAATACCCTAATTTGTGAAGTTCAC
TAGCGAAAGGGTAGTTTCTTCCCCGGTTATTTATCATT
TTATGAATCCCCAAGTCTTTGAAGTACAGCTGATTAA
AATGCAAGTACTCATAAGTTGTCATTGTATGTTTGAA
ATCCTTACGTTGTTGGTATTTTACAGAATTTGTACTGA
AGAAGCATAAATTCATACCTAGTTAGGCTTCCTTGTTC
CTAATATGCTTCTCCTCAAGCGGCTGGTGTCCACTAA
ACAAGGGTTCAATAATGCCATCAACCGTTTTGGAGGT
AATATAGTTATGCCTATGATGCTTTAAGTCGCTTTTCA
TCGATTTGTTACATTACCAGGCTAAGATTCTGCAATTG
AAGTTAGAAATCGACGAGTCTTATCTTGAAAAGTATG
GATTTTGTTTTGTCACCCTGGGGCCAGTTCAAGATTG
CTTTC CCAG GTTG CTGTCTCG G CAC CACATC CTAATCC
AAAACCCTAAG GTGATG G GTTAATG G GTCCCTTCG CA
GTTATATTTCATTCACTTAACTCATTAGCTTCCATGTG
GATAATCAACTCCACACTTGCCCCAAAACTGTATAAA
CGTAGATTTTGACCTTTGGAAATCATTAGCTGGACAA
ATCCTAACTAATTAGTATCAAGAGCCAAAATCTTTTG

ACCAAGACCAAATATGTTGTTTCATTGTTGCAGCATT
GTCATCATCCTTTCTCCATACCGAACCAAATAGTTCGG
TGGAAGTTCATTCTCAAGAGCAAGAAGTAGTAATTGC
ATTAGGAAGCAATGTGGGAGATAGAGTTCATAATTT
CAACCAAGCATTGCGATTAATGAAAAGTTCCGGCATT
AACGTAACTAGACATGGTTGTTTGTACCAGACAGCAC
CTGCTTATGTCACTGACCAACCTCACTTTCTCAACTCA
GCAGTTCGAGCTTTCACGAAACTCGGACCCCACGAGT
TATTAGGAGTTTTAAAGCAGATCGAAAAGGACTTGG
GCCGTACCAAAGGGATTAGGTACGGACCAAGGCCAA
TCGATTTGGATATACTTTTCTATGGAAAGTTCCGGATT
AATTCCGATACACTTATTGTTCCTCATGAGAGAATAT
GGGAGAGACCCTTTGTGATGGCCCCATTGGTGGATTT
ACTCGGCTCGGAAATCGAGAATGACACGGTCGCCAG
CTGGCATTCCTTGTCCGGCGGTCTTTTTGAATCATGG
GAAAAGTTGGGCGGCGAAAGCCTGATCGGGAAGGA
CGGAATGAAAAGAGTTACCCCGATCGGAAACCATTT
ATGGGATTGGTCGGAAAAGACTTCTGTAATGGGAAT
TATCAATTTAACCCCCGATAGTTTCAGCGATGGGGGC
AAGTTGACAACTATTGATTCTATAGTTTCTAAGGTTCG
CTCGATGATTTCCGAAGGGGCGGATATTGTCGATTTT
GGTGCTCAATCGACACGCCCTATGGCTAAAAGGATAT
CCCCGCAAGAGGAAATGGATAGGCTAATCCCTGTATT
GGAAGCGGTTGTGAAAATACCTGAGATGACCGGAAA
GCTCATATCGGTCGACACATTTTACTCGGAAGTCGCC
TTAGAAGCGGTCCAAAGAGGAGCAAATCTCGTAAAT
GACGTATCTGGGGGGCAATTAGATCCAAAAATGACG
GAAAATGTCGCTAATCTCGAGGTACCATATATCTTAA
TGCACATGAGGGGGGACCCCACCACAATGCAGAACA
CTCAGAATCTAAAATACGATAATGTTTGTAAAGAGGT
TGCCTTTGAGTTGTTTTCGAGGGTTAAAGAAGCCGAG
ATGTCCGGAATTCCAGCCTGGCGAATGATTATTGACC
CTGGAATTGGGTTTTCGAAGAACACGAATCAGAATCT
GGAAATCCTGATGGGAATTCCAAGGATCCGGGCCGA
GATTGGGAGGGAAAGCGTGGGTATTTCTCGTGGGCC
GATTCTTATTGGGCCTTCGAGAAAGAGGTTTTTGGGC
GAAATTTGCGAACGCCCTAAAGCAACTGAAAGAGAC
CCGGCAACTGTTGCTTCTGTTACTACTGGGATTCTGG
GAGGGGCAAATATTGTTAGAGTTCATAATGTTAGGG
ATAATGTGGATGCTGTGAAGCTATGCGACTCGATGAT
GAAACTAAAGAGGTCTACTTAAAAAGTATCGGGTAT
AGTTCGATTTCTTTCTTTCCGAATCTTTTGTTTGACTTT
CAGATTGTCTTTGATTGGCAAAACAGTTTCGGCTGCG
GTTACTGTTGTTGTTTGTTGTTGCAGTTTAGTGTTGTT
GTTTCTAATTGTGATTTTAAGTTATTGTTGTTAGCTGA
TTTGTACTTATTGTTTGGTGAAAATATAATTCACGGTT
GCGGTTGGAGGTATAAATTACTAAAATAGACATATTT
TAAATAAATTATAAGTTATATTGAAGGGTATTTAGGA

TAAATAAAAATCCAAACCACAAAAAAAAACCCGTAAA
ACTATTG ATTTG GTG AG GTTTG G AAAAG G AG ATAAA
TCCCTTATAAAAAAAACAACTTCATATATGTTTTGAAA
CTTAACCAAACACTTGTATACCTCCTTTTCCTTTTCAAA
CCTCAAAAGACCTTTTTATAGTAAGCTCTTTTGAAGTC
TATACGCTATTGTTTCCGAATCATTTTGGACTTTTCAT
CGAAATCAACAATACTGCTAGCTAGTCATATTTCAAG
ATATTTGGGATGTAAAGATCAAGGTAGTTGTTGTTGT
ATTCTGTTCTCATCAGCAAAATTTGTTATAACTCCACC

ATAGTAAGAAGTGAGATGAGTTTATGTCTTTGTGAAA
AGATTTTGCCCAATTAATGCAAAAATTTTGTGACAAG
ACAAGAGGGGTGAAAGAGACAAGCAACAAGAGAAA
G CAGTG AAAG G G GCAAATGTTAG G AAACTGTTAG CT
AG AAAAG G GTAG AG G GTGG C CTACTTTAC CAATTTG
AGCATTAAAAAAGCACATGGCTATGTATTTTAGACCA
AAGTCCCTATTGTTGGCAGATGAACTAAGCAACCATA
TGGTTCATTAACTAACTAACTAGTTATTGCAAATTTGA
CTGTTCCAATTCATCAAAGGACTCTCCCCATAGACCAT
TCAACACTTGGGTTCTAGCCCTCCCTCTCACCCTCAGA
CAACCCTTGTGAACCTCATTTTCATCATTGGTCCCCTT
TTTTGTTAGGACTACACTTGTCTCTATAAAATCTCTTCT
AGCCATGTGTTATGTGTAGACTTTTTCGGTTTGAGGA
TTGGGTCGGGTTCGGGCTGGGTCTCGTCGGACTTTTT
ACTGCAAACATCAAACTAGGGTTCTAAACCCATACTT
CAGTACTCTGGTTCGGATTGAACTTGCGAGATCATTC
TAAATTCAATTTACGGCTCATAGATTATATTTGAGAGT
TTTGAGTTTTGGGTGGATTAGATTGAAAACGACTATT
TTTTGTTGTATAAATATATCTAAAAAGTTATATAATTA
CATTCTTTATTGGAATTCATCAATATATATAAGAATTT
GACTTTGTTGTAGCCATTTTGAAAGTTCGATAAGCTA
CTCCCTTCGTCTAGTTTCAATAGTTCATTTAAAAGTTT
CATTAATTCTGTTTTCAATTGTC
36 Euphorbia cDNAContig 1425 GCAGCATTGTCATCATCCTTTCTCCATACCGAACCAAA
heterophylla TAGTTCGGTGGAAGTTCATTCTCAAGAGCAAGAAGT
AGTAATTG CATTAG G AAG CAATGTG G G AG ATAG AGT
TCATAATTTCAACCAAGCATTGCGATTAATGAAAAGT
TCCGGCATTAACGTAACTAGACATGGTTGTTTGTACC
AGACAGCACCTGCTTATGTCACTGACCAACCTCACTTT
CTCAACTCAGCAGTTCGAGCTTTCACGAAACTCGGAC
CCCACGAGTTATTAGGAGTTTTAAAGCAGATCGAAAA
GGACTTGGGCCGTACCAAAGGGATTAGGTACGGACC
AAGGCCAATCGATTTGGATATACTTTTCTATGGAAAG
TTCCGGATTAATTCCGATACACTTATTGTTCCTCATGA
GAGAATATGGGAGAGACCCTTTGTGATGGCCCCATT
GGTGGATTTACTCGGCTCGGAAATCGAGAATGACAC
GGTCGCCAGCTGGCATTCCTTGTCCGGCGGTCTTTTT
GAATCATGGGAAAAGTTGGGCGGCGAAAGCCTGATC

GGGAAGGACGGAATGAAAAGAGTTACCCCGATCGG
AAACCATTTATGGGATTGGTCGGAAAAGACTTCTGTA
ATGGGAATTATCAATTTAACCCCCGATAGTTTCAGCG
ATGGGGGCAAGTTGACAACTATTGATTCTATAGTTTC
TAAGGTTCGCTCGATGATTTCCGAAGGGGCGGATATT
GTCGATTTTGGTGCTCAATCGACACGCCCTATGGCTA
AAAGGATATCCCCGCAAGAGGAAATGGATAGGCTAA
TCCCTGTATTGGAAGCGGTTGTGAAAATACCTGAGAT
GACCGGAAAGCTCATATCGGTCGACACATTTTACTCG
GAAGTCGCCTTAGAAGCGGTCCAAAGAGGAGCAAAT
CTCGTAAATGACGTATCTGGGGGGCAATTAGATCCA
AAAATGACGGAAAATGTCGCTAATCTCGAGGTACCAT
ATATCTTAATGCACATGAGGGGGGACCCCACCACAAT
GCAGAACACTCAGAATCTAAAATACGATAATGTTTGT
AAAGAGGTTGCCTTTGAGTTGTTTTCGAGGGTTAAAG
AAGCCGAGATGTCCGGAATTCCAGCCTGGCGAATGA
TTATTGACCCTGGAATTGGGTTTTCGAAGAACACGAA
TCAGAATCTGGAAATCCTGATGGGAATTCCAAGGATC
CGGGCCGAGATTGGGAGGGAAAGCGTGGGTATTTCT
CGTGGGCCGATTCTTATTGGGCCTTCGAGAAAGAGG
TTTTTGGGCGAAATTTGCGAACGCCCTAAAGCAACTG
AAAGAGACCCGGCAACTGTTGCTTCTGTTACTACTGG
GATTCTGGGAGGGGCAAATATTGTTAGAGTTCATAAT
GTTAGGGATAATGTGGATGCTGTGAAGCTA
37 Euphorbia cDNAContig 1425 GCAGCATTGTCATCATCCTTTCTCCATACCGAACCAAA
heterophylla TAGTTCGGTGGAAGTTCATTCTCAAGAGCAAGAAGT
AGTAATTGCATTAGGAAGCAATGTGGGAGATAGAGT
TCATAATTTCAACCAAGCATTGCAATTAATGAAAAGT
TCCGGCATTAACATAACTAGACATGGTTGTTTGTACC
AGACAGCACCTGCTTATGTCACTGACCAACCTCACTTT
CTCAACTCAGCAGTTCGAGCTTTCACGAAACTCGGAC
CCCACGAGTTATTAGGAGTTTTAAAGCAGATCGAAAA
GGACTTGGGCCGTACCAAAGGGATTAGGTACGGACC
AAGGCCAATCGATTTGGATATACTTTTCTATGGAAAG
TTCCGGATTAATTCCGATACACTTATTGTTCCTCATGA
GAGAATATGGGAGAGACCCTTTGTGATGGCCCCATT
GGTGGATTTACTCGGCTCGGAAATCGAGAATGACAC
GGTCGCCAGCTGGCATTCCTTGTCCGGCGGTCTTTTT
GAATCATGGGAAAAGTTGGGCGGCGAAAGCCTGATC
GGGAAGGACGGAATGAAAAGAGTTACCCCGATCGG
AAACCATTTATGGGATTGGTCGGAAAAGACTTCTGTA
ATGGGAATTATCAATTTAACCCCCGATAGTTTCAGCG
ATGGGGGCAAGTTGACAACTATTGATTCTATAGTTTC
TAAGGTTCGCTCGATGATTTCCGAAGGGGCGGATATT
GTCGATTTTGGTGCTCAATCGACACGCCCTATGGCTA
AAAGGATATCCCCGCAAGAGGAAATGGATAGGCTAA
TCCCTGTATTGGAAGCGGTTGTGAAAATACCCGAGAT
GACCGAAAAGCTCATATCGGTCGACACATTTTACTCG

GAAGTCGCCTTAGAAGCGGTCCAAAGAGGAGCAAAT
CTCGTAAATGACGTATCTGGGGGGCAATTAGATCCA
AAAATGACGGAAAATGTCGCTAATCTCGAGGTACCAT
ATATCTTAATGCACATGAGGGGGGACCCCACCACAAT
GCAGAACACTCAGAATCTAAAATACGATAATGTTTGT
AAAGAGGTTGCCTTTGAGTTGTTTTCGAGGGTTAAAG
AAGCCGAGATGTCCGGAATTCCAGCCTGGCGAATGT
TTATTGACCCTGGAATTGGGTTTTCGAAGAACACGAA
TCAGAATCTGGAAATCCTGATGGGAATTCCAAGGATC
CGGGCCGAGATTGGGAGGAAAAGCGTGGGTATTTCT
CGTGGGCCGATTCTTATTGGGCCTTCGAGAAAGAGG
TTTTTGGGCGAAATTTGCGAACGCCCTGAAGCAACTG
AAAGAGACCCGGCAACTGTTGCTTCTGTTACTACTGG
GATTCTGGGAGGGGCAAATATTGTTAGAGTTCATAAT
GTTAGGGATAATGTGGATGCTGTGAAGCTA
38 Euphorbia cDNAContig 681 TTAAAGCAGATCGAAAAGGACTTGGGCCGTACCAAA
heterophylla GGGATTAGGTACGGACCAAGGCCAATCGATTTGGAT
ATACTTTTTCTATGGAAAGTTCCGGATTAATTCCGATA
CACTTATTGTTCCTCATGAGAGAATATGGGAGAGACC
CTTTGTGATGGCCCCATTGGTGGATTTACTCGGCTCG
GAAATCGAGAATGACACGGTCGCCAGCTGGCATTCC
TTGTCCGGCGGTCTTTTTGAATCATGGGAAAAGTTGG
GCGGCGAAAGCCTGATCGGGAAGGACGGAATGAAA
AGAGTTACCCCGATCGGAAACCATTTATGGGATTGGT
CGGAAAAGACTTCTGTAATGGGAATTATCAATTTAAC
CCCCGATAGTTTCAGCGATGGGGGCAAGTTGACAAC
TATTGATTCTATAGTTTCTAAGGTTCGCTCGATGATTT
CCGAAGGGGCGGATATTGTCGATTTTGGTGCTCAATC
GACACGCCCTATGGCTAAAAGGATATCCCCGCAAGA
GGAAATGGATAGGCTAATCCCTGTATTGGAAGCGGT
TGTGAAAATACCCGAGATGACCGAAAAGCTCATATC
GGTCGACACATTTTACTCGGAAGTCGCCTTAGAAGCG
GTCCAAAGAGGAGCGAATCTCGTAAATGACGTATCT
GGGGGGCAATTAGATCCAAAAAT
39 Euphorbia gDNAContig 444 TCTGGGGAGTGATGGTTGGAATAGATGCTTATTCCTG
heterophylla GCAGAGATCGAAATGCTCCATTTTAGTTTCGGGTTTT
GTTAAAATGGGGATTTGTTAAATTGTTTCAATGGATA
ATTCACTGTTGTATTAGACTTGATATTGTTAGCAGACA
CTGATTTTTATGTATTCGTGAACTGAAAAGGTTGATTT
TCTTCCATGTTTTGTCTGATTTATGATGGAACTTCATTT
CTTAGTGGTTAATGTTGGTATTTCCTTCTGTTGTTTGA
TTTGTATCTGTAATTGGTACCATGTTATATGCAATCTT
TTAAAAAATGTTTTAAAAAGCGCTATACGTGGCAGCT
GAGACTGTTGAGACTTGAAAACGCACGGGCATGTGC
GGGGTTTAGGCGGATTTGTATTTTTTATTTTTTAAAAT
ATTTTTTAATATATAAAAATATAAATATAAA
40 Euphorbia gDNAContig 379 GTTATGATGAAAGTATAAGTTGCTAATCAAGAAGAA
heterophylla AGAGATTTTAATGTAATTATTTAAATAATAAATTCCTA

CCATTTTAATTGTGTGACAATTGGTTATAATGATTCCG
TTGCATCGACAACTAAAACTAGATAGAAGGATCAAA
ATATAAAATTTTAACATAATTAATACATATAATATATA
AATGTATAATAGATACAATTATTATTCCTCGAATTAAA
ATTGGCTAATTATATAATAATATAATCCAACCTATAAA
AACTTTTGAGCTTTTAAGCTTGAGATGAGCTTTGTAA
AAATGATTGTACAAGCCCGACCATGAAAGAGAGCCA
AGTAGGGTCAAATGCATACCCTGGCTTGAATATAAAT
TCAATAT
41 Digitaria gDNAContig 4031 AAATCGTAAAATTTATAACTAACATGTTCCTTCATGAA
sanguinal is TCCAAAAGCCAAGTAAACAGGTCCATGAGTGCCTTTG
TGAGATTGCTTCGAATAGAATATACCTACGGCTCTTA
ATTTCAGATTCTCTTAGGTAGTGTTTAGGTAGCGTTTG
GAAGTAGATATTTAG G CTTG GAATTAG GAATTG G CA
TTGAGATCTACGAATACCTGCCGTTTGGATGTCTAAG
AATTTGGAATTGGAATTGCAGCCCAATACCAACCGGC
ATTCCTTGGCCTCTCATCTGCCTGCCCTCAGTATAGAT
AGAG CTTATCTCCTTCATCCTCG CG GAGTG GTG G CAA
GCGGCGG CGAGATCCGGACCACATGGGGTGTGGG A
GCGCGGTGGCAGAGTGGTGGCAAGCGATGGCGACG
GCACCGTGCCGCCGTGCCACATTGGCACGGCGACGG
ACGAGTTTGGATGGTGTCAGTACAGACCACTGCCCA
ATTCTATCCTTTTGTGCATCCAAACATAAAATCTGAAT
TAG GATG CTCTTTTGATTCTACAAG G CAATGTAATGA
CCATCCAAACAACAGATTCTGAATTGGAGTCAATTCA
ATGTTACGATTGTATTGGCATCGGACCTAATTCAATG
TCATG CCCTCTAGTATCTACATTCAAACG GAG CGGAA
AAATCTACCTCCGTCCCAAGATTCCGGCCCAAGATCC
CGACTCTTAATACTTTTTTCATCTTTCGCTGAAATTTCA
GCCCAAGATCCCGGCCCGCCTTTTTGCCTCCACGCTG
GGCCTGGTGGGACGCGGCCCCTTCACGAGAGTCGAG
AG G G GAAAG CG GAAAG G GAAACAAAAAAACTCAAC
GAATCGCCGCCGCCGCCTTGCCCTGCAGCGAACAATT
AAGGGCCCCGTACCTCTCTCTGCCCGTTCTTCCGCTGC
ACTCCGCATCTGAGCGGACGGGTGGGGACACCGCCG
ACGGCGCCGGGGTGGCGCCTCCGTCTGTGCTCCAAC
CAAGGCAGTGGGTGCTGGTTGCTGCCAATCGACCGG
CCGGGCATGCTCTGACCATCGAGAAAATCTTCGGGTA
ACACAACGTTGTTCATTTCGTTTGTATCGTGGCATAGT
TGATTTCCCTAACTTTTAGGATGCGTTTCGATTCATTG
TATCTGTATACCAAAACAGAGTTCGATAACTTAGATT
GAACGGTAGGCTTCAGCATCTAAG G CAG CAG GTG CA
GGTCTATTCTATCACTCTGAAAATTAGTTTTAACTGTC
TGATGATAGGAGGATTAGCTAATGTTGTTATATGAG
GAG GTTTCTTG CTGACTAGAGAG CTATTTGACCACCT
GATAGATTGCCTCGTTAGCAACTTAGCATTATGACGA
CGATGGCAGCGAGCCATTTCATGTAGAAAACGAACA
TGAGCTGAGAAGCTTAATCGTATAAGCTTCAATTGGC

TTCCTGGCTGGGGAGGTTTGCTAGAGAACTTCTGTAT
TTTGTTCATTCATTTAATCTGATGTATGTTGGCAGCTC
TCCTGTCAGGTACAGAAATTTAGACGGCCCTGAAACC
AAGCAGGGCAACCTCACCAATAGGGGGGCAGTCGCA
CCACAAAGGTTGCTTGCCTCCAGTGGGGCATCTCCTC
TCCTTACATTGAGAGGTTTATTTGACGTCTAAGATATC
TGAACTCCTGCCTCCAGTTAGAGAAAAGGCCCTTGTT
CATACCTCAAATTTGTCTTTGCTCTTCTATTGACCAGG
TGTGATGGAGTGATGCTTGCGTGAAATATCCTACAAG
GCTACAATTTATTTGAAGCATTTGCTTTCTTAATTATC
ATATGTTCAACGATGCTCCTCCATGCTAAGGAGTCCC
TTAAGAAGATGTATCCTGTTGCTATGAACTACTTTGG
AGGGCTCCTCCCATCGCATTCGTTTTCAGGTACTGTTC
AAATCTTTTCTTTTCAAATCCCCTATCATGCGATCAAG
AGCAGCTCTAAGCTTCTAACTCACCCCTTTGCATTTCT
AAACAGTGTCTGATCTTGTTCATCCGCTGAGGTTCCC
AAACAGAGCTCCTAGACATGCTATTCCATTCAGGGCT
CGTTCGTTTACGCGATGTTCGCTTGAGGGATGTTCAA
CTGACCAAGAGATTGTGATTGCTATGGGAAGCAACG
TGGGTGATGGAGTCAGTACATTTGACAGGGCATTAC
AAATGATGAAAAGCTCAGGCGTGAACATCACTAGGC
ATGCCTGTCTATATGAGACTGCCCCTGCTTATGTGAC
CGATCAGCCACGGTTCCTGAACTCTGCCATTCGAGGT
ACGACTAGGCTGGGACCTCACGAGTTGCTTAAGAAA
CTAAAGGAAATTGAGAAGGATATAGGACGCACTGGT
GGAATAAGGTATGGCCCAAGACCAATCGATCTAGAT
ATACTTCTGTACGGCAATTCCCAGATTGATACTGAGG
CTCTAATTGTGCCACATGAACGCATCCAGGAGAGGCC
ATTTGTTCTAGCACCTCTTGTTGACCTTCTAGGTGCAT
CTGGCAATGATAGTGTCGAAACAAGCTGGCACTCTCT
TTCAAAGTGCAGTGGTGGTTTCTTTGAATTATGGAAT
AAACTTGGGGGTGAATCTATAATTGGAACAGAAAGT
ATTAAAAGGGTATTACCTGTTGGGAATCATTTGTTTG
ATTGGTGTGAGAGAACCCTCGTCATGGGGGTCCTTA
ATCTAACACCAGACAGCTTTAGTGATGGAGGTAAGTT
TCAACAAGTGGAAGCTGCTATTTCTCAGGCTAAATTA
TTAATTTCAGAAGGTGCAGATATCATAGATATTGGTG
CTCAATCTACCAGGCCTTTTGCAAAGAGATTATCTCCA
AACGAAGAAATTGAAAGATTGGTTCCTGTTCTGGATG
TGATTACGAAAATTCCTGAAATGGAGGGAAAGTTGC
TCTCAGTGGATACATTCTATGCAGAAGTTGCATGTGA
AGCTGTGAAAAGAGGAGTTCACATGATCAATGATGT
ATCTGGTGGACAGCTTGACCCCAAAATTCTTAAAGTT
GCTGCTGAACTCAAAGTTCCGTATGTTGCAATGCACA
TGAGGGGAGATCCATCAACAATGCAAAGTGAACAAA
ATTTACAGTATGACGATGTCTGCAAGGAAGTTGCTTC
AGAGCTATATGCACAGGTGAGAGAAGCAGAGTTATC
TGGGATTCCATTGTGGAGGATAGTTCTAGATCCAGGC

ATTGGGTTCTCCAAGAAATCCAAACATAACCTTGAAG
TAATTATGG G ATTGG AATCCATTAG G AG G G AG ATG A
GTAAAATGAGTATTGGTGCTTCACATGTGCCAATATT
ACTGGGACCCTCTAGGAAAAGATTTTTGGGTGAAAT
ATGCAATCGTGAAAATCCAGTTGAGAGAGATGTTGC
TACTGTTG CAG CTGTGACGG CG G GTATTTTGAATG GT
GCTAACATAGTAAGGGTACATAATGCAGGATACAGT
TCAG ATG CTG CAAAGTTTTGTG ATG CATTG AATAAG A
GAAGAAGAATGGAAGACTGAACCAGCTGATCAAAAA
G ATACCG AG CTCTG ATTTTATTCG AG AAAATG GTG AT
GCAGGATAGTTACTCTGCTGCTCAATGGGATTCTCAT
ATTACATCATTTGTGGAGTATTGTTTTTGTAATAAATA
AACCAGGGATGACGTTTTTCCTGTGTCATCTCCTATCT
AGTTTCTAGATACTTCAATGAAGCATGGTTCAACTCA
GATCACTTGGAAAGAGTAGTCAAGGAATAAGGTTAC
AG AATCAGTTAGTAATTACAG ATTCTTACCTCTTGTG
GTCCTATTTTAGATGATTTTCCAGAACATTTTCTTTCCA
ATTTAATAATATCAGAAGGGCCTAATTTGTGTGTATC
TTTTCTAGTCCAGACATATTTGATAAGTTGGGGTTTTA
CCTGCTTCTCCCTTTACCTTTGTATTTTGCACTTTGTTT
G AG CTGTG CATCATTGTATTAG AG G AAGTGTATTTTG
TACGTTGGTATACCCAAC G AG G AAACCTCATGTTTTG
CAAGTGC
42 Digitaria cDNAContig 1428 GCTCGTTCGTTTACGCGATGTTCGCTTGAGGGATGTT
sa nguina I is CAACTG ACCAAG AG ATTGTG ATTG CTATG G G AAG CA
ACGTGGGTGATGGAGTCAGTACATTTGACAGG G CAT
TACAAATGATGAAAAGCTCAGGCGTGAACATCACTA
G G CATG CCTGTCTATATG AG ACTG CCCCTG CTTATGT
G ACCG ATCAG CCACG G TTCCTG AACTCTG CCATTCG A
GGTACGACTAGGCTGGGACCTCACGAGTTGCTTAAG
AAACTAAAG G AAATTG AG AAG G ATATAG G AC GCACT
GGTGGAATAAGGTATGGCCCAAGACCAATCGATCTA
GATATACTTCTGTACGGCAATTCCCAGATTGATACTG
AG G CTCTAATTGTGCCACATGAACG CATCCAG GAGA
G G CCATTTGTTCTAG CACCTCTTGTTG ACCTTCTAG GT
GCATCTGGCAATGATAGTGTCGAAACAAGCTGGCAC
TCTCTTTCAAAGTGCAGTGGTGGTTTCTTTGAATTATG
G AATAAACTTG G G G GTG AATCTATAATTG G AACAG A
AAGTATTAAAAGGGTATTACCTGTTGGGAATCATTTG
TTTGATTGGTGTGAGAGAACCCTCGTCATGGGGGTCC
TTAATCTAACACCAGACAGCTTTAGTGATGGAGGTAA
GTTTCAACAAGTGGAAGCTGCTATTTCTCAGGCTAAA
TTATTAATTTCAGAAGGTGCAGATATCATAGATATTG
GTG CTCAATCTACCAG G CCTTTTG CAAAG AG ATTATC
TCCAAACGAAGAAATTGAAAGATTGGTTCCTGTTCTG
G ATGTG ATTAC G AAAATTCCTG AAATG G AG G G AAAG
TTG CTCTCAGTG G ATACATTCTATG CAG AAGTTG CAT
GTG AAG CTGTG AAAAG AG GAGTTCACATG ATCAATG

ATGTATCTGGTGGACAGCTTGACCCCAAAATTCTTAA
AGTTGCTGCTGAACTCAAAGTTCCGTATGTTGCAATG
CACATGAGGGGAGATCCATCAACAATGCAAAGTGAA
CAAAATTTACAGTATGACGATGTCTGCAAGGAAGTTG
CTTCAGAGCTATATGCACAGGTGAGAGAAGCAGAGT
TATCTG GG ATTCCATTGTG GAG G ATAGTTCTAG ATCC
AG G CATTG G GTTCTCCAAGAAATCCAAACATAACCTT
GAAGTAATTATG G GATTG GAATCCATTAG GAG G GAG
ATGAGTAAAATGAGTATTGGTGCTTCACATGTGCCAA
TATTACTG G G ACCCTCTAG GAAAAG ATTTTTG G GTG A
AATATG CAATC GTG AAAATCCAGTTG AG AG AG ATGT
TG CTACTGTTG CAG CTGTG AC G G CG G GTATTTTG AAT
GGTGCTAACATAGTAAGGGTACATAATGCAGGATAC
AGTTCAGATGCTGCAAAGTTTTGTGATGCATTGAAT
43 Kochia gDNAContig 4007 GAATGTGCTTAGGCGGCTGCAATCAGCCAGTTTGATT
scoparia TG G AAG G G AATTTCCAAGTATG ATAG AG GTAAAG CA
CAGTTGTTTCATTTTTTG ACTATATATTTAATTTG G G A
ATCTGTACTGTTTCATTTTGTAACTTTATTTTGATCCTG
AGTTATTG AATCTGTCATGTCTCATTTTG AG ACG GTAT
TTTGAATCTGAGTCTGGATATGAAATTATGAATAGGC
CATAG GTATTTATAAATATAG G GTTTAAGTTG ATG AT
CTG G ATG CTATCAG AG CTCTATTATG CAG G ATTACAA
ATCATAATTTCATTGTGAAATTTACTTCTTTATGTGTAT
TCACTTGAAGATTCATAATTTTGATGTATTCATAAATT
TGATGTGCCCTAAACAGAAAGAGTCAGCATGTGCTG
AAAGTATAAGGGGGAAAACCAAGATGTATAAATCTT
TTCCTTGATGAGTTGCTTATATGATTGATGTCATGATT
CTAAAATG CCTTTACCTAATTCAAATG G ATTTTAAAG A
TTACGTATGTACTTTTGCAGCTTCAAGTCTTGCTTTTTT
G CACTCATCACCAG AAACTACTATTG AG GTTTGTTCT
AAAG AG CATG AAGTTGTAATTG CTCTAG G G AG CAAT
GTAG G AG ACAG ATTAG ATAACTTTAACCAAG CTCTG C
AG CTAATG AAG AAATTAG G AGTAAATATCACAAG G C
ATG G CTG CTTATACG AG ACAG ATCCTG CCTATGTG AC
TG ATCAACCAAAGTTTCTTAACTCTG CAGTG AG GGGC
TTCACAAAACTTGGGCCTCTAGAACTATTAGGGATGC
TG AAG AAAATTG AG AAGG ATATG G GTCG AACTAATG
GAATAAGATATGGCCCTAGGCCAATTGACTTAGACAT
TCTTTTTTATG G G AAGTTTAG G GTAAG CTCTG AG AAA
CTTACAGTTCCGCATGAAAGGATATGGGAAAGACCC
TTTGTGATGGCACCACTAATTGATATAATTGGATCGG
ATGTAGAAAATGACACTGTTGCTGCATGGCATTCATT
ATCAAAATTTTCTG GTG G ACTATTTG AAG CGTG GG AT
AAACTTG GTG G AG ATTCACTCATTG G G AAG G ACG G A
ATGAGTAGGGTTTTGCCAGTTGGGAACCACTTGTGG
GATTGGTCGTGCAAAACCTCTGTAATGGGAGTCTTGA
ATTTGACTCCG GACAG CTTTAGTGATG GAG GAAAGTT
TCTACCTGTAGAAAATGCAGTTTCTCAGGTTCGTCAA

ATGATCTCAGAAG GTG CTGACATAATTGATATTG GAG
CGCAATCAACAAGGCCCATGGCAACTAGGATTTCTGC
TG AG G AAG AG CTG GAAAGACTAGTCCCTGTTTTAG A
AG GTGTCAAG G ATGTTATCG AG GAAGAAG GAAGAAT
GTTATCAGTGGATACATTTTACTCAAAAGTTGCTTCTG
AAG CTGTCAATAAG G GAG CACATATG GTGAATGATG
TTTCGAGTGGAAAGCTAGATCCTGAGATGTTCAATGT
TGTTG CAG G G CTTAAAGTG CCTTATATAG CAATG CAC
ATG CG AG GTGATCCTTCTTCAATG CAAAATG CTGATA
ATTTGACATACAATGATGTTTGTAAG GAG GTG G CTTT
AGAGTTGAGCTCTAGGATTACAGATGCAGAATTATCA
G GTATTCCTG CTTG GAG GATAGTTATTGATCCTG G CA
TTGGATTTTCCAAGAATACAAAGCAAAATTTGGAAAT
TCTCACAGGGTTGAAAAGAATTCGGCAAGAAATAGC
AAAAAAGAGTTTGGCTGTGGCTCATGGTCCCTTACTG
ATTG G ACCTTCAAG AAAG AG GTTTTTG G GTG AG ATCT
GCAATCGTCCTGTAGCATCTGATAGAGATCCGGCAAC
TGTTGCTTCTATCACCGCTGGAGTTTTGGGTGGTGCA
AACATTGTAAGAGTACATAATGTTCGGGATAGCCTTG
ATGGTGTCAAGCTATGTGATGCAATGCTTGAATATCA
GTATAACTGAAGATTCTTAGATTCTTAGATTCTTAGAT
TCTAAGAGTTGATTTTATAGATTATTGTCTTTGTTGTG
TGCCTTCGGCAGATATGAATAATATGATTGTAATTTT
GTTGCTTATGATTTTCTTCCTACCTTTCTTTTATCATAG
AATTTAGATTAAAAAATGTACTTGAATTTCATAAATG
GTGAAATAAAGTTTGTCGGTGCTTCATGCAATACGAC
TTTTCTAGTTTGCATTGCTCTATCATAGGGGCTGTAAG
CAGATTAGCCCAGTCAATTCACATTAGATTTAGACGG
CCGGTGCAAAAACAGCATAATGTTGCTAACGCTGTTT
ATACATTTAAACTATATGATCTCTAAGAGCAAAATAC
AAAATAATACAATGTGTTTCATGAAGATGTCCAATCA
TTTCTCCCTCAAAAAAAGATCGTGATGAACAATCAGG
TACTTTGATTTTGTTGTAGAACCTCAGCTTCAGCCCTA
GCCATGGGATCATCTTTTTCTCCTTCTCGCTCCTCAGC
CAATTTCTTTCTGTGCATCTCCTCTGCAGCTTCTATTGA
AG CTTTGTG CTCAG CCTG G AG AC G CTG CATTTCCTCTT
CCATCTG CTGTCTTTCGAACCATGTATCAG CATCCG CC
CAAACTGCAGAAATAATTTAAACAAGTTAATCATACG
GAGTGTGCAGCATGGCAAATTGGCAATAAGATGGTG
CAAGTAACAAGCTCAAATGATCCACCATAGCCAAATT
CCTAACCATTGGACTGTGTCATATACTCATATCAGCTA
GTAGAAACATTCTCACCATAACCCTAACTATTCGAGG
ATAAGTGATACCATTCAACAATAGTAAAGATCAAATC
AG GTATTACTAGACCTATCAAAGTAATACG GAGTAGT
TGTTATTGTTACAGAGTTAGGAAGAATCCTATTTTCCC
ATTTCTCCTATCAATCCTAAACTTTTGTGACTGAACTA
TCGACATATAGTGTGAAGAACATGAATGGCAGAAGT
CACAACTCTGATTCCTGAGTCCTGACTATAAACTATTG

G ATG ACTGTG ATACATCATTAGTCCTTTAAG CATTG A
GTTACTCTATTCTACATAGTTAAATTATATAGATTCCA
AG ATCCG AATCCATG AATTATCAATTACCATAAATTG
ATCTTCTTCCTTTGAGTTTTGTCAACAGTTCCTACTCCG
AAATATGTCTTAAATCTAGAAGCAATAGACACTTATC
AATGATACAGCAATAGACGAATTCATCTACCCAAGGC
AG CATCAACAACAG CTGCCGTTTG CGATAATCGAAAC
TATCATAGTGTCCTTTTCACTATTAGTGCAGATGTTAT
CTAG G GTCTAAACCTCTATGTTTCTACATTCCTG G AAA
ATCTTATTCTGTACTGCATAATCCTCTCACAAAAAATT
CGCCAATGAATGACAAATTAGCTATCCAGAATTGCAG
ATTGATTGAATCAAATTGATCATGGCAGCAGCACAAT
TGCAGCAGTTATCAATTGAAGCACAATATTACCTCTC
AATCATAACAATCAAAGCACAGAAATTCCAATCAATA
ACTCCACAATATAGTATCAATCTCTAACTCAGAAACTA
AACAGAAGCAAAAACCCATTCAATCAAAGCAACAGT
AAAATTAG G GTTTG AATTAG AAAG AAAG AG AG G G AA
GAGAAACATACTGGGTTGCGCAGCCCATCCCTGTTCA
CCACCCTTAATCTTCTC G G GAAG AG CGTAATTG ACAG
TGAGAACACGACCGTAAAGCTCAGCACCATCCATGTT
ATCCATGGCAGAAGAAGCGTCGTCTCTCTCCAAGAAA
GTGACGAAACCGAAAGAACGATG CTTGTTG GTG G CC
AAATCAAG AG G G GTTTTG AC GTCTTTG ATTTCTCCAA
AAGGGATGAAGGCAGCATGAAGGATTGATTCGTTGA
CTTCTTCTGCTAATCCTCCTACGTATAATGTGTTCTTCT
GCATTCCTTGTTGATTCGTCGCCATTTTTCG
44 Kochia gDNAContig 3505 TAATTCAAATGGATTTTAAAGATTACGTATGTACTTTT
scoparia G
CAG CTTCAAGTCTTG CTTTTTTG CACTCATCACCAG A
AACTACTATTG AG GTTTGTTCTAAAG AG CATG AAGTT
GTAATTG CTCTAG GG AG CAATGTAG G AG ACAG ATTA
GATAACTTTAACCAAGCTCTGCAGCTAATGAAGAAAT
TAG G AGTAAATATCACAAGG CATG G CTG CTTATACG
AGACAGATCCTGCCTATGTGACTGATCAACCAAAGTT
TCTTAACTCTG CAGTG AG G G G CTTCACAAAACTTG G G
CCTCTAG AACTATTAG GG ATG CTG AAG AAAATTG AG
AAGGATATGGGTCGAACTAATGGAATAAGATATGGC
CCTAG G CCAATTG ACTTAG ACATTCTTTTTTATG G G AA
GTTTAGGGTAAG CTCTG AG AAACTTACAG TTCC G CAT
GAAAGGATATGGGAAAGACCCTTTGTGATGGCACCA
CTAATTGATATAATTGGATCGGATGTAGAAAATGACA
CTGTTG CTG CATG G CATTCATTATCAAAATTTTCTG GT
GGACTATTTGAAGCGTGGGATAAACTTG GTG G AG AT
TCACTCATTGGGAAGGACGGAATGAGTAGGGTTTTG
CCAGTTGGGAACCACTTGTGGGATTGGTCGTGCAAA
ACCTCTGTAATGGGAGTCTTGAATTTGACTCCGGACA
G CTTTAGTG ATG G AG G AAAGTTTCTACCTGTAG AAAA
TGCAGTTTCTCAGGTTCGTCAAATGATCTCAGAAGGT
G CTG ACATAATTG ATATTG GAG CG CAATCAACAAG G

CCCATGGCAACTAGGATTTCTGCTGAGGAAGAGCTG
GAAAGACTAGTCCCTGTTTTAGAAGGTGTCAAGGAT
GTTATCGAG GAAGAAG GAAGAATGTTATCAGTG GAT
ACATTTTACTCAAAAGTTGCTTCTGAAGCTGTCAATAA
GGGAGCACATATGGTGAATGATGTTTCGAGTGGAAA
G CTAG ATCCTG AG ATGTTCAATGTTGTTG CAG GG CTT
AAAGTGCCTTATATAG CAATG CACATG CG AG GTGATC
CTTCTTCAATGCAAAATGCTGATAATTTGACATACAAT
GATGTTTGTAAGGAGGTGGCTTTAGAGTTGAGCTCTA
GGATTACAGATGCAGAATTATCAGGTATTCCTGCTTG
GAG GATAGTTATTG ATCCTGGCATTGGATTTTCCAAG
AATACAAAGCAAAATTTGGAAATTCTCACAGGGTTGA
AAAGAATTCGGCAAGAAATAGCAAAAAAGAGTTTGG
CTGTG G CTCATG GTCCCTTACTGATTG G AC CTTCAAG
AAAG AG GTTTTTG G GTG AG ATCTG CAATCGTCCTGTA
GCATCTGATAGAGATCCGGCAACTGTTGCTTCTATCA
CCG CTG GAGTTTTG G GTG GTG CAAACATTGTAAG AG
TACATAATGTTCGGGATAGCCTTGATGGTGTCAAGCT
ATGTGATGCAATGCTTGAATATCAGTATAACTGAAGA
TTCTTAGATTCTTAGATTCTTAGATTCTAAGAGTTGAT
TTTATAGATTATTGTCTTTGTTGTGTGCCTTCGGCAGA
TATGAATAATATGATTGTAATTTTGTTGCTTATGATTT
TCTTCCTACCTTTCTTTTATCATAGAATTTAGATTAAAA
AATGTACTTGAATTTCATAAATGGTGAAATAAAGTTT
GTCG GTGCTTCATG CAATACGACTTTTCTAGTTTG CAT
TGCTCTATCATAGGGGCTGTAAGCAGATTAGCCCAGT
CAATTCACATTAGATTTAGACGGCCGGTGCAAAAACA
GCATAATGTTGCTAACGCTGTTTATACATTTAAACTAT
ATGATCTCTAAGAGCAAAATACAAAATAATACAATGT
GTTTCATGAAGATGTCCAATCATTTCTCCCTCAAAAAA
AGATCGTGATGAACAATCAGGTACTTTGATTTTGTTG
TAG AACCTCAG CTTCAG CCCTAG CCATG G GATCATCT
TTTTCTCCTTCTCGCTCCTCAGCCAATTTCTTTCTGTGC
ATCTCCTCTGCAGCTTCTATTGAAGCTTTGTGCTCAGC
CTG G AG ACG CTG CATTTCCTCTTCCATCTG CTGTCTTT
CGAACCATGTATCAGCATCCGCCCAAACTGCAGAAAT
AATTTAAACAAGTTAATCATACGGAGTGTGCAGCATG
GCAAATTGGCAATAAGATGGTGCAAGTAACAAGCTC
AAATGATCCACCATAGCCAAATTCCTAACCATTGGAC
TGTGTCATATACTCATATCAGCTAGTAGAAACATTCTC
ACCATAACCCTAACTATTCGAGGATAAGTGATACCAT
TCAACAATAGTAAAGATCAAATCAGGTATTACTAGAC
CTATCAAAGTAATACGGAGTAGTTGTTATTGTTACAG
AGTTAGGAAGAATCCTATTTTCCCATTTCTCCTATCAA
TCCTAAACTTTTGTGACTGAACTATCGACATATAGTGT
GAAGAACATGAATGGCAGAAGTCACAACTCTGATTC
CTGAGTCCTGACTATAAACTATTGGATGACTGTGATA
CATCATTAGTCCTTTAAGCATTGAGTTACTCTATTCTA

CATAGTTAAATTATATAGATTCCAAGATCCGAATCCA
TGAATTATCAATTACCATAAATTGATCTTCTTCCTTTG
AGTTTTGTCAACAGTTCCTACTCCGAAATATGTCTTAA
ATCTAGAAG CAATAGACACTTATCAATGATACAG CAA
TAGACGAATTCATCTACCCAAGGCAGCATCAACAACA
GCTGCCGTTTGCGATAATCGAAACTATCATAGTGTCC
TTTTCACTATTAGTGCAGATGTTATCTAGGGTCTAAAC
CTCTATGTTTCTACATTCCTGGAAAATCTTATTCTGTA
CTGCATAATCCTCTCACAAAAAATTCGCCAATGAATG
ACAAATTAGCTATCCAGAATTGCAGATTGATTGAATC
AAATTGATCATGGCAGCAGCACAATTGCAGCAGTTAT
CAATTGAAGCACAATATTACCTCTCAATCATAACAATC
AAAGCACAGAAATTCCAATCAATAACTCCACAATATA
GTATCAATCTCTAACTCAGAAACTAAACAGAAGCAAA
AACCCATTCAATCAAAGCAACAGTAAAATTAGGGTTT
G AATTAG AAAG AAAG AG AG G G AAG AG AAACATACT
GGGTTGCGCAGCCCATCCCTGTTCACCACCCTTAATCT
TCTCGGGAAGAGCGTAATTGACAGTGAGAACACGAC
CGTAAAG CTCAG CACCATCCATGTTATCCATG G CAG A
AG AAG CGTCGTCTCTCTCCAAGAAAGTGACGAAACC
GAAAGAACGATG CTTGTTG GTG G CCAAATCAAG AG G
G GTTTTG AC GTCTTTG ATTTCTCCAAAAG G GATGAAG
GCAGCATGAAGGATTGATTCGTTGACTTCTTCTGCTA
ATCCTCCTACGTATAATGTGTTCTTCTGCATTCCTTGTT
GATTCGTCGCCATTTTTCG
45 Kochia cDNAContig 1446 G
CAG CTTCAAGTCTTG CTTTTTTG CACTCATCACCAG A
scoparia AACTACTATTG AG GTTTGTTCTAAAG AG CATGAAGTT
GTAATTG CTCTAG GG AG CAATGTAG G AG ACAG ATTA
GATAACTTTAACCAAGCTCTGCAGCTAATGAAGAAAT
TAG GAGTAAATATCACAAGG CATG G CTG CTTATACG
AGACAGATCCTGCCTATGTGACTGATCAACCAAAGTT
TCTTAACTCTG CAGTG AG G G G CTTCACAAAACTTG G G
CCTCTAGAACTATTAG GGATG CTG AAG AAAATTG AG
AAGGATATGGGTCGAACTAATGGAATAAGATATGGC
CCTAG G CCAATTGACTTAGACATTCTTTTTTATG G G AA
GTTTAGGGTAAG CTCTG AG AAACTTACAG TTCC G CAT
GAAAGGATATGGGAAAGACCCTTTGTGATGGCACCA
CTAATTGATATAATTGGATCGGATGTAGAAAATGACA
CTGTTG CTG CATG G CATTCATTATCAAAATTTTCTG GT
GGACTATTTGAAGCGTGGGATAAACTTG GTG G AG AT
TCACTCATTGGGAAGGACGGAATGAGTAGGGTTTTG
CCAGTTGGGAACCACTTGTGGGATTGGTCGTGCAAA
ACCTCTGTAATGGGAGTCTTGAATTTGACTCCGGACA
G CTTTAGTGATG GAG GAAAGTTTCTACCTGTAGAAAA
TGCAGTTTCTCAGGTTCGTCAAATGATCTCAGAAGGT
G CTGACATAATTGATATTG GAG CG CAATCAACAAG G
CCCATGGCAACTAGGATTTCTGCTGAGGAAGAGCTG
GAAAGACTAGTCCCTGTTTTAGAAG GTGTCAAGG AT

GTTATC G AG GAAGAAG GAAGAATGTTATCAGTG GAT
ACATTTTACTCAAAAGTTGCTTCTGAAGCTGTCAATAA
G G GAG CACATATG GTGAATGATGTTTCGAGTGG AAA
G CTAG ATCCTG AG ATGTTCAATGTTGTTG CAG GG CTT
AAAGTGCCTTATATAG CAATG CACATG CG AG GTGATC
CTTCTTCAATGCAAAATGCTGATAATTTGACATACAAT
GATGTTTGTAAGGAGGTG GCTTTAG AGTTG AG CTCTA
GGATTACAGATGCAGAATTATCAGGTATTCCTGCTTG
GAG GATAGTTATTG ATCCTG G CATTG GATTTTCCAAG
AATACAAAG CAAAATTTGGAAATTCTCACAG G GTTG A
AAAGAATTCGGCAAGAAATAGCAAAAAAGAGTTTGG
CTGTGGCTCATGGTCCCTTACTGATTGGACCTTCAAG
AAAG AG GTTTTTG G GTG AG ATCTG CAATCGTCCTGTA
G CATCTG ATAG AG ATCCG GCAACTGTTGCTTCTATCA
CCG CTG GAGTTTTG G GTG GTG CAAACATTGTAAG AG
TACATAATGTTCG G GATAG CCTTGATGGTGTCAAG CT
ATGTGATGCAATG
46 Kochia cDNAContig 1446 G
CAG CTTCAAGTCTTG CTTTTTTG CACTCATCACCAG A
scoparia AACTACTATTG AG GTTTGTTCTAAAG AG CATGAAGTT
GTAATTG CTCTAG GG AG CAATGTAG G AG ACAG ATTA
GATAACTTTAACCAAGCTCTGCAGCTAATGAAGAAAT
TAG GAGTAAATATCACAAGG CATG G CTG CTTATACG
AGACAGATCCTGCCTATGTGACTGATCAACCAAAGTT
TCTTAACTCTG CAGTG AG G G G CTTCACAAAACTTG G G
CCTCTAGAACTATTAG GGATG CTG AAG AAAATTG AG
AAGGATATGGGTCGAACTAATGGAATAAGATATGGC
CCTAG G CCAATTGACTTAGACATTCTTTTTTATG G G AA
GTTTAGGGTAAG CTCTG AG AAACTTACAG TTCC G CAT
GAAAGGATATGGGAAAGACCCTTTGTGATGGCACCA
CTAATTGATATAATTGGATCGGATGTAGAAAATGACA
CTGTTG CTG CATG G CATTCATTATCAAAATTTTCTG GT
GGACTATTTGAAGCGTGGGATAAACTTG GTG G AG AT
TCACTCATTGGGAAGGACGGAATGAGTAGGGTTTTG
CCAGTTGGGAACCACTTGTGGGATTGGTCGTGCAAA
ACCTCTGTAATGGGAGTCTTGAATTTGACTCCGGACA
G CTTTAGTGATG GAG GAAAGTTTCTACCTGTAGAAAA
TGCAGTTTCTCAGGTTCGTCAAATGATCTCAGAAGGT
G CTGACATAATTGATATTG GAG CG CAATCAACAAG G
CCCATGGCAACTAGGATTTCTGCTGAGGAAGAGCTG
GAAAGACTAGTCCCTGTTTTAGAAG GTGTCAAGG AT
GTTATC G AG GAAGAAG GAAGAATGTTATCAGTG GAT
ACATTTTACTCAAAAGTTGCTTCTGAAGCTGTCAATAA
G G GAG CACATATG GTGAATGATGTTTCGAGTGG AAA
G CTAG ATCCTG AG ATGTTCAATGTTGTTG CAG GG CTT
AAAGTGCCTTATATAG CAATG CACATG CG AG GTGATC
CTTCTTCAATGCAAAATGCTGATAATTTGACATACAAT
GATGTTTGTAAGGAGGTG GCTTTAG AGTTG AG CTCTA
GGATTACAGATGCAGAATTATCAGGTATTCCTGCTTG

GAG GATAGTTATTG ATCCTG G CATTG GATTTTCCAAG
AATACAAAGCAAAATTTGGAAATTCTCACAGGGTTGA
AAAGAATTCGGCAAGAAATAGCAAAAAAGAGTTTGG
CTGTGGCTCATGGTCCCTTACTGATTGGACCTTCAAG
AAAGAGGTTTTTGGGTGAGATCTGCAATCGTCCTGTA
GCATCTGATAGAGATCCGGCAACTGTTGCTTCTATCA
CCGCTGGAGTTTTGGGTGGTGCAAACATTGTAAGAG
TACATAATGTTCGGGATAGCCTTGATGGTGTCAAGCT
ATGTGATGCAATG
47 Lolium gDNACo ntig 3920 ACGAAAGCTTTGAACTCTCAAGTGGTGCAACATAGAT
multiflorum AGATTATATATATTTCGAATATAATTCGAATGAACATA
AAAATTACATATAAAAACTTTAAAACAAACTTAAACT
ACTTCTTCTTCCTCGATGGCCCCGCCTCATCGTCGGGG
CGGCGACGCTTCCGGCTCGTCACCTCCTCGTCGGAGG
AAGTTGGGTCCTCCTCCTCGTCAGTGTCCTCAGCCTCT
TCGTCGTCCTCCTCCTCTTCCTCGGCCTCTTCGTCGGC
CTGCTCCTTGGCCTCTTCGTCCTCCTCCTCGTCGTCAT
CCCATGCGTCCTCCTCCTCGTCGTCATCCCATTCGTCC
TTGCTGGCCGGCGGGGGGGAATCGTCGCTGCTGGAC
GATGCAGCTTTATCCCACCAATGGCGCCATCCAGGCG
GCTTCCCCTCGCTGTCGGTGTCCGATGGCCAAGAGAG
ATCGCTCATGGTTGACGGAGGATGGTGAGGAGAGA
ACAGATGAATGGCGTCGGCCGTCGTAAACCGTATAT
GTAGGTCTCTCGACGAAGAGAGCGGCGGTTGCTCTT
CCGCGGAGTTCGTGCTCCATTACAGCGGTTCTCGCAT
CGAGGCCACTTCGGCCGTTCCCGACGAGTCGTTTGG
GCTCTCCAGACCACTTTGCGACGGTTCAATGCGTCGA
GGGCACTCCGACGATTGCCCTTCCCGGTGACTGCGCC
GTCGCTATGCACGCGGTGTGTGCGCAACCATGGGCT
CGCGGCTGGGAAAATGGGCCTCCCCAGGCCACAAAA
TACATCCATCCGGCGATAACTAACGCCGGATTTCGGC
CTGGGAGCCCCAACGGCTGGGATGCTCTTAGCCCGT
GGAACACATTCCCGAATCGGTACCGACGGTCTCATCT
CTCTCGCCCTGATCTATCTCTCTTCCGCGATCTGGAAG
GGCCGACGGCGTGGCGGCGCAACCACGGGCGCTGA
TGGGCGGCGGCGCGCAGTCTGTTAAGCAGGACGCCT
GCTTCTCGCTCCGTCCTCCCTCTCCAACCGAGCGGCAC
GAGGTAGACCCGGAGACCCCAACTCCGTCCTAGCCC
AGTGGCGCCCGTGAGGCGTCATCTCCGGCGCCCTCTC
CATCTCCGTCTGCTTCGCACTTGTATGCACATACTCTT
CCTCCTTACCCCAGTTTCTTGGTCTTGGCTTGTTTGAT
TACGATTTCTAGGGTTCTTGGCATGCTCGGTAGTTGC
AGATTTGTCTTCTGTTGGGTGTTTGTTTCCATGGCCTT
GGCTGCATCCATCGTTTCGTATTATGTAGTTGTTTGTT
TCCATGCCATTGCTTGTATCCATCAATTGGAAAGGGA
AGAAAGGGCTACAGGGATATTAGGAATTAGATCAGT
CCTTCCTAGCTGATTTTCTCTGACAGGTTGTTAGTCTC
GCGCATGTGGTGGACTTCTTGTGCTTTTGGCTAGCTC

CAAGTCTGATGTGTAGCTGCTTTCTGAGATTTTCCACA
TAAACGTTGCTATGGCTAGTAAGTTGTGGCTAACTAA
ATCCTTGGGCACAAGCTAGTAATCTGAATGGCATATC
CGCCCCCATGCCTTTAATTGTTGCCTAACGATGGGCT
AGGTTCTCTTATTTATTCATTTTTGTTAAAAGAAGAAC
TTGGGCATGCTAATTCAGCAAAATAGAAAAAATATGT
GTTGTTTCTGTATATAGAGGTTCTTGGTTTTCCCTTGC
CGATTCTGACCGATTTGCGGGTTTTTTTTTTTTTTGTCT
TTCCTCATCGTCAGGCAAGAAGAGCAAGATGTGACA
GAGGATTTAAGCAGCAGCAGAACTAGACCTGGCTCC
TATGCTCTAAGATGCTTCGTGCCAAGGACACATTCAG
GAAGATGTACTCAGCTGCCAAGGGCTACTACTGCGG
AGGGCTAGCGTCTCCTAATGCCTTCTCAGGTAGCTTG
CCCAAAGTTCCCCAATAATAACTAGGGAACATCTCTT
TTCCACCTCTTTCACATTCCAACCAAAGACAGTCCTAA
CTCGTTTCCCCTCTGAACATACCAGCATTGGATCTTCG
GCATCCTCTCAGCTCCTCAAGAAAACCACCAGGCCAC
GCTAACCTGTTCAGGGTCCGTTCATACACGCAATGCG
CCCTCACCAACGATTCCGCCGACCAGGAGGTCGTGAT
TGCCCTGGGCAGCAACGTGGGAGACAGGGTCAGCAT
GTTCGACAGGGCGCTGCGGCTGATGAGGAGCTCGG
GCATCAAGGTCACCAGGCACGCCTGCCTGTACGAGA
CCGCCCCAGCCTACGTGACCGACCAGCCGCGGTTCCT
CAACTCTGCCGTTAGGGGCACGACGAAGCTGGGGCC
TCACGAGTTGCTCAGGAAGCTCAAGGAGATCGAGAA
GGATATAGGACGTACCGCCGGGGTAAGGTACGGCCC
GAGGCCGATCGATCTGGACATTCTTCTGTATGGGGAC
TCCCGGATCAAGACCGAGTCTCTGATTGTGCCGCATG
AACGCATCCATGAGAGACCGTTCGTCTTGGCGCCTCT
TGTTGACCTCCTGGGTTCGTCGGCTGAGGACGGTATG
GAGAAAAGCTGGCACTCTCTCTCGAAGTGCAGTGGC
GGGTTCTTTGATTTGTGGAACAAGCTCGGCGGTGAAT
CTGTTGTTGGAACAGAAGGCATTAAAAGGGTCATGT
CTGTTGGAAATACGCTGTTGGACTGGCGTCAGAGGA
CCCTTGTTATGGGGGTGCTTAACCTCACGCCAGACAG
CTTCAGCGACGGAGGTAAGTTTCAAGAAGTGGAAGC
TGCCATTTCCCAGGCCAGGTTGTTGATATCAGAAGGT
GCTGACATAATTGATATTGGTGCCCAGTCCACCAGGC
CCTTTGCAAGGAGGCTATCCGCAGAAGAAGAGCTTG
AGAGGCTGGTCCCTGTTCTGGATGCTATCATGAAACT
CCCAGAGATGGAAGGGAAGTTGCTTTCGGTAGACAC
GTTCTACGCGCAAGTCGCTGCTGAAGCTGTAAAAAG
AGGAGCCACCATGATCAATGATGTATCTGGTGGGCA
GCTTGACCCAAGTATTCTTCAAGTTGTTGCTGAACTG
GGAGTTCCGTATGTTACCATGCACATGAGAGGCGAT
CCATCAACTATGCAGAATGAACAGAATCTACAGTATG
ATGATGTCTGCAAAGAAGTTGCTTCTGAGTTATACGC
CCGGTTGAGAGCAGCAGAGCTTTCTGGAATTCCTTTG

TG GAG GATTATTCTTGACCCTG G CATTG G GTTTTCTA
AGAAATCCACACAGAATATTGAAGTAATCGCGGGTTT
GGAATCCATTAGAGAAGAGATGGGTAAAATGAGCCT
AGGTGCTTCACATGTGCCAATATTACTTGGACCCTCG
AG GAAAAGTTTCCTAG GTGAAATATGTAGTCG CG CC
GATCCAGTTCAGAGAGATGCTGCTACTGCTTCTGCCG
TTACAATTGCGATCTTGAATGGCGCTAATATAGTAAG
GGTCCATAATGTTAGATACAATGTGGATGCTGCAAA
GGTCTCTGATGCATTACTCAAGTACAGAAGAAAATAA
TAGAAAGTATACAGCCCGGATAGAAGCCATACCAGT
TG CCAGTTTTGTG CAAG G GAATG CTGATGTG GAG CT
CAAACCATATGGGGTGTATCATCACTTAATAAGATCA
AAGCATGCGTGAATAACTATTACAGTGAACAAGAGA
TATACAGTTTTTTCGTGCGCCTCCTCCTTCGTAGAATC
TTCAAAGAAGCAAAGGTAACACAGACCTAGGCCTCT
GGGGTTGGTATATGATGTAACCAGTTTTGTGAGGGTT
TAATAATTATCTAATAGTGAGACCTAAGAGTAAGACC
TTTATAATATACTTTGCTTGGAATTTCCTACTTGAGAG
CATCATTTGGGGCTACAGAGTTGATTTTCGTCTCACG
CAGTTTTCTGAGGGTT
48 Lolium cDNACo ntig 1467 AG CTCCTCAAGAAAACCACCAG G CCACG CTAACCTGT
multiflorum TCAGGGTCCGTTCATACACGCAATGCGCCCTCACCAA
CGATTCCGCCGACCAGGAGGTCGTGATTGCCCTGGG
CAGCAACGTGGGAGACAGGGTCAGCATGTTCGACAG
GGCGCTGCGGCTGATGAGGAGCTCGGGCATCAAGGT
CACCAGGCACGCCTGCCTGTACGAGACCGCCCCAGC
CTACGTGACCGACCAGCCGCGGTTCCTCAACTCTGCC
GTTAGGGGCACGACGAAGCTGGGGCCTCACGAGTTG
CTCAGGAAGCTCAAGGAGATCGAGAAGGATATAGGA
CGTACCGCCGGGGTAAGGTACGGCCCGAGGCCGATC
GATCTGGACATTCTTCTGTATGGGGACTCCCGGATCA
AGACCGAGTCTCTGATTGTGCCGCATGAACGCATCCA
TGAGAGACCGTTCGTCTTGGCGCCTCTTGTTGACCTC
CTGGGTTCGTCGGCTGAGGACGGTATGGAGAAAAGC
TGGCACTCTCTCTCGAAGTGCAGTGGCGGGTTCTTTG
ATTTGTGGAACAAGCTCGGCGGTGAATCTGTTGTTGG
AACAGAAGGCATTAAAAGGGTCATGTCTGTTGGAAA
TACGCTGTTGGACTGGCGTCAGAGGACCCTTGTTATG
GGGGTGCTTAACCTCACGCCAGACAGCTTCAGCGAC
G GAG GTAAGTTTCAAGAAGTG GAAG CTG CCATTTCC
CAGGCCAGGTTGTTGATATCAGAAGGTGCTGACATA
ATTGATATTGGTGCCCAGTCCACCAGGCCCTTTGCAA
GGAGGCTATCCGCAGAAGAAGAGCTTGAGAGGCTG
GTCCCTGTTCTGGATGCTATCATGAAACTCCCAGAGA
TGGAAGGGAAGTTGCTTTCGGTAGACACGTTCTACG
CGCAAGTCGCTGCTGAAGCTGTAAAAAGAGGAGCCA
CCATGATCAATGATGTATCTGGTGGGCAGCTTGACCC
AAGTATTCTTCAAGTTGTTGCTGAACTGGGAGTTCCG

TATGTTACCATGCACATGAGAGGCGATCCATCAACTA
TGCAGAATGAACAGAATCTACAGTATGATGATGTCTG
CAAAGAAGTTGCTTCTGAGTTATACGCCCGGTTGAGA
G CAG CAGAG CTTTCTG GAATTCCTTTGTG GAG GATTA
TTCTTGACCCTGGCATTGGGTTTTCTAAGAAATCCACA
CAGAATATTGAAGTAATCGCGGGTTTGGAATCCATTA
GAGAAGAGATGGGTAAAATGAGCCTAGGTGCTTCAC
ATGTGCCAATATTACTTGGACCCTCGAGGAAAAGTTT
CCTAGGTGAAATATGTAGTCGCGCCGATCCAGTTCAG
AGAGATGCTGCTACTGCTTCTGCCGTTACAATTGCGA
TCTTGAATGGCGCTAATATAGTAAGGGTCCATAATGT
TAGATACAATGTG GATG CTG CAAAG GTCTCTGATG CA
TTA
49 Lolium gDNAContig 834 AG G GTCATGTCTGTTG GAAATACG CTGTTG GATTGGC
multiflorum GGGAGAGGACCCTGGTTATGGGGGTGCTTAACCTCA
CGCCAGACAGCTTTAGCGATGGAGGTAAGTTTCAAG
AG GTG GAAG CTG CCATTTCTCAG G CCAG G CTGTTAAT
TTCAGAAGGTGCAGGCATAATTGATATTGGCGCTCA
GTCCACCAGGCCCTTTGCAAGGTGGCTATCTGCAGAA
GAAGAGCTTGAGAGGCTGGTCCCTGTTCTTAATGCTA
TCATGAAACTCCCCGAGATGGAAGGGAAGTTGCTTTC
AGTAGATACGTTCTACGCGCAAGTCGCGGCTGAAGC
CGTGAAAAGAGGGGCCACCATGATCAATGATGTATC
TGGTGGGCAGCTTGACCCAGATATTCTTCAAGTTGTT
GCTGAATTGGGAGTTCCGTATGTTGCCATGCACATGA
GAG G G GATCCATCAACTATG CAGAATGAG CAGAATT
TACAGTATGATGATGTCTGCAAAGAAGTTGCTTCTGA
GTTATACTCTCG GTTGAGAG CAG CAGAGTTGTCTG GA
ATTCCTTTGTG GAG GATTATTCTTGACCCTG G CATTG
GGTTTTCCAAGAAATCCACACAGAATATTGAAGTAAT
CGCGGGCTTGGAATCCATTAGAGAAGAGATGGGTAA
AATGAGTCTAGGTGCTTCACATGTGCCAATATTACTT
GGACCCTCCAGGAAACGTTTCTTAGGGCAGATATGC
AATCGCGCTGATCCAGTTGAGAGAGATGCAGCTACT
GCTGCTTCTGTTACAGTTGGGATATTGAATGGTGCTA
ATATTGTAAGGGTCCATAATGTTAGATAC
50 Lolium cDNAContig 834 AG G GTCATGTCTGTTG GAAATACG CTGTTG GATTG G C
multiflorum GGGAGAGGACCCTGGTTATGGGGGTGCTTAACCTCA
CGCCAGACAGCTTTAGCGATGGAGGTAAGTTTCAAG
AG GTG GAAG CTG CCATTTCTCAG G CCAG G CTGTTAAT
TTCAGAAGGTGCAGGCATAATTGATATTGGCGCTCA
GTCCACCAGGCCCTTTGCAAGGTGGCTATCTGCAGAA
GAAGAGCTTGAGAGGCTGGTCCCTGTTCTTAATGCTA
TCATGAAACTCCCCGAGATGGAAGGGAAGTTGCTTTC
AGTAGATACGTTCTACGCGCAAGTCGCGGCTGAAGC
CGTGAAAAGAGGGGCCACCATGATCAATGATGTATC
TGGTGGGCAGCTTGACCCAGATATTCTTCAAGTTGTT
GCTGAATTGGGAGTTCCGTATGTTGCCATGCACATGA

GAGGGGATCCATCAACTATGCAGAATGAGCAGAATT
TACAGTATGATGATGTCTGCAAAGAAGTTGCTTCTGA
GTTATACTCTCG GTTGAGAG CAG CAGAGTTGTCTG GA
ATTCCTTTGTG GAG GATTATTCTTGACCCTG G CATTG
GGTTTTCCAAGAAATCCACACAGAATATTGAAGTAAT
CGCGGGCTTGGAATCCATTAGAGAAGAGATGGGTAA
AATGAGTCTAGGTGCTTCACATGTGCCAATATTACTT
GGACCCTCCAGGAAACGTTTCTTAGGGCAGATATGC
AATCGCGCTGATCCAGTTGAGAGAGATGCAGCTACT
GCTGCTTCTGTTACAGTTGGGATATTGAATGGTGCTA
ATATTGTAAGGGTCCATAATGTTAGATAC
51 Lolium gDNACo ntig 212 AGGATATAGGGCGCACCGCCGGGATAAGGTACGGTC
multiflorum CGAGGCCGATCGATCTGGACATTCTTCTGTATGGGGA
TTCCCGGATCAAGACCGAGTCTCTGACTGTGCCGCAT
GAACGCATCCATGAGAGACCGTTCGTCTTGGCGCCTC
TTGTTGACCTCCTGGGTTCATCGGGTGAGGATGGTAT
GGAGAGAAGATGGCACTCTCTCTCGAAG
52 Lolium cDNACo ntig 210 GATATAGGGCGCACCGCCGGGATAAGGTACGGTCCG
multiflorum AGGCCGATCGATCTGGACATTCTTCTGTATGGGGATT
CCCGGATCAAGACCGAGTCTCTGACTGTGCCGCATGA
ACGCATCCATGAGAGACCGTTCGTCTTGGCGCCTCTT
GTTGACCTCCTGGGTTCATCGGGTGAGGATGGTATG
GAGAGAAGATGGCACTCTCTCTCGAAG
53 Lolium gDNACo ntig 201 CGCTAACCTGTTCAGGGTCCGTTCGTACATGCAATGC
multiflorum GCGGTCACCAACGATTCCGCCGACCAAGAGATCGTG
ATTGCCCTGGGCAGCAACGTGGGAGACAGGGTCAGC
ACGTTCGACAGGGCGCTGCGGCTGATGAGGAGCTCG
GGCATCAGGATCACCAGGCACGCCTGCCTGTACGAG
ACCGCCCCTGCTTACGTGAC
54 Lolium cDNACo ntig 150 GATTCCGCCGACCAAGAGATCGTGATTGCCCTGGGC
multiflorum AGCAACGTGGGAGACAGGGTCAGCACGTTCGACAG
GGCGCTGCGGCTGATGAGGAGCTCGGGCATCAGGAT
CACCAGGCACGCCTGCCTGTACGAGACCGCCCCTGCT
TACGTG

Table 2 SEQ ID Species Name I Type Start End Seq NO Reference 55 Amaranthus DHP_A1_1 cDNAContig 1 hybridus GCTGATAGGGATCCTGCTACCGT
TGCTTCAATAACTGCTGGAGTTT
TAGGTGGTGCAAACATTGTAAG
AGTACATAATGTGAGGGATAAC
CTTGATGCTGTCAAGTTATGTGA
TGCCATACTCGGAAAAACTGATT
AACTGCTTATTTGTACCACCTTGT
GAATGACGTCTAGTGGA
56 Amaranthus DHP_A1_1 cDNAContig 1 hybridus TGGTACAAATAAGCAGTTAATCA
GTTTTTCCGAGTATGGCATCACA
TAACTTGACAGCATCAAGGTTAT
CCCTCACATTATGTACTCTTACAA
TGTTTGCACCACCTAAAACTCCA
GCAGTTATTGAAGCAACGGTAG
CAGGATCCCTATCAGCTGCTACA
GGGCGCTCACAAATCT
57 Amaranthus DHP_A1_2 cDNAContig 176 375 CACCTTGTGAATGACGTCTAGTG
hybridus GAAAGTTCGATTGGGATATTGAT
GAAGTCCGTTAGTTTGCTCGAAA
GTAGAGCTTTAGCCCGTAAGGTT
ATAGTTCTTACAGATGTAGAATC
ATTGGCTATTTGCCTATTCCTGCT
TAGAAGATCATAGCATTGATCCA
GACTTTGGATTCCATGTAGAATT
ATGTTGCGACTCATG
58 Amaranthus DHP_A1_2 cDNAContig 176 375 CATGAGTCGCAACATAATTCTAC
hybridus ATGGAATCCAAAGTCTGGATCAA
TGCTATGATCTTCTAAGCAGGAA
TAGGCAAATAGCCAATGATTCTA
CATCTGTAAGAACTATAACCTTA
CGGGCTAAAGCTCTACTTTCGAG
CAAACTAACGGACTTCATCAATA
TCCCAATCGAACTTTCCACTAGA
CGTCATTCACAAGGTG
59 Amaranthus DHP_A1_3 cDNAContig 351 550 ATGTAGAATTATGTTGCGACTCA
hybridus TGGTCGAATTGGCCCTTTGAGGA
ATTGTTGAAGTTCCTTGATCTATG
GTTCAATCGGCTCGGTTCGATGA
AGGTTGGACTGTGTCGAGACAA
GATGGGTCAAAGAGACCAATGG
ACAAGAAGTCGACCTTGGGAAA
GCTTGATCAAGTTACTTGGACGA

GCAGATAGCAGCAGGACT
60 Amaranthus DHP_A1_3 cDNAContig 351 550 AGTCCTGCTGCTATCTGCTCGTCC
hybridus AAGTAACTTGATCAAGCTTTCCC
AAGGTCGACTTCTTGTCCATTGG
TCTCTTTGACCCATCTTGTCTCGA
CACAGTCCAACCTTCATCGAACC
GAGCCGATTGAACCATAGATCAA
GGAACTTCAACAATTCCTCAAAG
GGCCAATTCGACCATGAGTCGCA
ACATAATTCTACAT
61 Amaranthus DHP_A2_1 cDNAContig 1 lividus GGCCAATTGACTTGGACATACTA
TTTTATGGGAAATTTAGGGTGAG
CTCTGAGAGCCTCACTATCCCCC
ATGAAAGGATATGGGAAAGACC
ATTTGTGATGGCACCATTGATTG
ATTGTATTGGGTCTGATGTAGAA
AATGACACTATTTGTACATGGCA
TTCATTATCAAATTTTTT
62 Amaranthus DHP_A2_1 cDNAContig 1 lividus TGTACAAATAGTGTCATTTTCTAC
ATCAGACCCAATACAATCAATCA
ATGGTGCCATCACAAATGGTCTT
TCCCATATCCTTTCATGGGGGAT
AGTGAGGCTCTCAGAGCTCACCC
TAAATTTCCCATAAAATAGTATG
TCCAAGTCAATTGGCCTAGGACC
ATACCTTATTCCCTT
63 Amaranthus DHP_A2_2 cDNAContig 176 375 CATGGCATTCATTATCAAATTTTT
lividus TGGGTGGAATCTTTGAAGCATG
GGGTAAACTCGGTGGAAGTTCC
CTAATCGGGAAGGATGGAATGA
AAAGGGTTTTGCCCGTTGGAAAT
CGCTTATGGGATTGGTCTCATAA
AACCTCTGTAATGGGAGTCTTGA
ACTTGACTCCTGATAGCTTTAGT
GATGGCGGAAGTTTTCAA
64 Amaranthus DHP_A2_2 cDNAContig 176 375 TTGAAAACTTCCGCCATCACTAA
lividus AGCTATCAGGAGTCAAGTTCAAG
ACTCCCATTACAGAGGTTTTATG
AGACCAATCCCATAAGCGATTTC
CAACGGGCAAAACCCTTTTCATT
CCATCCTTCCCGATTAGGGAACT
TCCACCGAGTTTACCCCATGCTTC
AAAGATTCCACCCAAAAAATTTG
ATAATGAATGCCATG
65 Amaranthus DHP_A4_1 gDNAContig 1 pal meri TCATCCTATGCTTATCAATGACTT
TTTCATATGCCTATCAAACAGATC
AGATTGGATCGGGTTCGAGTTCA
GGTCATATATAAACATGTCAGCA
AACCCTTGACCCATACCCAACCC
ATTTAGTTAATTGGCTTGAAAAT
CACAACCTTAATTCGACCAGCGA
CAGATCAGGTTGAC
66 Amaranthus DHP_A4_1 gDNAContig 1 pal meri GAATTAAGGTTGTGATTTTCAAG
CCAATTAACTAAATGGGTTGGGT
ATGGGTCAAGGGTTTGCTGACAT
GTTTATATATGACCTGAACTCGA
ACCCGATCCAATCTGATCTGTTT
GATAGGCATATGAAAAAGTCATT
GATAAGCATAGGATGAGAGGGC
TCCCTTTAACAGATCCG
67 Amaranthus DHP_A4_2 gDNAContig 176 375 TCGACCAGCGACAGATCAGGTT
pal meri GACCTGATTTCGACCCACTTAAC
CCATTTATAATTTTTTTTTCGATTT
AAGTTTTTTAACATTGATTAAATC
TAATTTTTTAGGCTTTAATTTTAA
TTTATGTTTTTTTGTTTAATTTGTA
TTTACTATGAAAAATAAGAAACT
ATTATATGAACTGAGTTTAGCTT
ACACTTATTGA

Amaranthus DHP_A4_2 gDNAContig 176 375 TCAATAAGTGTAAGCTAAACTCA
pal meri GTTCATATAATAGTTTCTTATTTT
TCATAGTAAATACAAATTAAACA
AAAAAACATAAATTAAAATTAAA
GCCTAAAAAATTAGATTTAATCA
ATGTTAAAAAACTTAAATCGAAA
AAAAAATTATAAATGGGTTAAGT
GGGTCGAAATCAGGTCAACCTG
ATCTGTCGCTGGTCGA

Amaranthus DHP_A4_3 gDNAContig 351 550 ACTGAGTTTAGCTTACACTTATTG
pal meri ATTTAACTCGAAATTAACACATTT
AATTAAATGGTTATATAGGGTTT
TTTAGTTTTAAAATTTCAACCTGA
ACCTAATCTATTTAATAAAAAGA
TCAGATCTGATCAACCCATATAA
TTAATTGGGTCAAAATCTCAACT
CAAACCCATTTATTTCGAATTAAA
TTCAGATCAAAT
70 Amaranthus DHP_A4_3 gDNAContig 351 550 ATTTGATCTGAATTTAATTCGAA
pal meri ATAAATGGGTTTGAGTTGAGATT
TTGACCCAATTAATTATATGGGT

TGATCAGATCTGATCTTTTTATTA
AATAGATTAGGTTCAGGTTGAAA
TTTTAAAACTAAAAAACCCTATAT
AACCATTTAATTAAATGTGTTAAT
TTCGAGTTAAATCAATAAGTGTA
AGCTAAACTCAGT
71 Am a ra nthus DHP_A4_4 gDNAContig 526 725 ATTTCGAATTAAATTCAGATCAA
pal meri ATTAGCAGGTCGGATCAACTAGC
GCTAATTTTTCCTCTCAAGTTTTT
TCATATGATGCCCCTTGTTTTCTT
TGAATAAAATTCACCAATTTAAA
ATCCCTGCCCTTGATCCGTTGGT
ATTGGTATTTGGTAAAGCACATA
TGGTAAATTCTACTCCATTGTTAT
CTGTAGTTTTGGT
72 Am a ra nthus DHP_A4_4 gDNAContig 526 725 ACCAAAACTACAGATAACAATGG
palmeri AGTAGAATTTACCATATGTGCTT
TACCAAATACCAATACCAACGGA
TCAAGGGCAGGGATTTTAAATTG
GTGAATTTTATTCAAAGAAAACA
AGGGGCATCATATGAAAAAACTT
GAGAGGAAAAATTAGCGCTAGT
TGATCCGACCTGCTAATTTGATCT
GAATTTAATTCGAAAT
73 Am a ra nthus DHP_A4_5 gDNAContig 701 900 CTCCATTGTTATCTGTAGTTTTGG
pal meri TTCTAAACCCCAAACAAATCCTA
CTCCTAGCACCACTAATCCTCATT
ACTTTCTGTTTGCTGTCTTTCTCT
ACATTCCTACTAAATTAAGACCT
AGATGCAGTGTTATTCTGTTCGA
GGTTGCCGAAAACGGTACAATA
GTTGCCTAATTTGCAATTCATGTT
TGTTCTTGCGTTT
74 Am a ra nthus DHP_A4_5 gDNAContig 701 900 AAACGCAAGAACAAACATGAAT
pal meri TGCAAATTAGGCAACTATTGTAC
CGTTTTCGGCAACCTCGAACAGA
ATAACACTGCATCTAGGTCTTAA
TTTAGTAGGAATGTAGAGAAAG
ACAGCAAACAGAAAGTAATGAG
GATTAGTGGTGCTAGGAGTAGG
ATTTGTTTGGGGTTTAGAACCAA
AACTACAGATAACAATGGAG
75 Am a ra nthus DHP_A4_6 gDNAContig 876 1075 GCAATTCATGTTTGTTCTTGCGTT
pal meri TTCTACATTGTTTACTCTATTGGA
ACAAAGGTTGAACTTTCAGCCTT
TCAGGGAGTATTTTGATTTTTCT
GTCAAATTACCTTGCCAGATTTAT

TTGGCTATTTTGATTGTGTGTATT
TCTTTGTCCCTTGTTTCCATGGGG
CTAAACTCCTTTTGGTTAATCTTA
AACATTTCTT
76 Am a ra nthus DH P_A4_6 gDNACo ntig 876 pal meri AAGGAGTTTAGCCCCATGGAAA
CAAGGGACAAAGAAATACACAC
AATCAAAATAGCCAAATAAATCT
GGCAAGGTAATTTGACAGAAAA
ATCAAAATACTCCCTGAAAG G CT
GAAAGTTCAACCTTTGTTCCAAT
AGAGTAAACAATGTAGAAAACG
CAAGAACAAACATGAATTGC
77 Am a ra nthus DH P_A4_7 gDNACo ntig 1051 1250 TTTTGGTTAATCTTAAACATTTCT
pal meri TCTAATTTTGAATTGCAGTGGTA
TGAAGTGTTGTTTAATATACAAT
CAATTTTTCTGAACTGGGTTAAT
GAAGAGAAGCATTGTAGACATG
AG GAATGTGTTCAAG CATCTCAA
AACAACCAAATTAATCCCAAATG
G GATCTTCAACTGTAATAGAG GT
AAATCACATATATTCT
78 Am a ra nthus DH P_A4_7 gDNACo ntig 1051 1250 AGAATATATGTGATTTACCTCTAT
pal meri TACAGTTGAAGATCCCATTTGGG
ATTAATTTGGTTGTTTTGAGATG
CTTGAACACATTCCTCATGTCTAC
AATGCTTCTCTTCATTAACCCAGT
TCAGAAAAATTGATTGTATATTA
AACAACACTTCATACCACTG CAA
TTCAAAATTAGAAGAAATGTTTA
AGATTAACCAAAA
79 Am a ra nthus DH P_A4_8 gDNACo ntig 1226 1425 AATAGAGGTAAATCACATATATT
pal meri CTCATTTAATGGTTATTGTTTTAT
TTTAAGGATGTTATTATGTTGTTA
TCAATGATAGAAATAAGAGAAG
CTTGAGCATTCAAATTTATCTATC
ACTCACTGGTTGTGGACATCTAA
AATATGGACCAAGAGTTTTCTTC
ATTTTTTGTACCAGAAG CTG CAA
ATGTATGATTAAAG
80 Am a ra nthus DH P_A4_8 gDNACo ntig 1226 1425 CTTTAATCATACATTTGCAGCTTC
pal meri TGGTACAAAAAATGAAGAAAAC
TCTTGGTCCATATTTTAGATGTCC
ACAACCAGTGAGTGATAGATAA
ATTTGAATGCTCAAGCTTCTCTTA
TTTCTATCATTGATAACAACATAA
TAACATCCTTAAAATAAAACAAT

AACCATTAAATGAGAATATATGT
GATTTACCTCTATT
81 Am a ra nthus DH P_A4_9 gDNACo ntig 1401 1600 AGAAGCTGCAAATGTATGATTAA
pal meri AGTTTAGGTTGGAGTTGCAATAA
AATTTTATTACCCCGACGCTATTA
AGTGGCTCACACTGAGGCGGGG
TTTGAGGGTCAGATGGTGCAACC
TTCAGAAGAGGTTCTAAGCATTT
TCAACATGTTCAACCGCATAGGG
TCCCGTAAAATTGGAGGCTTCAA
TATTAAATTATGTAGT
82 Am a ra nthus DH P_A4_9 gDNACo ntig 1401 1600 ACTACATAATTTAATATTGAAGC
palmeri CTCCAATTTTACGGGACCCTATG
CGGTTGAACATGTTGAAAATGCT
TAGAACCTCTTCTGAAGGTTGCA
CCATCTGACCCTCAAACCCCGCC
TCAGTGTGAGCCACTTAATAGCG
TCGGGGTAATAAAATTTTATTGC
AACTCCAACCTAAACTTTAATCAT
ACATTTGCAGCTTCT
83 Am a ra nthus DH P_A4_10 gDNACo ntig 1576 1775 AGGCTTCAATATTAAATTATGTA
pal meri GTATGTGTTATGTGTTTAAAGAT
ATAAATATGTTAATGAATACATA
ATTTTTAAATTGCACAGGGCCTT
CAAAGAAATTTTCGATTTTGCTCT
GCCCCTGGCAACCTTTGGCAAAT
TTGGATAGAATTAGAGAAGTTTA
CTTTTATGTGTGTATAATATGATG
AATGAATGAGTGAA
84 Am a ra nthus DH P_A4_10 gDNACo ntig 1576 1775 TTCACTCATTCATTCATCATATTA
pal meri TACACACATAAAAGTAAACTTCT
CTAATTCTATCCAAATTTGCCAAA
GGTTGCCAGGGGCAGAGCAAAA
TCGAAAATTTCTTTGAAGGCCCT
GTGCAATTTAAAAATTATGTATT
CATTAACATATTTATATCTTTAAA
CACATAACACATACTACATAATTT
AATATTGAAGCCT
85 Am a ra nthus DH P_A4_11 gDNACo ntig 1751 1950 ATAATATGATGAATGAATGAGTG
pal meri AACAATGAAGTTCATTTCTGAGT
CAATGACCTATATACTATCGAGG
TTTCGTTAAAAAGGATATATAAA
TAAAATTAGAGACATCTTTTATCC
CTAATGTTGTCTGTTTTCTTTTCT
GGGCGAGACTGTTTTTGGAGAA
AAACGTTATGTTGAATGCTTGAT
TTACTCAGAACTGAT

86 Am a ra nthus DHP_A4_11 gDNAContig 1751 1950 ATCAGTTCTGAGTAAATCAAGCA
pal meri TTCAACATAACGTTTTTCTCCAAA
AACAGTCTCGCCCAGAAAAGAA
AACAGACAACATTAGGGATAAA
AGATGTCTCTAATTTTATTTATAT
ATCCTTTTTAACGAAACCTCGATA
GTATATAGGTCATTGACTCAGAA
ATGAACTTCATTGTTCACTCATTC
ATTCATCATATTAT
87 Am a ra nthus DHP_A4_12 gDNAContig 1926 2125 AATGCTTGATTTACTCAGAACTG
pal meri ATGCAAACAGATGGATAAAAAT
GGTGTTTTCCTATTGTTTATGTTT
CGATAACAGGTTTCAAATTCCAC
TCGTATGAAGTTTGATATACTGC
TATGTGTTTTTGTAGCTTCGTGTT
TTGCTTTCCTTCACTCATCACCAG
TGAATGATGTTGAAGTTTGTTCC
AAGAAGCAAGAAGT
88 Am a ra nthus DHP_A4_12 gDNAContig 1926 2125 ACTTCTTGCTTCTTGGAACAAACT
pal meri TCAACATCATTCACTGGTGATGA
GTGAAGGAAAGCAAAACACGAA
GCTACAAAAACACATAGCAGTAT
ATCAAACTTCATACGAGTGGAAT
TTGAAACCTGTTATCGAAACATA
AACAATAGGAAAACACCATTTTT
ATCCATCTGTTTGCATCAGTTCTG
AGTAAATCAAGCATT
89 Am a ra nthus DHP_A4_13 gDNAContig 2101 2300 AAGTTTGTTCCAAGAAGCAAGAA
palmeri GTCGTAATTGCAATCGGGAGCA
ATGTTGGTGACAGATTAGAAAAT
TTCAACCAAGCTCTGCAACAAAT
GAAGAAATTAGGCATAGACATC
ACAAGGCATGGGTGTTTATATGA
GACGGAACCTGCATACGTGACT
GATCAACCGAAGTTTCTTAACTC
TGCTTTAAGAGGCTTTACA
90 Am a ra nthus DHP_A4_13 gDNAContig 2101 2300 TGTAAAGCCTCTTAAAGCAGAGT
pal meri TAAGAAACTTCGGTTGATCAGTC
ACGTATGCAGGTTCCGTCTCATA
TAAACACCCATGCCTTGTGATGT
CTATGCCTAATTTCTTCATTTGTT
GCAGAGCTTGGTTGAAATTTTCT
AATCTGTCACCAACATTGCTCCC
GATTGCAATTACGACTTCTTGCTT
CTTGGAACAAACTT
91 Am a ra nthus DHP_A4_14 gDNAContig 2276 2475 TAACTCTGCTTTAAGAGGCTTTA
pal meri CAAAACTTGGGCCTCATGAATTA

TTAGGGGTATTAAAGAAAATTGA
GAAGGATATGGGTAGAACCAAG
GGAATAAGGTATGGTCCTAGGC
CAATTGACTTGGACATACTATTTT
ATGGGAAGTTTAGGGTGAGCTC
TGAGAGCCTCACTATCCCCCATG
AAAGGATATGGGAAAGAC
92 Amaranthus DHP_A4_14 gDNAContig 2276 2475 GTCTTTCCCATATCCTTTCATGGG
palmeri GGATAGTGAGGCTCTCAGAGCT
CACCCTAAACTTCCCATAAAATA
GTATGTCCAAGTCAATTGGCCTA
GGACCATACCTTATTCCCTTGGTT
CTACCCATATCCTTCTCAATTTTC
TTTAATACCCCTAATAATTCATGA
GGCCCAAGTTTTGTAAAGCCTCT
TAAAGCAGAGTTA
93 Amaranthus DHP_A4_15 gDNAContig 2451 2650 CCCCATGAAAGGATATGGGAAA
palmeri GACCATTTGTGATGGCACCATTG
ATTGATTGTATTGGGTCTGATGT
AGAAAATGACACTATTTGTACGT
GGCATTCATTATCAAATTTTTCGG
GTGGAATCTTTGAAGCATGGGG
TAAACTCGGTGGAAGTTCCCTAA
TCGGGAAGGATGGAATGAAAAG
GGTTTTGCCCGTTGGAAA
94 Amaranthus DHP_A4_15 gDNAContig 2451 2650 TTTCCAACGGGCAAAACCCTTTT
palmeri CATTCCATCCTTCCCGATTAGGG
AACTTCCACCGAGTTTACCCCAT
GCTTCAAAGATTCCACCCGAAAA
ATTTGATAATGAATGCCACGTAC
AAATAGTGTCATTTTCTACATCA
GACCCAATACAATCAATCAATGG
TGCCATCACAAATGGTCTTTCCC
ATATCCTTTCATGGGG
95 Amaranthus DHP_A4_16 gDNAContig 2626 2825 TGAAAAGGGTTTTGCCCGTTGGA
palmeri AATCGCTTATGGGATTGGTCTCA
TAAAACCTCTGTTATGGGAGTCT
TGAACTTGACTCCTGATAGCTTT
AGTGATGGCGGAAGTTTTCAATC
TGTCGATACTGCGGTTGCTAAGG
TTCGTCAGATGATCTCAGATGGG
GCAGATATAATTGACATCGGGG
CACAATCAACCAGACCC
96 Amaranthus DHP_A4_16 gDNAContig 2626 2825 GGGTCTGGTTGATTGTGCCCCGA
palmeri TGTCAATTATATCTGCCCCATCTG
AGATCATCTGACGAACCTTAGCA
ACCGCAGTATCGACAGATTGAAA

ACTTCCGCCATCACTAAAGCTAT
CAGGAGTCAAGTTCAAGACTCCC
ATAACAGAGGTTTTATGAGACCA
ATCCCATAAGCGATTTCCAACGG
GCAAAACCCTTTTCA
97 Am a ra nthus DHP_A4_17 gDNAContig 2801 3000 CATCGGGGCACAATCAACCAGA
pal meri CCCATGGCAACTAGAATTTCGGC
TGAAGAAGAGCTAGAAAGAGTA
GTACCTGTATTGGAAGCTGTCAA
GGATTTGATCGAGGAAGAAGGA
AGAATCTTGTCAGTGGATACGTT
TTATTCTAAAGTTGCTTCGGAGG
CCGTCAAGAAGGGGGCACACAT
TGTGAATGATGTCTCTAGTG
98 Am a ra nthus DHP_A4_17 gDNAContig 2801 3000 CACTAGAGACATCATTCACAATG
palmeri TGTGCCCCCTTCTTGACGGCCTC
CGAAGCAACTTTAGAATAAAACG
TATCCACTGACAAGATTCTTCCTT
CTTCCTCGATCAAATCCTTGACA
GCTTCCAATACAGGTACTACTCTT
TCTAGCTCTTCTTCAGCCGAAATT
CTAGTTGCCATGGGTCTGGTTGA
TTGTGCCCCGATG
99 Am a ra nthus DHP_A4_18 gDNAContig 2976 3175 CACATTGTGAATGATGTCTCTAG
palmeri TGGGAAACTCGATTCCGAGATGT
TTAATGTTGTTGCGGACCTTAAA
GTTCCTTATATAGCAATGCACAT
GCGAGGAGATCCGACTTCAATG
CAAAACTCTGAGAACTTGACCTA
CAATGATGTTTGTAAGCAAGTGG
CTTTGGAGTTGAGTTCTAGGGTC
ATAGATGCAGAATTATC
100 Am a ra nthus DHP_A4_18 gDNAContig 2976 3175 GATAATTCTGCATCTATGACCCT
pal meri AGAACTCAACTCCAAAGCCACTT
GCTTACAAACATCATTGTAGGTC
AAGTTCTCAGAGTTTTGCATTGA
AGTCGGATCTCCTCGCATGTGCA
TTGCTATATAAGGAACTTTAAGG
TCCGCAACAACATTAAACATCTC
GGAATCGAGTTTCCCACTAGAGA
CATCATTCACAATGTG
101 Amaranthus DHP_A4_19 gDNAContig 3151 3350 CTAGGGTCATAGATGCAGAATTA
palmeri TCGGGAATTCCTGCTTGGAGGAT
AGTTATTGATCCCGGCATCGGAT
TTTCTAAGAATACGAATCAAAAT
TTGGAAATTCTTAGTGGTTTACA
AAAGATACGGGAAGAGATAGCT

AAGAAGAGTTTGGCGGTGGCTC
ATTGCCCCTTGCTAATTGGACCTT
CAAGAAAGAGGTTTCTG
102 Amaranthus DHP_A4_19 gDNAContig 3151 3350 CAGAAACCTCTTTCTTGAAGGTC
pal meri CAATTAGCAAGGGGCAATGAGC
CACCGCCAAACTCTTCTTAGCTAT
CTCTTCCCGTATCTTTTGTAAACC
ACTAAGAATTTCCAAATTTTGATT
CGTATTCTTAGAAAATCCGATGC
CGGGATCAATAACTATCCTCCAA
GCAGGAATTCCCGATAATTCTGC
ATCTATGACCCTAG
103 Amaranthus DHP_A4_20 gDNAContig 3326 3525 TGGACCTTCAAGAAAGAGGTTTC
palmeri TGGGCGAGATTTGTGAGCGCCCT
GTAGCAGCTGACAGGGATCCTG
CTACCATTGCTTCTATAACTGCTG
GAGTTTTAGGTGGTGCAAACATT
GTAAGAGTACATAATGTGAGGG
ATAACCTTGATGCTGTCAAGTTA
TGTGATGCCATACTCGGAAAAAC
TGATTAACTGCTTGTTT
104 Amaranthus DH P_A4_20 gDNACo ntig 3326 3525 AAACAAGCAGTTAATCAGTTTTT
pal meri CCGAGTATGGCATCACATAACTT
GACAGCATCAAGGTTATCCCTCA
CATTATGTACTCTTACAATGTTTG
CACCACCTAAAACTCCAGCAGTT
ATAGAAGCAATGGTAGCAGGAT
CCCTGTCAGCTGCTACAGGGCGC
TCACAAATCTCGCCCAGAAACCT
CTTTCTTGAAGGTCCA
105 Amaranthus DH P_A4_21 gDNACo ntig 3501 3700 GGAAAAACTGATTAACTGCTTGT
pal meri TTGTACCACCTTGTGAATGATGT
CTAGTGGAAGGTTCGATTGGGA
TTATGATGAAGTCCGTTAGTTTG
CTCGAAAGAAGAGCTTTAGCCCG
TAAGGTTATAGTTCTTACAGATG
TAGAATCATTGGCTATTTGCCTAT
TTCTGCTTAGAAGATCATAGCAT
TGATCCAGACTTTGGA
106 Amaranthus DH P_A4_21 gDNACo ntig 3501 3700 TCCAAAGTCTGGATCAATGCTAT
pal meri GATCTTCTAAGCAGAAATAGGCA
AATAGCCAATGATTCTACATCTG
TAAGAACTATAACCTTACGGGCT
AAAGCTCTTCTTTCGAGCAAACT
AACGGACTTCATCATAATCCCAA
TCGAACCTTCCACTAGACATCATT
CACAAGGTGGTACAAACAAGCA

GTTAATCAGTTTTTCC
107 Am a ra nthus DHP_A4_22 gDNAContig 3676 3875 TCATAGCATTGATCCAGACTTTG
pal meri GATTCCATGTAGAATTATGTTGC
GACTCATGGTCGAATTGGCCCTT
TGAGGAATTGTTGAAGTTCCTTG
AGTCTATGGTTCAATCGGCTCGG
TTCGATGAAGGTTGGACTGTGTC
GAGACAAGATGGGTCAAAGAGA
CCAATGGACAAGAAGTCGACCTT
GGGCAAGCTTGATCAAG
108 Am a ra nthus DHP_A4_22 gDNAContig 3676 3875 CTTGATCAAGCTTGCCCAAGGTC
pal meri GACTTCTTGTCCATTGGTCTCTTT
GACCCATCTTGTCTCGACACAGT
CCAACCTTCATCGAACCGAGCCG
ATTGAACCATAGACTCAAGGAAC
TTCAACAATTCCTCAAAGGGCCA
ATTCGACCATGAGTCGCAACATA
ATTCTACATGGAATCCAAAGTCT
GGATCAATGCTATGA
109 Am a ra nthus DHP_A4_23 gDNAContig 3851 4050 TCGACCTTGGGCAAGCTTGATCA
pal meri AGTTACTTGGACAAGCAGATAAC
AGCAGGCTCTGGCGAGCATTAG
ACATATCATTTGTTTTTTGGAGTC
AGATCTGCAATCAATCAGTTGCA
ATGGACAAACCATATACGGTTGT
TAGTTGTTACTGTCACTGTTTGA
GTTGAATTAGATCATGCAAACAC
TGTAGGAGTCTTGATT
110 Am a ra nthus DHP_A4_23 gDNAContig 3851 4050 AATCAAGACTCCTACAGTGTTTG
palmeri CATGATCTAATTCAACTCAAACA
GTGACAGTAACAACTAACAACCG
TATATGGTTTGTCCATTGCAACT
GATTGATTGCAGATCTGACTCCA
AAAAACAAATGATATGTCTAATG
CTCGCCAGAGCCTGCTGTTATCT
GCTTGTCCAAGTAACTTGATCAA
GCTTGCCCAAGGTCGA
111 Am a ra nthus DHP_A4_24 gDNAContig 4026 4225 TGCAAACACTGTAGGAGTCTTGA
pal meri TTATGTGAAGCTATGTGACACTG
TACTTCTCAAAATGAAATCTTTGA
TATGATGTTAGTTTCAAGAGTTG
TAATTCCCCCCTCACATTTCTGTT
CTATGTTGTATTGTTGTGTGCTTT
TTGGAATTGTATTCCTGCAATAG
AATTATTCCCGCAAAATGGTATT
CCTTTATATCATC
112 Am a ra nthus DHP_A4_24 gDNAContig 4026 4225 GATGATATAAAGGAATACCATTT

palmeri TGCGGGAATAATTCTATTGCAGG
AATACAATTCCAAAAAGCACACA
ACAATACAACATAGAACAGAAAT
GTGAGGGGGGAATTACAACTCT
TGAAACTAACATCATATCAAAGA
TTTCATTTTGAGAAGTACAGTGT
CACATAGCTTCACATAATCAAGA
CTCCTACAGTGTTTGCA
113 Amaranthus DHP_A4_25 gDNAContig 4201 4400 CAAAATGGTATTCCTTTATATCAT
pal meri CAAAGGAGTTTTTGTACTTCTAA
TCATTGATCTTTAGATGCAAAAC
TGAATTAATACAAGTATTCTTGA
TGAAGGCTTATTGAAGAACTCAC
TTTTTATTTATGTCTAAACTTGTT
AAAGATGTTCTGCTTCCGCCCTT
GCCACGGGATGTCGGGATTGAC
TAGGGGTGGTAATCG
114 Amaranthus DHP_A4_25 gDNAContig 4201 4400 CGATTACCACCCCTAGTCAATCC
palmeri CGACATCCCGTGGCAAGGGCGG
AAGCAGAACATCTTTAACAAGTT
TAGACATAAATAAAAAGTGAGTT
CTTCAATAAGCCTTCATCAAGAA
TACTTGTATTAATTCAGTTTTGCA
TCTAAAGATCAATGATTAGAAGT
ACAAAAACTCCTTTGATGATATA
AAGGAATACCATTTTG
115 Amaranthus DHP_A4_26 gDNAContig 4376 4575 CGGGATTGACTAGGGGTGGTAA
pal meri TCGAGGGATTCCTATGCTTGAAT
TGACTCGTTTAAGATTTTGCGTT
GATTTTAAGTCAAACGTTTTGCT
AAGCATAAACTATTCTAGCTCGA
CTTGAATAATGAAGTTTTCGAGT
CAAGTCCGAGCTGTTCTATAAGT
TTACGTATCTTGAAGCTTCTTAGT
TCTTACTTCTTATCCT
116 Amaranthus DHP_A4_26 gDNAContig 4376 4575 AGGATAAGAAGTAAGAACTAAG
pal meri AAGCTTCAAGATACGTAAACTTA
TAGAACAGCTCGGACTTGACTCG
AAAACTTCATTATTCAAGTCGAG
CTAGAATAGTTTATGCTTAGCAA
AACGTTTGACTTAAAATCAACGC
AAAATCTTAAACGAGTCAATTCA
AGCATAGGAATCCCTCGATTACC
ACCCCTAGTCAATCCCG
117 Amaranthus DHP_A4_27 gDNAContig 4551 4750 CTTCTTAGTTCTTACTTCTTATCCT
pal meri TTATTTTTTGACACATTGAACCGC
ATTGATGCTTGCTTGACTCAACTC

GTTAAAGTCTTGAGTTCATCACG
AATTCGAGTCGAGCAAGTTTAAA
CCCAACATTAACTAAGCTCTCGA
GGCTTAATGAGGCAGGGGTAGC
TCAAGTTTGTTATTCAAGCAACTT
ACCATAGTATTC
118 Amaranthus DHP_A4_27 gDNAContig 4551 4750 GAATACTATGGTAAGTTGCTTGA
pal meri ATAACAAACTTGAGCTACCCCTG
CCTCATTAAGCCTCGAGAGCTTA
GTTAATGTTGGGTTTAAACTTGC
TCGACTCGAATTCGTGATGAACT
CAAGACTTTAACGAGTTGAGTCA
AGCAAGCATCAATGCGGTTCAAT
GTGTCAAAAAATAAAGGATAAG
AAGTAAGAACTAAGAAG
119 Amaranthus DHP_A4_28 gDNAContig 4726 4925 ATTCAAGCAACTTACCATAGTAT
pal meri TCTTTTAAAAGGCATATAGTCAG
TTAGTTATTTGTTAATTTCAGTAG
AACGAAAGAAGTACATTATTAAA
CTTGGCCATTGATGCTTGAGCTA
GAGAGTTTCGGTTGTGATCGAAA
CGAATCCTGATTTCGCTCTTGATC
TTTGATGTGAAGTGACAAGGCCT
TCATAAAACTCCTT
120 Amaranthus DHP_A4_28 gDNAContig 4726 4925 AAGGAGTTTTATGAAGGCCTTGT
pal meri CACTTCACATCAAAGATCAAGAG
CGAAATCAGGATTCGTTTCGATC
ACAACCGAAACTCTCTAGCTCAA
GCATCAATGGCCAAGTTTAATAA
TGTACTTCTTTCGTTCTACTGAAA
TTAACAAATAACTAACTGACTAT
ATGCCTTTTAAAAGAATACTATG
GTAAGTTGCTTGAAT
121 Amaranthus DHP_A4_29 gDNAContig 4901 5100 TGACAAGGCCTTCATAAAACTCC
pal meri TTTATTCTTCAGCAGTGCATACAA
AAATCATGTGTGCCCAGCTCCTA
GCTCACATACCGCGTTTTTCCCCT
AATCTAGTGTGGTTAAATAAAAA
CAGCAAGATGTGTTGATGTCATG
TGCAATAGTAATTATCAGGTGAA
GTAATTCAATATGTAGCCAGTCA
CCTCATATCAAAAA
122 Amaranthus DHP_A4_29 gDNAContig 4901 5100 TTTTTGATATGAGGTGACTGGCT
pal meri ACATATTGAATTACTTCACCTGAT
AATTACTATTGCACATGACATCA
ACACATCTTGCTGTTTTTATTTAA
CCACACTAGATTAGGGGAAAAA

CGCGGTATGTGAGCTAGGAGCT
GGGCACACATGATTTTTGTATGC
ACTGCTGAAGAATAAAGGAGTTT
TATGAAGGCCTTGTCA

Amaranthus DH P_A4_30 gDNACo ntig 5076 5275 GTAGCCAGTCACCTCATATCAAA
palmeri AAAATGTTGGGAGGAAAACGTA
TTCGTTCATCACTAAACCTGTTTT
TATACATCTAACTGATCGATCAG
GGTTTCAAAATCCAAATTAATAC
AATGGCATTTGACGAAGATATCC
AGAACACATCCCCCTTGTTTCTGC
TAGATAATCAACTATTCTGATTCT
GCTGTAATACCTCA

Amaranthus DH P_A4_30 gDNACo ntig 5076 5275 TGAGGTATTACAGCAGAATCAG
palmeri AATAGTTGATTATCTAGCAGAAA
CAAGGGGGATGTGTTCTGGATA
TCTTCGTCAAATGCCATTGTATTA
ATTTGGATTTTGAAACCCTGATC
GATCAGTTAGATGTATAAAAACA
GGTTTAGTGATGAACGAATACGT
TTTCCTCCCAACATTTTTTTGATA
TGAGGTGACTGGCTAC

Amaranthus DH P_A4_31 gDNACo ntig 5251 5450 ATTCTGATTCTGCTGTAATACCTC
palmeri AGCTTCGGCCCTAGCCATGGGAT
CGTCCTCTTTTTCTCCTTCACGCT
CCTCGGCCAGTTTCTTTCTGTGCA
GTTCTTCAGCAGCTTCTATTGAA
GCTTTGTTCTCGGCCTGAAGACG
CTGCATTTCCTCTTCCATTTGCTG
CCTCTCAAACCATGTATCAGCAT
CCGCCCAAACTG
126 Amaranthus DHP_A4_31 gDNAContig 5251 5450 CAGTTTGGGCGGATGCTGATACA
palmeri TGGTTTGAGAGGCAGCAAATGG
AAGAGGAAATGCAGCGTCTTCA
GGCCGAGAACAAAGCTTCAATA
GAAGCTGCTGAAGAACTGCACA
GAAAGAAACTGGCCGAGGAGCG
TGAAGGAGAAAAAGAGGACGAT
CCCATGGCTAGGGCCGAAGCTG
AGGTATTACAGCAGAATCAGAAT
127 Amaranthus DHP_A7_1 cDNAContig 1 palmeri GGAAGAAGGAAGAATCTTGTCA
GTGGATACGTTTTATTCTAAAGT
TGCTTCGGAGGCCGTCAAGAAG
GGGGCACACATTGTGAATGATG
TCTCTAGTGGGAAACTCGATTCC
GAGATGTTTAATGTTGTTGCGGA

CCTTAAAGTTCCTTATATAGCAAT
GCACATGCGAGGAGATCC
128 Amaranthus DHP_A7_1 cDNAContig 1 pal meri TATATAAGGAACTTTAAGGTCCG
CAACAACATTAAACATCTCGGAA
TCGAGTTTCCCACTAGAGACATC
ATTCACAATGTGTGCCCCCTTCTT
GACGGCCTCCGAAGCAACTTTAG
AATAAAACGTATCCACTGACAAG
ATTCTTCCTTCTTCCTCGATCAAA
TCCTTGACAGCTTC
129 Amaranthus DHP_A7_2 cDNAContig 176 375 TAGCAATGCACATGCGAGGAGA
pal meri TCCGACTTCAATGCAAAACTCTG
AGAACTTGACCTACAATGATGTT
TGTAAGCAAGTGGCTTTGGAGTT
GAGTTCTAGGGTCATAGATGCA
GAATTATCGGGAATTCCTGCTTG
GAGGATAGTTATTGATCCCGGCA
TCGGATTTTCTAAGAATACGAAT
CAAAATTTGGAAATTCTT
130 Amaranthus DHP_A7_2 cDNAContig 176 375 AAGAATTTCCAAATTTTGATTCGT
palmeri ATTCTTAGAAAATCCGATGCCGG
GATCAATAACTATCCTCCAAGCA
GGAATTCCCGATAATTCTGCATC
TATGACCCTAGAACTCAACTCCA
AAGCCACTTGCTTACAAACATCA
TTGTAGGTCAAGTTCTCAGAGTT
TTGCATTGAAGTCGGATCTCCTC
GCATGTGCATTGCTA
131 Amaranthus DHP_A7_3 cDNAContig 351 550 TACGAATCAAAATTTGGAAATTC
pal meri TTAGTGGTTTACAAAAGATACGG
GAAGAGATAGCTAAGAAGAGTT
TGGCGGTGGCTCATTGCCCCTTG
CTAATTGGACCTTCAAGAAAGAG
GTTTCTGGGCGAGATTTGTGAGC
GCCCTGTAGCAGCTGACAGGGA
TCCTGCTACCATTGCTTCTATAAC
TGCTGGAGTTTTAGGTG
132 Amaranthus DHP_A7_3 cDNAContig 351 550 CACCTAAAACTCCAGCAGTTATA
palmeri GAAGCAATGGTAGCAGGATCCC
TGTCAGCTGCTACAGGGCGCTCA
CAAATCTCGCCCAGAAACCTCTT
TCTTGAAGGTCCAATTAGCAAGG
GGCAATGAGCCACCGCCAAACTC
TTCTTAGCTATCTCTTCCCGTATC
TTTTGTAAACCACTAAGAATTTCC
AAATTTTGATTCGTA

133 Amaranthus DHP_A7_4 cDNAContig 526 725 TCTATAACTGCTGGAGTTTTAGG
pal meri TGGTGCAAACATTGTAAGAGTAC
ATAATGTTAGGGATAACCTTGAT
GCTGTCAAGTTATGTGATGCCAT
ACTCGGAAAAACTGATTAACTGC
TTGTTTGTACCACCTTGTGAATG
ATGTCTAGTGGAAGGTTCGATTG
GGATTATGATGAAGTCCGTTAGT
TTGCTCGAAAGTAGAG
134 Amaranthus DHP_A7_4 cDNAContig 526 725 CTCTACTTTCGAGCAAACTAACG
pal meri GACTTCATCATAATCCCAATCGA
ACCTTCCACTAGACATCATTCACA
AGGTGGTACAAACAAGCAGTTA
ATCAGTTTTTCCGAGTATGGCAT
CACATAACTTGACAGCATCAAGG
TTATCCCTAACATTATGTACTCTT
ACAATGTTTGCACCACCTAAAAC
TCCAGCAGTTATAGA
135 Amaranthus DHP_A7_5 cDNAContig 701 900 TCCGTTAGTTTGCTCGAAAGTAG
pal meri AGCTTTAGCCCGTAAGGCTATAG
TTCTTACAGATGTAGAATCATTG
GCTATTTGCCTATTTCTGCTTAGA
AGATCATAGCATTGATCCAGACT
TTGGATTCCATGTAGAATTATGT
TGCGACTCATGGTCGAATTGGCC
CTTTGAGGAATTGTTGAAGTTCC
TTGAGTCTATGGTTC
136 Amaranthus DHP_A7_5 cDNAContig 701 900 GAACCATAGACTCAAGGAACTTC
pal meri AACAATTCCTCAAAGGGCCAATT
CGACCATGAGTCGCAACATAATT
CTACATGGAATCCAAAGTCTGGA
TCAATGCTATGATCTTCTAAGCA
GAAATAGGCAAATAGCCAATGA
TTCTACATCTGTAAGAACTATAG
CCTTACGGGCTAAAGCTCTACTT
TCGAGCAAACTAACGGA
137 Amaranthus DHP_A7_6 cDNAContig 876 1075 TTGAAGTTCCTTGAGTCTATGGT
pal meri TCAATCGGCTCGGTTCGATGAAG
GTTGGACTGTGTCGAGACAAGA
TGGGTCAAAGAGACCAATGGAC
AAGAAGTCGACCTTGGGCAAGC
TTGATCAAGTTACTTGGACAAGC
AGATAACAGCAGGCTCTGGCGA
GCATTAGACATATCATTTGTTTTT
TGGAGTCAGATCTGCAATC
138 Amaranthus DHP_A7_6 cDNAContig 876 1075 GATTGCAGATCTGACTCCAAAAA
pal meri ACAAATGATATGTCTAATGCTCG

CCAGAGCCTGCTGTTATCTGCTT
GTCCAAGTAACTTGATCAAGCTT
GCCCAAGGTCGACTTCTTGTCCA
TTGGTCTCTTTGACCCATCTTGTC
TCGACACAGTCCAACCTTCATCG
AACCGAGCCGATTGAACCATAG
ACTCAAGGAACTTCAA
139 Amaranthus DHP_A5_1 cDNAContig 1 pal meri AATGATGTTGAAGTTTGTTCCAA
GAAGCAAGAAGTCGTAATTGCA
ATCGGGAGCAATGTTGGTGACA
GATTAGAAAATTTCAACCAAGCT
CTGCAACAAATGAAGAAATTAG
GCATAGACATCACAAGGCATGG
GTGTTTATATGAGACGGAACCTG
CATACGTGACTGATCAACC
140 Amaranthus DHP_A5_1 cDNAContig 1 pal meri TTCCGTCTCATATAAACACCCATG
CCTTGTGATGTCTATGCCTAATTT
CTTCATTTGTTGCAGAGCTTGGT
TGAAATTTTCTAATCTGTCACCAA
CATTGCTCCCGATTGCAATTACG
ACTTCTTGCTTCTTGGAACAAACT
TCAACATCATTCACTGGTGATGA
GTGAAGGAAAGC
141 Amaranthus DHP_A5_2 cDNAContig 176 375 AACCTGCATACGTGACTGATCAA
pal meri CCGAAGTTTCTTAACTCTGCTTTA
AGAGGCTTTACAAAACTTGGGCC
TCATGAATTATTAGGGGTATTAA
AGAAAATTGAGAAGGATATGGG
TAGAACCAAGGGAATAAGGTAT
GGTCCTAGGCCAATTGACTTGGA
CATACTATTTTATGGGAAGTTTA
GGGTGAGCTCTGAGAGC
142 Amaranthus DHP_A5_2 cDNAContig 176 375 GCTCTCAGAGCTCACCCTAAACT
pal meri TCCCATAAAATAGTATGTCCAAG
TCAATTGGCCTAGGACCATACCT
TATTCCCTTGGTTCTACCCATATC
CTTCTCAATTTTCTTTAATACCCCT
AATAATTCATGAGGCCCAAGTTT
TGTAAAGCCTCTTAAAGCAGAGT
TAAGAAACTTCGGTTGATCAGTC
ACGTATGCAGGTT
143 Amaranthus DHP_A5_3 cDNAContig 351 550 GAAGTTTAGGGTGAGCTCTGAG
pal meri AGCCTCACTATCCCCCATGAAAG
GATATGGGAAAGACCATTTGTG
ATGGCACCATTGATTGATTGTAT

TGGGTCTGATGTAGAAAATGAC
ACTATTTGTACGTGGCATTCATTA
TCAAATTTTTCGGGTGGAATCTTT
GAAGCATGGGGTAAACTCGGTG
GAAGTTCCCTAATCGGGA
144 Amaranthus DHP_A5_3 cDNAContig 351 550 TCCCGATTAGGGAACTTCCACCG
pal meri AGTTTACCCCATGCTTCAAAGAT
TCCACCCGAAAAATTTGATAATG
AATGCCACGTACAAATAGTGTCA
TTTTCTACATCAGACCCAATACAA
TCAATCAATGGTGCCATCACAAA
TGGTCTTTCCCATATCCTTTCATG
GGGGATAGTGAGGCTCTCAGAG
CTCACCCTAAACTTC
145 Amaranthus DHP_A5_4 cDNAContig 526 725 CTCGGTGGAAGTTCCCTAATCGG
palmeri GAAGGATGGAATGAAAAGGGTT
TTGCCCGTTGGAAATCGCTTATG
GGATTGGTCTCATAAAACCTCTG
TTATGGGAGTCTTGAACTTGACT
CCTGATAGCTTTAGTGATGGCGG
AAGTTTTCAATCTGTCGATACTG
CGGTTGCTAAGGTTCGTCAGATG
ATCTCAGATGGGGCAGA
146 Amaranthus DHP_A5_4 cDNAContig 526 725 TCTGCCCCATCTGAGATCATCTG
pal meri ACGAACCTTAGCAACCGCAGTAT
CGACAGATTGAAAACTTCCGCCA
TCACTAAAGCTATCAGGAGTCAA
GTTCAAGACTCCCATAACAGAGG
TTTTATGAGACCAATCCCATAAG
CGATTTCCAACGGGCAAAACCCT
TTTCATTCCATCCTTCCCGATTAG
GGAACTTCCACCGAG
147 Amaranthus DHP_A5_5 cDNAContig 701 900 GTCAGATGATCTCAGATGGGGC
pal meri AGATATAATTGACATCGGGGCAC
AATCAACCAGACCCATGGCAACT
AGAATTTCGGCTGAAGAAGAGC
TAGAAAGAGTAGTACCTGTATTG
GAAGCTGTCAAGGATTTGATCGA
GGAAGAAGGAAGAATCTTGTCA
GTGGATACGTTTTATTCTAAAGT
TGCTTCGGAGGCCGTCAAG
148 Amaranthus DHP_A5_5 cDNAContig 701 900 CTTGACGGCCTCCGAAGCAACTT
pal meri TAGAATAAAACGTATCCACTGAC
AAGATTCTTCCTTCTTCCTCGATC
AAATCCTTGACAGCTTCCAATAC
AGGTACTACTCTTTCTAGCTCTTC
TTCAGCCGAAATTCTAGTTGCCA

TGGGTCTGGTTGATTGTGCCCCG
ATGTCAATTATATCTGCCCCATCT
GAGATCATCTGAC
149 Amaranthus DHP_A5_6 cDNAContig 876 1075 TAAAGTTGCTTCGGAGGCCGTCA
palmeri AGAAGGGGGCACACATTGTGAA
TGATGTCTCTAGTGGGAAACTCG
ATTCCGAGATGTTTAATGTTGTT
GCGGACCTTAAAGTTCCTTATAT
AGCAATGCACATGCGAGGAGAT
CCGACTTCAATGCAAAACTCTGA
GAACTTGACCTACAATGATGTTT
GTAAGCAAGTGGCTTTGG
150 Amaranthus DHP_A5_6 cDNAContig 876 1075 CCAAAGCCACTTGCTTACAAACA
pal meri TCATTGTAGGTCAAGTTCTCAGA
GTTTTGCATTGAAGTCGGATCTC
CTCGCATGTGCATTGCTATATAA
GGAACTTTAAGGTCCGCAACAAC
ATTAAACATCTCGGAATCGAGTT
TCCCACTAGAGACATCATTCACA
ATGTGTGCCCCCTTCTTGACGGC
CTCCGAAGCAACTTTA
151 Amaranthus DHP_A5_7 cDNAContig 1051 1250 GATGTTTGTAAGCAAGTGGCTTT
pal meri GGAGTTGAGTTCTAGGGTCATA
GATGCAGAATTATCGGGAATTCC
TGCTTGGAGGATAGTTATTGATC
CCGGCATCGGATTTTCTAAGAAT
ACGAATCAAAATTTGGAAATTCT
TAGTGGTTTACAAAAGATACGG
GAAGAGATAGCTAAGAAGAGTT
TGGCGGTGGCTCATTGCCC
152 Amaranthus DHP_A5_7 cDNAContig 1051 1250 GGGCAATGAGCCACCGCCAAAC
palmeri TCTTCTTAGCTATCTCTTCCCGTA
TCTTTTGTAAACCACTAAGAATTT
CCAAATTTTGATTCGTATTCTTAG
AAAATCCGATGCCGGGATCAATA
ACTATCCTCCAAGCAGGAATTCC
CGATAATTCTGCATCTATGACCCT
AGAACTCAACTCCAAAGCCACTT
GCTTACAAACATC
153 Amaranthus DHP_A5_8 cDNAContig 1226 1425 AGAGTTTGGCGGTGGCTCATTGC
pal meri CCCTTGCTAATTGGACCTTCAAG
AAAGAGGTTTCTGGGCGAGATTT
GTGAGCGCCCTGTAGCAGCTGA
CAGGGATCCTGCTACCATTGCTT
CTATAACTGCTGGAGTTTTAGGT
GGTGCAAACATTGTAAGAGTAC
ATAATGTGAGGGATAACCTTGAT

GCTGTCAAGTTATGTGAT
154 Amaranthus DHP_A5_8 cDNAContig 1226 1425 ATCACATAACTTGACAGCATCAA
pal meri GGTTATCCCTCACATTATGTACTC
TTACAATGTTTGCACCACCTAAA
ACTCCAGCAGTTATAGAAGCAAT
GGTAGCAGGATCCCTGTCAGCTG
CTACAGGGCGCTCACAAATCTCG
CCCAGAAACCTCTTTCTTGAAGG
TCCAATTAGCAAGGGGCAATGA
GCCACCGCCAAACTCT
155 Amaranthus DHP_A6_1 cDNAContig 1 pal meri AACGTTGTTGAAGTTTGTTCCAA
GAAGCAAGAAGTCGTAATTGCA
ATCGGGAGCAATGTTGGTGACA
GATTAGAAAATTTCAACCAAGCT
CTGCAACAAATGAAGAAATTAG
GCATAGACATCACAAGGCATGG
TTGTTTATATGAGACGGAACCTG
CATACGTGACTGATCAACC
156 Amaranthus DHP_A6_1 cDNAContig 1 pal meri TTCCGTCTCATATAAACAACCAT
GCCTTGTGATGTCTATGCCTAATT
TCTTCATTTGTTGCAGAGCTTGG
TTGAAATTTTCTAATCTGTCACCA
ACATTGCTCCCGATTGCAATTAC
GACTTCTTGCTTCTTGGAACAAA
CTTCAACAACGTTCCCTGGTGAA
GAGTGAAGGAAAGC
157 Amaranthus DHP_A6_2 cDNAContig 176 375 AACCTGCATACGTGACTGATCAA
pal meri CCGAAGTTTCTTAACTCTGCTTTA
AGAGGCTTTACAAGACTTGGACC
TCATGAATTATTAGGGGTATTGA
AGAAAATTGAGAAGGATATGGG
TAGAACCAAGGGAATAAGGTAT
GGTCCTAGGCCAATTGACTTGGA
CATACTATTTTATGGGAAGTTTA
GGGTGAGCTCTGAGAGC
158 Amaranthus DHP_A6_2 cDNAContig 176 375 GCTCTCAGAGCTCACCCTAAACT
pal meri TCCCATAAAATAGTATGTCCAAG
TCAATTGGCCTAGGACCATACCT
TATTCCCTTGGTTCTACCCATATC
CTTCTCAATTTTCTTCAATACCCC
TAATAATTCATGAGGTCCAAGTC
TTGTAAAGCCTCTTAAAGCAGAG
TTAAGAAACTTCGGTTGATCAGT
CACGTATGCAGGTT
159 Amaranthus DHP_A6_3 cDNAContig 351 550 GAAGTTTAGGGTGAGCTCTGAG

pal meri AGCCTCACTATCCCCCATGAAAG
GATATGGGAAAGACCATTTGTG
ATGGCACCATTGATTGATTGTAT
TGGGTCTGATGTAGAAAATGAC
ACTATTTGTACGTGGCATTCATTA
TCAAATTTTTCGGGTGGAATCTTT
GAAGCATGGGGTAAACTCGGTG
GAAGCTCCCTAATCGGGA
160 Amaranthus DHP_A6_3 cDNAContig 351 550 TCCCGATTAGGGAGCTTCCACCG
pal meri AGTTTACCCCATGCTTCAAAGAT
TCCACCCGAAAAATTTGATAATG
AATGCCACGTACAAATAGTGTCA
TTTTCTACATCAGACCCAATACAA
TCAATCAATGGTGCCATCACAAA
TGGTCTTTCCCATATCCTTTCATG
GGGGATAGTGAGGCTCTCAGAG
CTCACCCTAAACTTC
161 Amaranthus DHP_A6_4 cDNAContig 526 725 CTCGGTGGAAGCTCCCTAATCGG
palmeri GAAGGATGGAATGAAAAGGGTT
TTGCCCGTTGGAAATCTCTTATG
GGATTGGTCTCATAAAACCTCTG
TTATGGGAGTCTTGAACTTGACT
CCTGATAGCTTTAGTGATGGCGG
AAGTTTTCAATCTGTCAATACTGC
GGTTGCTAAGGTTCGTCAGATGA
TCTCAGATGGGGCAGA
162 Amaranthus DHP_A6_4 cDNAContig 526 725 TCTGCCCCATCTGAGATCATCTG
pal meri ACGAACCTTAGCAACCGCAGTAT
TGACAGATTGAAAACTTCCGCCA
TCACTAAAGCTATCAGGAGTCAA
GTTCAAGACTCCCATAACAGAGG
TTTTATGAGACCAATCCCATAAG
AGATTTCCAACGGGCAAAACCCT
TTTCATTCCATCCTTCCCGATTAG
GGAGCTTCCACCGAG
163 Amaranthus DHP_A6_5 cDNAContig 701 900 GTCAGATGATCTCAGATGGGGC
pal meri AGATATAATTGACATCGGGGCAC
AATCAACCAGACCCATGGCAACT
AGAATTTCGGCTGAAGAAGAGC
TAGCAAGAGTAGTACCTGTATTA
GAAGCTGTCAAGGATTTGATCGA
GGAAGAAGGAAGAATCTTGTCA
GTGGATACGTTTTATTCTAAAGT
TGCTTTGGAGGCCGTCAAG
164 Amaranthus DHP_A6_5 cDNAContig 701 900 CTTGACGGCCTCCAAAGCAACTT
pal meri TAGAATAAAACGTATCCACTGAC
AAGATTCTTCCTTCTTCCTCGATC

AAATCCTTGACAGCTTCTAATAC
AGGTACTACTCTTGCTAGCTCTTC
TTCAGCCGAAATTCTAGTTGCCA
TGGGTCTGGTTGATTGTGCCCCG
ATGTCAATTATATCTGCCCCATCT
GAGATCATCTGAC
165 Amaranthus DHP_A6_6 cDNAContig 876 1075 TAAAGTTGCTTTGGAGGCCGTCA
palmeri AGAAGGGGGCACACATTGTGAA
TGATGTCTCTAGTGGTAAACTCG
ATTCCGAGATGTTTAATGTTGTT
GCGGACCTTAAAGTTCCTTATAT
AGCAATGCACATGCGAGGAGAT
CCGACTTCAATGCAAAACTCTGA
GAACTTGACCTACAATGATGTTT
GTAAGCAAGTGGCTTCGG
166 Amaranthus DHP_A6_6 cDNAContig 876 1075 CCGAAGCCACTTGCTTACAAACA
pal meri TCATTGTAGGTCAAGTTCTCAGA
GTTTTGCATTGAAGTCGGATCTC
CTCGCATGTGCATTGCTATATAA
GGAACTTTAAGGTCCGCAACAAC
ATTAAACATCTCGGAATCGAGTT
TACCACTAGAGACATCATTCACA
ATGTGTGCCCCCTTCTTGACGGC
CTCCAAAGCAACTTTA
167 Amaranthus DHP_A6_7 cDNAContig 1051 1250 GATGTTTGTAAGCAAGTGGCTTC
pal meri GGAGTTGAGTTCTAGGGTCATA
GATGCAGAATTATCGGGAATTCC
TGCTTGGAGGATAGTTATTGATC
CCGGCATCGGATTTTCTAAGAAT
ACGAATCAAAATTTGGAAATTCT
TAGTGGTTTACAAAAGATACGG
GAAGAGATAGCTAAGAAGAGTT
TGGCGGTGGCTCATTGCCC
168 Amaranthus DHP_A6_7 cDNAContig 1051 1250 GGGCAATGAGCCACCGCCAAAC
palmeri TCTTCTTAGCTATCTCTTCCCGTA
TCTTTTGTAAACCACTAAGAATTT
CCAAATTTTGATTCGTATTCTTAG
AAAATCCGATGCCGGGATCAATA
ACTATCCTCCAAGCAGGAATTCC
CGATAATTCTGCATCTATGACCCT
AGAACTCAACTCCGAAGCCACTT
GCTTACAAACATC
169 Amaranthus DHP_A6_8 cDNAContig 1226 1425 AGAGTTTGGCGGTGGCTCATTGC
pal meri CCCTTGCTAATTGGACCTTCAAG
AAAGAGGTTTCTGGGCGAGATTT
GTGAGCGCCCTGTAGCAGCTGA
CAGGGATCCTGCTACCATTGCTT

CTATAACTGCTGGAGTTTTAGGT
GGTGCAAACATTGTAAGAGTAC
ATAATGTTAGGGATAACCTTGAT
GCTGTCAAGTTATGTGAT
170 Amaranthus DHP_A6_8 cDNAContig 1226 1425 ATCACATAACTTGACAGCATCAA
pal meri GGTTATCCCTAACATTATGTACTC
TTACAATGTTTGCACCACCTAAA
ACTCCAGCAGTTATAGAAGCAAT
GGTAGCAGGATCCCTGTCAGCTG
CTACAGGGCGCTCACAAATCTCG
CCCAGAAACCTCTTTCTTGAAGG
TCCAATTAGCAAGGGGCAATGA
GCCACCGCCAAACTCT
171 Amaranthus DHP_A3_1 gDNAContig 1 pal meri ATGTGTGATGTTGGTAAATTTTG
TGGCTTCGTCCACTAATCTGATG
TATCGGATCTGTTAAAGGGAGCC
CTCTCATCCTATGCTTATCAATGA
CTTTTTCATATGCCTATCAAACAG
ATCAGATTGGATCGGGTTCGAGT
TCAGGTCATATATAAACATGTCA
GCAAACCCTTGACC
172 Amaranthus DHP_A3_1 gDNAContig 1 pal meri TATATATGACCTGAACTCGAACC
CGATCCAATCTGATCTGTTTGAT
AGGCATATGAAAAAGTCATTGAT
AAGCATAGGATGAGAGGGCTCC
CTTTAACAGATCCGATACATCAG
ATTAGTGGACGAAGCCACAAAA
TTTACCAACATCACACATAAGGC
CATGCCCAAATAAACACC
173 Amaranthus DHP_A3_2 gDNAContig 176 375 TAAACATGTCAGCAAACCCTTGA
pal meri CCCATACCCAACCCATTTAGTTAA
TTGGCTTGAAAATCACAACCTTA
ATTCGACCAGCGACAGATCAGGT
TGACCTGATTTCGACCCACTTAA
CCCATTTATAATTTTTTTTTCGATT
TAAGTTTTTTAACATTGATTAAAT
CTAATTTTTTAGGCTTTAATTTTA
ATTTTATGTTT
174 Amaranthus DHP_A3_2 gDNAContig 176 375 AAACATAAAATTAAAATTAAAGC
pal meri CTAAAAAATTAGATTTAATCAAT
GTTAAAAAACTTAAATCGAAAAA
AAAATTATAAATGGGTTAAGTGG
GTCGAAATCAGGTCAACCTGATC
TGTCGCTGGTCGAATTAAGGTTG
TGATTTTCAAGCCAATTAACTAA

ATGGGTTGGGTATGGGTCAAGG
GTTTGCTGACATGTTTA
175 Am a ra nthus DH P_A3_3 gDNACo ntig 351 pal meri TTTTTGTTTAATTTGTATTTACTAT
GAAAAATAAGAAACTATTATATG
AACTGAGTTTAGCTTACACTTATT
AATTTAACTCGAAATTAACACAT
TTAATTAAATGGTTATATAGGGT
TTTTTAGTTTTAAAATTTCAACCT
GAACCTAATCTATTTAATAAAAA
GATCAGATCTG
176 Am a ra nthus DH P_A3_3 gDNACo ntig 351 pal meri GATTAGGTTCAGGTTGAAATTTT
AAAACTAAAAAACCCTATATAAC
CATTTAATTAAATGTGTTAATTTC
GAGTTAAATTAATAAGTGTAAGC
TAAACTCAGTTCATATAATAGTTT
CTTATTTTTCATAGTAAATACAAA
TTAAACAAAAAAACATAAAATTA
AAATTAAAGCCT
177 Am a ra nthus DH P_A3_4 gDNACo ntig 526 pal meri TGATCAACCCATATAATTAATTG
GGTCAAAATCTCAACTCAAACCC
ATTTATTTCGAATTAAATTCAGAT
CAAATTAGCAGGTCGGATCAACT
AGCGCTAATTTTTCCTCTCAAGTT
TTTTCATATGATGCCCCTTGTTTT
CTTTGAATAAAATTCACCAATTTA
AAATCCCTGCCC
178 Amaranthus DHP_A3_4 gDNAContig 526 725 GGGCAGGGATTTTAAATTGGTG
pal meri AATTTTATTCAAAGAAAACAAGG
GGCATCATATGAAAAAACTTGAG
AGGAAAAATTAGCGCTAGTTGAT
CCGACCTGCTAATTTGATCTGAA
TTTAATTCGAAATAAATGGGTTT
GAGTTGAGATTTTGACCCAATTA
ATTATATGGGTTGATCAGATCTG
ATCTTTTTATTAAATAG
179 Am a ra nthus DH P_A3_5 gDNACo ntig 701 pal meri CTTGATCCGTTGGTATTGGTATTT
GGTAAAGCACATATGGTAAATTC
TACTCCATTGTTATCTGTAGTTTT
GGTTCTAAACCCCAAACAAATCC
TACTCCTAGCACCACTAATCCTCA
TTACTTTCTGTTTGCTGTCTTTCTC
TACATTCCTACTAAATTAAGACCT
AGATGCAGT

180 Am a ra nthus DHP_A3_5 gDNAContig 701 pal meri AGGAATGTAGAGAAAGACAGCA
AACAGAAAGTAATGAGGATTAG
TGGTGCTAGGAGTAGGATTTGTT
TGGGGTTTAGAACCAAAACTACA
GATAACAATGGAGTAGAATTTAC
CATATGTGCTTTACCAAATACCA
ATACCAACGGATCAAGGGCAGG
GATTTTAAATTGGTGAAT
181 Am a ra nthus DHP_A3_6 gDNAContig 876 pal meri GTGTTATTCTGTTCGAGGTTGCC
GAAAACGGTACAATAGTTGCCTA
ATTTGCAATTCATGTTTGTTCTTG
CGTTTTCTACATTGTTTACTCTAT
TGGAACAAAGGTTGAACTTTCAG
CCTTTCAGGGAGTATTTTGATTTT
TCTGTCAAATTACCTTGCCAGATT
TATTTGGCTATT
182 Am a ra nthus DHP_A3_6 gDNAContig 876 palmeri GTAATTTGACAGAAAAATCAAAA
TACTCCCTGAAAGGCTGAAAGTT
CAACCTTTGTTCCAATAGAGTAA
ACAATGTAGAAAACGCAAGAAC
AAACATGAATTGCAAATTAGGCA
ACTATTGTACCGTTTTCGGCAAC
CTCGAACAGAATAACACTGCATC
TAGGTCTTAATTTAGTA
183 Am a ra nthus DHP_A3_7 gDNAContig 1051 1250 ACCTTGCCAGATTTATTTGGCTAT
pal meri TTTGATTGTGTGTATTTCTTTGTC
CCTTGTTTCCATGGGGCTAAACT
CCTTTTGGTTAATCTTAAACATTT
CTTCTAATTTTGAATTGCAGTGGT
ATGAAGTGTTGTTTAATATACAA
TCAATTTTTCTGAACTGGGTTAAT
GAAGAGAAGCATTGTAGACATG
AGGAATGTGTTC
184 Am a ra nthus DHP_A3_7 gDNAContig 1051 1250 GAACACATTCCTCATGTCTACAA
pal meri TGCTTCTCTTCATTAACCCAGTTC
AGAAAAATTGATTGTATATTAAA
CAACACTTCATACCACTGCAATTC
AAAATTAGAAGAAATGTTTAAGA
TTAACCAAAAGGAGTTTAGCCCC
ATGGAAACAAGGGACAAAGAAA
TACACACAATCAAAATAGCCAAA
TAAATCTGGCAAGGT
185 Amaranthus DHP_A3_8 gDNAContig 1226 1425 CATTGTAGACATGAGGAATGTGT
palmeri TCAAGCATCTCAAAACAACCAAA

TTAATCCCAAATGGGATCTTCAA
CTGTAATAGAGGTAAATCACATA
TATTCTCATTTAATGGTTATTGTT
TTATTTTAAGGATGTTATTATGTT
GTTATCAATGATAGAAATAAGAG
AAGCTTGAGCATTCAAATGTATC
TATCACTCACTGGT
186 Amaranthus DHP_A3_8 gDNAContig 1226 1425 ACCAGTGAGTGATAGATACATTT
palmeri GAATGCTCAAGCTTCTCTTATTTC
TATCATTGATAACAACATAATAA
CATCCTTAAAATAAAACAATAAC
CATTAAATGAGAATATATGTGAT
TTACCTCTATTACAGTTGAAGATC
CCATTTGGGATTAATTTGGTTGT
TTTGAGATGCTTGAACACATTCC
TCATGTCTACAATG
187 Am a ra nthus DHP_A3_9 gDNAContig 1401 1600 TCAAATGTATCTATCACTCACTG
pal meri GTTGTGGACATCTAAAATATGGA
CCAAGAGTTTTCTTCATTTCTTGT
ACCAGAATTTGCAAATGTATGAT
TAAAGTTTAGGTTGGAGTTGCAA
TAAAATTTCATTACCCCGACGCT
ATTAAGTGGCTCACACTGAGGCG
GGGTTTGAGGGTCGGATGGTGC
AACCTTCAGGAGAGGT
188 Amaranthus DHP_A3_9 gDNAContig 1401 1600 ACCTCTCCTGAAGGTTGCACCAT
pal meri CCGACCCTCAAACCCCGCCTCAG
TGTGAGCCACTTAATAGCGTCGG
GGTAATGAAATTTTATTGCAACT
CCAACCTAAACTTTAATCATACAT
TTGCAAATTCTGGTACAAGAAAT
GAAGAAAACTCTTGGTCCATATT
TTAGATGTCCACAACCAGTGAGT
GATAGATACATTTGA
189 Amaranthus DHP_A3_10 gDNAContig 1576 1775 GGATGGTGCAACCTTCAGGAGA
pal meri GGTTCTAAGCATTTTCAACATGTT
CAACCGCAGAGGGTCCCGTAAA
ATTGGAGGCTTCAATATTAAATT
ATGTAGTATGTGTTAAGTGTTTA
AAGATATAAAAATGTTAATGAAT
ACATAATTTTTAAAATTGCACAG
GGCTTTCAAAGAAATTTTTGATTT
TGCTCCGCCCATGGCA
190 Amaranthus DHP_A3_10 gDNAContig 1576 1775 TGCCATGGGCGGAGCAAAATCA
pal meri AAAATTTCTTTGAAAGCCCTGTG
CAATTTTAAAAATTATGTATTCAT
TAACATTTTTATATCTTTAAACAC

TTAACACATACTACATAATTTAAT
ATTGAAGCCTCCAATTTTACGGG
ACCCTCTGCGGTTGAACATGTTG
AAAATGCTTAGAACCTCTCCTGA
AGGTTGCACCATCC
191 Amaranthus DHP_A3_11 gDNAContig 1751 1950 TTTTGATTTTGCTCCGCCCATGGC
pal meri AACCTTTGGCAAATCTGGATAGA
ATTAGAGAAATTTACTTTTATGTA
TGTATAATCTGATGAATGAATGA
ATGAACAATGAAGTTCATTTCTG
AGTCAATGACCTATATACTATCG
AGGTTTCGTTAAATAGGATATAT
AAATAAAATTAGAGACATCTTTT
ATCCCTAATGTTGT
192 Amaranthus DHP_A3_11 gDNAContig 1751 1950 ACAACATTAGGGATAAAAGATG
pal meri TCTCTAATTTTATTTATATATCCTA
TTTAACGAAACCTCGATAGTATA
TAGGTCATTGACTCAGAAATGAA
CTTCATTGTTCATTCATTCATTCA
TCAGATTATACATACATAAAAGT
AAATTTCTCTAATTCTATCCAGAT
TTGCCAAAGGTTGCCATGGGCG
GAGCAAAATCAAAA
193 Amaranthus DHP_A3_12 gDNAContig 1926 2125 AGACATCTTTTATCCCTAATGTTG
pal meri TCTGTTTTCTTTTCTGGGCGAGAC
TGTTTTTGGAGAAAAACGTTATG
TTGAATGCTTGATTTACTCAGAA
CTGATGCAAACAGATGGATAAA
AAATGGTGTTTTCCTAGTGTTTAT
GTTTCATAAAAGGATTTCAAATT
CCAATCGTATGAAGTTTGAAATA
CTGCTTTTTGTTTT
194 Amaranthus DHP_A3_12 gDNAContig 1926 2125 AAAACAAAAAGCAGTATTTCAAA
pal meri CTTCATACGATTGGAATTTGAAA
TCCTTTTATGAAACATAAACACTA
GGAAAACACCATTTTTTATCCATC
TGTTTGCATCAGTTCTGAGTAAA
TCAAGCATTCAACATAACGTTTTT
CTCCAAAAACAGTCTCGCCCAGA
AAAGAAAACAGACAACATTAGG
GATAAAAGATGTCT
195 Amaranthus DHP_A3_13 gDNAContig 2101 2300 AGTTTGAAATACTGCTTTTTGTTT
pal meri TTGTAGCTTCGTGTTTTGCTTTCC
TTCACTCTTCACCAGGGAACGTT
GTTGAAGTTTGTTCCAAGAAGCA
AGAAGTCGTAATTGCAATCGGG
AGCAATGTTGGTGACAGATTAG

AAAATTTCAACCAAGCTCTGCAA
CAAATGAAGAAATTAGGCATAG
ACATCACAAGGCATGGT
196 Am a ra nthus DH P_A3_13 gDNACo ntig 2101 2300 ACCATGCCTTGTGATGTCTATGC
pal meri CTAATTTCTTCATTTGTTGCAGAG
CTTGGTTGAAATTTTCTAATCTGT
CACCAACATTGCTCCCGATTGCA
ATTACGACTTCTTGCTTCTTGGAA
CAAACTTCAACAACGTTCCCTGG
TGAAGAGTGAAGGAAAGCAAAA
CACGAAGCTACAAAAACAAAAA
GCAGTATTTCAAACT
197 Amaranthus DHP_A3_14 gDNAContig 2276 2475 AGGCATAGACATCACAAGGCAT
pal meri GGTTGTTTATATGAGACGGAACC
TGCATACGTGACTGATCAACCGA
AGTTTCTTAACTCTGCTTTAAGAG
GCTTTACAAGACTTGGACCTCAT
GAATTATTAGGGGTATTGAAGA
AAATTGAGAAGGATATGGGTAG
AACCAAGGGAATAAGGTATGGT
CCTAGGCCAATTGACTTGG
198 Am a ra nthus DH P_A3_14 gDNACo ntig 2276 2475 CCAAGTCAATTGGCCTAGGACCA
pal meri TACCTTATTCCCTTGGTTCTACCC
ATATCCTTCTCAATTTTCTTCAAT
ACCCCTAATAATTCATGAGGTCC
AAGTCTTGTAAAGCCTCTTAAAG
CAGAGTTAAGAAACTTCGGTTGA
TCAGTCACGTATGCAGGTTCCGT
CTCATATAAACAACCATGCCTTG
TGATGTCTATGCCT
199 Am a ra nthus DH P_A3_15 gDNACo ntig 2451 2650 TATGGTCCTAGGCCAATTGACTT
pal meri GGACATACTATTTTATGGGAAGT
TTAGGGTGAGCTCTGAGAGCCTC
ACTATCCCCCATGAAAGGATATG
GGAAAGACCATTTGTGATGGCA
CCATTGATTGATTGTATTGGGTC
TGATGTAGAAAATGACACTATTT
GTACGTGGCATTCATTATCAAAT
TTTTCGGGTGGAATCTT
200 Am a ra nthus DH P_A3_15 gDNACo ntig 2451 2650 AAGATTCCACCCGAAAAATTTGA
pal meri TAATGAATGCCACGTACAAATAG
TGTCATTTTCTACATCAGACCCAA
TACAATCAATCAATGGTGCCATC
ACAAATGGTCTTTCCCATATCCTT
TCATGGGGGATAGTGAGGCTCT
CAGAGCTCACCCTAAACTTCCCA
TAAAATAGTATGTCCAAGTCAAT

TGGCCTAGGACCATA
201 Amaranthus DHP_A3_16 gDNAContig 2626 2825 TATCAAATTTTTCGGGTGGAATC
pal meri TTTGAAGCATGGGGTAAACTCG
GTGGAAGCTCCCTAATCGGGAA
GGATGGAATGAAAAGGGTTTTG
CCCGTTGGAAATCTCTTATGGGA
TTGGTCTCATAAAACCTCTGTTAT
GGGAGTCTTGAACTTGACTCCTG
ATAGCTTTAGTGATGGCGGAAGT
TTTCAATCTGTCAATACT
202 Amaranthus DHP_A3_16 gDNAContig 2626 2825 AGTATTGACAGATTGAAAACTTC
pal meri CGCCATCACTAAAGCTATCAGGA
GTCAAGTTCAAGACTCCCATAAC
AGAGGTTTTATGAGACCAATCCC
ATAAGAGATTTCCAACGGGCAA
AACCCTTTTCATTCCATCCTTCCC
GATTAGGGAGCTTCCACCGAGTT
TACCCCATGCTTCAAAGATTCCA
CCCGAAAAATTTGATA
203 Amaranthus DHP_A3_17 gDNAContig 2801 3000 CGGAAGTTTTCAATCTGTCAATA
pal meri CTGCGGTTGCTAAGGTTCGTCAG
ATGATCTCAGATGGGGCAGATAT
AATTGACATCGGGGCACAATCAA
CCAGACCCATGGCAACTAGAATT
TCGGCTGAAGAAGAGCTAGCAA
GAGTAGTACCTGTATTAGAAGCT
GTCAAGGATTTGATCGAGGAAG
AAGGAAGAATCTTGTCAG
204 Amaranthus DHP_A3_17 gDNAContig 2801 3000 CTGACAAGATTCTTCCTTCTTCCT
pal meri CGATCAAATCCTTGACAGCTTCT
AATACAGGTACTACTCTTGCTAG
CTCTTCTTCAGCCGAAATTCTAGT
TGCCATGGGTCTGGTTGATTGTG
CCCCGATGTCAATTATATCTGCCC
CATCTGAGATCATCTGACGAACC
TTAGCAACCGCAGTATTGACAGA
TTGAAAACTTCCG
205 Amaranthus DHP_A3_18 gDNAContig 2976 3175 GAGGAAGAAGGAAGAATCTTGT
pal meri CAGTGGATACGTTTTATTCTAAA
GTTGCTTTGGAGGCCGTCAAGAA
GGGGGCACACATTGTGAATGAT
GTCTCTAGTGGTAAACTCGATTC
CGAGATGTTTAATGTTGTTGCGG
ACCTTAAAGTTCCTTATATAGCA
ATGCACATGCGAGGAGATCCGA
CTTCAATGCAAAACTCTGA
206 Amaranthus DHP_A3_18 gDNAContig 2976 3175 TCAGAGTTTTGCATTGAAGTCGG

pal meri ATCTCCTCGCATGTGCATTGCTAT
ATAAGGAACTTTAAGGTCCGCAA
CAACATTAAACATCTCGGAATCG
AGTTTACCACTAGAGACATCATT
CACAATGTGTGCCCCCTTCTTGA
CGGCCTCCAAAGCAACTTTAGAA
TAAAACGTATCCACTGACAAGAT
TCTTCCTTCTTCCTC
207 Am a ra nthus DHP_A3_19 gDNAContig 3151 3350 ATCCGACTTCAATGCAAAACTCT
pal meri GAGAACTTGACCTACAATGATGT
TTGTAAGCAAGTGGCTTCGGAGT
TGAGTTCTAGGGTCATAGATGCA
GAATTATCGGGAATTCCTGCTTG
GAGGATAGTTATTGATCCCGGCA
TCGGATTTTCTAAGAATACGAAT
CAAAATTTGGAAATTCTTAGTGG
TTTACAAAAGATACGG
208 Am a ra nthus DHP_A3_19 gDNAContig 3151 3350 CCGTATCTTTTGTAAACCACTAA
pal meri GAATTTCCAAATTTTGATTCGTAT
TCTTAGAAAATCCGATGCCGGGA
TCAATAACTATCCTCCAAGCAGG
AATTCCCGATAATTCTGCATCTAT
GACCCTAGAACTCAACTCCGAAG
CCACTTGCTTACAAACATCATTGT
AGGTCAAGTTCTCAGAGTTTTGC
ATTGAAGTCGGAT
209 Am a ra nthus DHP_A3_20 gDNAContig 3326 3525 TCTTAGTGGTTTACAAAAGATAC
palmeri GGGAAGAGATAGCTAAGAAGAG
TTTGGCGGTGGCTCATTGCCCCT
TGCTAATTGGACCTTCAAGAAAG
AGGTTTCTGGGCGAGATTTGTGA
GCGCCCTGTAGCAGCTGACAGG
GATCCTGCTACCATTGCTTCTATA
ACTGCTGGAGTTTTAGGTGGTGC
AAACATTGTAAGAGTAC

Am a ra nthus DHP_A3_20 gDNAContig 3326 3525 GTACTCTTACAATGTTTGCACCAC
pal meri CTAAAACTCCAGCAGTTATAGAA
GCAATGGTAGCAGGATCCCTGTC
AGCTGCTACAGGGCGCTCACAA
ATCTCGCCCAGAAACCTCTTTCTT
GAAGGTCCAATTAGCAAGGGGC
AATGAGCCACCGCCAAACTCTTC
TTAGCTATCTCTTCCCGTATCTTT
TGTAAACCACTAAGA
211 Amaranthus DHP_A3_21 gDNAContig 3501 3700 GGTGGTGCAAACATTGTAAGAG
pal meri TACATAATGTTAGGGATAACCTT
GATGCTGTCAAGTTATGTGATGC

CATACTCGGAAAAACTGATTAAC
TGCTTGTTTGTACCACCTTGTGAA
TGATGTCTAGTGGAAGGTTCGAT
TGGGATTATGATGAAGTCCGTTA
GTTTGCTCGAAAGAAGAGCTTTA
GCCCGTAAGGTTATAG
212 Amaranthus DHP_A3_21 gDNAContig 3501 3700 CTATAACCTTACGGGCTAAAGCT
pal meri CTTCTTTCGAGCAAACTAACGGA
CTTCATCATAATCCCAATCGAACC
TTCCACTAGACATCATTCACAAG
GTGGTACAAACAAGCAGTTAATC
AGTTTTTCCGAGTATGGCATCAC
ATAACTTGACAGCATCAAGGTTA
TCCCTAACATTATGTACTCTTACA
ATGTTTGCACCACC
213 Amaranthus DHP_A3_22 gDNAContig 3676 3875 AGAGCTTTAGCCCGTAAGGTTAT
pal meri AGTTCTTACAGATGTAGAATCAT
TGGCTATTTGCCTATTTCTGCTTA
GAAGATCATAGCATTGATCCAGA
CTTTGGATTCCATGTAGAATTAT
GTTGCGACTCATGGTCGAATTGG
CCCTTTGAGGAATTGTTGAAGTT
CCTTGAGTCTATGGTTCAATCGG
CTCGGTTCGATGAAG
214 Amaranthus DHP_A3_22 gDNAContig 3676 3875 CTTCATCGAACCGAGCCGATTGA
pal meri ACCATAGACTCAAGGAACTTCAA
CAATTCCTCAAAGGGCCAATTCG
ACCATGAGTCGCAACATAATTCT
ACATGGAATCCAAAGTCTGGATC
AATGCTATGATCTTCTAAGCAGA
AATAGGCAAATAGCCAATGATTC
TACATCTGTAAGAACTATAACCT
TACGGGCTAAAGCTCT
215 Amaranthus DHP_A3_23 gDNAContig 3851 4050 GTTCAATCGGCTCGGTTCGATGA
palmeri AGGTTGGACTGTGTCGAGACAA
GATGGGTCAAAGAGACCAATGG
ACAAGAAGTCGACCTTGGGCAA
GCTTGATCAAGTTACTTGGACGA
GCAGATAACAGCAGGCTCTGGC
GAGCATTAGACATACATATCATT
TGTTTTTTGAAGTCAGATCTGCA
ATCAATCAGTTGCAATGGAC
216 Amaranthus DHP_A3_23 gDNAContig 3851 4050 GTCCATTGCAACTGATTGATTGC
palmeri AGATCTGACTTCAAAAAACAAAT
GATATGTATGTCTAATGCTCGCC
AGAGCCTGCTGTTATCTGCTCGT
CCAAGTAACTTGATCAAGCTTGC

CCAAGGTCGACTTCTTGTCCATT
GGTCTCTTTGACCCATCTTGTCTC
GACACAGTCCAACCTTCATCGAA
CCGAGCCGATTGAAC
217 Amaranthus DHP_A3_24 gDNAContig 4026 4225 CTGCAATCAATCAGTTGCAATGG
pal meri ACAGACCATATACGGTTGTTAGT
TGTTCCTGTCACTCTTTGAGTTGA
ATTAGATCATGCAAACACTGTAA
GAGTCTTGATTTTGTGAAGCTAT
GTGATACTGTACTTCTCAAAATG
AAATCTTTGATATGATGTTAGCTT

CATTCTGTTCTAT
218 Amaranthus DHP_A3_24 gDNAContig 4026 4225 ATAGAACAGAATGTGAGGGGGG
pal meri GAAAAACAACTCTTGAAGCTAAC
ATCATATCAAAGATTTCATTTTGA
GAAGTACAGTATCACATAGCTTC
ACAAAATCAAGACTCTTACAGTG
TTTGCATGATCTAATTCAACTCAA
AGAGTGACAGGAACAACTAACA
ACCGTATATGGTCTGTCCATTGC
AACTGATTGATTGCAG
219 Amaranthus DHP_A3_25 gDNAContig 4201 4400 TTCCCCCCCTCACATTCTGTTCTA
pal meri TGTTGTATTGTTGTGTGCTTTTTG
GAATTGTATTCCTGTAATTAGAA
TTATTCCTGCAAAATGGTATTCCT
TTATATCATCAAAGGAGTTTTTGT
ACTTCTAATCATTGATCTTTAGAT
GCAAAACTGAATTAATACAAGTG
TTCTTGATGAAGGCTTATTGAAG
AACTCACTTTT
220 Amaranthus DHP_A3_25 gDNAContig 4201 4400 AAAAGTGAGTTCTTCAATAAGCC
pal meri TTCATCAAGAACACTTGTATTAAT
TCAGTTTTGCATCTAAAGATCAA
TGATTAGAAGTACAAAAACTCCT
TTGATGATATAAAGGAATACCAT
TTTGCAGGAATAATTCTAATTAC
AGGAATACAATTCCAAAAAGCAC
ACAACAATACAACATAGAACAGA
ATGTGAGGGGGGGAA
221 Amaranthus DHP_A3_26 gDNAContig 4376 4575 AAGGCTTATTGAAGAACTCACTT
pal meri TTTATTTATGTCTAAACTTGTTAA
AGATGTTCTGCTTCCGCCCTTGCC
ACGGGATGTCGGGATTGACTAA
GGGTGGTAATCGAGGGATTCCT
ATGCTTGAATTGACTCGTTTAAG
ATTTTGCGTTGATTTTAAGTCAAA

TGTTTTGCTAAGCATAAACTATTC
TAGCTCGACTTGAA
222 Amaranthus DHP_A3_26 gDNAContig 4376 4575 TTCAAGTCGAGCTAGAATAGTTT
pal meri ATGCTTAGCAAAACATTTGACTT
AAAATCAACGCAAAATCTTAAAC
GAGTCAATTCAAGCATAGGAATC
CCTCGATTACCACCCTTAGTCAAT
CCCGACATCCCGTGGCAAGGGC
GGAAGCAGAACATCTTTAACAA
GTTTAGACATAAATAAAAAGTGA
GTTCTTCAATAAGCCTT
223 Amaranthus DHP_A3_27 gDNAContig 4551 4750 ATAAACTATTCTAGCTCGACTTG
pal meri AATAATGAAGTTTTCGAGTCAAG
TCCGAGCTGTTCTGTAAGTTTAT
GTATCTTGAAGCTTCTTAGTTCTT
ACTTCTTATCCTTATTTGTTTGAC
ACATTGAACCGCGTTGATGCTTG
CTTGACTCAACCCGTTAAAGTCTT
GAATTCATCACGAATTCGAGTCG
AGCAAGTTTAAAC
224 Amaranthus DHP_A3_27 gDNAContig 4551 4750 GTTTAAACTTGCTCGACTCGAAT
pal meri TCGTGATGAATTCAAGACTTTAA
CGGGTTGAGTCAAGCAAGCATC
AACGCGGTTCAATGTGTCAAACA
AATAAGGATAAGAAGTAAGAAC
TAAGAAGCTTCAAGATACATAAA
CTTACAGAACAGCTCGGACTTGA
CTCGAAAACTTCATTATTCAAGTC
GAGCTAGAATAGTTTAT
225 Amaranthus DHP_A3_28 gDNAContig 4726 4925 GAATTCGAGTCGAGCAAGTTTAA
pal meri ACCCAACATTAACTAAGCTCTCG
AGGCTTAATGAGGCAGGGGTAG
CTCAAGTTTGTTATTCAAGCAACT
TACCATAGTATTCTTTTAAAAGG
CATATAGTCAGTTAGTTATTTGTT
AATTTCAGTAGAACGAAAGAAG
TACATTATTAAACTTGGCCATTG
ATGCTTGAGCTAGAGA
226 Amaranthus DHP_A3_28 gDNAContig 4726 4925 TCTCTAGCTCAAGCATCAATGGC
pal meri CAAGTTTAATAATGTACTTCTTTC
GTTCTACTGAAATTAACAAATAA
CTAACTGACTATATGCCTTTTAAA
AGAATACTATGGTAAGTTGCTTG
AATAACAAACTTGAGCTACCCCT
GCCTCATTAAGCCTCGAGAGCTT
AGTTAATGTTGGGTTTAAACTTG
CTCGACTCGAATTC

227 Amaranthus DHP_A3_29 gDNAContig 4901 5100 TGGCCATTGATGCTTGAGCTAGA
palmeri GAGCTTCGGTTGTGATCGAAACG
AATCCTGATTTCGCTCTTGATCTT
TGATGTGAAGTGACAAGGCCTTC
ATAAAACTCCTTTATTCTTCAGCA
GTGCATACAAAAATCATGTGTGC
CCAGCTCCTAGCTCACATACCGC
GTTTTTCCCCTAATCTAGTGTGGT
CAAATAAAAACAG
228 Amaranthus DHP_A3_29 gDNAContig 4901 5100 CTGTTTTTATTTGACCACACTAGA
palmeri TTAGGGGAAAAACGCGGTATGT
GAGCTAGGAGCTGGGCACACAT
GATTTTTGTATGCACTGCTGAAG
AATAAAGGAGTTTTATGAAGGCC
TTGTCACTTCACATCAAAGATCA
AGAGCGAAATCAGGATTCGTTTC
GATCACAACCGAAGCTCTCTAGC
TCAAGCATCAATGGCCA
229 Amaranthus DHP_A3_30 gDNAContig 5076 5275 ATCTAGTGTGGTCAAATAAAAAC
palmeri AGCAAGATGTGTTGATGTCATGT
GCAATAGTAATTATCAGGTGAAG
TAATGCAATATGTAGCCAGTCAC
CTCATATCAAAAAAATGTTGGGA
GGAAAACGTATTCGTTCATCACT
AAACCTGTGTTTATACATCTAACT
GATCGATCAGGGTTTCAAAATCC
AAATTAATACAATGG
230 Amaranthus DHP_A3_30 gDNAContig 5076 5275 CCATTGTATTAATTTGGATTTTGA
palmeri AACCCTGATCGATCAGTTAGATG
TATAAACACAGGTTTAGTGATGA
ACGAATACGTTTTCCTCCCAACAT
TTTTTTGATATGAGGTGACTGGC
TACATATTGCATTACTTCACCTGA
TAATTACTATTGCACATGACATC
AACACATCTTGCTGTTTTTATTTG
ACCACACTAGAT
231 Amaranthus DHP_A3_31 gDNAContig 5251 5450 TTCAAAATCCAAATTAATACAAT
palmeri GGCATTTGACGAAGATATCCAGA
ACACATCCCCCTTGTTTCTGCTAG
ATAATCAACTATTCTGATTCTGCT
GTAATACCTCAGCTTCGGCCCTA
GCCATGGGATCGTCCTCTTTTTCT
CCTTCACGCTCCTCGGCCAGTTTC
TTTCTGTGCAGTTCTTCAGCAGCT
TCTATTGAAGC
232 Amaranthus DHP_A3_31 gDNAContig 5251 5450 GCTTCAATAGAAGCTGCTGAAGA
palmeri ACTGCACAGAAAGAAACTGGCC

GAGGAGCGTGAAGGAGAAAAA
GAGGACGATCCCATGGCTAGGG
CCGAAGCTGAGGTATTACAGCA
GAATCAGAATAGTTGATTATCTA
GCAGAAACAAGGGGGATGTGTT
CTGGATATCTTCGTCAAATGCCA
TTGTATTAATTTGGATTTTGAA
233 Amaranthus DHP_A10_1 gDNAContig 1 rudis CTGATAGCTTTAGTGATGGCGGA
AGGTTTCAATCTGTCGATACTGC
GGTTGCTAAGGTTCGTCAGATGA
TCTCTGACGGGGCGGACATAATT
GACATTGGGGCGCAGTCAACAA
GACCCATGGCAACTAGGATTTCG
GCTGAAGAAGAGCTAGAAAGAG
TCGTACCTGTATTAGAAG
234 Amaranthus DHP_A10_1 gDNAContig 1 rudis CTAGCTCTTCTTCAGCCGAAATCC
TAGTTGCCATGGGTCTTGTTGAC
TGCGCCCCAATGTCAATTATGTC
CGCCCCGTCAGAGATCATCTGAC
GAACCTTAGCAACCGCAGTATCG
ACAGATTGAAACCTTCCGCCATC
ACTAAAGCTATCAGGAGTCAAGT
TCAAGACTCCCATT
235 Amaranthus DHP_A10_2 gDNAContig 176 375 GAAAGAGTCGTACCTGTATTAGA
rudis AGCTGTCAAGGATTTGATCGAG
GAAGAAGGAAGAATCTTGTCAG
TGGATACGTTTTATTCTAAAGTT
GCTTCGGAGGCCGTCAAGAAGG
GGGCACACATTGTGAATGATGTC
TCTAGTGGGAAACTCGATCCCGA
GATGTTTAATGTTGTTGCGGACC
TTAAAGTTCCTTATATAGC
236 Amaranthus DHP_A10_2 gDNAContig 176 375 GCTATATAAGGAACTTTAAGGTC
rudis CGCAACAACATTAAACATCTCGG
GATCGAGTTTCCCACTAGAGACA
TCATTCACAATGTGTGCCCCCTTC
TTGACGGCCTCCGAAGCAACTTT
AGAATAAAACGTATCCACTGACA
AGATTCTTCCTTCTTCCTCGATCA
AATCCTTGACAGCTTCTAATACA
GGTACGACTCTTTC
237 Amaranthus DH P_A10_3 gDNAContig 351 550 CGGACCTTAAAGTTCCTTATATA
rudis GCAATGCACATGCGAGGAGATC
CGACTTCAATGCAAAATTCTGAG
AACTTGACGTACAATGATGTGTG

TAAGCAAGTGGCTTCGGAGTTG
AGCTCTAGGGTCGTAGATGCAG
AATTATCGGGAATTCCTGCTTGG
AGGATGGTTATTGATCCCGGCAT
TGGATTTTCTAAGAATACG
238 Amaranthus DH P_A10_3 gDNAContig 351 550 CGTATTCTTAGAAAATCCAATGC
rudis CGGGATCAATAACCATCCTCCAA
GCAGGAATTCCCGATAATTCTGC
ATCTACGACCCTAGAGCTCAACT
CCGAAGCCACTTGCTTACACACA
TCATTGTACGTCAAGTTCTCAGA
ATTTTGCATTGAAGTCGGATCTC
CTCGCATGTGCATTGCTATATAA
GGAACTTTAAGGTCCG
239 Amaranthus DHP_A10_4 gDNAContig 526 725 CGGCATTGGATTTTCTAAGAATA
rudis CGAAGCAAAATTTGGAAATTCTT
AGTGGTTTACAAAAGATACGGC
AAGAGATAGCTAAGAAGAGTTT
GGCGGTGGCTCATTGCCCCTTGC
TAATTGGACCTTCAAGAAAGAG
GTTTCTGGGCGAGATTTGCAATC
GCCCTGTAGCAGCTGATAGGGA
TCCTGCTACCGTTGCTTCTA
240 Amaranthus DHP_A10_4 gDNAContig 526 725 TAGAAGCAACGGTAGCAGGATC
rudis CCTATCAGCTGCTACAGGGCGAT
TGCAAATCTCGCCCAGAAACCTC
TTTCTTGAAGGTCCAATTAGCAA
GGGGCAATGAGCCACCGCCAAA
CTCTTCTTAGCTATCTCTTGCCGT
ATCTTTTGTAAACCACTAAGAATT
TCCAAATTTTGCTTCGTATTCTTA
GAAAATCCAATGCCG
241 Amaranthus DHP_A13_1 cDNAContig 1 rudis TAGAAAGAGTTGTACCTGTATTG
GAAGCTGTTAAGGATGTGATCG
AGGAAGAAGGAAGAATCTTATC
GGTGGATACGTTTTATTCTAAAG
TTGCTTCGGAGGCCGTCAAGAA
GGGGGCACACATTGTGAATGAT
GTTTCTAGTGGGAAACTCGATCC
CGAGATGTTTAATGTTGTTGC
242 Amaranthus DHP_A13_1 cDNAContig 1 rudis ATCGAGTTTCCCACTAGAAACAT
CATTCACAATGTGTGCCCCCTTCT
TGACGGCCTCCGAAGCAACTTTA
GAATAAAACGTATCCACCGATAA
GATTCTTCCTTCTTCCTCGATCAC

ATCCTTAACAGCTTCCAATACAG
GTACAACTCTTTCTAGCTCTTCTT
CAGCCGAAATCCT
243 Amaranthus DHP_A13_2 cDNAContig 176 375 ATCCCGAGATGTTTAATGTTGTT
rudis GCGGACCTTAAAGTTCCTTATAT
AGCAATGCACATGCGAGGAGAT
CCGACTTCAATGCAAAATTCTGA
GAACTTGACGTACAATGATGTGT
GTAAGCAAGTGGCTTCGGAGTT
GAGCTCTAGGGTCGTAGATGCA
GAATTATCGGGAATTCCTGCTTG
GAGGATGGTTATTGATCCC
244 Amaranthus DHP_A13_2 cDNAContig 176 375 GGGATCAATAACCATCCTCCAAG
rudis CAGGAATTCCCGATAATTCTGCA
TCTACGACCCTAGAGCTCAACTC
CGAAGCCACTTGCTTACACACAT
CATTGTACGTCAAGTTCTCAGAA
TTTTGCATTGAAGTCGGATCTCCT
CGCATGTGCATTGCTATATAAGG
AACTTTAAGGTCCGCAACAACAT
TAAACATCTCGGGAT
245 Amaranthus DHP_A13_3 cDNAContig 351 550 TGCTTGGAGGATGGTTATTGATC
rudis CCGGCATTGGATTTTCTAAGAAT
ACGAAGCAAAATTTGGAAATTCT
TAGTGGTTTACAAAAGATACGGC
AAGAGATAGCTAAGAAGAGTTT
GGCGGTGGCTCATTGCCCCTTGC
TAATTGGACCTTCAAGAAAGAAG
GTTTCTGGGCGAGATTTGCAATC
GCCCTGTAGCAGCTGAT
246 Amaranthus DHP_A13_3 cDNAContig 351 550 ATCAGCTGCTACAGGGCGATTGC
rudis AAATCTCGCCCAGAAACCTTCTTT
CTTGAAGGTCCAATTAGCAAGG
GGCAATGAGCCACCGCCAAACTC
TTCTTAGCTATCTCTTGCCGTATC
TTTTGTAAACCACTAAGAATTTCC
AAATTTTGCTTCGTATTCTTAGAA
AATCCAATGCCGGGATCAATAAC
CATCCTCCAAGCA
247 Amaranthus DHP_A14_1 gDNAContig 1 rudis TGCTGTCCGTTTTCTTTTCTGGGT
GAGACTATTTTGGAAGAAAAAA
ATTTATGTTCAATGTTTAATTTAC
TCAGAATTGATGCAAACAGATG
GATAAAAATGGTGTTTTCTTATG
GTTTATGTTTCAATAAAAGGATT
TCAAATTCTAATCATATGAAGTTT

GAAATACTATGTGT
248 Am a ra nthus DHP_A14_1 gDNAContig 1 200 ACACATAGTATTTCAAACTTCATA
rudis TGATTAGAATTTGAAATCCTTTTA
TTGAAACATAAACCATAAGAAAA
CACCATTTTTATCCATCTGTTTGC
ATCAATTCTGAGTAAATTAAACA

AAATAGTCTCACCCAGAAAAGAA
AACGGACAGCATTAGGGATAAA
AGATGCCTCTAAT
249 Amaranthus DHP_A14_2 gDNAContig 176 375 ATATGAAGTTTGAAATACTATGT
rudis GTTTTTGTAGCTTCTTGTATTGCT
TTCCTTCACTCATCACCAGTGAAC
GATGTTGAAGTTTGTTCCAAGAA
GCAAGAAGTCGTAATTGCAATCG
GGAGCAATGTTGGTGACAGATT
AGAAAATTTCAACGAAGCTCTGC
AACAAATGAAGAAATTAGGCAT
AGACATCACAAGGCAT
250 Amaranthus DHP_A14_2 gDNAContig 176 375 ATGCCTTGTGATGTCTATGCCTA
rudis ATTTCTTCATTTGTTGCAGAGCTT
CGTTGAAATTTTCTAATCTGTCAC
CAACATTGCTCCCGATTGCAATT
ACGACTTCTTGCTTCTTGGAACA
AACTTCAACATCGTTCACTGGTG
ATGAGTGAAGGAAAGCAATACA
AGAAGCTACAAAAACACATAGT
ATTTCAAACTTCATAT
251 Amaranthus DHP_A14_3 gDNAContig 351 550 ATTAGGCATAGACATCACAAGGC
rudis ATGGTTGTTTATACGAGACGGAA
CCTGCTTACGTGACTGATCAGCC
GAAGTTTCTTAACTCTGCTTTAAG
AGGCTTTACAAGACTTGGGCCTC
ATGAATTATTAGGGGTATTGAAG
AGAATCGAGAAGGATATGGGCA
GAACCAAGGGAATAAGGTATGG
TCCTAGGCCAATTGACT
252 Amaranthus DHP_A14_3 gDNAContig 351 550 AGTCAATTGGCCTAGGACCATAC
rudis CTTATTCCCTTGGTTCTGCCCATA
TCCTTCTCGATTCTCTTCAATACC
CCTAATAATTCATGAGGCCCAAG
TCTTGTAAAGCCTCTTAAAGCAG
AGTTAAGAAACTTCGGCTGATCA
GTCACGTAAGCAGGTTCCGTCTC
GTATAAACAACCATGCCTTGTGA
TGTCTATGCCTAAT
253 Amaranthus DHP_A17_1 gDNAContig 1 rudis CTGCAATTTTGAATGGTGCTAAC
ATAGTAAGGGTACATAATGTAG
GATATAGTTCAGATGCTGCAAAG
TTTTGTGATGCACCTATACTCATT
TTACCCATCTCGCTCCTAATGGAC
CCCAGCCCCTTAATAACGTCAAT
GTTGTGCCCACATTTCTTGGAGA
ACCCAATGCCAGGAT
254 Amaranthus DHP_A17_1 gDNAContig 1 rudis AAATGTGGGCACAACATTGACGT
TATTAAGGGGCTGGGGTCCATTA
GGAGCGAGATGGGTAAAATGAG
TATAGGTGCATCACAAAACTTTG
CAGCATCTGAACTATATCCTACA
TTATGTACCCTTACTATGTTAGCA
CCATTCAAAATTGCAGCGGTGAC
AGCTGCAGCAGTAGCG
255 Amaranthus DHP_A16_1 cDNAContig 1 rudis GAAAGGATATGGGAAAGACCAT
TTGTGATGGCACCATTAATTGAT
TGTATTGGGTCTGATGTAGAAAA
TGACACTATTTGTACATGGCATT
CGTTATCAAATTTTTCGGGTGGA
ATATTTGAAGCATGGGATAAACT
CGGAGGAAGTTCCTTAATCGGG
AAGGATGGAATGAAAAGG
256 Amaranthus DHP_A16_1 cDNAContig 1 rudis TAAGGAACTTCCTCCGAGTTTAT
CCCATGCTTCAAATATTCCACCCG
AAAAATTTGATAACGAATGCCAT
GTACAAATAGTGTCATTTTCTAC
ATCAGACCCAATACAATCAATTA
ATGGTGCCATCACAAATGGTCTT
TCCCATATCCTTTCATGGGGAAT
AGTGAGGCTCTCAG
257 Amaranthus DHP_A16_2 cDNAContig 176 375 AATCGGGAAGGATGGAATGAAA
rudis AGGGTTTTGCCCGTTGGGAACCG
TTTATGGGATTGGTCTCATAAAA
CCTCAGTAATGGGAGTCTTGAAC
TTGACTCCTGATAGCTTTAGTGA
TGGCGGAAGGTTTCAATCTGTCG
ATACTGCGGTTGCTAAGGTTCGT
CAGATGATCTCTGACGGGGCGG
ACATAATTGACATTGGGG
258 Amaranthus DHP_A16_2 cDNAContig 176 375 CCCCAATGTCAATTATGTCCGCC
rudis CCGTCAGAGATCATCTGACGAAC
CTTAGCAACCGCAGTATCGACAG

ATTGAAACCTTCCGCCATCACTA
AAGCTATCAGGAGTCAAGTTCAA
GACTCCCATTACTGAGGTTTTAT
GAGACCAATCCCATAAACGGTTC
CCAACGGGCAAAACCCTTTTCAT
TCCATCCTTCCCGATT
259 Amaranthus DHP_A8_1 cDNAContig 1 200 GCGTACCTTCACTCATCACCAGT
rudis GGACGATGTTGAACTTTGTTCTA
AGAAGCAAGAAGTCATAATTGC
AATCGGGAGCAATGTTGGTGAC
AGATTAGAAAATTTTAACCAAGC
TCTGCAACAAATGAAGAAATTAG
GCATAGACATCACAAGGCATGG
TTGTTTATATGAGACAGAACCCG
CATACGTGACTGATCAACC
260 Amaranthus DHP_A8_1 cDNAContig 1 200 GGTTGATCAGTCACGTATGCGG
rudis GTTCTGTCTCATATAAACAACCAT
GCCTTGTGATGTCTATGCCTAATT
TCTTCATTTGTTGCAGAGCTTGG
TTAAAATTTTCTAATCTGTCACCA
ACATTGCTCCCGATTGCAATTAT
GACTTCTTGCTTCTTAGAACAAA
GTTCAACATCGTCCACTGGTGAT
GAGTGAAGGTACGC
261 Amaranthus DHP_A8_2 cDNAContig 176 375 AACCCGCATACGTGACTGATCAA
rudis CCGAAGTTTCTTAACTCTGCTTTA
AGAGGCTTTACAAGACTTGGGCC
TCATGAATTATTAGGGGTATTGA
AGAAAATTGAGAAGAATATGGG
TAGAACCAAGGGAATAAGGTAT
GGTCCTAGGCCAATTGACTTGGA
CATACTATTTTATGGGAAGTTTA
GGGTGAGCTCTGAGAGC
262 Amaranthus DHP_A8_2 cDNAContig 176 375 GCTCTCAGAGCTCACCCTAAACT
rudis TCCCATAAAATAGTATGTCCAAG
TCAATTGGCCTAGGACCATACCT
TATTCCCTTGGTTCTACCCATATT
CTTCTCAATTTTCTTCAATACCCC
TAATAATTCATGAGGCCCAAGTC
TTGTAAAGCCTCTTAAAGCAGAG
TTAAGAAACTTCGGTTGATCAGT
CACGTATGCGGGTT
263 Amaranthus DHP_A8_3 cDNAContig 351 550 GAAGTTTAGGGTGAGCTCTGAG
rudis AGCCTCACTATTCCCCATGAAAG
GATATGGGAAAGACCATTTGTG
ATGGCACCATTAATTGATTGTAT
TGGGTCTGGTGTAGAAAATGAC

ACTATTTGTACATGGCATTCGTTA
TCAAATTTTTCGGGTGGAATCTTT
GAAGCATGGGATAAACTCGGTG
GAAGTTCCCTAATCGGGA
264 Amaranthus DHP_A8_3 cDNAContig 351 550 TCCCGATTAGGGAACTTCCACCG
rudis AGTTTATCCCATGCTTCAAAGATT
CCACCCGAAAAATTTGATAACGA
ATGCCATGTACAAATAGTGTCAT
TTTCTACACCAGACCCAATACAA
TCAATTAATGGTGCCATCACAAA
TGGTCTTTCCCATATCCTTTCATG
GGGAATAGTGAGGCTCTCAGAG
CTCACCCTAAACTTC
265 Amaranthus DHP_A8_4 cDNAContig 526 725 CTCGGTGGAAGTTCCCTAATCGG
rudis GAAGGATGGAATGAAAAGGGTT
TTGCCCGTTGGGAACCGCTTATG
GGATTGGTCTCATAAAACCTCTG
TAATGGGAGTCTTGAACTTGACT
CCTGATAGCTTTAGTGATGGAGG
AAGTTTTCAATCTGTCGATACTG
CGGTTGCTAAGGTTCGTCAGATG
ATATCAGATGGGGCCGA
266 Amaranthus DHP_A8_4 cDNAContig 526 725 TCGGCCCCATCTGATATCATCTG
rudis ACGAACCTTAGCAACCGCAGTAT
CGACAGATTGAAAACTTCCTCCA
TCACTAAAGCTATCAGGAGTCAA
GTTCAAGACTCCCATTACAGAGG
TTTTATGAGACCAATCCCATAAG
CGGTTCCCAACGGGCAAAACCCT
TTTCATTCCATCCTTCCCGATTAG
GGAACTTCCACCGAG
267 Amaranthus DHP_A8_5 cDNAContig 701 900 GTCAGATGATATCAGATGGGGC
rudis CGACATAATTGACATTGGGGCAC
AGTCAACAAGACCCATGGCAACT
AGGATTTCGGCTGAAGAAGAGC
TAGAAAGAGTTGTACCTGTATTG
GAAGCTGTTAAGGATGTGATCG
AGGAAGAAGGAAGAATCTTATC
GGTGGATACTTTTTATTCAAAAG
TTGCTTCTGAGGCCGTCAAG
268 Amaranthus DHP_A8_5 cDNAContig 701 900 CTTGACGGCCTCAGAAGCAACTT
rudis TTGAATAAAAAGTATCCACCGAT
AAGATTCTTCCTTCTTCCTCGATC
ACATCCTTAACAGCTTCCAATAC
AGGTACAACTCTTTCTAGCTCTTC
TTCAGCCGAAATCCTAGTTGCCA
TGGGTCTTGTTGACTGTGCCCCA

ATGTCAATTATGTCGGCCCCATC
TGATATCATCTGAC
269 Amaranthus DHP_A8_6 cDNAContig 876 1075 AAAAGTTGCTTCTGAGGCCGTCA
rudis AGAAGGGGGCACACATTGTGAA
TGATGTCTCTAGTGGGAAATTCG
ATCCTGAGATGTTCAATGTTGTT
GCGGACCTTAAAGTTCCTTATAT
AGCAATGCACATGCGAGGAGAT
CCGACTTCAATGCAAAATTCTGA
GAACTTGACGTACAGTGATGTTT
GTAAGCAAGTGGCTTCGG
270 Amaranthus DHP_A8_6 cDNAContig 876 1075 CCGAAGCCACTTGCTTACAAACA
rudis TCACTGTACGTCAAGTTCTCAGA
ATTTTGCATTGAAGTCGGATCTC
CTCGCATGTGCATTGCTATATAA
GGAACTTTAAGGTCCGCAACAAC
ATTGAACATCTCAGGATCGAATT
TCCCACTAGAGACATCATTCACA
ATGTGTGCCCCCTTCTTGACGGC
CTCAGAAGCAACTTTT
271 Amaranthus DHP_A8_7 cDNAContig 1051 1250 GATGTTTGTAAGCAAGTGGCTTC
rudis GGAGTTGAGCTCTAGGGTCATA
GATGCAGAATTATCGGGAATTCC
TGCTTGGAGAATAGTTATTGATC
CCGGCATTGGATTTTCTAAGAAT
ACGAAGCAAAATTTGGAAATTCT
TACTGGTTTACAAAAGATACGGC
TAGAGATAGCTAAGAAGAGTTT
GGCGGTGGCTCATTGCCC
272 Amaranthus DHP_A8_7 cDNAContig 1051 1250 GGGCAATGAGCCACCGCCAAAC
rudis TCTTCTTAGCTATCTCTAGCCGTA
TCTTTTGTAAACCAGTAAGAATTT
CCAAATTTTGCTTCGTATTCTTAG
AAAATCCAATGCCGGGATCAATA
ACTATTCTCCAAGCAGGAATTCC
CGATAATTCTGCATCTATGACCCT
AGAGCTCAACTCCGAAGCCACTT
GCTTACAAACATC
273 Amaranthus DHP_A8_8 cDNAContig 1226 1425 AGAGTTTGGCGGTGGCTCATTGC
rudis CCCTTGCTAATTGGACCTTCACG
AAAGAGGTTTCTGGGTGAGATTT
GTAATCGCCCTGTAGCAGCTGAT
AGGGATCCTGCTACCGTCGCTTC
TATCACTGCTGGAGTTTTAGGTG
GTGCAAACATTGTAAGAGTACAT
AATGTGAGGGATAACCTTGATGC
AGTCAAGTTATGTGAT

274 Amaranthus DHP_A8_8 cDNAContig 1226 1425 ATCACATAACTTGACTGCATCAA
rudis GGTTATCCCTCACATTATGTACTC
TTACAATGTTTGCACCACCTAAA
ACTCCAGCAGTGATAGAAGCGA
CGGTAGCAGGATCCCTATCAGCT
GCTACAGGGCGATTACAAATCTC
ACCCAGAAACCTCTTTCGTGAAG
GTCCAATTAGCAAGGGGCAATG
AGCCACCGCCAAACTCT
275 Amaranthus DHP_Al2_1 gDNAContig 1 rudis TCCTGATAGCTTTAGTGATGGCG
GAAGGTTTCAATCTGTCGATACT
GCGGTTGCTAAGGTTCGTCAGAT
GATCTCTGACGGGGCGGACATA
ATTGACATTGGGGCGCAGTCAAC
AAGACCCTTGGCAACTAGGATTT
CGGCTGAAGAAGAGCTAGAAAG
AGTCGTACCTGTATTAGA
276 Amaranthus DHP_Al2_1 gDNAContig 1 rudis AGCTCTTCTTCAGCCGAAATCCT
AGTTGCCAAGGGTCTTGTTGACT
GCGCCCCAATGTCAATTATGTCC
GCCCCGTCAGAGATCATCTGACG
AACCTTAGCAACCGCAGTATCGA
CAGATTGAAACCTTCCGCCATCA
CTAAAGCTATCAGGAGTCAAGTT
CAAGACTCCCATTAC
277 Amaranthus DHP_Al2_2 gDNAContig 176 375 TAGAAAGAGTCGTACCTGTATTA
rudis GAAGCTGTCAAGGATTTGATCGA
GGAAGAAGGAAGAATCTTGTCA
GTGGATACGTTTTATTCTAAAGT
TGCTTCGGAGGCCGTCAAGAAG
GGGGCACACATTGTGAATGATG
TTTCTAGTGGGAAACTCGATCCC
GAGATGTTTAATGTTGTTGCGGA
CCTTAAAGTTCCTTATATA
278 Amaranthus DHP_Al2_2 gDNAContig 176 375 TATATAAGGAACTTTAAGGTCCG
rudis CAACAACATTAAACATCTCGGGA
TCGAGTTTCCCACTAGAAACATC
ATTCACAATGTGTGCCCCCTTCTT
GACGGCCTCCGAAGCAACTTTAG
AATAAAACGTATCCACTGACAAG
ATTCTTCCTTCTTCCTCGATCAAA
TCCTTGACAGCTTCTAATACAGG
TACGACTCTTTCTA
279 Amaranthus DHP_Al2_3 gDNAContig 351 550 TGCGGACCTTAAAGTTCCTTATA
rudis TAGCAATGCACATGCGAGGAGA

TCCGACTTCAATGCAAAATTCTG
AGAACTTGACGTACAGTGATGTT
TGTAAGCAAGTGGCTTCGGAGTT
GAGCTCTAGGGTCATAGATGCA
GAATTATCGGGAATTCCTGCTTG
GAGAATAGTTATTGATCCCGGCA
TTGGATTTTCTAAGAATA
280 Amaranthus DHP_Al2_3 gDNAContig 351 550 TATTCTTAGAAAATCCAATGCCG
rudis GGATCAATAACTATTCTCCAAGC
AGGAATTCCCGATAATTCTGCAT
CTATGACCCTAGAGCTCAACTCC
GAAGCCACTTGCTTACAAACATC
ACTGTACGTCAAGTTCTCAGAAT
TTTGCATTGAAGTCGGATCTCCT
CGCATGTGCATTGCTATATAAGG
AACTTTAAGGTCCGCA
281 Amaranthus DHP_Al2_4 gDNAContig 526 725 CCCGGCATTGGATTTTCTAAGAA
rudis TACGAAGCAAAATTTGGAAATTC
TTACTGGTTTACAAAAGATACGG
CTAGAGATAGCTAAGAAGAGTTT
GGCGGTGGCTCATTGCCCCTTGC
TAATTGGACCTTCACGAAAGAGG
TTTCTGGGTGAGATTTGTAATCG
CCCTGTAGCAGCTGATAGGGATC
CTGCTACCGTCGCTTC
282 Amaranthus DHP_Al2_4 gDNAContig 526 725 GAAGCGACGGTAGCAGGATCCC
rudis TATCAGCTGCTACAGGGCGATTA
CAAATCTCACCCAGAAACCTCTTT
CGTGAAGGTCCAATTAGCAAGG
GGCAATGAGCCACCGCCAAACTC
TTCTTAGCTATCTCTAGCCGTATC
TTTTGTAAACCAGTAAGAATTTC
CAAATTTTGCTTCGTATTCTTAGA
AAATCCAATGCCGGG
283 Amaranthus DHP_A15_1 gDNAContig 1 rudis ACAAATGGATAAAAATGGTGTTT
TCCTATGGTTTATGTTTCGATAAA
AGGATTTCAAATCCCAATCGTAT
GAAGTTTGAAATACAACTATGTG
TTTTTGTAGCTTCTTGTATTGCTT
TCCTTCACTCATCACCAGTGAAC
GATGTTGAAGTTTGTTCCAAGAA
GCAAGAAGTCGTAA
284 Amaranthus DHP_A15_1 gDNAContig 1 rudis AAACTTCAACATCGTTCACTGGT
GATGAGTGAAGGAAAGCAATAC
AAGAAGCTACAAAAACACATAG

TTGTATTTCAAACTTCATACGATT
GGGATTTGAAATCCTTTTATCGA
AACATAAACCATAGGAAAACACC
ATTTTTATCCATTTGTTTGCATCA
ATTCTGAGTAAATCA
285 Amaranthus DHP_A15_2 gDNAContig 176 375 TGTTCCAAGAAGCAAGAAGTCGT
rudis AATTGCAATCGGGAGCAATGTTG
GTGACAGATTAGAAAATTTCAAC
GAAGCTCTGCAACAAATGAAGA
AATTAGGCATAGACATCACAAG
GCATGGTTGTTTATACGAGACGG
AACCTGCTTACGTGACTGATCAG
CCGAAGTTTCTTAACTCTGCTTTA
AGAGGCTTTACAAGACT
286 Amaranthus DHP_A15_2 gDNAContig 176 375 AGTCTTGTAAAGCCTCTTAAAGC
rudis AGAGTTAAGAAACTTCGGCTGAT
CAGTCACGTAAGCAGGTTCCGTC
TCGTATAAACAACCATGCCTTGT
GATGTCTATGCCTAATTTCTTCAT
TTGTTGCAGAGCTTCGTTGAAAT
TTTCTAATCTGTCACCAACATTGC
TCCCGATTGCAATTACGACTTCTT
GCTTCTTGGAACA
287 Amaranthus DHP_A15_3 gDNAContig 351 550 CTGCTTTAAGAGGCTTTACAAGA
rudis CTTGGGCCTCATGAATTATTAGG
GGTATTGAAGAGAATCGAGAAG
GATATGGGCAGAACCAAGGGAA
TAAGGTATGGTCCTAGGCCAATT
GACTTGGACATACTATTTTATGG
GAAGTTTAGGGTGAGCTCTGAG
AGCCTCACTATTCCCCATGAAAG
GATATGGGAAAGACCATTT
288 Amaranthus DHP_A15_3 gDNAContig 351 550 AAATGGTCTTTCCCATATCCTTTC
rudis ATGGGGAATAGTGAGGCTCTCA
GAGCTCACCCTAAACTTCCCATA
AAATAGTATGTCCAAGTCAATTG
GCCTAGGACCATACCTTATTCCCT
TGGTTCTGCCCATATCCTTCTCGA
TTCTCTTCAATACCCCTAATAATT
CATGAGGCCCAAGTCTTGTAAAG
CCTCTTAAAGCAG
289 Amaranthus DHP_A11_1 gDNAContig 1 rudis GAAGAGCTAGAAAGAGTCGTAC
CTGTATTAGAAGCTGTCAAGGAT
TTGATCGAGGAAGAAGGAAGAA
TCTTGTCAGTGGATACGTTTTATT
CTAAAGTTGCTTCGGAGGCCGTC

AAGAAGGGGGCACACATTGTGA
ATGATGTTTCTAGTGGGAAACTC
GATCCCGAGATGTTTAAT
290 Amaranthus DHP_A11_1 gDNAContig 1 rudis TCCCACTAGAAACATCATTCACA
ATGTGTGCCCCCTTCTTGACGGC
CTCCGAAGCAACTTTAGAATAAA
ACGTATCCACTGACAAGATTCTT
CCTTCTTCCTCGATCAAATCCTTG
ACAGCTTCTAATACAGGTACGAC
TCTTTCTAGCTCTTCTTCAGCCGA
AATCCTAGTTGCCA
291 Amaranthus DHP_A11_2 gDNAContig 176 375 GAAACTCGATCCCGAGATGTTTA
rudis ATGTTGTTGCGGACCTTAAAGTT
CCTTATATAGCAATGCACATGCG
AGGAGATCCGACTTCAATGCAAA
ATTCTGAGAACTTGACGTACAAT
GATGTGTGTAAGCAAGTGGCTTC
GGAGTTGAGCTCTAGGGTCGTA
GATGCAGAATTATCGGGAATTCC
TGCTTGGAGGATGGTTA
292 Amaranthus DHP_A11_2 gDNAContig 176 375 TAACCATCCTCCAAGCAGGAATT
rudis CCCGATAATTCTGCATCTACGAC
CCTAGAGCTCAACTCCGAAGCCA
CTTGCTTACACACATCATTGTACG
TCAAGTTCTCAGAATTTTGCATTG
AAGTCGGATCTCCTCGCATGTGC
ATTGCTATATAAGGAACTTTAAG
GTCCGCAACAACATTAAACATCT
CGGGATCGAGTTTC
293 Amaranthus DHP_A11_3 gDNAContig 351 550 GGAATTCCTGCTTGGAGGATGGT
rudis TATTGATCCCGGCATTGGATTTTC
TAAGAATACGAAGCAAAATTTG
GAAATTCTTAGTGGTTTACAAAA
GATACGGCAAGAGATAGCTAAG
AAGAGTTTGGCGGTGGCTCATTG
CCCCTTGCTAATTGGACCTTCAA
GAAAGAGGTTTCTGGGCGAGAT
TTGCAATCGCCCTGTAGC
294 Amaranthus DHP_A11_3 gDNAContig 351 550 GCTACAGGGCGATTGCAAATCTC
rudis GCCCAGAAACCTCTTTCTTGAAG
GTCCAATTAGCAAGGGGCAATG
AGCCACCGCCAAACTCTTCTTAG
CTATCTCTTGCCGTATCTTTTGTA
AACCACTAAGAATTTCCAAATTTT
GCTTCGTATTCTTAGAAAATCCA
ATGCCGGGATCAATAACCATCCT

CCAAGCAGGAATTCC
295 Amaranthus DHP_A11_4 gDNAContig 526 725 GCGAGATTTGCAATCGCCCTGTA
rudis GCAGCTGATAGGGATCCTGCTAC
CGTTGCTTCTATCACTGCTGGAG
TTTTAGGTGGTGCAAACATTGTA
AGAGTACATAATGTGAGGGATA
ACCTTGATGCAGTCAAGTTATGT
GATGCCATACTCAGAAAAACGG
ATTAGCCGATTTTTTTGGATTCCA
GAGCCGATGTTCCAGAT
296 Amaranthus DHP_A11_4 gDNAContig 526 725 ATCTGGAACATCGGCTCTGGAAT
rudis CCAAAAAAATCGGCTAATCCGTT
TTTCTGAGTATGGCATCACATAA
CTTGACTGCATCAAGGTTATCCC
TCACATTATGTACTCTTACAATGT
TTGCACCACCTAAAACTCCAGCA
GTGATAGAAGCAACGGTAGCAG
GATCCCTATCAGCTGCTACAGGG
CGATTGCAAATCTCGC
297 Amaranthus DHP_A9_1 gDNAContig 1 rudis TCCCAATCGTATGAAGTTTGAAA
TACAACTATGTGTTTTTGCAGCTT
TGTTTTTTGCGTACCTTCACTCAT
CACCAGTGGACGATGTTGAACTT
TGTTCTAAGAAGCAAGAAGTCAT
AATTGCAATCGGGAGCAATGTTG
GTGACAGATTAGAAAATTTTAAC
CAAGCTCTGCAACA
298 Amaranthus DHP_A9_1 gDNAContig 1 rudis TTCTAATCTGTCACCAACATTGCT
CCCGATTGCAATTATGACTTCTTG
CTTCTTAGAACAAAGTTCAACAT
CGTCCACTGGTGATGAGTGAAG
GTACGCAAAAAACAAAGCTGCA
AAAACACATAGTTGTATTTCAAA
CTTCATACGATTGGGATTTGAAA
TCCTTTTATCGAAACA
299 Amaranthus DHP_A9_2 gDNAContig 176 375 AAAATTTTAACCAAGCTCTGCAA
rudis CAAATGAAGAAATTAGGCATAG
ACATCACAAGGCATGGTTGTTTA
TATGAGACAGAACCCGCATACGT
GACTGATCAACCGAAGTTTCTTA
ACTCTGCTTTAAGAGGCTTTACA
AGACTTGGGCCTCATGAATTATT
AGGGGTATTGAAGAAAATTGAG
AAGAATATGGGTAGAACC
300 Amaranthus DHP_A9_2 gDNAContig 176 375 GGTTCTACCCATATTCTTCTCAAT

rud is TTTCTTCAATACCCCTAATAATTC
ATGAGGCCCAAGTCTTGTAAAGC
CTCTTAAAGCAGAGTTAAGAAAC
TTCGGTTGATCAGTCACGTATGC
GGGTTCTGTCTCATATAAACAAC
CATGCCTTGTGATGTCTATGCCT
AATTTCTTCATTTGTTG CAGAG CT
TGGTTAAAATTTT
301 Am a ra nthus DH P_A9_3 gDNACo ntig 351 550 AATTGAGAAGAATATGGGTAGA
rudis ACCAAGGGAATAAGGTATGGTC
CTAGGCCAATTGACTTGGACATA
CTATTTTATG G GAAGTTTAG G GT
GAG CTCTGAGAG CCTCACTATTC
CCCATGAAAGGATATGGGAAAG
ACCATTTGTGATGGCACCATTAA
TTGATTGTATTGGGTCTGGTGTA
GAAAATGACACTATTTGTA
302 Am a ra nthus DH P_A9_3 gDNACo ntig 351 550 TACAAATAGTGTCATTTTCTACAC
rudis CAGACCCAATACAATCAATTAAT
GGTGCCATCACAAATGGTCTTTC
CCATATCCTTTCATGGGGAATAG
TGAGGCTCTCAGAGCTCACCCTA
AACTTCCCATAAAATAGTATGTC
CAAGTCAATTGGCCTAGGACCAT
ACCTTATTCCCTTGGTTCTACCCA
TATTCTTCTCAATT
303 Am a ra nthus DH P_A9_4 gDNACo ntig 526 725 GGTGTAGAAAATGACACTATTTG
rudis TACATGGCATTCGTTATCAAATTT
TTCG G GTG GAATCTTTGAAG CAT
GGGATAAACTCGGTGGAAGTTC
CCTAATCGGGAAGGATGGAATG
AAAAGGGTTTTGCCCGTTGGGA
ACCGCTTATGGGATTGGTCTCAT
AAAACCTCTGTAATGGGAGTCTT
GAACTTGACTCCTGATAG
304 Am a ra nthus DH P_A9_4 gDNACo ntig 526 725 CTATCAGGAGTCAAGTTCAAGAC
rudis TCCCATTACAGAGGTTTTATGAG
ACCAATCCCATAAGCGGTTCCCA
ACGGGCAAAACCCTTTTCATTCC
ATCCTTCCCGATTAGGGAACTTC
CACCGAGTTTATCCCATGCTTCA
AAGATTCCACCCGAAAAATTTGA
TAACGAATGCCATGTACAAATAG
TGTCATTTTCTACACC
305 Am a ra nthus DH P_A9_5 gDNACo ntig 701 900 GAGTCTTGAACTTGACTCCTGAT
rudis AG CTTTAGTGATG GAG G
AAGTTT
TCAATCTGTCGATACTGCGGTTG

CTAAGGTTCGTCAGATGATATCA
GATGGGGCCGACATAATTGACA
TTGGGGCACAGTCAACAAGACC
CATGGCAACTAGGATTTCGGCTG
AAGAAGAGCTAGAAAGAGTTGT
ACCTGTATTGGAAGCTGTT
306 Amaranthus DH P_A9_5 gDNACo ntig 701 900 AACAGCTTCCAATACAGGTACAA
rudis CTCTTTCTAGCTCTTCTTCAGCCG
AAATCCTAGTTGCCATGGGTCTT
GTTGACTGTGCCCCAATGTCAAT
TATGTCGGCCCCATCTGATATCA
TCTGACGAACCTTAGCAACCGCA
GTATCGACAGATTGAAAACTTCC
TCCATCACTAAAGCTATCAGGAG
TCAAGTTCAAGACTC
307 Amaranthus DHP_A19_1 cDNAContig 1 viridis CGTTGCTTCTATAACTGCTGGAG
TTTTAGGTGGTGCAAACATTGTA
AGAGTACATAATGTGAGGGATA
ACCTTGATGCTGTCAAGTTATGT
GATGCCATACTCGGAAAAACTGA
TTAACTGCTTATTTGTACCACCTT
GTGAATGACGTCTAGTGGAAAG
TTCGATTGGGATATGAT
308 Amaranthus DHP_A19_1 cDNAContig 1 viridis CTAGACGTCATTCACAAGGTGGT
ACAAATAAGCAGTTAATCAGTTT
TTCCGAGTATGGCATCACATAAC
TTGACAGCATCAAGGTTATCCCT
CACATTATGTACTCTTACAATGTT
TGCACCACCTAAAACTCCAGCAG
TTATAGAAGCAACGGTAGCAGG
ATCCCTATCAGCTGC
309 Amaranthus DHP_A19_2 cDNAContig 176 375 GTGGAAAGTTCGATTGGGATAT
viridis GATGAAGTCCGTTAGTTTGCTCG
AAAGTAGAGCTTTAGCCCGTAAG
GTTATAGTTCTTACAGATGTAGA
ATCATTGGCTATTTGCCTATTTTT
GCTTAGAAGATCATAGCATTGAT
CCAGACTTTGGATTCCATCTAGA
ATTATGTTGCGACTCATGGTCGA
ATTGGCCCTTTGAGGA
310 Amaranthus DHP_A19_2 cDNAContig 176 375 TCCTCAAAGGGCCAATTCGACCA
viridis TGAGTCGCAACATAATTCTAGAT
GGAATCCAAAGTCTGGATCAATG
CTATGATCTTCTAAGCAAAAATA
GGCAAATAGCCAATGATTCTACA

TCTGTAAGAACTATAACCTTACG
GGCTAAAGCTCTACTTTCGAGCA
AACTAACGGACTTCATCATATCC
CAATCGAACTTTCCAC
311 Amaranthus DHP_A19_3 cDNAContig 351 550 CATGGTCGAATTGGCCCTTTGAG
viridis GAATTGTTGAAGTTCCTTGATCT
ATGGTTCAATCGGCTTGGTTCGA
TGAAGGTTGGACTGTGTCGAGA
CAAGATGGGTCAAAGAGACCAA
TGGACAAGAAGTCGACCTTGGG
AAAGCTTGATCAAGTTACTTGGA
CGAGCAGATAGCAGCAGGACTC
TGGCGAGCATTAGACATACA
312 Amaranthus DHP_A19_3 cDNAContig 351 550 TGTATGTCTAATGCTCGCCAGAG
viridis TCCTGCTGCTATCTGCTCGTCCAA
GTAACTTGATCAAGCTTTCCCAA
GGTCGACTTCTTGTCCATTGGTC
TCTTTGACCCATCTTGTCTCGACA
CAGTCCAACCTTCATCGAACCAA
GCCGATTGAACCATAGATCAAG
GAACTTCAACAATTCCTCAAAGG
GCCAATTCGACCATG
313 Amaranthus DHP_A18_1 cDNAContig 1 viridis CTTTTGAAGATATTTTTGAAGAA
GTACTCTTTGGCTTTTTGATCCAG
AAAATCATATTGGTATGAAGTGT
TGTTTAATATACAATCAATTTTTC
TGAACTGGGTTATTAAAGAGAA
GCATTGTAGACATGAGGAATGT
GTTCAAGCATCTCAAAACAACCA
AATTAATCCCAAATGG
314 Amaranthus DHP_A18_1 cDNAContig 1 viridis TTTGAGATGCTTGAACACATTCC
TCATGTCTACAATGCTTCTCTTTA
ATAACCCAGTTCAGAAAAATTGA
TTGTATATTAAACAACACTTCATA
CCAATATGATTTTCTGGATCAAA
AAGCCAAAGAGTACTTCTTCAAA
AATATCTTCAAAAGTTTCAATCTT
TAGGTTATACAGA
315 Amaranthus DHP_A18_2 cDNAContig 176 375 AAACAACCAAATTAATCCCAAAT
viridis GGGATCTTCAACTGTAATAGAGC
TTCGTGTTTTGCTTTCCTTCACTC
ATCACCGGTGAACGATGTTGAA
GTTTGTTCCAAGAAGCAAGAAGT
CGTAATTGCAATCGGGAGCAAT
GTTGGTGACAGATTAGAAAATTT

CAACCAAGCTCTGCAACAAATGA
AGAAATTAGGCATAGAC
316 Amaranthus D H P_A18_2 cDNAContig 176 375 GTCTATGCCTAATTTCTTCATTTG
viridis TTGCAGAGCTTGGTTGAAATTTT
CTAATCTGTCACCAACATTGCTCC
CGATTGCAATTACGACTTCTTGCT
TCTTGGAACAAACTTCAACATCG
TTCACCGGTGATGAGTGAAGGA
AAGCAAAACACGAAGCTCTATTA
CAGTTGAAGATCCCATTTGGGAT
TAATTTGGTTGTTT
317 Amaranthus DHP_A18_3 cDNAContig 351 550 ACAAATGAAGAAATTAGGCATA
viridis GACATCACAAGGCATGGGTGTTT
ATATGAGACGGAACCTGCATAC
GTGACTGATCAACCGAAGTTTCT
TAACTCTGCTTTAAGAGGCTTTA
CAAAACTTGGGCCTCATGAATTA
TTAGGGGTTTTAAAGAAAATTGA
GAAGGATATGGGTAGAACCAAG
GGAATAAGGTATGGTCCTA
318 Amaranthus DHP_A18_3 cDNAContig 351 550 TAGGACCATACCTTATTCCCTTG
viridis GTTCTACCCATATCCTTCTCAATT
TTCTTTAAAACCCCTAATAATTCA
TGAGGCCCAAGTTTTGTAAAGCC
TCTTAAAGCAGAGTTAAGAAACT
TCGGTTGATCAGTCACGTATGCA
GGTTCCGTCTCATATAAACACCC
ATGCCTTGTGATGTCTATGCCTA
ATTTCTTCATTTGT
319 Amaranthus DHP_A18_4 cDNAContig 526 725 ACCAAGGGAATAAGGTATGGTC
viridis CTAGGCCAATTGACTTGGACATA
CTATTTTATGGGAAATTTAGGGT
GAGCTCTGAGAGCCTCACTATCC
CCCATGAAAGGATATGGGAAAG
ACCATTTGTGATGGCACCATTGA
TTGATTGTATTGGGTCTGATGTA
GAAAATGACACTATTTGTACATG
GCATTCATTATCAAATTT
320 Amaranthus DHP_A18_4 cDNAContig 526 725 AAATTTGATAATGAATGCCATGT
viridis ACAAATAGTGTCATTTTCTACATC
AGACCCAATACAATCAATCAATG
GTGCCATCACAAATGGTCTTTCC
CATATCCTTTCATGGGGGATAGT
GAGGCTCTCAGAGCTCACCCTAA
ATTTCCCATAAAATAGTATGTCC
AAGTCAATTGGCCTAGGACCATA
CCTTATTCCCTTGGT

321 Amaranthus DHP_A18_5 cDNAContig 701 900 GTACATGGCATTCATTATCAAAT
viridis TTTTTGGGTGGAATCTTTGAAGC
ATGGGGTAAACTCGGTGGAAGT
TCCCTAATCGGGAAGGATGGAA
TGAAAAGGGTTTTGCCCGTTGGA
AATCGCTTATGGGATTGGTCTCA
TAAAACCTCTGTAATGGGAGTCT
TGAACTTGACTCCTGATAGCTTT
AGTGATGGCGGAAGTTTT
322 Amaranthus DHP_A18_5 cDNAContig 701 900 AAAACTTCCGCCATCACTAAAGC
viridis TATCAGGAGTCAAGTTCAAGACT
CCCATTACAGAGGTTTTATGAGA
CCAATCCCATAAGCGATTTCCAA
CGGGCAAAACCCTTTTCATTCCA
TCCTTCCCGATTAGGGAACTTCC
ACCGAGTTTACCCCATGCTTCAA
AGATTCCACCCAAAAAATTTGAT
AATGAATGCCATGTAC
323 Amaranthus DHP_A18_6 cDNAContig 876 1075 TAGCTTTAGTGATGGCGGAAGTT
viridis TTCAATCTGTCGATACTGCGGTT
GCTAAGGTTCGTCAGATGATCTC
AGATGGGGCAGATATAATTGAC
ATCGGGGCACAATCAACCAGAC
CCATGGCAACTAGGATTTCGGCT
GAAGAAGAGCTAGAAAGAGTAG
TACCTGTATTGGAAGCTGTCAAG
GATTTGATCGAGGAAGAAG
324 Amaranthus DHP_A18_6 cDNAContig 876 1075 CTTCTTCCTCGATCAAATCCTTGA
viridis CAGCTTCCAATACAGGTACTACT
CTTTCTAGCTCTTCTTCAGCCGAA
ATCCTAGTTGCCATGGGTCTGGT
TGATTGTGCCCCGATGTCAATTA
TATCTGCCCCATCTGAGATCATCT
GACGAACCTTAGCAACCGCAGTA
TCGACAGATTGAAAACTTCCGCC
ATCACTAAAGCTA
325 Amaranthus DHP_A18_7 cDNAContig 1051 1250 GTCAAGGATTTGATCGAGGAAG
viridis AAGGAAGAATCTTGTCAGTGGA
TACGTTTTATTCTAAAGTTGCTTC
GGAGGCCGTCAAGAAGGGGGC
ACACATTGTGAATGATGTCTCTA
GTGGGAAACTCGATTCCGAGAT
GTTTAATGTTGTTGCGGACCTTA
AAGTTCCTTATATAGCAATGCAC
ATGCGAGGAGATCCGACTTC
326 Amaranthus DHP_A18_7 cDNAContig 1051 1250 GAAGTCGGATCTCCTCGCATGTG
viridis CATTGCTATATAAGGAACTTTAA

GGTCCGCAACAACATTAAACATC
TCGGAATCGAGTTTCCCACTAGA
GACATCATTCACAATGTGTGCCC
CCTTCTTGACGGCCTCCGAAGCA
ACTTTAGAATAAAACGTATCCAC
TGACAAGATTCTTCCTTCTTCCTC
GATCAAATCCTTGAC
327 Amaranthus DHP_A18_8 cDNAContig 1226 1425 TGCACATGCGAGGAGATCCGAC
viridis TTCAATGCAAAATTCTGAGAACT
TGACGTACAATGATGTTTGTAAG
CAAGTGGCTACGGAGTTGAGCT
CTAGGGTCATAGATGCAGAATTA
TCGGGAATTCCTGCTTGGAGGAT
AGTTATTGATCCCGGCATTGGAT
TTTCTAAGAATACGAATCAAAAT
TTGGAAATTCTTCGTGGT
328 Amaranthus DHP_A18_8 cDNAContig 1226 1425 ACCACGAAGAATTTCCAAATTTT
viridis GATTCGTATTCTTAGAAAATCCA
ATGCCGGGATCAATAACTATCCT
CCAAGCAGGAATTCCCGATAATT
CTGCATCTATGACCCTAGAGCTC
AACTCCGTAGCCACTTGCTTACA
AACATCATTGTACGTCAAGTTCT
CAGAATTTTGCATTGAAGTCGGA
TCTCCTCGCATGTGCA
329 Ambrosia DHP_A21_1 gDNAContig 1 trifida AAAATCAGGCATAGAAATAACA
AGACATGCATGTTTATACGAAAC
CGAGCCAGCTTACGTGACTGATC
AACCTCTTTTCCTCAATTCTGCCA
TCAGAGGCGTTACAAAGCTGGG
CCCACATGAGCTACTATCGGCCC
TCAAGAAAATTGAAAAAGAAAT
GGGCCGAACCAAAGGTAT
330 Ambrosia DHP_A21_1 gDNAContig 1 trifida TTTTCAATTTTCTTGAGGGCCGAT
AGTAGCTCATGTGGGCCCAGCTT
TGTAACGCCTCTGATGGCAGAAT
TGAGGAAAAGAGGTTGATCAGT
CACGTAAGCTGGCTCGGTTTCGT
ATAAACATGCATGTCTTGTTATTT
CTATGCCTGATTTTTTCATTTGAC
TTAAGGCTTCATT
331 Ambrosia DHP_A21_2 gDNAContig 176 375 AAGAAATGGGCCGAACCAAAGG
trifida TATTAGATACGGCCCGCGACCCA
TTGACTTAGATATACTGTTTTATG
GTAAACACAGAGTTAACTCGGA

AATTCTCACTGTTCCACATGAAA
GAATCTTCGAGAGGCCATTTGTT
ATGGCTCCGTTAGTTGACTTATT
GGGGTCGGAAATTGACAATGAT
ACGGTTCTATGCTGGCAT
332 Am brosia DH P_A21_2 gDNAContig 176 375 ATGCCAGCATAGAACCGTATCAT
trifida TGTCAATTTCCGACCCCAATAAG
TCAACTAACGGAGCCATAACAAA
TGGCCTCTCGAAGATTCTTTCAT
GTGGAACAGTGAGAATTTCCGA
GTTAACTCTGTGTTTACCATAAA
ACAGTATATCTAAGTCAATGGGT
CGCGGGCCGTATCTAATACCTTT
GGTTCGGCCCATTTCTT
333 Ambrosia DH P_A21_3 gDNAContig 351 550 CAATGATACGGTTCTATGCTGGC
trifida ATTCTTTCTCAAAAAGAGGACTT
TTTGAATCTTGGGAAAAATTAGG
TGGCGAATCTTTGATAGGCAAAG
ATGGGTTAAGAAGAGTTTTACCA
GTCAATAATCGGTTATGGGATTG
GTCAAAGAAAACCTCTGTCATGG
GAATTTTGAACTTGACTCCCGAT
AGTTTTAGCGACGGAG
334 Am brosia DH P_A21_3 gDNAContig 351 550 CTCCGTCGCTAAAACTATCGGGA
trifida GTCAAGTTCAAAATTCCCATGAC
AGAGGTTTTCTTTGACCAATCCC
ATAACCGATTATTGACTGGTAAA
ACTCTTCTTAACCCATCTTTGCCT
ATCAAAGATTCGCCACCTAATTTT
TCCCAAGATTCAAAAAGTCCTCT
TTTTGAGAAAGAATGCCAGCATA
GAACCGTATCATTG
335 Ambrosia DH P_A21_4 gDNAContig 526 725 ACTCCCGATAGTTTTAGCGACGG
trifida AGGAAAGTTTGACACTGTGGGG
TCCGCTATATCTCGTGTTAGGGC
CATGATATCTGAAGGGGCAGAC
ATAATTGATCTGGGAGCTCAATC
GACACGTCCAATGGCAACCAAG
ATTTCAGTCCAAGAAGAACTAGA
TAGGTTAATCCCTGTTCTCGAAA
AGATTCTTGAATTACCCGA
336 Ambrosia DH P_A21_4 gDNAContig 526 725 TCGGGTAATTCAAGAATCTTTTC
trifida GAGAACAGGGATTAACCTATCTA
GTTCTTCTTGGACTGAAATCTTG
GTTGCCATTGGACGTGTCGATTG
AGCTCCCAGATCAATTATGTCTG
CCCCTTCAGATATCATGGCCCTA

ACACGAGATATAGCGGACCCCA
CAGTGTCAAACTTTCCTCCGTCG
CTAAAACTATCGGGAGT
337 Ambrosia DH P_A21_5 gDNAContig 701 900 TCGAAAAGATTCTTGAATTACCC
trifida GAAATTGAAGGAAAACTGCTCTC
TATCGACACGTTTTACTCAGAAG
TTGCTTTAGAAGCGATTAAGAAA
GGGGCTCATATAATCAATGATGT
ATCGGGTGGAAATCTAGATTCTG
ATATGTTTCGGGTAGTTGCTAAT
CTTGATGTTCCATATATTGCTATG
CACATGAGAGGGGAC
338 Am brosia DH P_A21_5 gDNAContig 701 900 GTCCCCTCTCATGTGCATAGCAA
trifida TATATGGAACATCAAGATTAGCA
ACTACCCGAAACATATCAGAATC
TAGATTTCCACCCGATACATCATT
GATTATATGAGCCCCTTTCTTAAT
CGCTTCTAAAGCAACTTCTGAGT
AAAACGTGTCGATAGAGAGCAG
TTTTCCTTCAATTTCGGGTAATTC
AAGAATCTTTTCGA
339 Am brosia DH P_A21_6 gDNAContig 876 1075 TATTGCTATGCACATGAGAGGG
trifida GACCCATCCACAATGCAAAACAG
TGAGAATTTGAAGTATGATGATG
TTTGTAAAGAAGTTGGTGATGAG
TTGTATGAGCGTGTAAGAGCTGC
AGAGTTATGCGGTGTGCCTGCAT
GGAGGATCATTCTTGACCCAGG
GATCGGGTTTTCAAAGAAAACCG
AAGATAATTTGGATATTT
340 Am brosia DH P_A21_6 gDNAContig 876 1075 AAATATCCAAATTATCTTCGGTTT
trifida TCTTTGAAAACCCGATCCCTGGG
TCAAGAATGATCCTCCATGCAGG
CACACCGCATAACTCTGCAGCTC
TTACACGCTCATACAACTCATCAC
CAACTTCTTTACAAACATCATCAT
ACTTCAAATTCTCACTGTTTTGCA
TTGTGGATGGGTCCCCTCTCATG
TGCATAGCAATA
341 Ambrosia DH P_A21_7 gDNAContig 1051 1250 AAAACCGAAGATAATTTGGATAT
trifida TTTGATGGGATTAAAGAGAATTA
GGAGTGAGATTGCACGGAAGAG
CTTAGGGGTGTCACGTGCACCTT
TGTTAATCGGTCCTTCAAGAAAG
AGATTTTTGGGGGAGATTTGTGG
TCGGGCTTCTGCTGTCGAGAGAG
ATCCAGCGACTGTTGCTGCTGTT

ACATGTGCGGTTTTGGG
342 Ambrosia DHP_A21_7 gDNAContig 1051 1250 CCCAAAACCGCACATGTAACAGC
trifida AGCAACAGTCGCTGGATCTCTCT
CGACAGCAGAAGCCCGACCACA
AATCTCCCCCAAAAATCTCTTTCT
TGAAGGACCGATTAACAAAGGT
GCACGTGACACCCCTAAGCTCTT
CCGTGCAATCTCACTCCTAATTCT
CTTTAATCCCATCAAAATATCCAA
ATTATCTTCGGTTTT
343 Ambrosia DHP_A28_1 gDNAContig 1 trifida ACCACCCATCTCCACCCTCCACCA
CCACCCACTTCATTCTCCCCACCC
ACCGTATCTCATCACCATCATACC
TGGTGGATTGCAGTTTGACTCTG
TGGGGTCCGCTATATCTCGTGTT
AGGACCATGATATCTGAAGGGG
CGGACATAATTGATCTGGGAGCT
CAATCGACACGTC
344 Ambrosia DHP_A28_1 gDNAContig 1 trifida TCAATTATGTCCGCCCCTTCAGAT
ATCATGGTCCTAACACGAGATAT
AGCGGACCCCACAGAGTCAAAC
TGCAATCCACCAGGTATGATGGT
GATGAGATACGGTGGGTGGGGA
GAATGAAGTGGGTGGTGGTGGA
GGGTGGAGATGGGTGGTGGTGA
TTTGTGGAGGTGATGAGGT
345 Ambrosia DHP_A26_1 gDNAContig 1 trifida TGAGAATTTGAAGTATAATGATG
TTTGTAAAGAAGTTGGTGATGAG
TTGTATGAGCGTGTAAGAGCTGC
AGAGTTATGCGGTGTGCCTGCAT
GGAGGATCATTCTTGACCCAGG
GATCGGGTTTTCAAAGAAAACCG
AAGATAATTTGGATATTTTGATG
GGATTAAAGAGAATTAG
346 Ambrosia DHP_A26_1 gDNAContig 1 trifida ATATCCAAATTATCTTCGGTTTTC
TTTGAAAACCCGATCCCTGGGTC
AAGAATGATCCTCCATGCAGGCA
CACCGCATAACTCTGCAGCTCTT
ACACGCTCATACAACTCATCACC
AACTTCTTTACAAACATCATTATA
CTTCAAATTCTCACTGTTTTGCAT
TGTGGATGGGTC
347 Ambrosia DHP_A24_1 cDNAContig 1 trifida TGAGAATTTGAAGTATAATGATG
TTTGTAAAGAAGTTGGTGATGAG
TTGTATGAGCGTGTAAGAGCTGC
AGAGTTATGCGGTGTGCCTGCAT
GGAGGATCATTCTTGACCCAGG
GATCGGGTTTTCAAAGAAAACCG
AAGATAATTTGGATATTTTGATG
GGATTAAAGAGAATTAG
348 Ambrosia DH P_A24_1 cDNAContig 1 200 CTAATTCTCTTTAATCCCATCAAA
trifida ATATCCAAATTATCTTCGGTTTTC
TTTGAAAACCCGATCCCTGGGTC
AAGAATGATCCTCCATGCAGGCA
CACCGCATAACTCTGCAGCTCTT
ACACGCTCATACAACTCATCACC
AACTTCTTTACAAACATCATTATA
CTTCAAATTCTCACTGTTTTGCAT
TGTGGATGGGTC
349 Ambrosia DH P_A24_2 cDNAContig 176 375 TTTTGATGGGATTAAAGAGAATT
trifida AGGAGTGAGATTGCCCGGAAGA
GCTTAGGGGTGTCACGTGCACCT
TTGTTAATCGGTCCTTCAAGAAA
GAGATTTTTGGGAGAGATTTGTG
GTCGGGCTTCTGCTGGTGAGAG
AGATCCAACAACTGTTGCTGCTG
TTACATGTGCGGTTTTGGGTGGT
GCTAATGTTGTTCGCGTT
350 Ambrosia DH P_A24_2 cDNAContig 176 375 AACGCGAACAACATTAGCACCAC
trifida CCAAAACCGCACATGTAACAGCA
GCAACAGTTGTTGGATCTCTCTC
ACCAGCAGAAGCCCGACCACAA
ATCTCTCCCAAAAATCTCTTTCTT
GAAGGACCGATTAACAAAGGTG
CACGTGACACCCCTAAGCTCTTC
CGGGCAATCTCACTCCTAATTCTC
TTTAATCCCATCAAAA
351 Ambrosia DH P_A27_1 gDNAContig 1 200 GATTTGTGGTCGGGCTTCTGCTG
trifida GTGAGAGAGATCCAACAACTGTT
GCTGCTGTTACATGTGCGGTTTT
GGGTGGTGCTAATGTTGTTCGCG
TTCATAATGTTGGAGATGATGCT
GATGCTGTAAAGCTTTGTGATTC
AATGTTGAACCGGGTTGGAAGA
ACGTAACAGCTTTTTGAAATTTG
ATTGTGGGTTTTGGTCC
352 Ambrosia DH P_A27_1 gDNAContig 1 200 GGACCAAAACCCACAATCAAATT
trifida TCAAAAAGCTGTTACGTTCTTCC
AACCCGGTTCAACATTGAATCAC

AAAGCTTTACAGCATCAGCATCA
TCTCCAACATTATGAACGCGAAC
AACATTAGCACCACCCAAAACCG
CACATGTAACAGCAGCAACAGTT
GTTGGATCTCTCTCACCAGCAGA
AGCCCGACCACAAATC
353 Ambrosia DHP_A23_1 cDNAContig 1 trifida AGGCATAGAGATAACAAGACAT
GCATGTTTATACAAAACCGAGCC
AGCTTATGTAACTGATCAACCTC
TTTTTCTTAATTCTGCCATCAGAG
GCGTTACAAAGCTGGGCCCACAT
GAACTACTATCGGCCCTCAAGAA
AATCGAAAAAGAATTGGGCCGA
ACCAAAGGTATTAGATA
354 Ambrosia DHP_A23_1 cDNAContig 1 trifida AATTCTTTTTCGATTTTCTTGAGG
GCCGATAGTAGTTCATGTGGGCC
CAGCTTTGTAACGCCTCTGATGG
CAGAATTAAGAAAAAGAGGTTG
ATCAGTTACATAAGCTGGCTCGG
TTTTGTATAAACATGCATGTCTTG
TTATCTCTATGCCTGATTTCTTCA
TTTGACTTAAGGC
355 Ambrosia DHP_A23_2 cDNAContig 176 375 TGGGCCGAACCAAAGGTATTAG
trifida ATACGGCCCGCGACCCATTGACT
TAGATATACTGTTTTATGGTAAA
CACAGAATTAACTCGGAAATTCT
CACTGTTCCACATGAAAGAATCT
TCGAGAGGCCATTTGTTATGGCT
CCGTTAGTTGACTTATTGGGGTC
GGATATTGACAATGATACGGTTC
TATGCTGGCATTCTTTC
356 Ambrosia DHP_A23_2 cDNAContig 176 375 GAAAGAATGCCAGCATAGAACC
trifida GTATCATTGTCAATATCCGACCC
CAATAAGTCAACTAACGGAGCCA
TAACAAATGGCCTCTCGAAGATT
CTTTCATGTGGAACAGTGAGAAT
TTCCGAGTTAATTCTGTGTTTACC
ATAAAACAGTATATCTAAGTCAA
TGGGTCGCGGGCCGTATCTAATA
CCTTTGGTTCGGCCCA
357 Ambrosia DHP_A29_1 cDNAContig 1 trifida GTCCGCTATATCTCGTGTTAGGA
CCATGATATCTGAAGGGGCGGA
CATAATTGATCTGGGAGCTCAAT
CGACACGTCC

358 Ambrosia DHP_A29_1 cDNAContig 1 101 GGACGTGTCGATTGAGCTCCCAG
trifida ATCAATTATGTCCGCCCCTTCAG
ATATCATGGTCCTAACACGAGAT
ATAGCGGACCCCACAGAGTCAA
ACTGCAATCC
359 Ambrosia DHP_A20_1 cDNAContig 1 200 TCGTTCTTTCATTTCTCTTCGGAT
trifida GCTTCGATACAAGTCCATTCTCA
AGAACAAGAAGTAGTAATTGCTT
TAGGTAGCAATGTGGGTGATAG
GCTTAATAACTTTAATGAAGCCT
TAAGTCAAATGAAAAAATCAGG
CATAGAAATAACAAGACATGCAT
GTTTATACGAAACCGAGCCAGCT
TACGTGACTGATCAACC
360 Ambrosia DHP_A20_1 cDNAContig 1 200 GGTTGATCAGTCACGTAAGCTGG
trifida CTCGGTTTCGTATAAACATGCAT
GTCTTGTTATTTCTATGCCTGATT
TTTTCATTTGACTTAAGGCTTCAT
TAAAGTTATTAAGCCTATCACCC
ACATTGCTACCTAAAGCAATTAC
TACTTCTTGTTCTTGAGAATGGA
CTTGTATCGAAGCATCCGAAGAG
AAATGAAAGAACGA
361 Ambrosia DHP_A20_2 cDNAContig 176 375 AGCCAGCTTACGTGACTGATCAA
trifida CCTCTTTTCCTCAATTCTGCCATC
AGAGGCGTTACAAAGCTGGGCC
CACATGAGCTACTATCGGCCCTC
AAGAAAATTGAAAAAGAAATGG
GCCGAACCAAAGGTATTAGATAC
GGCCCGCGACCCATTGACTTAGA
TATACTGTTTTATGGTAAACACA
GAGTTAACTCGGAAATT
362 Ambrosia DHP_A20_2 cDNAContig 176 375 AATTTCCGAGTTAACTCTGTGTTT
trifida ACCATAAAACAGTATATCTAAGT
CAATGGGTCGCGGGCCGTATCTA
ATACCTTTGGTTCGGCCCATTTCT
TTTTCAATTTTCTTGAGGGCCGAT
AGTAGCTCATGTGGGCCCAGCTT
TGTAACGCCTCTGATGGCAGAAT
TGAGGAAAAGAGGTTGATCAGT
CACGTAAGCTGGCT
363 Ambrosia DHP_A20_3 cDNAContig 351 550 TAAACACAGAGTTAACTCGGAAA
trifida TTCTCACTGTTCCACATGAAAGA
ATCTTCGAGAGGCCATTTGTTAT
GGCTCCGTTAGTTGACTTATTGG
GGTCGGAAATTGACAATGATAC
GGTTCTATGCTGGCATTCTTTCTC

AAAAAGAGGACTTTTTGAATCTT
GGGAAAAATTAGGTGGCGAATC
TTTGATAGGCAAAGATG
364 Ambrosia DH P_A20_3 cDNAContig 351 550 CATCTTTGCCTATCAAAGATTCGC
trifida CACCTAATTTTTCCCAAGATTCAA
AAAGTCCTCTTTTTGAGAAAGAA
TGCCAGCATAGAACCGTATCATT
GTCAATTTCCGACCCCAATAAGT
CAACTAACGGAGCCATAACAAAT
GGCCTCTCGAAGATTCTTTCATG
TGGAACAGTGAGAATTTCCGAGT
TAACTCTGTGTTTA
365 Ambrosia DH P_A20_4 cDNAContig 526 725 GGCGAATCTTTGATAGGCAAAG
trifida ATGGGTTAAGAAGAGTTTTACCA
GTCAATAATCGGTTATGGGATTG
GTCAAAGAAAACCTCTGTCATGG
GAATTTTGAACTTGACTCCCGAT
AGTTTTAGCGACGGAGGAAAGT
TTGACACTGTGGGGTCCGCTATA
TCTCGTGTTAGGGCCATGATATC
TGAAGGGGCAGACATAAT
366 Ambrosia DH P_A20_4 cDNAContig 526 725 ATTATGTCTGCCCCTTCAGATATC
trifida ATGGCCCTAACACGAGATATAGC
GGACCCCACAGTGTCAAACTTTC
CTCCGTCGCTAAAACTATCGGGA
GTCAAGTTCAAAATTCCCATGAC
AGAGGTTTTCTTTGACCAATCCC
ATAACCGATTATTGACTGGTAAA
ACTCTTCTTAACCCATCTTTGCCT
ATCAAAGATTCGCC
367 Am brosia DH P_A20_5 cDNAContig 701 900 TGATATCTGAAGGGGCAGACAT
trifida AATTGATCTGGGAGCTCAATCGA
CACGTCCAATGGCAACCAAGATT
TCAGTCCAAGAAGAACTAGATA
GGTTAATCCCTGTTCTCGAAAAG
ATTCTTGAATTACCCGAAATTGA
AGGAAAACTGCTCTCTATCGACA
CGTTTTACTCAGAAGTTGCTTTA
GAAGCGATTAAGAAAGGG
368 Ambrosia DH P_A20_5 cDNAContig 701 900 CCCTTTCTTAATCGCTTCTAAAGC
trifida AACTTCTGAGTAAAACGTGTCGA
TAGAGAGCAGTTTTCCTTCAATTT
CGGGTAATTCAAGAATCTTTTCG
AGAACAGGGATTAACCTATCTAG
TTCTTCTTGGACTGAAATCTTGGT
TGCCATTGGACGTGTCGATTGAG
CTCCCAGATCAATTATGTCTGCCC

CTTCAGATATCA
369 Ambrosia DH P_A20_6 cDNACo ntig 876 trifida GGGCTCATATAATCAATGATGTA
TCGGGTGGAAATCTAGATTCTGA
TATGTTTCGGGTAGTTGCTAATC
TTGATGTTCCATATATTGCTATGC
ACATGAGAGGGGACCCATCCAC
AATGCAAAACAGTGAGAATTTG
AAGTATGATGATGTTTGTAAAGA
AGTTGGTGATGAGTTGT
370 Ambrosia DH P_A20_6 cDNACo ntig 876 trifida AAACATCATCATACTTCAAATTCT
CACTGTTTTGCATTGTGGATGGG
TCCCCTCTCATGTGCATAGCAAT
ATATG GAACATCAAGATTAG CAA
CTACCCGAAACATATCAGAATCT
AGATTTCCACCCGATACATCATT
GATTATATGAGCCCCTTTCTTAAT
CG CTTCTAAAG CA
371 Ambrosia DH P_A20_7 cDNACo ntig 1051 1250 TGTAAAGAAGTTGGTGATGAGTT
trifida GTATGAGCGTGTAAGAGCTGCA
GAGTTATGCGGTGTGCCTGCATG
GAGGATCATTCTTGACCCAGGGA
TCGGGTTTTCAAAGAAAACCGAA
GATAATTTGGATATTTTGATGGG
ATTAAAGAGAATTAGGAGTGAG
ATTGCACGGAAGAGCTTAGGGG
TGTCACGTGCACCTTTGTT
372 Ambrosia DH P_A20_7 cDNACo ntig 1051 1250 AACAAAGGTGCACGTGACACCC
trifida CTAAGCTCTTCCGTGCAATCTCAC
TCCTAATTCTCTTTAATCCCATCA
AAATATCCAAATTATCTTCGGTTT
TCTTTGAAAACCCGATCCCTGGG
TCAAGAATGATCCTCCATGCAGG
CACACCGCATAACTCTGCAGCTC
TTACACGCTCATACAACTCATCAC
CAACTTCTTTACA
373 Ambrosia DH P_A25_1 gDNACo ntig 1 200 TTCGTGTATCTCATGATCTCTGTA
trifida TAATGTTAAACTTATTATAGTTCA
ATATAAGTCACTGTGTGATCTAA
TTTCGTATACAATTACTTTATTTG
TGTTGATTCTGATCCTAAATATTG
CTAATAGTTTGTGCTTAACTATAT
ATCCCGTTAAACATCACATTTACT
TTATCCCTAGAAGATTTGGGCAA
GTTTTTACAA
374 Ambrosia DH P_A25_1 gDNACo ntig 1 200 TTGTAAAAACTTGCCCAAATCTTC

trifida TAGGGATAAAGTAAATGTGATG
TTTAACGGGATATATAGTTAAGC
ACAAACTATTAGCAATATTTAGG
ATCAGAATCAACACAAATAAAGT
AATTGTATACGAAATTAGATCAC
ACAGTGACTTATATTGAACTATA
ATAAGTTTAACATTATACAGAGA
TCATGAGATACACGAA
375 Ambrosia DHP_A25_2 gDNAContig 176 375 AGAAGATTTGGGCAAGTTTTTAC
trifida AAATTTATGGCGACGTTATTGTA
ATTTTTTAAATCATTTTCGTGCAG
CATCTTTTTCGTTCTTTCATTTCTC
TTCGGATGCTTCGATACAAGTCC
ATTCTCAAGAACAAGAAGTAGTA
ATTGCTTTAGGTAGCAATGTGGG
TGATAGGCTTAATAACTTTAATG
AAGCCTTAAGTCA
376 Ambrosia DHP_A25_2 gDNAContig 176 375 TGACTTAAGGCTTCATTAAAGTT
trifida ATTAAGCCTATCACCCACATTGCT
ACCTAAAGCAATTACTACTTCTTG
TTCTTGAGAATGGACTTGTATCG
AAGCATCCGAAGAGAAATGAAA
GAACGAAAAAGATGCTGCACGA
AAATGATTTAAAAAATTACAATA
ACGTCGCCATAAATTTGTAAAAA
CTTGCCCAAATCTTCT
377 Conyza DHP_A33_1 cDNAContig 1 canadensis ATACGAAACTGAACCAGCTTATG
TGACGGACCAGCCTCTTTTTCTCA
ACTCTGCCGTTAGAGCCACTACA
AAGCTTGGCCCTCATGAGCTACT
GTCCATTCTCAAGAAAATTGAAA
AGGAAATGGGTCGAACCAAAGG
GCTTAGGTACGGCCCACGACCCA
TTGACCTAGATATATT
378 Conyza DHP_A33_1 cDNAContig 1 canadensis TGGGCCGTACCTAAGCCCTTTGG
TTCGACCCATTTCCTTTTCAATTT
TCTTGAGAATGGACAGTAGCTCA
TGAGGGCCAAGCTTTGTAGTGG
CTCTAACGGCAGAGTTGAGAAA
AAGAGGCTGGTCCGTCACATAA
GCTGGTTCAGTTTCGTATAGACA
AGCATGCCTTGTTATTTC
379 Conyza DHP_A33_2 cDNAContig 176 375 CACGACCCATTGACCTAGATATA
canadensis TTGTTCTATGGTAAATGCAAAGT
TAACTCTGATATTCTAACTGTTCC

TCATGAAAGAATCTTTGAGAGGC
CATTCGTTATGGCTCCATTAGTTG
ACTTGTTAGGATCAGATGTAGAC
AATGATACGGTTCTATGCTGGCA
TTCTTTTTCAAAAAATGGGCTTTT
TGGATCTTGGGAA
380 Conyza DHP_A33_2 cDNAContig 176 375 TTCCCAAGATCCAAAAAGCCCAT
canadensis TTTTTGAAAAAGAATGCCAGCAT
AGAACCGTATCATTGTCTACATC
TGATCCTAACAAGTCAACTAATG
GAGCCATAACGAATGGCCTCTCA
AAGATTCTTTCATGAGGAACAGT
TAGAATATCAGAGTTAACTTTGC
ATTTACCATAGAACAATATATCT
AGGTCAATGGGTCGTG
381 Conyza DHP_A33_3 cDNAContig 351 550 AAATGGGCTTTTTGGATCTTGGG
canadensis AAACATTAGGTGGTGAATCTTCC
ATAGGAAAAGATGGTTTAAGAA
GGGTTTTACCTGTCAATGATCGT
TTATGGGATTGGTCAAAGAAAAC
TTCCGTCATGGGTATTTTGAATAT
AACTCCTGATAGTTTTAGTGATG
GAGGGAAGTTTGATTCCATGGG
GTCCGCTTTATCTCGTG
382 Conyza DHP_A33_3 cDNAContig 351 550 CACGAGATAAAGCGGACCCCAT
canadensis GGAATCAAACTTCCCTCCATCAC
TAAAACTATCAGGAGTTATATTC
AAAATACCCATGACGGAAGTTTT
CTTTGACCAATCCCATAAACGAT
CATTGACAGGTAAAACCCTTCTT
AAACCATCTTTTCCTATGGAAGA
TTCACCACCTAATGTTTCCCAAGA
TCCAAAAAGCCCATTT
383 Conyza DHP_A33_4 cDNAContig 526 725 TCCATGGGGTCCGCTTTATCTCG
canadensis TGTTCAGACCATGATATCTGAAG
GGGTTGACATAATTGATCTAGGA
GCTCAATCCACACGCCCAATGGC
GACCAAGATCTCAGTCGAAGAG
GAACTAGATAGGCTAATACCCGT
TCTTGAAAAGATTCTTGAATTAC
CTGAAATTGAAGGAAAGTTGTTG
TCTGTGGACACATTTTA
384 Conyza DHP_A33_4 cDNAContig 526 725 TAAAATGTGTCCACAGACAACAA
canadensis CTTTCCTTCAATTTCAGGTAATTC
AAGAATCTTTTCAAGAACGGGTA
TTAGCCTATCTAGTTCCTCTTCGA
CTGAGATCTTGGTCGCCATTGGG

CGTGTGGATTGAGCTCCTAGATC
AATTATGTCAACCCCTTCAGATAT
CATGGTCTGAACACGAGATAAA
GCGGACCCCATGGA
385 Conyza DHP_A33_5 cDNAContig 701 900 AGTTGTTGTCTGTGGACACATTT
canadensis TACTCGGAAGTTGCTTCAGAGGC
AATCAAGAAAGGGGCTCATATG
GTCAATGATGTATCGGGTGGAAT
GTTAGATTCTGATATGCTTCATGT
TGTGGCTGATCTAAATGTTCCAT
ATATCACTATGCACATGAGAGGG
GACCCATCCACAATGCAAAACAG
TGAGAATTTGAAGTAT
386 Conyza DHP_A33_5 cDNAContig 701 900 ATACTTCAAATTCTCACTGTTTTG
canadensis CATTGTGGATGGGTCCCCTCTCA
TGTGCATAGTGATATATGGAACA
TTTAGATCAGCCACAACATGAAG
CATATCAGAATCTAACATTCCAC
CCGATACATCATTGACCATATGA
GCCCCTTTCTTGATTGCCTCTGAA
GCAACTTCCGAGTAAAATGTGTC
CACAGACAACAACT
387 Conyza DHP_A33_6 cDNAContig 876 1075 GCAAAACAGTGAGAATTTGAAG
canadensis TATGATGATGTTGTCAAAGAAGT
TGGGGAGGAATTGTATGAACGT
GTAAGGAATGCAGAGTTATGTG
GTGTTCCCGCATGGAGGATGGTT
CTTGATCCAGGGATCGGGTTTTC
AAAGAAAACCGAAGATAATTTG
GAGATATTGATGGGACTAAAGA
GGTTTAGAAGTGAGATTGGAC
388 Conyza DHP_A33_6 cDNAContig 876 1075 GTCCAATCTCACTTCTAAACCTCT
canadensis TTAGTCCCATCAATATCTCCAAAT
TATCTTCGGTTTTCTTTGAAAACC
CGATCCCTGGATCAAGAACCATC
CTCCATGCGGGAACACCACATAA
CTCTGCATTCCTTACACGTTCATA
CAATTCCTCCCCAACTTCTTTGAC
AACATCATCATACTTCAAATTCTC
ACTGTTTTGC
389 Conyza DHP_A33_7 cDNAContig 1051 1250 AAGAGGTTTAGAAGTGAGATTG
canadensis GACAAAAGAGCTTAGGGGTGTC
TCGTGCACCTTTGTTAATCGGAC
CTTCAAGAAAAAGGTTTTTGGGT
GAGATTTGTGGTCGGCCTTCTGC
TGTTGAGAGAGATCCAGGGACT
GTAGCTGCTGTTACCAGTGCGAT

TTTGGGTGGTGCCAATATCGTTA
GGGTTCATAACATTGGACA
390 Conyza DHP_A33_7 cDNAContig 1051 1250 TGTCCAATGTTATGAACCCTAAC
canadensis GATATTGGCACCACCCAAAATCG
CACTGGTAACAGCAGCTACAGTC
CCTGGATCTCTCTCAACAGCAGA
AGGCCGACCACAAATCTCACCCA
AAAACCTTTTTCTTGAAGGTCCG
ATTAACAAAGGTGCACGAGACA
CCCCTAAGCTCTTTTGTCCAATCT
CACTTCTAAACCTCTT
391 Conyza DHP_A32_1 cDNAContig 1 canadensis AGTGCATTCTCCAGAACAAGAAG
TAGTAATTGCTTTAGGTAGCAAT
GTGGGTAATAGACTTAATAACTT
TAATGAAGCCTTATCCCAGATGA
AGAAATCGGGGATAGAAATAAC
AAGGCATGCTTGTCTATACGAAA
CTGAACCAGCTTATGTGACGGAC
CAGCCTCTTTTTCTCAA
392 Conyza DHP_A32_1 cDNAContig 1 canadensis TCACATAAGCTGGTTCAGTTTCG
TATAGACAAGCATGCCTTGTTAT
TTCTATCCCCGATTTCTTCATCTG
GGATAAGGCTTCATTAAAGTTAT
TAAGTCTATTACCCACATTGCTAC
CTAAAGCAATTACTACTTCTTGTT
CTGGAGAATGCACTTGTATTGAA
GTATCCGAGGACGA
393 Conyza DHP_A32_2 cDNAContig 176 375 TGACGGACCAGCCTCTTTTTCTCA
canadensis ACTCTGCCGTTAGAGCCACTACA
AAGCTTGGCCCTCATGAGCTACT
GTCCATTCTCAAGAAAATTGAAA
AGGAAATGGGTCGAACCAAAGG
GCTTAGGTACGGCCCACGACCCA
TTGACCTAGATATATTGTTCTATG
GTAAATGCAAAGTTAACTCTGAT
ATTCTAACTGTTCCT
394 Conyza DHP_A32_2 cDNAContig 176 375 AGGAACAGTTAGAATATCAGAG
canadensis TTAACTTTGCATTTACCATAGAAC
AATATATCTAGGTCAATGGGTCG
TGGGCCGTACCTAAGCCCTTTGG
TTCGACCCATTTCCTTTTCAATTT
TCTTGAGAATGGACAGTAGCTCA
TGAGGGCCAAGCTTTGTAGTGG
CTCTAACGGCAGAGTTGAGAAA
AAGAGGCTGGTCCGTCA

395 Conyza DHP_A32_3 cDNAContig 351 550 TAACTCTGATATTCTAACTGTTCC
canadensis TCATGAAAGAATCTTTGAGAGGC
CATTCGTTATGGCTCCATTAGTTG
ACTTGTTAGGATCAGATGTAGAC
AATGATACGGTTCTATGCTGGCA
TTCTTTTTCAAAAAATGGGCTTTT
TGGATCTTGGGAAACATTAGGTG
GTGAATCTTCCATAGGAAAAGAT
GGTTTAAGAAGGG
396 Conyza DHP_A32_3 cDNAContig 351 550 CCCTTCTTAAACCATCTTTTCCTA
canadensis TGGAAGATTCACCACCTAATGTT
TCCCAAGATCCAAAAAGCCCATT
TTTTGAAAAAGAATGCCAGCATA
GAACCGTATCATTGTCTACATCT
GATCCTAACAAGTCAACTAATGG
AGCCATAACGAATGGCCTCTCAA
AGATTCTTTCATGAGGAACAGTT
AGAATATCAGAGTTA
397 Conyza DHP_A32_4 cDNAContig 526 725 ATAGGAAAAGATGGTTTAAGAA
canadensis GGGTTTTACCTGTCAATGATCGT
TTATGGGATTGGTCAAAGAAAAC
TTCCGTCATGGGTATTTTGAATAT
AACTCCTGATAGTTTTAGTGATG
GAGGGAAGTTTGATTCCATGGG
GTCCGCTTTATCTCGTGTTCAGAC
CATGATATCTGAAGGGGTTGACA
TAATTGATCTAGGAGC
398 Conyza DHP_A32_4 cDNAContig 526 725 GCTCCTAGATCAATTATGTCAAC
canadensis CCCTTCAGATATCATGGTCTGAA
CACGAGATAAAGCGGACCCCAT
GGAATCAAACTTCCCTCCATCAC
TAAAACTATCAGGAGTTATATTC
AAAATACCCATGACGGAAGTTTT
CTTTGACCAATCCCATAAACGAT
CATTGACAGGTAAAACCCTTCTT
AAACCATCTTTTCCTAT
399 Conyza DHP_A32_5 cDNAContig 701 900 GGGTTGACATAATTGATCTAGGA
canadensis GCTCAATCCACACGCCCAATGGC
GACCAAGATCTCAGTCGAAGAG
GAACTAGATAGGCTAATACCCGT
TCTTGAAAAGATTCTTGAATTAC
CTGAAATTGAAGGAAAGTTGTTG
TCTGTGGACACATTTTACTCGGA
AGTTGCTTCAGAGGCAATCAAGA
AAGGGGCTCATATGGTC
400 Conyza DHP_A32_5 cDNAContig 701 900 GACCATATGAGCCCCTTTCTTGA
canadensis TTGCCTCTGAAGCAACTTCCGAG

TAAAATGTGTCCACAGACAACAA
CTTTCCTTCAATTTCAGGTAATTC
AAGAATCTTTTCAAGAACGGGTA
TTAGCCTATCTAGTTCCTCTTCGA
CTGAGATCTTGGTCGCCATTGGG
CGTGTGGATTGAGCTCCTAGATC
AATTATGTCAACCC
401 Conyza DHP_A32_6 cDNAContig 876 1075 AATCAAGAAAGGGGCTCATATG
canadensis GTCAATGATGTATCGGGTGGAAT
GTTAGATTCTGATATGCTTCATGT
TGTGGCTGATCTAAATGTTCCAT
ATATCACTATGCACATGAGAGGG
GACCCATCCACAATGCAAAACAG
TGAGAATTTGAAGTATGATGATG
TTGTCAAAGAAGTTGGGGAGGA
ATTGTATGAACGTGTAA
402 Conyza DHP_A32_6 cDNAContig 876 1075 TTACACGTTCATACAATTCCTCCC
canadensis CAACTTCTTTGACAACATCATCAT
ACTTCAAATTCTCACTGTTTTGCA
TTGTGGATGGGTCCCCTCTCATG
TGCATAGTGATATATGGAACATT
TAGATCAGCCACAACATGAAGCA
TATCAGAATCTAACATTCCACCC
GATACATCATTGACCATATGAGC
CCCTTTCTTGATT
403 Conyza DHP_A32_7 cDNAContig 1051 1250 GGGGAGGAATTGTATGAACGTG
canadensis TAAGGAATGCAGAGTTATGTGG
TGTTCCCGCATGGAGGATGGTTC
TTGATCCAGGGATCGGGTTTTCA
AAGAAAACCGAAGATAATTTGG
AGATATTGATGGGACTAAAGAG
GTTTAGAAGTGAGATTGGACAA
AAGAGCTTAGGGGTGTCTCGTG
CACCTTTGTTAATCGGACCTTC
404 Conyza DHP_A32_7 cDNAContig 1051 1250 GAAGGTCCGATTAACAAAGGTG
canadensis CACGAGACACCCCTAAGCTCTTT
TGTCCAATCTCACTTCTAAACCTC
TTTAGTCCCATCAATATCTCCAAA
TTATCTTCGGTTTTCTTTGAAAAC
CCGATCCCTGGATCAAGAACCAT
CCTCCATGCGGGAACACCACATA
ACTCTGCATTCCTTACACGTTCAT
ACAATTCCTCCCC
405 Conyza DHP_A30_1 gDNAContig 1 canadensis TTACGTGGTGTCTTCTTTTCCGAG
TCATCTTCTTCCCCATCAGATGGA
TTTTCTGCAGCCTTTTTTCTACGA

ACTGCTGTAATAGCAAATGTACT
ACGCAATCTAACATCTGGGAATT
GTACAAAGTTTATTGAAGATAGT
GAAGGCAGATTCGACTGCCACCT
ACACATATAAGA
406 Conyza DHP_A30_1 gDNAContig 1 canadensis GAATCTGCCTTCACTATCTTCAAT
AAACTTTGTACAATTCCCAGATG
TTAGATTGCGTAGTACATTTGCT
ATTACAGCAGTTCGTAGAAAAAA
GGCTGCAGAAAATCCATCTGATG
GGGAAGAAGATGACTCGGAAAA
GAAGACACCACGTAAAAGAGCT
CCAACTAGAAGAAGAAA
407 Conyza DHP_A30_2 gDNAContig 176 375 TCGACTGCCACCTACACATATAA
canadensis GAAACCATTAACTTCTATACTTAA
CTCACAATATAAAACATCATTTG
CATGTTCGTCAAAAACAATACCA
TTTCTTATCTTTGCTCAATGGATA
TGAAATCTGCCAATACAAGATTA
TTCATTTGACCTCAATCTAGCATC
TGATGTCTATTCAAGGTATCGTTT
ATAATGAAGATT
408 Conyza DHP_A30_2 gDNAContig 176 375 AATCTTCATTATAAACGATACCTT
canadensis GAATAGACATCAGATGCTAGATT
GAGGTCAAATGAATAATCTTGTA
TTGGCAGATTTCATATCCATTGA
GCAAAGATAAGAAATGGTATTG
TTTTTGACGAACATGCAAATGAT
GTTTTATATTGTGAGTTAAGTAT
AGAAGTTAATGGTTTCTTATATG
TGTAGGTGGCAGTCGA
409 Conyza DHP_A30_3 gDNAContig 351 550 CAAGGTATCGTTTATAATGAAGA
canadensis TTATTGTACTTCAAAATACTTTCT
TGTGTAGTGGTATCAAATTTTGA
GTTAAAGTTACTCCATTTGACCTC
AAAAGCCAAATAATGAGCAACA
AACAACACAATTTCACCTCCCTTA
TACCCTGCGACTATATTTTATCTT
CAAATCAATCCATTTCCATGTTTA
TCCTCTCCATAC
410 Conyza DHP_A30_3 gDNAContig 351 550 GTATGGAGAGGATAAACATGGA
canadensis AATGGATTGATTTGAAGATAAAA
TATAGTCGCAGGGTATAAGGGA
GGTGAAATTGTGTTGTTTGTTGC
TCATTATTTGGCTTTTGAGGTCAA
ATGGAGTAACTTTAACTCAAAAT

TTGATACCACTACACAAGAAAGT
ATTTTGAAGTACAATAATCTTCAT
TATAAACGATACCTTG
411 Conyza DHP_A30_4 gDNAContig 526 725 ATTTCCATGTTTATCCTCTCCATA
canadensis CAGCTACATAATAAGTTTTAGGG
AAAAAACAAAACTAAACTAAACT
AAGTTTACAGAATTCCCATTTCTT
ATCCTAAAATTTACAAGCAATTC
AACATATATTCTTTATTTACAACT
ATAAATAGCATATGGGTATGTTG
GTATATAGATATAGATATAGATA
TACATATGTAGAT
412 Conyza DHP_A30_4 gDNAContig 526 725 ATCTACATATGTATATCTATATCT
canadensis ATATCTATATACCAACATACCCAT
ATGCTATTTATAGTTGTAAATAA
AGAATATATGTTGAATTGCTTGT
AAATTTTAGGATAAGAAATGGG
AATTCTGTAAACTTAGTTTAGTTT
AGTTTTGTTTTTTCCCTAAAACTT
ATTATGTAGCTGTATGGAGAGG
ATAAACATGGAAAT
413 Conyza DHP_A30_5 gDNAContig 701 900 TAGATATAGATATACATATGTAG
canadensis ATGTGTATTATATGTGTGTAAAT
GGGGAGAAAAAAGGAAACATAT
ATTACCTGTGTAAAGAACAAAAT
TGAGTAAAAGAAGGCAAAGAAG
CCATTTCTAACCACTAAAATCTTG
GGCTTTCAAGAATCCCACTTCAA
AGCTACCATTTCACATACCAAAC
CCCCCTTTCTATGGGTT
414 Conyza DHP_A30_5 gDNAContig 701 900 AACCCATAGAAAGGGGGGTTTG
canadensis GTATGTGAAATGGTAGCTTTGAA
GTGGGATTCTTGAAAGCCCAAG
ATTTTAGTGGTTAGAAATGGCTT
CTTTGCCTTCTTTTACTCAATTTT
GTTCTTTACACAGGTAATATATG
TTTCCTTTTTTCTCCCCATTTACAC
ACATATAATACACATCTACATAT
GTATATCTATATCTA
415 Conyza DHP_A30_6 gDNAContig 876 1075 TACCAAACCCCCCTTTCTATGGGT
canadensis TTAAAGATGAGGGCTTTACATTT
ATCTCTTTTACAATCCAAATTTTC
CAAAACCGAAATAATGTACGACA
TTCGGTGCACAAGGTACAAACA
GAAAAAACTACTTTTGTATTTTA
GATCTCAAGAAAGGAGTGGCCT
TTTTGGTAATAACATACTTTATTC

AATTGCCACTTACCT
416 Conyza DHP_A30_6 gDNAContig 876 1075 AGGTAAGTGGCAATTGAATAAA
canadensis GTATGTTATTACCAAAAAGGCCA
CTCCTTTCTTGAGATCTAAAATAC
AAAAGTAGTTTTTTCTGTTTGTAC
CTTGTGCACCGAATGTCGTACAT
TATTTCGGTTTTGGAAAATTTGG
ATTGTAAAAGAGATAAATGTAAA
GCCCTCATCTTTAAACCCATAGA
AAGGGGGGTTTGGTA
417 Conyza DHP_A30_7 gDNAContig 1051 1250 TACTTTATTCAATTGCCACTTACC
canadensis TTCAAGAAATTAACAAAATTACC
CACAATTAAAAAAGGGTTTCCCA
GTTTCACTCACACTTATTCAAGAT
TGATGCAAAATAAACCCATAAAT
AAGAAGGTTAAAATAGTGTTAA
AGCCTTAAAGGTGCTTGCTTTTT
GTGTTTTTTGTGATGCCTATAAA
AAGATTCTTATTGTT
418 Conyza DHP_A30_7 gDNAContig 1051 1250 AACAATAAGAATCTTTTTATAGG
canadensis CATCACAAAAAACACAAAAAGCA
AGCACCTTTAAGGCTTTAACACT
ATTTTAACCTTCTTATTTATGGGT
TTATTTTGCATCAATCTTGAATAA
GTGTGAGTGAAACTGGGAAACC
CTTTTTTAATTGTGGGTAATTTTG
TTAATTTCTTGAAGGTAAGTGGC
AATTGAATAAAGTA
419 Conyza DHP_A30_8 gDNAContig 1226 1425 TGCCTATAAAAAGATTCTTATTGT
canadensis TTTCAAATTTTTTTATGTCAAGTT
TTCGTTTTTAACAGTTTATATAGT
TATATAATTTGCAGAAAGCCATA
AAGCTCTGAACTTGAATGTTTTA
TAGCAGCTCTTTGCAGTAATATC
TTGTAGAGGTAAACCTGTTAACC
CATATTTATTAATTTGTACATAAA
ATTGTTGAATTG
420 Conyza DHP_A30_8 gDNAContig 1226 1425 CAATTCAACAATTTTATGTACAA
canadensis ATTAATAAATATGGGTTAACAGG
TTTACCTCTACAAGATATTACTGC
AAAGAGCTGCTATAAAACATTCA
AGTTCAGAGCTTTATGGCTTTCT
GCAAATTATATAACTATATAAAC
TGTTAAAAACGAAAACTTGACAT
AAAAAAATTTGAAAACAATAAGA
ATCTTTTTATAGGCA
421 Conyza DHP_A30_9 gDNAContig 1401 1600 ATTTGTACATAAAATTGTTGAATT

canadensis GAATAGAGCTACCACTGGGACTT
GTGTAGTCAAACTGTAGAGCATC
CCTGTAATGCTGGAAGCTTTATG
ACCTAAAAGGATTTGTAGACTTG
TTATCTGTGGATTGGTATAAAGA
TTTTCAAGTTGTTATTTTGAAACT
TTGAATAGTATATTATGCTCATTA
CTGAATGATACAA
422 Conyza DHP_A30_9 gDNAContig 1401 1600 TTGTATCATTCAGTAATGAGCAT
canadensis AATATACTATTCAAAGTTTCAAA
ATAACAACTTGAAAATCTTTATA
CCAATCCACAGATAACAAGTCTA
CAAATCCTTTTAGGTCATAAAGC
TTCCAGCATTACAGGGATGCTCT
ACAGTTTGACTACACAAGTCCCA
GTGGTAGCTCTATTCAATTCAAC
AATTTTATGTACAAAT
423 Conyza DHP_A30_1 gDNAContig 1576 1775 TTATGCTCATTACTGAATGATAC
canadensis 0 AATAGGGAGTCGCGAATGTTAG
AATTGATAAGAATTAGGATGAA
GTTTGTGTTTGAACGTTCCTTCTG
TTTATAATCTTCATGTCACTTCCA
TAGTACCATAACCCTAGGGCAAC
ACGAGCCTTTAGATTATGAATGG
GCACACCCAATTGTTTAGACCTT
GTATAAATGAAGTGAA
424 Conyza DHP_A30_1 gDNAContig 1576 1775 TTCACTTCATTTATACAAGGTCTA
canadensis 0 AACAATTGGGTGTGCCCATTCAT
AATCTAAAGGCTCGTGTTGCCCT
AGGGTTATGGTACTATGGAAGT
GACATGAAGATTATAAACAGAA
GGAACGTTCAAACACAAACTTCA
TCCTAATTCTTATCAATTCTAACA
TTCGCGACTCCCTATTGTATCATT
CAGTAATGAGCATAA
425 Conyza DHP_A30_1 gDNAContig 1751 1950 TTAGACCTTGTATAAATGAAGTG
canadensis 1 AATATCATTGTTATAAGCATTCTG
GTGGTGGTTTTGCAGATTTACCT
TTCTCTATCTAATTTGAAGGTTTG
TTGATTAAGGTGATACAAATGAG
TGTTTTCAAGCAGCTAATAGCTT
CAAGATTAGTACGCACTCATGTC
TGTGGATCTTATAGAGGTACACT
TCCTCGAACATTCA
426 Conyza DHP_A30_1 gDNAContig 1751 1950 TGAATGTTCGAGGAAGTGTACCT
canadensis 1 CTATAAGATCCACAGACATGAGT
GCGTACTAATCTTGAAGCTATTA

GCTGCTTGAAAACACTCATTTGT
ATCACCTTAATCAACAAACCTTCA
AATTAGATAGAGAAAGGTAAAT
CTGCAAAACCACCACCAGAATGC
TTATAACAATGATATTCACTTCAT
TTATACAAGGTCTAA
427 Conyza DH P_A30_1 gDNACo ntig 1926 2125 AGAGGTACACTTCCTCGAACATT
canadensis 2 CATATAGCGATGTTATTGTTAAG
TTTTGAATCTGTAGCAACATTATA
TATAATTTTTTTTGCATTGTTTTCC
TGCAGCATCCTTTTCACTCTTTCA
TTCGTCCTCGGATACTTCAATACA
AGTGCATTCTCCAGAACAAGAAG
TAGTAATTGCTTTAGGTAGCAAT
GTGGGTAATAG
428 Conyza DH P_A30_1 gDNACo ntig 1926 2125 CTATTACCCACATTGCTACCTAAA
canadensis 2 GCAATTACTACTTCTTGTTCTGGA
GAATGCACTTGTATTGAAGTATC
CGAGGACGAATGAAAGAGTGAA
AAGGATGCTGCAGGAAAACAAT
GCAAAAAAAATTATATATAATGT
TGCTACAGATTCAAAACTTAACA
ATAACATCGCTATATGAATGTTC
GAGGAAGTGTACCTCT
429 Conyza DH P_A30_1 gDNACo ntig 2101 2300 CTTTAGGTAGCAATGTGGGTAAT
canadensis 3 AGACTTAATAACTTTAATGAAGC
CTTATCCCAGATGAAGAAATCGG
GGATAGAAATAACAAGGCATGC
TTGTCTATACGAAACTGAACCAG
CTTATGTGACGGACCAGCCTCTT
TTTCTCAACTCTGCCGTTAGAGCC
ACTACAAAGCTTGGCCCTCATGA
GCTACTGTCCATTCTC
430 Conyza DH P_A30_1 gDNACo ntig 2101 2300 GAGAATGGACAGTAGCTCATGA
canadensis 3 GGGCCAAGCTTTGTAGTGGCTCT
AACGGCAGAGTTGAGAAAAAGA
GGCTGGTCCGTCACATAAGCTGG
TTCAGTTTCGTATAGACAAGCAT
GCCTTGTTATTTCTATCCCCGATT
TCTTCATCTGGGATAAGGCTTCA
TTAAAGTTATTAAGTCTATTACCC
ACATTGCTACCTAAAG
431 Conyza DH P_A30_1 gDNACo ntig 2276 2475 CCCTCATGAGCTACTGTCCATTCT
canadensis 4 CAAGAAAATTGAAAAGGAAATG
GGTCGAACCAAAGGGCTTAGGT
ACGGCCCACGACCCATTGACCTA
GATATATTGTTCTATGGTAAATG

CAAAGTTAACTCTGATATTCTAA
CTGTTCCTCATGAAAGAATCTTT
GAGAGGCCATTCGTTATGGCTCC
ATTAGTTGACTTGTTAG
432 Conyza DHP_A30_1 gDNAContig 2276 2475 CTAACAAGTCAACTAATGGAGCC
canadensis 4 ATAACGAATGGCCTCTCAAAGAT
TCTTTCATGAGGAACAGTTAGAA
TATCAGAGTTAACTTTGCATTTAC
CATAGAACAATATATCTAGGTCA
ATGGGTCGTGGGCCGTACCTAA
GCCCTTTGGTTCGACCCATTTCCT
TTTCAATTTTCTTGAGAATGGAC
AGTAGCTCATGAGGG
433 Conyza DHP_A30_1 gDNAContig 2451 2650 ATGGCTCCATTAGTTGACTTGTT
canadensis 5 AGGATCAGATGTAGACAATGAT
ACGGTTCTATGCTGGCATTCTTTT
TCAAAAAATGGGCTTTTTGGATC
TTGGGAAACATTAGGTGGTGAA
TCTTCCATAGGAAAAGATGGTTT
AAGAAGGGTTTTACCTGTCAATG
ATCGTTTATGGGATTGGTCAAAG
AAAACTTCCGTCATGGG
434 Conyza DHP_A30_1 gDNAContig 2451 2650 CCCATGACGGAAGTTTTCTTTGA
canadensis 5 CCAATCCCATAAACGATCATTGA
CAGGTAAAACCCTTCTTAAACCA
TCTTTTCCTATGGAAGATTCACCA
CCTAATGTTTCCCAAGATCCAAA
AAGCCCATTTTTTGAAAAAGAAT
GCCAGCATAGAACCGTATCATTG
TCTACATCTGATCCTAACAAGTC
AACTAATGGAGCCAT
435 Conyza DHP_A30_1 gDNAContig 2626 2825 GGTCAAAGAAAACTTCCGTCATG
canadensis 6 GGTATTTTGAATATAACTCCTGA
TAGTTTTAGTGATGGAGGGAAG
TTTGATTCCATGGGGTCCGCTTT
ATCTCGTGTTCAGACCATGATAT
CTGAAGGGGTTGACATAATTGAT
CTAGGAGCTCAATCCACACGCCC
AATGGCGACCAAGATCTCAGTCG
AAGAGGAACTAGATAGG
436 Conyza DHP_A30_1 gDNAContig 2626 2825 CCTATCTAGTTCCTCTTCGACTGA
canadensis 6 GATCTTGGTCGCCATTGGGCGTG
TGGATTGAGCTCCTAGATCAATT
ATGTCAACCCCTTCAGATATCAT
GGTCTGAACACGAGATAAAGCG
GACCCCATGGAATCAAACTTCCC
TCCATCACTAAAACTATCAGGAG

TTATATTCAAAATACCCATGACG
GAAGTTTTCTTTGACC
437 Conyza DHP_A30_1 gDNAContig 2801 3000 CTCAGTCGAAGAGGAACTAGAT
canadensis 7 AGGCTAATACCCGTTCTTGAAAA
GATTCTTGAATTACCTGAAATTG
AAGGAAAGTTGTTGTCTGTGGAC
ACATTTTACTCGGAAGTTGCTTC
AGAGGCAATCAAGAAAGGGGCT
CATATGGTCAATGATGTATCGGG
TGGAATGTTAGATTCTGATATGC
TTCATGTTGTGGCTGATC
438 Conyza DHP_A30_1 gDNAContig 2801 3000 GATCAGCCACAACATGAAGCATA
canadensis 7 TCAGAATCTAACATTCCACCCGA
TACATCATTGACCATATGAGCCC
CTTTCTTGATTGCCTCTGAAGCAA
CTTCCGAGTAAAATGTGTCCACA
GACAACAACTTTCCTTCAATTTCA
GGTAATTCAAGAATCTTTTCAAG
AACGGGTATTAGCCTATCTAGTT
CCTCTTCGACTGAG
439 Conyza DHP_A30_1 gDNAContig 2976 3175 GATATGCTTCATGTTGTGGCTGA
canadensis 8 TCTAAATGTTCCATATATCACTAT
GCACATGAGAGGGGACCCATCC
ACAATGCAAAACAGTGAGAATTT
GAAGTATGATGATGTTGTCAAAG
AAGTTGGGGAGGAATTGTATGA
ACGTGTAAGGAATGCAGAGTTA
TGTGGTGTTCCCGCATGGAGGAT
GGTTCTTGATCCAGGGAT
440 Conyza DHP_A30_1 gDNAContig 2976 3175 ATCCCTGGATCAAGAACCATCCT
canadensis 8 CCATGCGGGAACACCACATAACT
CTGCATTCCTTACACGTTCATACA
ATTCCTCCCCAACTTCTTTGACAA
CATCATCATACTTCAAATTCTCAC
TGTTTTGCATTGTGGATGGGTCC
CCTCTCATGTGCATAGTGATATA
TGGAACATTTAGATCAGCCACAA
CATGAAGCATATC
441 Conyza DHP_A30_1 gDNAContig 3151 3350 GGAGGATGGTTCTTGATCCAGG
canadensis 9 GATCGGGTTTTCAAAGAAAACCG
AAGATAATTTGGAGATATTGATG
GGACTAAAGAGGTTTAGAAGTG
AGATTGGACAAAAGAGCTTAGG
GGTGTCTCGTGCACCTTTGTTAA
TCGGACCTTCAAGAAAAAGGTTT
TTGGGTGAGATTTGTGGTCGGCC
TTCTGCTGTTGAGAGAGAT

442 Conyza DHP_A30_1 gDNAContig 3151 3350 ATCTCTCTCAACAGCAGAAGGCC
canadensis 9 GACCACAAATCTCACCCAAAAAC
CTTTTTCTTGAAGGTCCGATTAAC
AAAGGTGCACGAGACACCCCTA
AGCTCTTTTGTCCAATCTCACTTC
TAAACCTCTTTAGTCCCATCAATA
TCTCCAAATTATCTTCGGTTTTCT
TTGAAAACCCGATCCCTGGATCA
AGAACCATCCTCC
443 Conyza DHP_A30_2 gDNAContig 3326 3525 TCGGCCTTCTGCTGTTGAGAGAG
canadensis 0 ATCCAGGGACTGTAGCTGCTGTT
ACCAGTGCGATTTTGGGTGGTGC
CAATATCGTTAGGGTTCATAACA
TTGGACATAATGTGGATGCTGTT
AAGCTTTGTGATTCAATGTTGGA
TCGAGCTGGTAGATCTTAGTAGC
TTAAAGTTATTTGACATCTTGTTT
TTTATTCAATTTTCT
444 Conyza DHP_A30_2 gDNAContig 3326 3525 AGAAAATTGAATAAAAAACAAG
canadensis 0 ATGTCAAATAACTTTAAGCTACT
AAGATCTACCAGCTCGATCCAAC
ATTGAATCACAAAGCTTAACAGC
ATCCACATTATGTCCAATGTTATG
AACCCTAACGATATTGGCACCAC
CCAAAATCGCACTGGTAACAGCA
GCTACAGTCCCTGGATCTCTCTC
AACAGCAGAAGGCCGA
445 Conyza DHP_A30_2 gDNAContig 3501 3700 CATCTTGTTTTTTATTCAATTTTCT
canadensis 1 GGACATTACTTTTTGTATTTCTGT
CTGGCAAATGATTTTACAGGGAT
ATCCTAGAGGCTAAATTGTATAT
TACATTCTTGATTTTCTCACAAAG
TTTTACTTTTTCAGTTTTTCTTGTT
CAGTTTTGTTTTTGAAAATTTGCT
AGATCAGATTAAATCGTTGCTTT
ATGATCTTC
446 Conyza DHP_A30_2 gDNAContig 3501 3700 GAAGATCATAAAGCAACGATTTA
canadensis 1 ATCTGATCTAGCAAATTTTCAAA
AACAAAACTGAACAAGAAAAAC
TGAAAAAGTAAAACTTTGTGAGA
AAATCAAGAATGTAATATACAAT
TTAGCCTCTAGGATATCCCTGTA
AAATCATTTGCCAGACAGAAATA
CAAAAAGTAATGTCCAGAAAATT
GAATAAAAAACAAGATG
447 Conyza DHP_A30_2 gDNAContig 3676 3875 ATTAAATCGTTGCTTTATGATCTT
canadensis 2 CGTGTCTTTTTTGGGACGCTGCG

AGTTTCATTTAGTGGTATTGTAA
ACTCCTTTTAAAGTTTGTACACAC
TTGGTATTTATGCTTCTAGTTTTC
GTCTATGTCTGTCCTATATTGTGT
ATAGTATGTTTAAAGTTCATAAA
AAGAGGATAAACGAATAGCACG
TAAATCTTATAAT
448 Conyza DHP_A30_2 gDNAContig 3676 3875 ATTATAAGATTTACGTGCTATTC
canadensis 2 GTTTATCCTCTTTTTATGAACTTT
AAACATACTATACACAATATAGG
ACAGACATAGACGAAAACTAGA
AGCATAAATACCAAGTGTGTACA
AACTTTAAAAGGAGTTTACAATA
CCACTAAATGAAACTCGCAGCGT
CCCAAAAAAGACACGAAGATCA
TAAAGCAACGATTTAAT
449 Conyza DHP_A30_2 gDNAContig 3851 4050 ACGAATAGCACGTAAATCTTATA
canadensis 3 ATTCGATTCCACAGAGTGCAAGT
TATGCTTTCCTAAATGAAAGCAA
GAGTCTAGACAGTTTGGTCAACG
TTAACATGAGACTATTGTAGAAT
ACAACACCACAAGAAACCAAAAC
TGTCTTGTGCATTTCTCTCTTTTC
CAGGTTTAAAACTCAATACCAAG
ACTTGATATCAACTA
450 Conyza DHP_A30_2 gDNAContig 3851 4050 TAGTTGATATCAAGTCTTGGTAT
canadensis 3 TGAGTTTTAAACCTGGAAAAGAG
AGAAATGCACAAGACAGTTTTG
GTTTCTTGTGGTGTTGTATTCTAC
AATAGTCTCATGTTAACGTTGAC
CAAACTGTCTAGACTCTTGCTTTC
ATTTAGGAAAGCATAACTTGCAC
TCTGTGGAATCGAATTATAAGAT
TTACGTGCTATTCGT
451 Conyza DHP_A30_2 gDNAContig 4026 4225 CAATACCAAGACTTGATATCAAC
canadensis 4 TATTATTCTGCTTCAATGATTCAG
CTTCAGCTATAGCCATAGGATCA
TCTTTGGTGTCAGGTTCATCCTTC
TCACCATCTCGTTCCTCTGCCAGT
TTTTTTCTGTGCAATTCCTCTGCA
ACTTGCTTTGATGCTTGGTCTTCT
TTTTGAAGGCGTTGCATCTCTTCT
TCTTGTTGCT
452 Conyza DHP_A30_2 gDNAContig 4026 4225 AGCAACAAGAAGAAGAGATGCA
canadensis 4 ACGCCTTCAAAAAGAAGACCAA
GCATCAAAGCAAGTTGCAGAGG
AATTGCACAGAAAAAAACTGGC

AGAGGAACGAGATGGTGAGAA
GGATGAACCTGACACCAAAGAT
GATCCTATGGCTATAGCTGAAGC
TGAATCATTGAAGCAGAATAATA
GTTGATATCAAGTCTTGGTATTG
453 Conyza DHP_A30_2 gDNAContig 4201 4400 CGTTGCATCTCTTCTTCTTGTTGC
canadensis 5 TGTCGTTCAAACCATGTATCCGC
ATCGGCCCAAACTGTAATTTAGA
GCCAAAACAACATGATTAGAATG
CAGATTCCAGAAGCCAAATTCAA
ACTGTAAGAAAAAAAATGTAGT
GATGATTTAACTCAAAACAACTC
ACACAGCTCCAAAATGGATGGG
GGTTCAAATTAGAGGAT
454 Conyza DHP_A30_2 gDNAContig 4201 4400 ATCCTCTAATTTGAACCCCCATCC
canadensis 5 ATTTTGGAGCTGTGTGAGTTGTT
TTGAGTTAAATCATCACTACATTT
TTTTTCTTACAGTTTGAATTTGGC
TTCTGGAATCTGCATTCTAATCAT
GTTGTTTTGGCTCTAAATTACAGT
TTGGGCCGATGCGGATACATGG
TTTGAACGACAGCAACAAGAAG
AAGAGATGCAACG
455 Conyza DHP_A30_2 gDNAContig 4376 4575 TGGATGGGGGTTCAAATTAGAG
canadensis 6 GATAGCCTAATAGATAGAAGCTT
CTAATTATGGGGAAAAAAAAAC
GATCATGGCAATGTATTACACAA
TCTAAAGCAACCACTATGAATAA
TAAAGATAAATCTTTCCGAGAGT
CCACATGCCTTGATATTTCATAA
GATAGGCTTTTTCAGAAATCAGA
ATCTTCTTGGCAAATATA
456 Conyza DHP_A30_2 gDNAContig 4376 4575 TATATTTGCCAAGAAGATTCTGA
canadensis 6 TTTCTGAAAAAGCCTATCTTATG
AAATATCAAGGCATGTGGACTCT
CGGAAAGATTTATCTTTATTATTC
ATAGTGGTTGCTTTAGATTGTGT
AATACATTGCCATGATCGTTTTTT
TTTCCCCATAATTAGAAGCTTCTA
TCTATTAGGCTATCCTCTAATTTG
AACCCCCATCCA
457 Conyza DHP_A30_2 gDNAContig 4551 4750 AATCAGAATCTTCTTGGCAAATA
canadensis 7 TAACACTAAAATCAGTCTAATGC
ATGTTATTAAGTAAATCTTTATTT
GTCCATAGTATAATGCCATAGAT
TATCGTCAATTATCCACATCGTCA
TTAAATATCAAGTAACCACATTA

TGAATTGACTTGTTTAATCAAAG
TTCATCTTACTTCTTCATAGATGA
AAAAGAGCTATGC
458 Conyza DHP_A30_2 gDNAContig 4551 4750 GCATAGCTCTTTTTCATCTATGAA
canadensis 7 GAAGTAAGATGAACTTTGATTAA
ACAAGTCAATTCATAATGTGGTT
ACTTGATATTTAATGACGATGTG
GATAATTGACGATAATCTATGGC
ATTATACTATGGACAAATAAAGA
TTTACTTAATAACATGCATTAGAC
TGATTTTAGTGTTATATTTGCCAA
GAAGATTCTGATT
459 Conyza DHP_A30_2 gDNAContig 4726 4925 CTTCATAGATGAAAAAGAGCTAT
canadensis 8 GCAAATACAGAACACATCAGTTG
TTCTAACATATAATTACTGCTAGC
TGTAGGAAGAAACCAAGATGAA
ACTTATCTAGGATTCAAATTCAT
GGGGATCTGTTATTTAGATGAAT
TTAGAGAAATAAGAAAATAAGTT
GAGTGAAGTCAGTTTCGAGGTTC
CAAATTTGTCTTTATT
460 Conyza DHP_A30_2 gDNAContig 4726 4925 AATAAAGACAAATTTGGAACCTC
canadensis 8 GAAACTGACTTCACTCAACTTATT
TTCTTATTTCTCTAAATTCATCTA
AATAACAGATCCCCATGAATTTG
AATCCTAGATAAGTTTCATCTTG
GTTTCTTCCTACAGCTAGCAGTA
ATTATATGTTAGAACAACTGATG
TGTTCTGTATTTGCATAGCTCTTT
TTCATCTATGAAG
461 Conyza DHP_A30_2 gDNAContig 4901 5100 TCGAGGTTCCAAATTTGTCTTTAT
canadensis 9 TAGTTGAGCTAACAATATTAACC
TCTGAAGCATGTATAGTGTACTT
GTATGAACCACTTAAGGATATAA
ATGAAGCCAAATCAGTTTCATTC
GCTAATTGAGCAAATGCACGTTC
TGTTTGTTAGTATTGAAATTTCTT
TACAGGATTTCTTTCAACTAAAA
GCATCACATGTCCG
462 Conyza DHP_A30_2 gDNAContig 4901 5100 CGGACATGTGATGCTTTTAGTTG
canadensis 9 AAAGAAATCCTGTAAAGAAATTT
CAATACTAACAAACAGAACGTGC
ATTTGCTCAATTAGCGAATGAAA
CTGATTTGGCTTCATTTATATCCT
TAAGTGGTTCATACAAGTACACT
ATACATGCTTCAGAGGTTAATAT
TGTTAGCTCAACTAATAAAGACA

AATTTGGAACCTCGA
463 Conyza DHP_A30_3 gDNAContig 5076 5275 TTCAACTAAAAGCATCACATGTC
canadensis 0 CGACTCTCGGTTTGATATTTGTG
ACAAGTCTAATTGGTTCATCAGA
TGTACTTATGGCTAAATTTCGAA
ACTTGAAACAATAAGAGCTTAGC
ACTCTTAACCATAAAGGGTTGCT
GTTAATCTTACTTGTTCTTGAAAG
CAATTCCACAGTGAAGCATTTGT
TAATTGGGAAGTTTT
464 Conyza DHP_A30_3 gDNAContig 5076 5275 AAAACTTCCCAATTAACAAATGC
canadensis 0 TTCACTGTGGAATTGCTTTCAAG
AACAAGTAAGATTAACAGCAACC
CTTTATGGTTAAGAGTGCTAAGC
TCTTATTGTTTCAAGTTTCGAAAT
TTAGCCATAAGTACATCTGATGA
ACCAATTAGACTTGTCACAAATA
TCAAACCGAGAGTCGGACATGT
GATGCTTTTAGTTGAA
465 Conyza DHP_A31_1 gDNAContig 1 canadensis TTTACGTGGTGTCTTCTTTTCCGA
GTCATCTTCTTCCCCATCAGATGG
ATTTTCTGCAGCCTTTTTTCTACG
AACTGCTGTAATAGCAAATGTAC
TACGCAATCTAACATCTGGGAAT
TGTACAAAGTTTATTGAAGATAG
TGAAGGCAGATTCGACTGCCACC
TACACATATAAG
466 Conyza DHP_A31_1 gDNAContig 1 canadensis AATCTGCCTTCACTATCTTCAATA
AACTTTGTACAATTCCCAGATGTT
AGATTGCGTAGTACATTTGCTAT
TACAGCAGTTCGTAGAAAAAAG
GCTGCAGAAAATCCATCTGATGG
GGAAGAAGATGACTCGGAAAAG
AAGACACCACGTAAAAGAGCTC
CAACTAGAAGAAGAAAA
467 Conyza DHP_A31_2 gDNAContig 176 375 TTCGACTGCCACCTACACATATA
canadensis AGAAACCATTAACTTCTATACTTA
ACTCACAATATAAAACATCATTT
GCATGTTCGTCAAAAACAATACC
ATTTCTTATCTTTGCTCAATGGAT
ATGAAATCTGCCAATACAAGATT
ATTCATTTGACCTCAATCTAGCAT
CTGATGTCTATTCAAGGTATCGT
TTATAATGAAGAT
468 Conyza DHP_A31_2 gDNAContig 176 375 ATCTTCATTATAAACGATACCTTG

canadensis AATAGACATCAGATGCTAGATTG
AGGTCAAATGAATAATCTTGTAT
TGGCAGATTTCATATCCATTGAG
CAAAGATAAGAAATGGTATTGTT
TTTGACGAACATGCAAATGATGT
TTTATATTGTGAGTTAAGTATAG
AAGTTAATGGTTTCTTATATGTGT
AGGTGGCAGTCGAA
469 Conyza DHP_A31_3 gDNAContig 351 550 TCAAGGTATCGTTTATAATGAAG
canadensis ATTATTGTACTTCAAAATACTTTC
TTGTGTAGTGGTATCAAATTTTG
AGTTAAAGTTACTCCATTTGACCT
CAAAAGCCAAATAATGAGCAAC
AAACAACACAATTTCACCTCCCTT
ATACCCTGCGACTATATTTTATCT
TCAAATCAATCCATTTCCATGTTT
ATCCTCTCCATA
470 Conyza DHP_A31_3 gDNAContig 351 550 TATGGAGAGGATAAACATGGAA
canadensis ATGGATTGATTTGAAGATAAAAT
ATAGTCGCAGGGTATAAGGGAG
GTGAAATTGTGTTGTTTGTTGCT
CATTATTTGGCTTTTGAGGTCAA
ATGGAGTAACTTTAACTCAAAAT
TTGATACCACTACACAAGAAAGT
ATTTTGAAGTACAATAATCTTCAT
TATAAACGATACCTTGA
471 Conyza DHP_A31_4 gDNAContig 526 725 CATTTCCATGTTTATCCTCTCCAT
canadensis ACAGCTACATAATAAGTTTTAGG
GAAAAAACAAAACTAAACTAAAC
TAAGTTTACAGAATTCCCATTTCT
TATCCTAAAATTTACAAGCAATTC
AACATATATTCTTTATTTACAACT
ATAAATAGCATATGGGTATGTTG
GTATATAGATATAGATATAGATA
TACATATGTAGA
472 Conyza DHP_A31_4 gDNAContig 526 725 TCTACATATGTATATCTATATCTA
canadensis TATCTATATACCAACATACCCATA
TGCTATTTATAGTTGTAAATAAA
GAATATATGTTGAATTGCTTGTA
AATTTTAGGATAAGAAATGGGA
ATTCTGTAAACTTAGTTTAGTTTA
GTTTTGTTTTTTCCCTAAAACTTA
TTATGTAGCTGTATGGAGAGGAT
AAACATGGAAATG
473 Conyza DHP_A31_5 gDNAContig 701 900 ATAGATATAGATATACATATGTA
canadensis GATGTGTATTATATGTGTGTAAA
TGGGGAGAAAAAAGGAAACATA

TATTACCTGTGTAAAGAACAAAA
TTGAGTAAAAGAAGGCAAAGAA
GCCATTTCTAACCACTAAAATCTT
GGGCTTTCAAGAATCCCACTTCA
AAGCTACCATTTCACATACCAAA
CCCCCCTTTCTATGGGT
474 Conyza DHP_A31_5 gDNAContig 701 900 ACCCATAGAAAGGGGGGTTTGG
canadensis TATGTGAAATGGTAGCTTTGAAG
TGGGATTCTTGAAAGCCCAAGAT
TTTAGTGGTTAGAAATGGCTTCT
TTGCCTTCTTTTACTCAATTTTGTT
CTTTACACAGGTAATATATGTTTC
CTTTTTTCTCCCCATTTACACACA
TATAATACACATCTACATATGTAT
ATCTATATCTAT
475 Conyza DHP_A31_6 gDNAContig 876 1075 ATACCAAACCCCCCTTTCTATGG
canadensis GTTTAAAGATGAGGGCTTTACAT
TTATCTCTTTTACAATCCAAATTT
TCCAAAACCGAAATAATGTACGA
CATTCGGTGCACAAGGTACAAAC
AGAAAAAACTACTTTTGTATTTTA
GATCTCAAGAAAGGAGTGGCCT
TTTTGGTAATAACATACTTTATTC
AATTGCCACTTACC
476 Conyza DHP_A31_6 gDNAContig 876 1075 GGTAAGTGGCAATTGAATAAAG
canadensis TATGTTATTACCAAAAAGGCCAC
TCCTTTCTTGAGATCTAAAATACA
AAAGTAGTTTTTTCTGTTTGTACC
TTGTGCACCGAATGTCGTACATT
ATTTCGGTTTTGGAAAATTTGGA
TTGTAAAAGAGATAAATGTAAA
GCCCTCATCTTTAAACCCATAGA
AAGGGGGGTTTGGTAT
477 Conyza DHP_A31_7 gDNAContig 1051 1250 ATACTTTATTCAATTGCCACTTAC
canadensis CTTCAAGAAATTAACAAAATTAC
CCACAATTAAAAAAGGGTTTCCC
AGTTTCACTCACACTTATTCAAGA
TTGATGCAAAATAAACCCATAAA
TAAGAAGGTTAAAATAGTGTTAA
AGCCTTAAAGGTGCTTGCTTTTT
GTGTTTTTTGTGATGCCTATAAA
AAGATTCTTATTGT
478 Conyza DHP_A31_7 gDNAContig 1051 1250 ACAATAAGAATCTTTTTATAGGC
canadensis ATCACAAAAAACACAAAAAGCA
AGCACCTTTAAGGCTTTAACACT
ATTTTAACCTTCTTATTTATGGGT
TTATTTTGCATCAATCTTGAATAA

GTGTGAGTGAAACTGGGAAACC
CTTTTTTAATTGTGGGTAATTTTG
TTAATTTCTTGAAGGTAAGTGGC
AATTGAATAAAGTAT
479 Conyza DHP_A31_8 gDNAContig 1226 1425 ATGCCTATAAAAAGATTCTTATT
canadensis GTTTTCAAATTTTTTTATGTCAAG
TTTTCGTTTTTAACAGTTTATATA
GTTATATAATTTGCAGAAAGCCA
TAAAGCTCTGAACTTGAATGTTT
TATAGCAGCTCTTTGCAGTAATA
TCTTGTAGAGGTAAACCTGTTAA
CCCATATTTATTAATTTGTACATA
AAATTGTTGAATT
480 Conyza DHP_A31_8 gDNAContig 1226 1425 AATTCAACAATTTTATGTACAAAT
canadensis TAATAAATATGGGTTAACAGGTT
TACCTCTACAAGATATTACTGCA
AAGAGCTGCTATAAAACATTCAA
GTTCAGAGCTTTATGGCTTTCTG
CAAATTATATAACTATATAAACT
GTTAAAAACGAAAACTTGACATA
AAAAAATTTGAAAACAATAAGAA
TCTTTTTATAGGCAT
481 Conyza DHP_A31_9 gDNAContig 1401 1600 AATTTGTACATAAAATTGTTGAA
canadensis TTGAATAGAGCTACCACTGGGAC
TTGTGTAGTCAAACTGTAGAGCA
TCCCTGTAATGCTGGAAGCTTTA
TGACCTAAAAGGATTTGTAGACT
TGTTATCTGTGGATTGGTATAAA
GATTTTCAAGTTGTTATTTTGAAA
CTTTGAATAGTATATTATGCTCAT
TACTGAATGATACA
482 Conyza DHP_A31_9 gDNAContig 1401 1600 TGTATCATTCAGTAATGAGCATA
canadensis ATATACTATTCAAAGTTTCAAAAT
AACAACTTGAAAATCTTTATACC
AATCCACAGATAACAAGTCTACA
AATCCTTTTAGGTCATAAAGCTTC
CAGCATTACAGGGATGCTCTACA
GTTTGACTACACAAGTCCCAGTG
GTAGCTCTATTCAATTCAACAATT
TTATGTACAAATT
483 Conyza DHP_A31_1 gDNAContig 1576 1775 ATTATGCTCATTACTGAATGATA
canadensis 0 CAATAGGGAGTCGCGAATGTTA
GAATTGATAAGAATTAGGATGA
AGTTTGTGTTTGAACGTTCCTTCT
GTTTATAATCTTCATGTCACTTCC
ATAGTACCATAACCCTAGGGCAA
CACGAGCCTTTAGATTATGAATG

GGCACACCCAATTGTTTAGACCT
TGTATAAATGAAGTGA
484 Conyza DHP_A31_1 gDNAContig 1576 1775 TCACTTCATTTATACAAGGTCTAA
canadensis 0 ACAATTGGGTGTGCCCATTCATA
ATCTAAAGGCTCGTGTTGCCCTA
GGGTTATGGTACTATGGAAGTG
ACATGAAGATTATAAACAGAAG
GAACGTTCAAACACAAACTTCAT
CCTAATTCTTATCAATTCTAACAT
TCGCGACTCCCTATTGTATCATTC
AGTAATGAGCATAAT
485 Conyza DHP_A31_1 gDNAContig 1751 1950 TTTAGACCTTGTATAAATGAAGT
canadensis 1 GAATATCATTGTTATAAGCATTCT
GGTGGTGGTTTTGCAGATTTACC
TTTCTCTATCTAATTTGAAGGTTT
GTTGATTAAGGTGATACAAATGA
GTGTTTTCAAGCAGCTAATAGCT
TCAAGATTAGTACGCACTCATGT
CTGTGGATCTTATAGAGGTACAC
TTCCTCGAACATTA
486 Conyza DHP_A31_1 gDNAContig 1751 1950 TAATGTTCGAGGAAGTGTACCTC
canadensis 1 TATAAGATCCACAGACATGAGTG
CGTACTAATCTTGAAGCTATTAG
CTGCTTGAAAACACTCATTTGTAT
CACCTTAATCAACAAACCTTCAA
ATTAGATAGAGAAAGGTAAATCT
GCAAAACCACCACCAGAATGCTT
ATAACAATGATATTCACTTCATTT
ATACAAGGTCTAAA
487 Conyza DHP_A31_1 gDNAContig 1926 2125 TAGAGGTACACTTCCTCGAACAT
canadensis 2 TATATAGCGATGTTATTGTTAAG
TTTTGAATCTGTAGCAACATTATA
TATAATTTTTTTTGCATTGTTTTCC
TGCAGCATCCTTTTCACTCTTTCA
TTCGTCCTCGGATACTTCAATACA
AGTGCATTCTCCAGAACAAGAAG
TAGTAATTGCTTTAGGTAGCAAT
GTGGGTAATAG
488 Conyza DHP_A31_1 gDNAContig 1926 2125 CTATTACCCACATTGCTACCTAAA
canadensis 2 GCAATTACTACTTCTTGTTCTGGA
GAATGCACTTGTATTGAAGTATC
CGAGGACGAATGAAAGAGTGAA
AAGGATGCTGCAGGAAAACAAT
GCAAAAAAAATTATATATAATGT
TGCTACAGATTCAAAACTTAACA
ATAACATCGCTATATAATGTTCG
AGGAAGTGTACCTCTA

489 Conyza DHP_A31_1 gDNAContig 2101 2300 CTTTAGGTAGCAATGTGGGTAAT
canadensis 3 AGACTTAATAACTTTAATGAAGC
CTTATCCCAGATGAAGAAATCGG
GGATAGAAATAACAAGGCATGC
TTGTCTATACGAAACTGAACCAG
CTTATGTGACGGACCAGCCTCTT
TTTCTCAACTCTGCCGTTAGAGCC
ACTACAAAGCTTGGCCCTCATGA
GCTACTGTCCATTCTC
490 Conyza DHP_A31_1 gDNAContig 2101 2300 GAGAATGGACAGTAGCTCATGA
canadensis 3 GGGCCAAGCTTTGTAGTGGCTCT
AACGGCAGAGTTGAGAAAAAGA
GGCTGGTCCGTCACATAAGCTGG
TTCAGTTTCGTATAGACAAGCAT
GCCTTGTTATTTCTATCCCCGATT
TCTTCATCTGGGATAAGGCTTCA
TTAAAGTTATTAAGTCTATTACCC
ACATTGCTACCTAAAG
491 Conyza DHP_A31_1 gDNAContig 2276 2475 CCCTCATGAGCTACTGTCCATTCT
canadensis 4 CAAGAAAATTGAAAAGGAAATG
GGTCGAACCAAAGGGCTTAGGT
ACGGCCCACGACCCATTGACCTA
GATATATTGTTCTATGGTAAATG
CAAAGTTAACTCTGATATTCTAA
CTGTTCCTCATGAAAGAATCTTT
GAGAGGCCATTCGTTATGGCTCC
ATTAGTTGACTTGTTAG
492 Conyza DHP_A31_1 gDNAContig 2276 2475 CTAACAAGTCAACTAATGGAGCC
canadensis 4 ATAACGAATGGCCTCTCAAAGAT
TCTTTCATGAGGAACAGTTAGAA
TATCAGAGTTAACTTTGCATTTAC
CATAGAACAATATATCTAGGTCA
ATGGGTCGTGGGCCGTACCTAA
GCCCTTTGGTTCGACCCATTTCCT
TTTCAATTTTCTTGAGAATGGAC
AGTAGCTCATGAGGG
493 Conyza DHP_A31_1 gDNAContig 2451 2650 ATGGCTCCATTAGTTGACTTGTT
canadensis 5 AGGATCAGATGTAGACAATGAT
ACGGTTCTATGCTGGCATTCTTTT
TCAAAAAATGGGCTTTTTGGATC
TTGGGAAACATTAGGTGGTGAA
TCTTCCATAGGAAAAGATGGTTT
AAGAAGGGTTTTACCTGTCAATG
ATCGTTTATGGGATTGGTCAAAG
AAAACTTCCGTCATGGG
494 Conyza DHP_A31_1 gDNAContig 2451 2650 CCCATGACGGAAGTTTTCTTTGA
canadensis 5 CCAATCCCATAAACGATCATTGA

CAGGTAAAACCCTTCTTAAACCA
TCTTTTCCTATGGAAGATTCACCA
CCTAATGTTTCCCAAGATCCAAA
AAGCCCATTTTTTGAAAAAGAAT
GCCAGCATAGAACCGTATCATTG
TCTACATCTGATCCTAACAAGTC
AACTAATGGAGCCAT
495 Conyza DHP_A31_1 gDNAContig 2626 2825 GGTCAAAGAAAACTTCCGTCATG
canadensis 6 GGTATTTTGAATATAACTCCTGA
TAGTTTTAGTGATGGAGGGAAG
TTTGATTCCATGGGGTCCGCTTT
ATCTCGTGTTCAGACCATGATAT
CTGAAGGGGTTGACATAATTGAT
CTAGGAGCTCAATCCACACGCCC
AATGGCGACCAAGATCTCAGTCG
AAGAGGAACTAGATAGG
496 Conyza DHP_A31_1 gDNAContig 2626 2825 CCTATCTAGTTCCTCTTCGACTGA
canadensis 6 GATCTTGGTCGCCATTGGGCGTG
TGGATTGAGCTCCTAGATCAATT
ATGTCAACCCCTTCAGATATCAT
GGTCTGAACACGAGATAAAGCG
GACCCCATGGAATCAAACTTCCC
TCCATCACTAAAACTATCAGGAG
TTATATTCAAAATACCCATGACG
GAAGTTTTCTTTGACC
497 Conyza DHP_A31_1 gDNAContig 2801 3000 CTCAGTCGAAGAGGAACTAGAT
canadensis 7 AGGCTAATACCCGTTCTTGAAAA
GATTCTTGAATTACCTGAAATTG
AAGGAAAGTTGTTGTCTGTGGAC
ACATTTTACTCGGAAGTTGCTTC
AGAGGCAATCAAGAAAGGGGCT
CATATGGTCAATGATGTATCGGG
TGGAATGTTAGATTCTGATATGC
TTCATGTTGTGGCTGATC
498 Conyza DHP_A31_1 gDNAContig 2801 3000 GATCAGCCACAACATGAAGCATA
canadensis 7 TCAGAATCTAACATTCCACCCGA
TACATCATTGACCATATGAGCCC
CTTTCTTGATTGCCTCTGAAGCAA
CTTCCGAGTAAAATGTGTCCACA
GACAACAACTTTCCTTCAATTTCA
GGTAATTCAAGAATCTTTTCAAG
AACGGGTATTAGCCTATCTAGTT
CCTCTTCGACTGAG
499 Conyza DHP_A31_1 gDNAContig 2976 3175 GATATGCTTCATGTTGTGGCTGA
canadensis 8 TCTAAATGTTCCATATATCACTAT
GCACATGAGAGGGGACCCATCC
ACAATGCAAAACAGTGAGAATTT

GAAGTATGATGATGTTGTCAAAG
AAGTTGGGGAGGAATTGTATGA
ACGTGTAAGGAATGCAGAGTTA
TGTGGTGTTCCCGCATGGAGGAT
GGTTCTTGATCCAGGGAT
500 Conyza DHP_A31_1 gDNAContig 2976 3175 ATCCCTGGATCAAGAACCATCCT
canadensis 8 CCATGCGGGAACACCACATAACT
CTGCATTCCTTACACGTTCATACA
ATTCCTCCCCAACTTCTTTGACAA
CATCATCATACTTCAAATTCTCAC
TGTTTTGCATTGTGGATGGGTCC
CCTCTCATGTGCATAGTGATATA
TGGAACATTTAGATCAGCCACAA
CATGAAGCATATC
501 Conyza DHP_A31_1 gDNAContig 3151 3350 GGAGGATGGTTCTTGATCCAGG
canadensis 9 GATCGGGTTTTCAAAGAAAACCG
AAGATAATTTGGAGATATTGATG
GGACTAAAGAGGTTTAGAAGTG
AGATTGGACAAAAGAGCTTAGG
GGTGTCTCGTGCACCTTTGTTAA
TCGGACCTTCAAGAAAAAGGTTT
TTGGGTGAGATTTGTGGTCGGCC
TTCTGCTGTTGAGAGAGAT
502 Conyza DHP_A31_1 gDNAContig 3151 3350 ATCTCTCTCAACAGCAGAAGGCC
canadensis 9 GACCACAAATCTCACCCAAAAAC
CTTTTTCTTGAAGGTCCGATTAAC
AAAGGTGCACGAGACACCCCTA
AGCTCTTTTGTCCAATCTCACTTC
TAAACCTCTTTAGTCCCATCAATA
TCTCCAAATTATCTTCGGTTTTCT
TTGAAAACCCGATCCCTGGATCA
AGAACCATCCTCC
503 Conyza DHP_A31_2 gDNAContig 3326 3525 TCGGCCTTCTGCTGTTGAGAGAG
canadensis 0 ATCCAGGGACTGTAGCTGCTGTT
ACCAGTGCGATTTTGGGTGGTGC
CAATATCGTTAGGGTTCATAACA
TTGGACATAATGTGGATGCTGTT
AAGCTTTGTGATTCAATGTTGGA
TCGAGCTGGTAGATCTTAGTAGC
TTAAAGTTATTTGACATCTTGTTT
TTTATTCAATTTTCT
504 Conyza DHP_A31_2 gDNAContig 3326 3525 AGAAAATTGAATAAAAAACAAG
canadensis 0 ATGTCAAATAACTTTAAGCTACT
AAGATCTACCAGCTCGATCCAAC
ATTGAATCACAAAGCTTAACAGC
ATCCACATTATGTCCAATGTTATG
AACCCTAACGATATTGGCACCAC

CCAAAATCGCACTGGTAACAGCA
GCTACAGTCCCTGGATCTCTCTC
AACAGCAGAAGGCCGA
505 Conyza DHP_A31_2 gDNAContig 3501 3700 CATCTTGTTTTTTATTCAATTTTCT
canadensis 1 GGACATTACTTTTTGTATTTCTGT
CTGGCAAATGATTTTACAGGGAT
ATCCTAGAGGCTAAATTGTATAT
TACATTCTTGATTTTCTCACAAAG
TTTTACTTTTTCAGTTTTTCTTGTT
CAGTTTTGTTTTTGAAAATTTGCT
AGATCAGATTAAATCGTTGCTTT
ATGATCTTC
506 Conyza DHP_A31_2 gDNAContig 3501 3700 GAAGATCATAAAGCAACGATTTA
canadensis 1 ATCTGATCTAGCAAATTTTCAAA
AACAAAACTGAACAAGAAAAAC
TGAAAAAGTAAAACTTTGTGAGA
AAATCAAGAATGTAATATACAAT
TTAGCCTCTAGGATATCCCTGTA
AAATCATTTGCCAGACAGAAATA
CAAAAAGTAATGTCCAGAAAATT
GAATAAAAAACAAGATG
507 Conyza DHP_A31_2 gDNAContig 3676 3875 ATTAAATCGTTGCTTTATGATCTT
canadensis 2 CGTGTCTTTTTTGGGACGCTGCG
AGTTTCATTTAGTGGTATTGTAA
ACTCCTTTTAAAGTTTGTACACAC
TTGGTATTTATGCTTCTAGTTTTC
GTCTATGTCTGTCCTATATTGTGT
ATAGTATGTTTAAAGTTCATAAA
AAGAGGATAAACGAATAGCACG
TAAATCTTATAAT
508 Conyza DHP_A31_2 gDNAContig 3676 3875 ATTATAAGATTTACGTGCTATTC
canadensis 2 GTTTATCCTCTTTTTATGAACTTT
AAACATACTATACACAATATAGG
ACAGACATAGACGAAAACTAGA
AGCATAAATACCAAGTGTGTACA
AACTTTAAAAGGAGTTTACAATA
CCACTAAATGAAACTCGCAGCGT
CCCAAAAAAGACACGAAGATCA
TAAAGCAACGATTTAAT
509 Conyza DHP_A31_2 gDNAContig 3851 4050 ACGAATAGCACGTAAATCTTATA
canadensis 3 ATTCGATTCCACAGAGTGCAAGT
TATGCTTTCCTAAATGAAAGCAA
GAGTCTAGACAGTTTGGTCAACG
TTAACATGAGACTATTGTAGAAT
ACAACACCACAAGAAACCAAAAC
TGTCTTGTGCATTTCTCTCTTTTC
CAGGTTTAAAACTCAATACCAAG

ACTTGATATCAACTA
510 Conyza DHP_A31_2 gDNAContig 3851 4050 TAGTTGATATCAAGTCTTGGTAT
canadensis 3 TGAGTTTTAAACCTGGAAAAGAG
AGAAATGCACAAGACAGTTTTG
GTTTCTTGTGGTGTTGTATTCTAC
AATAGTCTCATGTTAACGTTGAC
CAAACTGTCTAGACTCTTGCTTTC
ATTTAGGAAAGCATAACTTGCAC
TCTGTGGAATCGAATTATAAGAT
TTACGTGCTATTCGT
511 Conyza DHP_A31_2 gDNAContig 4026 4225 CAATACCAAGACTTGATATCAAC
canadensis 4 TATTATTCTGCTTCAATGATTCAG
CTTCAGCTATAGCCATAGGATCA
TCTTTGGTGTCAGGTTCATCCTTC
TCACCATCTCGTTCCTCTGCCAGT
TTTTTTCTGTGCAATTCCTCTGCA
ACTTGCTTTGATGCTTGGTCTTCT
TTTTGAAGGCGTTGCATCTCTTCT
TCTTGTTGCT
512 Conyza DHP_A31_2 gDNAContig 4026 4225 AGCAACAAGAAGAAGAGATGCA
canadensis 4 ACGCCTTCAAAAAGAAGACCAA
GCATCAAAGCAAGTTGCAGAGG
AATTGCACAGAAAAAAACTGGC
AGAGGAACGAGATGGTGAGAA
GGATGAACCTGACACCAAAGAT
GATCCTATGGCTATAGCTGAAGC
TGAATCATTGAAGCAGAATAATA
GTTGATATCAAGTCTTGGTATTG
513 Conyza DHP_A31_2 gDNAContig 4201 4400 CGTTGCATCTCTTCTTCTTGTTGC
canadensis 5 TGTCGTTCAAACCATGTATCCGC
ATCGGCCCAAACTGTAATTTAGA
GCCAAAACAACATGATTAGAATG
CAGATTCCAGAAGCCAAATTCAA
ACTGTAAGAAAAAAAATGTAGT
GATGATTTAACTCAAAACAACTC
ACACAGCTCCAAAATGGATGGG
GGTTCAAATTAGAGGAT
514 Conyza DHP_A31_2 gDNAContig 4201 4400 ATCCTCTAATTTGAACCCCCATCC
canadensis 5 ATTTTGGAGCTGTGTGAGTTGTT
TTGAGTTAAATCATCACTACATTT
TTTTTCTTACAGTTTGAATTTGGC
TTCTGGAATCTGCATTCTAATCAT
GTTGTTTTGGCTCTAAATTACAGT
TTGGGCCGATGCGGATACATGG
TTTGAACGACAGCAACAAGAAG
AAGAGATGCAACG
515 Conyza DHP_A31_2 gDNAContig 4376 4575 TGGATGGGGGTTCAAATTAGAG

canadensis 6 GATAGCCTAATAGATAGAAGCTT
CTAATTATGGGGAAAAAAAAAC
GATCATGGCAATGTATTACACAA
TCTAAAGCAACCACTATGAATAA
TAAAGATAAATCTTTCCGAGAGT
CCACATGCCTTGATATTTCATAA
GATAGGCTTTTTCAGAAATCAGA
ATCTTCTTGGCAAATATA
516 Conyza DHP_A31_2 gDNAContig 4376 4575 TATATTTGCCAAGAAGATTCTGA
canadensis 6 TTTCTGAAAAAGCCTATCTTATG
AAATATCAAGGCATGTGGACTCT
CGGAAAGATTTATCTTTATTATTC
ATAGTGGTTGCTTTAGATTGTGT
AATACATTGCCATGATCGTTTTTT
TTTCCCCATAATTAGAAGCTTCTA
TCTATTAGGCTATCCTCTAATTTG
AACCCCCATCCA
517 Conyza DHP_A31_2 gDNAContig 4551 4750 AATCAGAATCTTCTTGGCAAATA
canadensis 7 TAACACTAAAATCAGTCTAATGC
ATGTTATTAAGTAAATCTTTATTT
GTCCATAGTATAATGCCATAGAT
TATCGTCAATTATCCACATCGTCA
TTAAATATCAAGTAACCACATTA
TGAATTGACTTGTTTAATCAAAG
TTCATCTTACTTCTTCATAGATGA
AAAAGAGCTATGC
518 Conyza DHP_A31_2 gDNAContig 4551 4750 GCATAGCTCTTTTTCATCTATGAA
canadensis 7 GAAGTAAGATGAACTTTGATTAA
ACAAGTCAATTCATAATGTGGTT
ACTTGATATTTAATGACGATGTG
GATAATTGACGATAATCTATGGC
ATTATACTATGGACAAATAAAGA
TTTACTTAATAACATGCATTAGAC
TGATTTTAGTGTTATATTTGCCAA
GAAGATTCTGATT
519 Conyza DHP_A31_2 gDNAContig 4726 4925 CTTCATAGATGAAAAAGAGCTAT
canadensis 8 GCAAATACAGAACACATCAGTTG
TTCTAACATATAATTACTGCTAGC
TGTAGGAAGAAACCAAGATGAA
ACTTATCTAGGATTCAAATTCAT
GGGGATCTGTTATTTAGATGAAT
TTAGAGAAATAAGAAAATAAGTT
GAGTGAAGTCAGTTTCGAGGTTC
CAAATTTGTCTTTATT
520 Conyza DHP_A31_2 gDNAContig 4726 4925 AATAAAGACAAATTTGGAACCTC
canadensis 8 GAAACTGACTTCACTCAACTTATT
TTCTTATTTCTCTAAATTCATCTA

AATAACAGATCCCCATGAATTTG
AATCCTAGATAAGTTTCATCTTG
GTTTCTTCCTACAGCTAGCAGTA
ATTATATGTTAGAACAACTGATG
TGTTCTGTATTTGCATAGCTCTTT
TTCATCTATGAAG
521 Conyza DHP_A31_2 gDNAContig 4901 5100 TCGAGGTTCCAAATTTGTCTTTAT
canadensis 9 TAGTTGAGCTAACAATATTAACC
TCTGAAGCATGTATAGTGTACTT
GTATGAACCACTTAAGGATATAA
ATGAAGCCAAATCAGTTTCATTC
GCTAATTGAGCAAATGCACGTTC
TGTTTGTTAGTATTGAAATTTCTT
TACAGGATTTCTTTCAACTAAAA
GCATCACATGTCCG
522 Conyza DHP_A31_2 gDNAContig 4901 5100 CGGACATGTGATGCTTTTAGTTG
canadensis 9 AAAGAAATCCTGTAAAGAAATTT
CAATACTAACAAACAGAACGTGC
ATTTGCTCAATTAGCGAATGAAA
CTGATTTGGCTTCATTTATATCCT
TAAGTGGTTCATACAAGTACACT
ATACATGCTTCAGAGGTTAATAT
TGTTAGCTCAACTAATAAAGACA
AATTTGGAACCTCGA
523 Conyza DHP_A31_3 gDNAContig 5076 5275 TTCAACTAAAAGCATCACATGTC
canadensis 0 CGACTCTCGGTTTGATATTTGTG
ACAAGTCTAATTGGTTCATCAGA
TGTACTTATGGCTAAATTTCGAA
ACTTGAAACAATAAGAGCTTAGC
ACTCTTAACCATAAAGGGTTGCT
GTTAATCTTACTTGTTCTTGAAAG
CAATTCCACAGTGAAGCATTTGT
TAATTGGGAAGTTTT
524 Conyza DHP_A31_3 gDNAContig 5076 5275 AAAACTTCCCAATTAACAAATGC
canadensis 0 TTCACTGTGGAATTGCTTTCAAG
AACAAGTAAGATTAACAGCAACC
CTTTATGGTTAAGAGTGCTAAGC
TCTTATTGTTTCAAGTTTCGAAAT
TTAGCCATAAGTACATCTGATGA
ACCAATTAGACTTGTCACAAATA
TCAAACCGAGAGTCGGACATGT
GATGCTTTTAGTTGAA
525 Digitaria DHP_A41_1 gDNAContig 1 sanguinalis ATGTTCCTTCATGAATCCAAAAG
CCAAGTAAACAGGTCCATGAGT
GCCTTTGTGAGATTGCTTCGAAT
AGAATATACCTACGGCTCTTAAT

TTCAGATTCTCTTAGGTAGTGTTT
AGGTAGCGTTTGGAAGTAGATA
TTTAGGCTTGGAATTAGGAATTG
GCATTGAGATCTACGAA
526 Digitaria DHP_A41_1 gDNAContig 1 sanguinalis TAATTCCAAGCCTAAATATCTACT
TCCAAACGCTACCTAAACACTAC
CTAAGAGAATCTGAAATTAAGA
GCCGTAGGTATATTCTATTCGAA
GCAATCTCACAAAGGCACTCATG
GACCTGTTTACTTGGCTTTTGGA
TTCATGAAGGAACATGTTAGTTA
TAAATTTTACGATTT
527 Digitaria DHP_A41_2 gDNAContig 176 375 AGGAATTGGCATTGAGATCTACG
sanguinalis AATACCTGCCGTTTGGATGTCTA
AGAATTTGGAATTGGAATTGCAG
CCCAATACCAACCGGCATTCCTT
GGCCTCTCATCTGCCTGCCCTCA
GTATAGATAGAGCTTATCTCCTT
CATCCTCGCGGAGTGGTGGCAA
GCGGCGGCGAGATCCGGACCAC
ATGGGGTGTGGGAGCGCG
528 Digitaria DHP_A41_2 gDNAContig 176 375 CGCGCTCCCACACCCCATGTGGT
sanguinalis CCGGATCTCGCCGCCGCTTGCCA
CCACTCCGCGAGGATGAAGGAG
ATAAGCTCTATCTATACTGAGGG
CAGGCAGATGAGAGGCCAAGGA
ATGCCGGTTGGTATTGGGCTGCA
ATTCCAATTCCAAATTCTTAGACA
TCCAAACGGCAGGTATTCGTAGA
TCTCAATGCCAATTCCT
529 Digitaria DHP_A41_3 gDNAContig 351 550 GGACCACATGGGGTGTGGGAGC
sanguinalis GCGGTGGCAGAGTGGTGGCAAG
CGATGGCGACGGCACCGTGCCG
CCGTGCCACATTGGCACGGCGAC
GGACGAGTTTGGATGGTGTCAG
TACAGACCACTGCCCAATTCTAT
CCTTTTGTGCATCCAAACATAAA
ATCTGAATTAGGATGCTCTTTTG
ATTCTACAAGGCAATGTAAT
530 Digitaria DHP_A41_3 gDNAContig 351 550 ATTACATTGCCTTGTAGAATCAA
sanguinalis AAGAGCATCCTAATTCAGATTTT
ATGTTTGGATGCACAAAAGGATA
GAATTGGGCAGTGGTCTGTACTG
ACACCATCCAAACTCGTCCGTCG
CCGTGCCAATGTGGCACGGCGG
CACGGTGCCGTCGCCATCGCTTG

CCACCACTCTGCCACCGCGCTCC
CACACCCCATGTGGTCC
531 Digitaria DH P_A41_4 gDNACo ntig 526 725 TTTTGATTCTACAAGGCAATGTA
sanguinalis ATGACCATCCAAACAACAGATTC
TGAATTGGAGTCAATTCAATGTT
ACGATTGTATTGGCATCGGACCT
AATTCAATGTCATGCCCTCTAGT
ATCTACATTCAAACGGAGCGGAA
AAATCTACCTCCGTCCCAAGATT
CCGGCCCAAGATCCCGACTCTTA
ATACTTTTTTCATCTT
532 Digitaria DH P_A41_4 gDNACo ntig 526 725 AAGATGAAAAAAGTATTAAGAG
sanguinalis TCGGGATCTTGGGCCGGAATCTT
GGGACGGAGGTAGATTTTTCCG
CTCCGTTTGAATGTAGATACTAG
AGGGCATGACATTGAATTAGGTC
CGATGCCAATACAATCGTAACAT
TGAATTGACTCCAATTCAGAATC
TGTTGTTTGGATGGTCATTACAT
TGCCTTGTAGAATCAAAA
533 Digitaria DH P_A41_5 gDNACo ntig 701 900 CGACTCTTAATACTTTTTTCATCT
sanguinalis TTCGCTGAAATTTCAGCCCAAGA
TCCCGGCCCGCCTTTTTGCCTCCA
CGCTGGGCCTGGTGGGACGCGG
CCCCTTCACGAGAGTCGAGAGG
GGAAAGCGGAAAGGGAAACAA
AAAAACTCAACGAATCGCCGCCG
CCGCCTTGCCCTGCAGCGAACAA
TTAAGGGCCCCGTACCTC
534 Digitaria DH P_A41_5 gDNACo ntig 701 900 GAGGTACGGGGCCCTTAATTGTT
sanguinalis CGCTGCAGGGCAAGGCGGCGGC
GGCGATTCGTTGAGTTTTTTTGTT
TCCCTTTCCGCTTTCCCCTCTCGA
CTCTCGTGAAGGGGCCGCGTCCC
ACCAGGCCCAGCGTGGAGGCAA
AAAGGCGGGCCGGGATCTTGGG
CTGAAATTTCAGCGAAAGATGAA
AAAAGTATTAAGAGTCG
535 Digitaria DH P_A41_6 gDNACo ntig 876 1075 CGAACAATTAAGGGCCCCGTACC
sanguinalis TCTCTCTGCCCGTTCTTCCGCTGC
ACTCCGCATCTGAGCGGACGGG
TGGGGACACCGCCGACGGCGCC
GGGGTGGCGCCTCCGTCTGTGCT
CCAACCAAGGCAGTGGGTGCTG
GTTGCTGCCAATCGACCGGCCGG
GCATGCTCTGACCATCGAGAAAA
TCTTCGGGTAACACAACG

536 Digitaria DHP_A41_6 gDNAContig 876 1075 CGTTGTGTTACCCGAAGATTTTCT
sanguinalis CGATGGTCAGAGCATGCCCGGC
CGGTCGATTGGCAGCAACCAGC
ACCCACTGCCTTGGTTGGAGCAC
AGACGGAGGCGCCACCCCGGCG
CCGTCGGCGGTGTCCCCACCCGT
CCGCTCAGATGCGGAGTGCAGC
GGAAGAACGGGCAGAGAGAGG
TACGGGGCCCTTAATTGTTCG
537 Digitaria DHP_A41_7 gDNAContig 1051 1250 GAGAAAATCTTCGGGTAACACA
sanguinalis ACGTTGTTCATTTCGTTTGTATCG
TGGCATAGTTGATTTCCCTAACTT
TTAGGATGCGTTTCGATTCATTG
TATCTGTATACCAAAACAGAGTT
CGATAACTTAGATTGAACGGTAG
GCTTCAGCATCTAAGGCAGCAG
GTGCAGGTCTATTCTATCACTCT
GAAAATTAGTTTTAAC
538 Digitaria DHP_A41_7 gDNAContig 1051 1250 GTTAAAACTAATTTTCAGAGTGA
sanguinalis TAGAATAGACCTGCACCTGCTGC
CTTAGATGCTGAAGCCTACCGTT
CAATCTAAGTTATCGAACTCTGTT
TTGGTATACAGATACAATGAATC
GAAACGCATCCTAAAAGTTAGG
GAAATCAACTATGCCACGATACA
AACGAAATGAACAACGTTGTGTT
ACCCGAAGATTTTCTC
539 Digitaria DHP_A41_8 gDNAContig 1226 1425 TATCACTCTGAAAATTAGTTTTAA
sanguinalis CTGTCTGATGATAGGAGGATTAG
CTAATGTTGTTATATGAGGAGGT
TTCTTGCTGACTAGAGAGCTATT
TGACCACCTGATAGATTGCCTCG
TTAGCAACTTAGCATTATGACGA
CGATGGCAGCGAGCCATTTCATG
TAGAAAACGAACATGAGCTGAG
AAGCTTAATCGTATAA
540 Digitaria DHP_A41_8 gDNAContig 1226 1425 TTATACGATTAAGCTTCTCAGCTC
sanguinalis ATGTTCGTTTTCTACATGAAATG
GCTCGCTGCCATCGTCGTCATAA
TGCTAAGTTGCTAACGAGGCAAT
CTATCAGGTGGTCAAATAGCTCT
CTAGTCAGCAAGAAACCTCCTCA
TATAACAACATTAGCTAATCCTCC
TATCATCAGACAGTTAAAACTAA
TTTTCAGAGTGATA
541 Digitaria DHP_A41_9 gDNAContig 1401 1600 TGAGCTGAGAAGCTTAATCGTAT
sanguinalis AAGCTTCAATTGGCTTCCTGGCT

GGGGAGGTTTGCTAGAGAACTT
CTGTATTTTGTTCATTCATTTAAT
CTGATGTATGTTGGCAGCTCTCC
TGTCAGGTACAGAAATTTAGACG
GCCCTGAAACCAAGCAGGGCAA
CCTCACCAATAGGGGGGCAGTC
GCACCACAAAGGTTGCTT
542 Digitaria D H P_A41_9 gD NACo ntig 1401 1600 AAGCAACCTTTGTGGTGCGACTG
sanguinalis CCCCCCTATTGGTGAGGTTGCCC
TGCTTGGTTTCAGGGCCGTCTAA
ATTTCTGTACCTGACAGGAGAGC
TGCCAACATACATCAGATTAAAT
GAATGAACAAAATACAGAAGTT
CTCTAGCAAACCTCCCCAGCCAG
GAAGCCAATTGAAGCTTATACGA
TTAAGCTTCTCAGCTCA
543 Digitaria D H P_A41_1 gD NACo ntig 1576 1775 GGCAGTCGCACCACAAAGGTTG
sanguinalis 0 CTTGCCTCCAGTGGGGCATCTCC
TCTCCTTACATTGAGAGGTTTATT
TGACGTCTAAGATATCTGAACTC
CTGCCTCCAGTTAGAGAAAAGGC
CCTTGTTCATACCTCAAATTTGTC
TTTGCTCTTCTATTGACCAGGTGT
GATGGAGTGATGCTTGCGTGAA
ATATCCTACAAGGCT
544 Digitaria D H P_A41_1 gD NACo ntig 1576 1775 AGCCTTGTAGGATATTTCACGCA
sanguinalis 0 AGCATCACTCCATCACACCTGGT
CAATAGAAGAGCAAAGACAAAT
TTGAGGTATGAACAAGGGCCTTT
TCTCTAACTGGAGGCAGGAGTTC
AGATATCTTAGACGTCAAATAAA
CCTCTCAATGTAAGGAGAGGAG
ATGCCCCACTGGAGGCAAGCAA
CCTTTGTGGTGCGACTGCC
545 Digitaria D H P_A41_1 gD NACo ntig 1751 1950 CTTGCGTGAAATATCCTACAAGG
sanguinalis 1 CTACAATTTATTTGAAGCATTTGC
TTTCTTAATTATCATATGTTCAAC
GATGCTCCTCCATGCTAAGGAGT
CCCTTAAGAAGATGTATCCTGTT
GCTATGAACTACTTTGGAGGGCT
CCTCCCATCGCATTCGTTTTCAGG
TACTGTTCAAATCTTTTCTTTTCA
AATCCCCTATCA
546 Digitaria DHP_A41_1 gDNAContig 1751 1950 TGATAGGGGATTTGAAAAGAAA
sanguinalis 1 AGATTTGAACAGTACCTGAAAAC
GAATGCGATGGGAGGAGCCCTC
CAAAGTAGTTCATAGCAACAGG

ATACATCTTCTTAAGGGACTCCTT
AGCATGGAGGAGCATCGTTGAA
CATATGATAATTAAGAAAGCAAA
TGCTTCAAATAAATTGTAGCCTT
GTAGGATATTTCACGCAAG
547 Digitaria DHP_A41_1 gDNAContig 1926 2125 TCTTTTCTTTTCAAATCCCCTATCA
sanguinalis 2 TGCGATCAAGAGCAGCTCTAAGC
TTCTAACTCACCCCTTTGCATTTC
TAAACAGTGTCTGATCTTGTTCAT
CCGCTGAGGTTCCCAAACAGAGC
TCCTAGACATGCTATTCCATTCAG
GGCTCGTTCGTTTACGCGATGTT
CGCTTGAGGGATGTTCAACTGAC
CAAGAGATTGT
548 Digitaria DHP_A41_1 gDNAContig 1926 2125 ACAATCTCTTGGTCAGTTGAACA
sanguinalis 2 TCCCTCAAGCGAACATCGCGTAA
ACGAACGAGCCCTGAATGGAAT
AGCATGTCTAGGAGCTCTGTTTG
GGAACCTCAGCGGATGAACAAG
ATCAGACACTGTTTAGAAATGCA
AAGGGGTGAGTTAGAAGCTTAG
AGCTGCTCTTGATCGCATGATAG
GGGATTTGAAAAGAAAAGA
549 Digitaria DHP_A41_1 gDNAContig 2101 2300 GATGTTCAACTGACCAAGAGATT
sanguinalis 3 GTGATTGCTATGGGAAGCAACG
TGGGTGATGGAGTCAGTACATTT
GACAGGGCATTACAAATGATGA
AAAGCTCAGGCGTGAACATCACT
AGGCATGCCTGTCTATATGAGAC
TGCCCCTGCTTATGTGACCGATC
AGCCACGGTTCCTGAACTCTGCC
ATTCGAGGTACGACTAGG
550 Digitaria DHP_A41_1 gDNAContig 2101 2300 CCTAGTCGTACCTCGAATGGCAG
sanguinalis 3 AGTTCAGGAACCGTGGCTGATC
GGTCACATAAGCAGGGGCAGTC
TCATATAGACAGGCATGCCTAGT
GATGTTCACGCCTGAGCTTTTCA
TCATTTGTAATGCCCTGTCAAAT
GTACTGACTCCATCACCCACGTT
GCTTCCCATAGCAATCACAATCT
CTTGGTCAGTTGAACATC
551 Digitaria DHP_A41_1 gDNAContig 2276 2475 CTCTGCCATTCGAGGTACGACTA
sanguinalis 4 GGCTGGGACCTCACGAGTTGCTT
AAGAAACTAAAGGAAATTGAGA
AGGATATAGGACGCACTGGTGG
AATAAGGTATGGCCCAAGACCA
ATCGATCTAGATATACTTCTGTAC

GGCAATTCCCAGATTGATACTGA
GGCTCTAATTGTGCCACATGAAC
GCATCCAGGAGAGGCCAT
552 Digitaria DHP_A41_1 gDNAContig 2276 2475 ATGGCCTCTCCTGGATGCGTTCA
sanguinalis 4 TGTGGCACAATTAGAGCCTCAGT
ATCAATCTGGGAATTGCCGTACA
GAAGTATATCTAGATCGATTGGT
CTTGGGCCATACCTTATTCCACCA
GTGCGTCCTATATCCTTCTCAATT
TCCTTTAGTTTCTTAAGCAACTCG
TGAGGTCCCAGCCTAGTCGTACC
TCGAATGGCAGAG
553 Digitaria DHP_A41_1 gDNAContig 2451 2650 CATGAACGCATCCAGGAGAGGC
sanguinalis 5 CATTTGTTCTAGCACCTCTTGTTG
ACCTTCTAGGTGCATCTGGCAAT
GATAGTGTCGAAACAAGCTGGC
ACTCTCTTTCAAAGTGCAGTGGT
GGTTTCTTTGAATTATGGAATAA
ACTTGGGGGTGAATCTATAATTG
GAACAGAAAGTATTAAAAGGGT
ATTACCTGTTGGGAATCA
554 Digitaria DHP_A41_1 gDNAContig 2451 2650 TGATTCCCAACAGGTAATACCCT
sanguinalis 5 TTTAATACTTTCTGTTCCAATTAT
AGATTCACCCCCAAGTTTATTCCA
TAATTCAAAGAAACCACCACTGC
ACTTTGAAAGAGAGTGCCAGCTT
GTTTCGACACTATCATTGCCAGA
TGCACCTAGAAGGTCAACAAGA
GGTGCTAGAACAAATGGCCTCTC
CTGGATGCGTTCATG
555 Digitaria DHP_A41_1 gDNAContig 2626 2825 AAAGGGTATTACCTGTTGGGAAT
sanguinalis 6 CATTTGTTTGATTGGTGTGAGAG
AACCCTCGTCATGGGGGTCCTTA
ATCTAACACCAGACAGCTTTAGT
GATGGAGGTAAGTTTCAACAAG
TGGAAGCTGCTATTTCTCAGGCT
AAATTATTAATTTCAGAAGGTGC
AGATATCATAGATATTGGTGCTC
AATCTACCAGGCCTTTT
556 Digitaria DHP_A41_1 gDNAContig 2626 2825 AAAAGGCCTGGTAGATTGAGCA
sanguinalis 6 CCAATATCTATGATATCTGCACCT
TCTGAAATTAATAATTTAGCCTG
AGAAATAGCAGCTTCCACTTGTT
GAAACTTACCTCCATCACTAAAG
CTGTCTGGTGTTAGATTAAGGAC
CCCCATGACGAGGGTTCTCTCAC
ACCAATCAAACAAATGATTCCCA

ACAGGTAATACCCTTT
557 Digitaria DHP_A41_1 gDNAContig 2801 3000 TGGTGCTCAATCTACCAGGCCTT
sanguinalis 7 TTGCAAAGAGATTATCTCCAAAC
GAAGAAATTGAAAGATTGGTTCC
TGTTCTGGATGTGATTACGAAAA
TTCCTGAAATGGAGGGAAAGTT
GCTCTCAGTGGATACATTCTATG
CAGAAGTTGCATGTGAAGCTGT
GAAAAGAGGAGTTCACATGATC
AATGATGTATCTGGTGGAC
558 Digitaria DHP_A41_1 gDNAContig 2801 3000 GTCCACCAGATACATCATTGATC
sanguinalis 7 ATGTGAACTCCTCTTTTCACAGCT
TCACATGCAACTTCTGCATAGAA
TGTATCCACTGAGAGCAACTTTC
CCTCCATTTCAGGAATTTTCGTAA
TCACATCCAGAACAGGAACCAAT
CTTTCAATTTCTTCGTTTGGAGAT
AATCTCTTTGCAAAAGGCCTGGT
AGATTGAGCACCA
559 Digitaria DHP_A41_1 gDNAContig 2976 3175 ATGATCAATGATGTATCTGGTGG
sanguinalis 8 ACAGCTTGACCCCAAAATTCTTA
AAGTTGCTGCTGAACTCAAAGTT
CCGTATGTTGCAATGCACATGAG
GGGAGATCCATCAACAATGCAA
AGTGAACAAAATTTACAGTATGA
CGATGTCTGCAAGGAAGTTGCTT
CAGAGCTATATGCACAGGTGAG
AGAAGCAGAGTTATCTGG
560 Digitaria DHP_A41_1 gDNAContig 2976 3175 CCAGATAACTCTGCTTCTCTCACC
sanguinalis 8 TGTGCATATAGCTCTGAAGCAAC
TTCCTTGCAGACATCGTCATACT
GTAAATTTTGTTCACTTTGCATTG
TTGATGGATCTCCCCTCATGTGC
ATTGCAACATACGGAACTTTGAG
TTCAGCAGCAACTTTAAGAATTT
TGGGGTCAAGCTGTCCACCAGAT
ACATCATTGATCAT
561 Digitaria DHP_A41_1 gDNAContig 3151 3350 AGGTGAGAGAAGCAGAGTTATC
sanguinalis 9 TGGGATTCCATTGTGGAGGATA
GTTCTAGATCCAGGCATTGGGTT
CTCCAAGAAATCCAAACATAACC
TTGAAGTAATTATGGGATTGGAA
TCCATTAGGAGGGAGATGAGTA
AAATGAGTATTGGTGCTTCACAT
GTGCCAATATTACTGGGACCCTC
TAGGAAAAGATTTTTGGGT
562 Digitaria DHP_A41_1 gDNAContig 3151 3350 ACCCAAAAATCTTTTCCTAGAGG

sanguinalis 9 GTCCCAGTAATATTGGCACATGT
GAAGCACCAATACTCATTTTACT
CATCTCCCTCCTAATGGATTCCAA
TCCCATAATTACTTCAAGGTTATG
TTTGGATTTCTTGGAGAACCCAA
TGCCTGGATCTAGAACTATCCTC
CACAATGGAATCCCAGATAACTC
TGCTTCTCTCACCT
563 Digitaria DHP_A41_2 gDNAContig 3326 3525 ACCCTCTAGGAAAAGATTTTTGG
sanguinalis 0 GTGAAATATGCAATCGTGAAAAT
CCAGTTGAGAGAGATGTTGCTAC
TGTTGCAGCTGTGACGGCGGGT
ATTTTGAATGGTGCTAACATAGT
AAGGGTACATAATGCAGGATAC
AGTTCAGATGCTGCAAAGTTTTG
TGATGCATTGAATAAGAGAAGA
AGAATGGAAGACTGAACCA
564 Digitaria DHP_A41_2 gDNAContig 3326 3525 TGGTTCAGTCTTCCATTCTTCTTC
sanguinalis 0 TCTTATTCAATGCATCACAAAACT
TTGCAGCATCTGAACTGTATCCT
GCATTATGTACCCTTACTATGTTA
GCACCATTCAAAATACCCGCCGT
CACAGCTGCAACAGTAGCAACAT
CTCTCTCAACTGGATTTTCACGAT
TGCATATTTCACCCAAAAATCTTT
TCCTAGAGGGT
565 Digitaria DHP_A41_2 gDNAContig 3501 3700 AGAAGAAGAATGGAAGACTGAA
sanguinalis 1 CCAGCTGATCAAAAAGATACCGA
GCTCTGATTTTATTCGAGAAAAT
GGTGATGCAGGATAGTTACTCTG
CTGCTCAATGGGATTCTCATATT
ACATCATTTGTGGAGTATTGTTTT
TGTAATAAATAAACCAGGGATG
ACGTTTTTCCTGTGTCATCTCCTA
TCTAGTTTCTAGATAC
566 Digitaria DHP_A41_2 gDNAContig 3501 3700 GTATCTAGAAACTAGATAGGAG
sanguinalis 1 ATGACACAGGAAAAACGTCATCC
CTGGTTTATTTATTACAAAAACA
ATACTCCACAAATGATGTAATAT
GAGAATCCCATTGAGCAGCAGA
GTAACTATCCTGCATCACCATTTT
CTCGAATAAAATCAGAGCTCGGT
ATCTTTTTGATCAGCTGGTTCAGT
CTTCCATTCTTCTTCT
567 Digitaria DHP_A41_2 gDNAContig 3676 3875 CATCTCCTATCTAGTTTCTAGATA
sanguinalis 2 CTTCAATGAAGCATGGTTCAACT
CAGATCACTTGGAAAGAGTAGTC

AAGGAATAAGGTTACAGAATCA
GTTAGTAATTACAGATTCTTACCT
CTTGTGGTCCTATTTTAGATGATT
TTCCAGAACATTTTCTTTCCAATT
TAATAATATCAGAAGGGCCTAAT
TTGTGTGTATCTT
568 Digitaria D
H P_A41_2 gD NACo ntig 3676 3875 AAGATACACACAAATTAGGCCCT
sanguinalis 2 TCTGATATTATTAAATTGGAAAG
AAAATGTTCTGGAAAATCATCTA
AAATAGGACCACAAGAGGTAAG
AATCTGTAATTACTAACTGATTCT
GTAACCTTATTCCTTGACTACTCT
TTCCAAGTGATCTGAGTTGAACC
ATGCTTCATTGAAGTATCTAGAA
ACTAGATAGGAGATG
569 Digitaria DHP_A42_1 cDNAContig 1 200 GCTCGTTCGTTTACGCGATGTTC
sanguinalis GCTTGAGGGATGTTCAACTGACC
AAGAGATTGTGATTGCTATGGG
AAGCAACGTGGGTGATGGAGTC
AGTACATTTGACAGGGCATTACA
AATGATGAAAAGCTCAGGCGTG
AACATCACTAGGCATGCCTGTCT
ATATGAGACTGCCCCTGCTTATG
TGACCGATCAGCCACGGTT
570 Digitaria DHP_A42_1 cDNAContig 1 sanguinalis AGCAGGGGCAGTCTCATATAGA
CAGGCATGCCTAGTGATGTTCAC
GCCTGAGCTTTTCATCATTTGTAA
TGCCCTGTCAAATGTACTGACTC
CATCACCCACGTTGCTTCCCATA
GCAATCACAATCTCTTGGTCAGT
TGAACATCCCTCAAGCGAACATC
GCGTAAACGAACGAGC
571 Digitaria D H P_A42_2 cDNAContig 176 375 CTTATGTGACCGATCAGCCACGG
sanguinalis TTCCTGAACTCTGCCATTCGAGG
TACGACTAGGCTGGGACCTCACG
AGTTGCTTAAGAAACTAAAGGA
AATTGAGAAGGATATAGGACGC
ACTGGTGGAATAAGGTATGGCC
CAAGACCAATCGATCTAGATATA
CTTCTGTACGGCAATTCCCAGAT
TGATACTGAGGCTCTAATT
572 Digitaria D H P_A42_2 cDNAContig 176 375 AATTAGAGCCTCAGTATCAATCT
sanguinalis GGGAATTGCCGTACAGAAGTAT
ATCTAGATCGATTGGTCTTGGGC
CATACCTTATTCCACCAGTGCGTC
CTATATCCTTCTCAATTTCCTTTA

GTTTCTTAAGCAACTCGTGAGGT
CCCAGCCTAGTCGTACCTCGAAT
GGCAGAGTTCAGGAACCGTGGC
TGATCGGTCACATAAG
573 Digitaria DHP_A42_3 cDNAContig 351 550 CCAGATTGATACTGAGGCTCTAA
sanguinalis TTGTGCCACATGAACGCATCCAG
GAGAGGCCATTTGTTCTAGCACC
TCTTGTTGACCTTCTAGGTGCATC
TGGCAATGATAGTGTCGAAACA
AGCTGGCACTCTCTTTCAAAGTG
CAGTGGTGGTTTCTTTGAATTAT
GGAATAAACTTGGGGGTGAATC
TATAATTGGAACAGAAA
574 Digitaria DHP_A42_3 cDNAContig 351 550 TTTCTGTTCCAATTATAGATTCAC
sanguinalis CCCCAAGTTTATTCCATAATTCAA
AGAAACCACCACTGCACTTTGAA
AGAGAGTGCCAGCTTGTTTCGAC
ACTATCATTGCCAGATGCACCTA
GAAGGTCAACAAGAGGTGCTAG
AACAAATGGCCTCTCCTGGATGC
GTTCATGTGGCACAATTAGAGCC
TCAGTATCAATCTGG
575 Digitaria DHP_A42_4 cDNAContig 526 725 GGTGAATCTATAATTGGAACAGA
sanguinalis AAGTATTAAAAGGGTATTACCTG
TTGGGAATCATTTGTTTGATTGG
TGTGAGAGAACCCTCGTCATGG
GGGTCCTTAATCTAACACCAGAC
AGCTTTAGTGATGGAGGTAAGTT
TCAACAAGTGGAAGCTGCTATTT
CTCAGGCTAAATTATTAATTTCA
GAAGGTGCAGATATCAT
576 Digitaria DHP_A42_4 cDNAContig 526 725 ATGATATCTGCACCTTCTGAAATT
sanguinalis AATAATTTAGCCTGAGAAATAGC
AGCTTCCACTTGTTGAAACTTACC
TCCATCACTAAAGCTGTCTGGTG
TTAGATTAAGGACCCCCATGACG
AGGGTTCTCTCACACCAATCAAA
CAAATGATTCCCAACAGGTAATA
CCCTTTTAATACTTTCTGTTCCAA
TTATAGATTCACC
577 Digitaria DHP_A42_5 cDNAContig 701 900 TAATTTCAGAAGGTGCAGATATC
sanguinalis ATAGATATTGGTGCTCAATCTAC
CAGGCCTTTTGCAAAGAGATTAT
CTCCAAACGAAGAAATTGAAAG
ATTGGTTCCTGTTCTGGATGTGA
TTACGAAAATTCCTGAAATGGAG
GGAAAGTTGCTCTCAGTGGATAC

ATTCTATGCAGAAGTTGCATGTG
AAGCTGTGAAAAGAGGA
578 Digitaria DHP_A42_5 cDNAContig 701 900 TCCTCTTTTCACAGCTTCACATGC
sanguinalis AACTTCTGCATAGAATGTATCCA
CTGAGAGCAACTTTCCCTCCATTT
CAGGAATTTTCGTAATCACATCC
AGAACAGGAACCAATCTTTCAAT
TTCTTCGTTTGGAGATAATCTCTT
TGCAAAAGGCCTGGTAGATTGA
GCACCAATATCTATGATATCTGC
ACCTTCTGAAATTA
579 Digitaria DHP_A42_6 cDNAContig 876 1075 TGCATGTGAAGCTGTGAAAAGA
sanguinalis GGAGTTCACATGATCAATGATGT
ATCTGGTGGACAGCTTGACCCCA
AAATTCTTAAAGTTGCTGCTGAA
CTCAAAGTTCCGTATGTTGCAAT
GCACATGAGGGGAGATCCATCA
ACAATGCAAAGTGAACAAAATTT
ACAGTATGACGATGTCTGCAAG
GAAGTTGCTTCAGAGCTAT
580 Digitaria DHP_A42_6 cDNAContig 876 1075 ATAGCTCTGAAGCAACTTCCTTG
sanguinalis CAGACATCGTCATACTGTAAATT
TTGTTCACTTTGCATTGTTGATGG
ATCTCCCCTCATGTGCATTGCAAC
ATACGGAACTTTGAGTTCAGCAG
CAACTTTAAGAATTTTGGGGTCA
AGCTGTCCACCAGATACATCATT
GATCATGTGAACTCCTCTTTTCAC
AGCTTCACATGCA
581 Digitaria DHP_A42_7 cDNAContig 1051 1250 TGCAAGGAAGTTGCTTCAGAGCT
sanguinalis ATATGCACAGGTGAGAGAAGCA
GAGTTATCTGGGATTCCATTGTG
GAGGATAGTTCTAGATCCAGGC
ATTGGGTTCTCCAAGAAATCCAA
ACATAACCTTGAAGTAATTATGG
GATTGGAATCCATTAGGAGGGA
GATGAGTAAAATGAGTATTGGT
GCTTCACATGTGCCAATATT
582 Digitaria DHP_A42_7 cDNAContig 1051 1250 AATATTGGCACATGTGAAGCACC
sanguinalis AATACTCATTTTACTCATCTCCCT
CCTAATGGATTCCAATCCCATAA
TTACTTCAAGGTTATGTTTGGATT
TCTTGGAGAACCCAATGCCTGGA
TCTAGAACTATCCTCCACAATGG
AATCCCAGATAACTCTGCTTCTCT
CACCTGTGCATATAGCTCTGAAG
CAACTTCCTTGCA

583 Digitaria DHP_A42_8 cDNAContig 1226 1425 TTGGTGCTTCACATGTGCCAATA
sanguinalis TTACTGGGACCCTCTAGGAAAAG
ATTTTTGGGTGAAATATGCAATC
GTGAAAATCCAGTTGAGAGAGA
TGTTGCTACTGTTGCAGCTGTGA
CGGCGGGTATTTTGAATGGTGCT
AACATAGTAAGGGTACATAATGC
AGGATACAGTTCAGATGCTGCAA
AGTTTTGTGATGCATTG
584 Digitaria DHP_A42_8 cDNAContig 1226 1425 CAATGCATCACAAAACTTTGCAG
sanguinalis CATCTGAACTGTATCCTGCATTAT
GTACCCTTACTATGTTAGCACCAT
TCAAAATACCCGCCGTCACAGCT
GCAACAGTAGCAACATCTCTCTC
AACTGGATTTTCACGATTGCATA
TTTCACCCAAAAATCTTTTCCTAG
AGGGTCCCAGTAATATTGGCACA
TGTGAAGCACCAA
585 Euphorbia DHP_A35_1 gDNAContig 1 heterophylla TAAAAATAAATTATAATAATATA
AAATATAAAAATTAATTTAAACC
ATGTTTTAAAAATAGTGTTATGA
AAAACTCCGCTTGGGCGCCGTCT
AGATAGTTTACTTAGGCTGATTT
TTAAAACAAAACCCCCCGCTTAA
CCCGCCTAAATCGGTCAATTGTT
TATATCCTTATGACTA
586 Euphorbia DHP_A35_1 gDNAContig 1 heterophylla GACCGATTTAGGCGGGTTAAGC
GGGGGGTTTTGTTTTAAAAATCA
GCCTAAGTAAACTATCTAGACGG
CGCCCAAGCGGAGTTTTTCATAA
CACTATTTTTAAAACATGGTTTAA
ATTAATTTTTATATTTTATATTATT
ATAATTTATTTTTATTTTTATATTT
ATATTTATATTT
587 Euphorbia DHP_A35_2 gDNAContig 176 375 TCAATTGTTTATATCCTTATGACT
heterophylla ACTTAAAATCGCAGCGGTGTTAT
GGTGAATTATCATGTTTTAATGA
GCTTATGAAATGCAATAATAAAA
AAATAACCATTAATAATTTGATA
TACATTTATCGGGAAAAATGAAA
TAATAAAAAATAAAAAAATATCA
AAAAAATCTATAAAATATTTGTA
CCTTTTTCAATTAGT
588 Euphorbia DHP_A35_2 gDNAContig 176 375 ACTAATTGAAAAAGGTACAAATA
heterophylla TTTTATAGATTTTTTTGATATTTTT

TTATTTTTTATTATTTCATTTTTCC
CGATAAATGTATATCAAATTATT
AATGGTTATTTTTTTATTATTGCA
TTTCATAAGCTCATTAAAACATG
ATAATTCACCATAACACCGCTGC
GATTTTAAGTAGTCATAAGGATA
TAAACAATTGA
589 Euphorbia DHP_A35_3 gDNAContig 351 550 AATATTTGTACCTTTTTCAATTAG
heterophylla TACCCATTTTGTATATTAAAACAA
TAAAAATGATCCAGATTAATAAA
TAGAAAAAGTATTAATAACCCGA
AAATATCAAATATCAAAATATAA
TGAAACATGAACACGAAAACAC
AATAAAGAAGTTGGTATCACAAA
CACAAAGACACCCTTAAAGCTCC
TATGTTTGCGGAGAG
590 Euphorbia DHP_A35_3 gDNAContig 351 550 CTCTCCGCAAACATAGGAGCTTT
heterophylla AAGGGTGTCTTTGTGTTTGTGAT
ACCAACTTCTTTATTGTGTTTTCG
TGTTCATGTTTCATTATATTTTGA
TATTTGATATTTTCGGGTTATTAA
TACTTTTTCTATTTATTAATCTGG
ATCATTTTTATTGTTTTAATATAC
AAAATGGGTACTAATTGAAAAA
GGTACAAATATT
591 Euphorbia DHP_A35_4 gDNAContig 526 725 TTAAAGCTCCTATGTTTGCGGAG
heterophylla AGTTGTAAGTCGACTAATTTCAG
ATTGAAAAAGTTAAAAATGGCCA
ACTTTTTTAGCTATGAGGTTAGA
TTAGATACGAGAATGCCTTTGTG
AAAAGCTGGTCACTATTTCTTCAT
TCGCGTGGCAATTAACCCGGCAT
AATCGATAGCCAATTCACGGACA
AGGTCAAAGGTATCA
592 Euphorbia DHP_A35_4 gDNAContig 526 725 TGATACCTTTGACCTTGTCCGTG
heterophylla AATTGGCTATCGATTATGCCGGG
TTAATTGCCACGCGAATGAAGAA
ATAGTGACCAGCTTTTCACAAAG
GCATTCTCGTATCTAATCTAACCT
CATAGCTAAAAAAGTTGGCCATT
TTTAACTTTTTCAATCTGAAATTA
GTCGACTTACAACTCTCCGCAAA
CATAGGAGCTTTAA
593 Euphorbia DHP_A35_5 gDNAContig 701 900 TTCACGGACAAGGTCAAAGGTAT
heterophylla CAGCTTTACTCAACCCTTCGCTTT
GATACTAAATTGCTGATTCTTATT
CTGATTATGCTTTATTTCGTTACT

TCATTTTATTGTCTATGCACATAA
GCTGTTCGACAAAAAGCCTGAAT
GAAACTGTGAGTGCTGGTACGC
GGTTACAATACTCCTGATTATGT
CCAATGATTATTT
594 Euphorbia DHP_A35_5 gDNAContig 701 900 AAATAATCATTGGACATAATCAG
heterophylla GAGTATTGTAACCGCGTACCAGC
ACTCACAGTTTCATTCAGGCTTTT
TGTCGAACAGCTTATGTGCATAG
ACAATAAAATGAAGTAACGAAAT
AAAGCATAATCAGAATAAGAATC
AGCAATTTAGTATCAAAGCGAAG
GGTTGAGTAAAGCTGATACCTTT
GACCTTGTCCGTGAA
595 Euphorbia DHP_A35_6 gDNAContig 876 1075 TCCTGATTATGTCCAATGATTATT
heterophylla TGGGTACTTTAATACCCTAATTTG
TGAAGTTCACTAGCGAAAGGGT
AGTTTCTTCCCCGGTTATTTATCA
TTTTATGAATCCCCAAGTCTTTGA
AGTACAGCTGATTAAAATGCAAG
TACTCATAAGTTGTCATTGTATGT
TTGAAATCCTTACGTTGTTGGTAT
TTTACAGAATT
596 Euphorbia DHP_A35_6 gDNAContig 876 1075 AATTCTGTAAAATACCAACAACG
heterophylla TAAGGATTTCAAACATACAATGA
CAACTTATGAGTACTTGCATTTTA
ATCAGCTGTACTTCAAAGACTTG
GGGATTCATAAAATGATAAATAA
CCGGGGAAGAAACTACCCTTTCG
CTAGTGAACTTCACAAATTAGGG
TATTAAAGTACCCAAATAATCAT
TGGACATAATCAGGA
597 Euphorbia DHP_A35_7 gDNAContig 1051 1250 TACGTTGTTGGTATTTTACAGAA
heterophylla TTTGTACTGAAGAAGCATAAATT
CATACCTAGTTAGGCTTCCTTGTT
CCTAATATGCTTCTCCTCAAGCG
GCTGGTGTCCACTAAACAAGGGT
TCAATAATGCCATCAACCGTTTT
GGAGGTAATATAGTTATGCCTAT
GATGCTTTAAGTCGCTTTTCATCG
ATTTGTTACATTAC
598 Euphorbia DHP_A35_7 gDNAContig 1051 1250 GTAATGTAACAAATCGATGAAAA
heterophylla GCGACTTAAAGCATCATAGGCAT
AACTATATTACCTCCAAAACGGT
TGATGGCATTATTGAACCCTTGT
TTAGTGGACACCAGCCGCTTGAG
GAGAAGCATATTAGGAACAAGG

AAGCCTAACTAGGTATGAATTTA
TGCTTCTTCAGTACAAATTCTGTA
AAATACCAACAACGTA
599 Euphorbia DH P_A35_8 gDNACo ntig 1226 1425 GCTTTTCATCGATTTGTTACATTA
heterophylla CCAGGCTAAGATTCTGCAATTGA
AGTTAGAAATCGACGAGTCTTAT
CTTGAAAAGTATGGATTTTGTTTT
GTCACCCTGGGGCCAGTTCAAGA
TTGCTTTCCCAGGTTGCTGTCTCG
GCACCACATCCTAATCCAAAACC
CTAAGGTGATGGGTTAATGGGT
CCCTTCGCAGTTAT
600 Euphorbia DHP_A35_8 gDNAContig 1226 1425 ATAACTGCGAAGGGACCCATTAA
heterophylla CCCATCACCTTAGGGTTTTGGAT
TAGGATGTGGTGCCGAGACAGC
AACCTGGGAAAGCAATCTTGAAC
TGGCCCCAGGGTGACAAAACAA
AATCCATACTTTTCAAGATAAGA
CTCGTCGATTTCTAACTTCAATTG
CAGAATCTTAGCCTGGTAATGTA
ACAAATCGATGAAAAGC
601 Euphorbia DH P_A35_9 gDNACo ntig 1401 1600 GGTTAATGGGTCCCTTCGCAGTT
heterophylla ATATTTCATTCACTTAACTCATTA
GCTTCCATGTGGATAATCAACTC
CACACTTGCCCCAAAACTGTATA
AACGTAGATTTTGACCTTTGGAA
ATCATTAGCTGGACAAATCCTAA
CTAATTAGTATCAAGAGCCAAAA
TCTTTTGACCAAGACCAAATATG
TTGTTTCATTGTTGC
602 Euphorbia DH P_A35_9 gDNACo ntig 1401 1600 GCAACAATGAAACAACATATTTG
heterophylla GTCTTGGTCAAAAGATTTTGGCT
CTTGATACTAATTAGTTAGGATTT
GTCCAGCTAATGATTTCCAAAGG
TCAAAATCTACGTTTATACAGTTT
TGGGGCAAGTGTGGAGTTGATT
ATCCACATGGAAGCTAATGAGTT
AAGTGAATGAAATATAACTGCG
AAGGGACCCATTAACC
603 Euphorbia DH P_A35_1 gDNACo ntig 1576 1775 ACCAAATATGTTGTTTCATTGTTG
heterophylla 0 CAGCATTGTCATCATCCTTTCTCC
ATACCGAACCAAATAGTTCGGTG
GAAGTTCATTCTCAAGAGCAAGA
AGTAGTAATTGCATTAGGAAGCA
ATGTGGGAGATAGAGTTCATAAT
TTCAACCAAGCATTGCGATTAAT
GAAAAGTTCCGGCATTAACGTAA

CTAGACATGGTTGT
604 Euphorbia DHP_A35_1 gDNAContig 1576 1775 ACAACCATGTCTAGTTACGTTAA
heterophylla 0 TGCCGGAACTTTTCATTAATCGC
AATGCTTGGTTGAAATTATGAAC
TCTATCTCCCACATTGCTTCCTAA
TGCAATTACTACTTCTTGCTCTTG
AGAATGAACTTCCACCGAACTAT
TTGGTTCGGTATGGAGAAAGGA
TGATGACAATGCTGCAACAATGA
AACAACATATTTGGT
605 Euphorbia DHP_A35_1 gDNAContig 1751 1950 CATTAACGTAACTAGACATGGTT
heterophylla 1 GTTTGTACCAGACAGCACCTGCT
TATGTCACTGACCAACCTCACTTT
CTCAACTCAGCAGTTCGAGCTTT
CACGAAACTCGGACCCCACGAGT
TATTAGGAGTTTTAAAGCAGATC
GAAAAGGACTTGGGCCGTACCA
AAGGGATTAGGTACGGACCAAG
GCCAATCGATTTGGATA
606 Euphorbia DHP_A35_1 gDNAContig 1751 1950 TATCCAAATCGATTGGCCTTGGT
heterophylla 1 CCGTACCTAATCCCTTTGGTACG
GCCCAAGTCCTTTTCGATCTGCTT
TAAAACTCCTAATAACTCGTGGG
GTCCGAGTTTCGTGAAAGCTCGA
ACTGCTGAGTTGAGAAAGTGAG
GTTGGTCAGTGACATAAGCAGG
TGCTGTCTGGTACAAACAACCAT
GTCTAGTTACGTTAATG
607 Euphorbia DHP_A35_1 gDNAContig 1926 2125 GGACCAAGGCCAATCGATTTGG
heterophylla 2 ATATACTTTTCTATGGAAAGTTCC
GGATTAATTCCGATACACTTATT
GTTCCTCATGAGAGAATATGGGA
GAGACCCTTTGTGATGGCCCCAT
TGGTGGATTTACTCGGCTCGGAA
ATCGAGAATGACACGGTCGCCA
GCTGGCATTCCTTGTCCGGCGGT
CTTTTTGAATCATGGGA
608 Euphorbia DHP_A35_1 gDNAContig 1926 2125 TCCCATGATTCAAAAAGACCGCC
heterophylla 2 GGACAAGGAATGCCAGCTGGCG
ACCGTGTCATTCTCGATTTCCGA
GCCGAGTAAATCCACCAATGGG
GCCATCACAAAGGGTCTCTCCCA
TATTCTCTCATGAGGAACAATAA
GTGTATCGGAATTAATCCGGAAC
TTTCCATAGAAAAGTATATCCAA
ATCGATTGGCCTTGGTCC
609 Euphorbia DHP_A35_1 gDNAContig 2101 2300 CCGGCGGTCTTTTTGAATCATGG

heterophylla 3 GAAAAGTTGGGCGGCGAAAGCC
TGATCGGGAAGGACGGAATGAA
AAGAGTTACCCCGATCGGAAACC
ATTTATGGGATTGGTCGGAAAA
GACTTCTGTAATGGGAATTATCA
ATTTAACCCCCGATAGTTTCAGC
GATGGGGGCAAGTTGACAACTA
TTGATTCTATAGTTTCTAAG
610 Euphorbia DHP_A35_1 gDNAContig 2101 2300 CTTAGAAACTATAGAATCAATAG
heterophylla 3 TTGTCAACTTGCCCCCATCGCTG
AAACTATCGGGGGTTAAATTGAT
AATTCCCATTACAGAAGTCTTTTC
CGACCAATCCCATAAATGGTTTC
CGATCGGGGTAACTCTTTTCATT
CCGTCCTTCCCGATCAGGCTTTC
GCCGCCCAACTTTTCCCATGATTC
AAAAAGACCGCCGG
611 Euphorbia DHP_A35_1 gDNAContig 2276 2475 AACTATTGATTCTATAGTTTCTAA
heterophylla 4 GGTTCGCTCGATGATTTCCGAAG
GGGCGGATATTGTCGATTTTGGT
GCTCAATCGACACGCCCTATGGC
TAAAAGGATATCCCCGCAAGAG
GAAATGGATAGGCTAATCCCTGT
ATTGGAAGCGGTTGTGAAAATA
CCTGAGATGACCGGAAAGCTCAT
ATCGGTCGACACATTTT
612 Euphorbia DHP_A35_1 gDNAContig 2276 2475 AAAATGTGTCGACCGATATGAGC
heterophylla 4 TTTCCGGTCATCTCAGGTATTTTC
ACAACCGCTTCCAATACAGGGAT
TAGCCTATCCATTTCCTCTTGCGG
GGATATCCTTTTAGCCATAGGGC
GTGTCGATTGAGCACCAAAATCG
ACAATATCCGCCCCTTCGGAAAT
CATCGAGCGAACCTTAGAAACTA
TAGAATCAATAGTT
613 Euphorbia DHP_A35_1 gDNAContig 2451 2650 AAGCTCATATCGGTCGACACATT
heterophylla 5 TTACTCGGAAGTCGCCTTAGAAG
CGGTCCAAAGAGGAGCAAATCT
CGTAAATGACGTATCTGGGGGG
CAATTAGATCCAAAAATGACGGA
AAATGTCGCTAATCTCGAGGTAC
CATATATCTTAATGCACATGAGG
GGGGACCCCACCACAATGCAGA
ACACTCAGAATCTAAAATA
614 Euphorbia DHP_A35_1 gDNAContig 2451 2650 TATTTTAGATTCTGAGTGTTCTGC
heterophylla 5 ATTGTGGTGGGGTCCCCCCTCAT
GTGCATTAAGATATATGGTACCT

CGAGATTAGCGACATTTTCCGTC
ATTTTTGGATCTAATTGCCCCCCA
GATACGTCATTTACGAGATTTGC
TCCTCTTTGGACCGCTTCTAAGG
CGACTTCCGAGTAAAATGTGTCG
ACCGATATGAGCTT
615 Euphorbia DHP_A35_1 gDNAContig 2626 2825 TGCAGAACACTCAGAATCTAAAA
heterophylla 6 TACGATAATGTTTGTAAAGAGGT
TGCCTTTGAGTTGTTTTCGAGGG
TTAAAGAAGCCGAGATGTCCGG
AATTCCAGCCTGGCGAATGATTA
TTGACCCTGGAATTGGGTTTTCG
AAGAACACGAATCAGAATCTGG
AAATCCTGATGGGAATTCCAAGG
ATCCGGGCCGAGATTGGG
616 Euphorbia DHP_A35_1 gDNAContig 2626 2825 CCCAATCTCGGCCCGGATCCTTG
heterophylla 6 GAATTCCCATCAGGATTTCCAGA
TTCTGATTCGTGTTCTTCGAAAAC
CCAATTCCAGGGTCAATAATCAT
TCGCCAGGCTGGAATTCCGGACA
TCTCGGCTTCTTTAACCCTCGAAA
ACAACTCAAAGGCAACCTCTTTA
CAAACATTATCGTATTTTAGATTC
TGAGTGTTCTGCA
617 Euphorbia DHP_A35_1 gDNAContig 2801 3000 TCCAAGGATCCGGGCCGAGATT
heterophylla 7 GGGAGGGAAAGCGTGGGTATTT
CTCGTGGGCCGATTCTTATTGGG
CCTTCGAGAAAGAGGTTTTTGGG
CGAAATTTGCGAACGCCCTAAAG
CAACTGAAAGAGACCCGGCAAC
TGTTGCTTCTGTTACTACTGGGA
TTCTGGGAGGGGCAAATATTGTT
AGAGTTCATAATGTTAGGG
618 Euphorbia DHP_A35_1 gDNAContig 2801 3000 CCCTAACATTATGAACTCTAACA
heterophylla 7 ATATTTGCCCCTCCCAGAATCCCA
GTAGTAACAGAAGCAACAGTTG
CCGGGTCTCTTTCAGTTGCTTTA
GGGCGTTCGCAAATTTCGCCCAA
AAACCTCTTTCTCGAAGGCCCAA
TAAGAATCGGCCCACGAGAAAT
ACCCACGCTTTCCCTCCCAATCTC
GGCCCGGATCCTTGGA
619 Euphorbia DHP_A35_1 gDNAContig 2976 3175 ATTGTTAGAGTTCATAATGTTAG
heterophylla 8 GGATAATGTGGATGCTGTGAAG
CTATGCGACTCGATGATGAAACT
AAAGAGGTCTACTTAAAAAGTAT
CGGGTATAGTTCGATTTCTTTCTT

TCCGAATCTTTTGTTTGACTTTCA
GATTGTCTTTGATTGGCAAAACA
GTTTCGGCTGCGGTTACTGTTGT
TGTTTGTTGTTGCAG
620 Euphorbia DHP_A35_1 gDNAContig 2976 3175 CTGCAACAACAAACAACAACAGT
heterophylla 8 AACCGCAGCCGAAACTGTTTTGC
CAATCAAAGACAATCTGAAAGTC
AAACAAAAGATTCGGAAAGAAA
GAAATCGAACTATACCCGATACT
TTTTAAGTAGACCTCTTTAGTTTC
ATCATCGAGTCGCATAGCTTCAC
AGCATCCACATTATCCCTAACATT
ATGAACTCTAACAAT
621 Euphorbia DHP_A35_1 gDNAContig 3151 3350 TTACTGTTGTTGTTTGTTGTTGCA
heterophylla 9 GTTTAGTGTTGTTGTTTCTAATTG
TGATTTTAAGTTATTGTTGTTAGC
TGATTTGTACTTATTGTTTGGTGA
AAATATAATTCACGGTTGCGGTT
GGAGGTATAAATTACTAAAATAG
ACATATTTTAAATAAATTATAAGT
TATATTGAAGGGTATTTAGGATA
AATAAAAATCC
622 Euphorbia DHP_A35_1 gDNAContig 3151 3350 GGATTTTTATTTATCCTAAATACC
heterophylla 9 CTTCAATATAACTTATAATTTATT
TAAAATATGTCTATTTTAGTAATT
TATACCTCCAACCGCAACCGTGA
ATTATATTTTCACCAAACAATAA
GTACAAATCAGCTAACAACAATA
ACTTAAAATCACAATTAGAAACA
ACAACACTAAACTGCAACAACAA
ACAACAACAGTAA
623 Euphorbia DHP_A35_2 gDNAContig 3326 3525 GGGTATTTAGGATAAATAAAAAT
heterophylla 0 CCAAACCACAAAAAAAAACCCGT
AAAACTATTGATTTGGTGAGGTT
TGGAAAAGGAGATAAATCCCTTA
TAAAAAAAACAACTTCATATATG
TTTTGAAACTTAACCAAACACTT
GTATACCTCCTTTTCCTTTTCAAA
CCTCAAAAGACCTTTTTATAGTA
AGCTCTTTTGAAGTC
624 Euphorbia DHP_A35_2 gDNAContig 3326 3525 GACTTCAAAAGAGCTTACTATAA
heterophylla 0 AAAGGTCTTTTGAGGTTTGAAAA
GGAAAAGGAGGTATACAAGTGT
TTGGTTAAGTTTCAAAACATATA
TGAAGTTGTTTTTTTTATAAGGG
ATTTATCTCCTTTTCCAAACCTCA
CCAAATCAATAGTTTTACGGGTT

TTTTTTTGTGGTTTGGATTTTTAT
TTATCCTAAATACCC
625 Euphorbia DHP_A35_2 gDNAContig 3501 3700 TTTTATAGTAAGCTCTTTTGAAGT
heterophylla 1 CTATACGCTATTGTTTCCGAATCA
TTTTGGACTTTTCATCGAAATCAA
CAATACTGCTAGCTAGTCATATTT
CAAGATATTTGGGATGTAAAGAT
CAAGGTAGTTGTTGTTGTATTCT
GTTCTCATCAGCAAAATTTGTTAT
AACTCCACCAAGATTTAATTTTTT
CCAATCTGAA
626 Euphorbia DHP_A35_2 gDNAContig 3501 3700 TTCAGATTGGAAAAAATTAAATC
heterophylla 1 TTGGTGGAGTTATAACAAATTTT
GCTGATGAGAACAGAATACAAC
AACAACTACCTTGATCTTTACATC
CCAAATATCTTGAAATATGACTA
GCTAGCAGTATTGTTGATTTCGA
TGAAAAGTCCAAAATGATTCGGA
AACAATAGCGTATAGACTTCAAA
AGAGCTTACTATAAAA
627 Euphorbia DHP_A35_2 gDNAContig 3676 3875 AAGATTTAA 11111 TCCAATCTGA
heterophylla 2 AAATGTCTTATGTTATAGTAAGA
AGTGAGATGAGTTTATGTCTTTG
TGAAAAGATTTTGCCCAATTAAT
GCAAAAATTTTGTGACAAGACAA
GAGGGGTGAAAGAGACAAGCA
ACAAGAGAAAGCAGTGAAAGGG
GCAAATGTTAGGAAACTGTTAGC
TAGAAAAGGGTAGAGGGT
628 Euphorbia DHP_A35_2 gDNAContig 3676 3875 ACCCTCTACCCTTTTCTAGCTAAC
heterophylla 2 AGTTTCCTAACATTTGCCCCTTTC
ACTGCTTTCTCTTGTTGCTTGTCT
CTTTCACCCCTCTTGTCTTGTCAC
AAAATTTTTGCATTAATTGGGCA
AAATCTTTTCACAAAGACATAAA
CTCATCTCACTTCTTACTATAACA
TAAGACATTTTCAGATTGGAAAA
AATTAAATCTT
629 Euphorbia DHP_A35_2 gDNAContig 3851 4050 TGTTAGCTAGAAAAGGGTAGAG
heterophylla 3 GGTGGCCTACTTTACCAATTTGA
GCATTAAAAAAGCACATGGCTAT
GTATTTTAGACCAAAGTCCCTATT
GTTGGCAGATGAACTAAGCAAC
CATATGGTTCATTAACTAACTAA
CTAGTTATTGCAAATTTGACTGTT
CCAATTCATCAAAGGACTCTCCC
CATAGACCATTCAACA

630 Euphorbia DHP_A35_2 gDNAContig 3851 4050 TGTTGAATGGTCTATGGGGAGA
heterophylla 3 GTCCTTTGATGAATTGGAACAGT
CAAATTTGCAATAACTAGTTAGT
TAGTTAATGAACCATATGGTTGC
TTAGTTCATCTGCCAACAATAGG
GACTTTGGTCTAAAATACATAGC
CATGTGCTTTTTTAATGCTCAAAT
TGGTAAAGTAGGCCACCCTCTAC
CCTTTTCTAGCTAACA
631 Euphorbia DHP_A35_2 gDNAContig 4026 4225 GACTCTCCCCATAGACCATTCAA
heterophylla 4 CACTTGGGTTCTAGCCCTCCCTCT
CACCCTCAGACAACCCTTGTGAA
CCTCATTTTCATCATTGGTCCCCT
TTTTTGTTAGGACTACACTTGTCT
CTATAAAATCTCTTCTAGCCATGT
GTTATGTGTAGACTTTTTCGGTTT
GAGGATTGGGTCGGGTTCGGGC
TGGGTCTCGTCG
632 Euphorbia DHP_A35_2 gDNAContig 4026 4225 CGACGAGACCCAGCCCGAACCC
heterophylla 4 GACCCAATCCTCAAACCGAAAAA
GTCTACACATAACACATGGCTAG
AAGAGATTTTATAGAGACAAGT
GTAGTCCTAACAAAAAAGGGGA
CCAATGATGAAAATGAGGTTCAC
AAGGGTTGTCTGAGGGTGAGAG
GGAGGGCTAGAACCCAAGTGTT
GAATGGTCTATGGGGAGAGTC
633 Euphorbia DHP_A35_2 gDNAContig 4201 4400 GTCGGGTTCGGGCTGGGTCTCG
heterophylla 5 TCGGACTTTTTACTGCAAACATC
AAACTAGGGTTCTAAACCCATAC
TTCAGTACTCTGGTTCGGATTGA
ACTTGCGAGATCATTCTAAATTC
AATTTACGGCTCATAGATTATATT
TGAGAGTTTTGAGTTTTGGGTGG
ATTAGATTGAAAACGACTATTTT
TTGTTGTATAAATATA
634 Euphorbia DHP_A35_2 gDNAContig 4201 4400 TATATTTATACAACAAAAAATAG
heterophylla 5 TCGTTTTCAATCTAATCCACCCAA
AACTCAAAACTCTCAAATATAAT
CTATGAGCCGTAAATTGAATTTA
GAATGATCTCGCAAGTTCAATCC
GAACCAGAGTACTGAAGTATGG
GTTTAGAACCCTAGTTTGATGTTT
GCAGTAAAAAGTCCGACGAGAC
CCAGCCCGAACCCGAC
635 Euphorbia DHP_A37_1 cDNAContig 1 heterophylla CATACCGAACCAAATAGTTCGGT

GGAAGTTCATTCTCAAGAGCAAG
AAGTAGTAATTGCATTAGGAAGC
AATGTGGGAGATAGAGTTCATA
ATTTCAACCAAGCATTGCAATTA
ATGAAAAGTTCCGGCATTAACAT
AACTAGACATGGTTGTTTGTACC
AGACAGCACCTGCTTA
636 Euphorbia DHP_A37_1 cDNAContig 1 heterophylla ACAACCATGTCTAGTTATGTTAA
TGCCGGAACTTTTCATTAATTGC
AATGCTTGGTTGAAATTATGAAC
TCTATCTCCCACATTGCTTCCTAA
TGCAATTACTACTTCTTGCTCTTG
AGAATGAACTTCCACCGAACTAT
TTGGTTCGGTATGGAGAAAGGA
TGATGACAATGCTGC
637 Euphorbia DHP_A37_2 cDNAContig 176 375 GTTTGTACCAGACAGCACCTGCT
heterophylla TATGTCACTGACCAACCTCACTTT
CTCAACTCAGCAGTTCGAGCTTT
CACGAAACTCGGACCCCACGAGT
TATTAGGAGTTTTAAAGCAGATC
GAAAAGGACTTGGGCCGTACCA
AAGGGATTAGGTACGGACCAAG
GCCAATCGATTTGGATATACTTTT
CTATGGAAAGTTCCGG
638 Euphorbia DHP_A37_2 cDNAContig 176 375 CCGGAACTTTCCATAGAAAAGTA
heterophylla TATCCAAATCGATTGGCCTTGGT
CCGTACCTAATCCCTTTGGTACG
GCCCAAGTCCTTTTCGATCTGCTT
TAAAACTCCTAATAACTCGTGGG
GTCCGAGTTTCGTGAAAGCTCGA
ACTGCTGAGTTGAGAAAGTGAG
GTTGGTCAGTGACATAAGCAGG
TGCTGTCTGGTACAAAC
639 Euphorbia DHP_A37_3 cDNAContig 351 550 TATACTTTTCTATGGAAAGTTCCG
heterophylla GATTAATTCCGATACACTTATTGT
TCCTCATGAGAGAATATGGGAG
AGACCCTTTGTGATGGCCCCATT
GGTGGATTTACTCGGCTCGGAAA
TCGAGAATGACACGGTCGCCAG
CTGGCATTCCTTGTCCGGCGGTC
TTTTTGAATCATGGGAAAAGTTG
GGCGGCGAAAGCCTGA
640 Euphorbia DHP_A37_3 cDNAContig 351 550 TCAGGCTTTCGCCGCCCAACTTTT
heterophylla CCCATGATTCAAAAAGACCGCCG
GACAAGGAATGCCAGCTGGCGA
CCGTGTCATTCTCGATTTCCGAG

CCGAGTAAATCCACCAATGGGG
CCATCACAAAGGGTCTCTCCCAT
ATTCTCTCATGAGGAACAATAAG
TGTATCGGAATTAATCCGGAACT
TTCCATAGAAAAGTATA
641 Euphorbia DHP_A37_4 cDNAContig 526 725 GAAAAGTTGGGCGGCGAAAGCC
heterophylla TGATCGGGAAGGACGGAATGAA
AAGAGTTACCCCGATCGGAAACC
ATTTATGGGATTGGTCGGAAAA
GACTTCTGTAATGGGAATTATCA
ATTTAACCCCCGATAGTTTCAGC
GATGGGGGCAAGTTGACAACTA
TTGATTCTATAGTTTCTAAGGTTC
GCTCGATGATTTCCGAAGG
642 Euphorbia DH P_A37_4 cDNACo ntig 526 725 CCTTCGGAAATCATCGAGCGAAC
heterophylla CTTAGAAACTATAGAATCAATAG
TTGTCAACTTGCCCCCATCGCTG
AAACTATCGGGGGTTAAATTGAT
AATTCCCATTACAGAAGTCTTTTC
CGACCAATCCCATAAATGGTTTC
CGATCGGGGTAACTCTTTTCATT
CCGTCCTTCCCGATCAGGCTTTC
GCCGCCCAACTTTTC
643 Euphorbia DH P_A37_5 cDNACo ntig 701 900 AGGTTCGCTCGATGATTTCCGAA
heterophylla GGGGCGGATATTGTCGATTTTG
GTGCTCAATCGACACGCCCTATG
GCTAAAAGGATATCCCCGCAAG
AGGAAATGGATAGGCTAATCCCT
GTATTGGAAGCGGTTGTGAAAA
TACCCGAGATGACCGAAAAGCTC
ATATCGGTCGACACATTTTACTC
GGAAGTCGCCTTAGAAGCG
644 Euphorbia DH P_A37_5 cDNACo ntig 701 900 CGCTTCTAAGGCGACTTCCGAGT
heterophylla AAAATGTGTCGACCGATATGAGC
TTTTCGGTCATCTCGGGTATTTTC
ACAACCGCTTCCAATACAGGGAT
TAGCCTATCCATTTCCTCTTGCGG
GGATATCCTTTTAGCCATAGGGC
GTGTCGATTGAGCACCAAAATCG
ACAATATCCGCCCCTTCGGAAAT
CATCGAGCGAACCT
645 Euphorbia DH P_A37_6 cDNACo ntig 876 heterophylla CGGTCCAAAGAGGAGCAAATCT
CGTAAATGACGTATCTGGGGGG
CAATTAGATCCAAAAATGACGGA
AAATGTCGCTAATCTCGAGGTAC
CATATATCTTAATGCACATGAGG

GGGGACCCCACCACAATGCAGA
ACACTCAGAATCTAAAATACGAT
AATGTTTGTAAAGAGGTTG
646 Euphorbia DH P_A37_6 cDNACo ntig 876 heterophylla ATTTTAGATTCTGAGTGTTCTGCA
TTGTGGTGGGGTCCCCCCTCATG
TGCATTAAGATATATGGTACCTC
GAGATTAGCGACATTTTCCGTCA
TTTTTGGATCTAATTGCCCCCCAG
ATACGTCATTTACGAGATTTGCT
CCTCTTTGGACCGCTTCTAAGGC
GACTTCCGAGTAA
647 Euphorbia DH P_A37_7 cDNACo ntig 1051 1250 TACGATAATGTTTGTAAAGAGGT
heterophylla TGCCTTTGAGTTGTTTTCGAGGG
TTAAAGAAGCCGAGATGTCCGG
AATTCCAGCCTGGCGAATGTTTA
TTGACCCTGGAATTGGGTTTTCG
AAGAACACGAATCAGAATCTGG
AAATCCTGATGGGAATTCCAAGG
ATCCGGGCCGAGATTGGGAGGA
AAAGCGTGGGTATTTCTCG
648 Euphorbia DH P_A37_7 cDNACo ntig 1051 1250 CGAGAAATACCCACGCTTTTCCT
heterophylla CCCAATCTCGGCCCGGATCCTTG
GAATTCCCATCAGGATTTCCAGA
TTCTGATTCGTGTTCTTCGAAAAC
CCAATTCCAGGGTCAATAAACAT
TCGCCAGGCTGGAATTCCGGACA
TCTCGGCTTCTTTAACCCTCGAAA
ACAACTCAAAGGCAACCTCTTTA
CAAACATTATCGTA
649 Euphorbia DHP_A37_8 cDNAContig 1226 1425 GGAGGAAAAGCGTGGGTATTTC
heterophylla TCGTGGGCCGATTCTTATTGGGC
CTTCGAGAAAGAGGTTTTTGGGC
GAAATTTGCGAACGCCCTGAAGC
AACTGAAAGAGACCCGGCAACT
GTTGCTTCTGTTACTACTGGGAT
TCTGGGAGGGGCAAATATTGTTA
GAGTTCATAATGTTAGGGATAAT
GTGGATGCTGTGAAGCTA
650 Euphorbia DH P_A37_8 cDNACo ntig 1226 1425 TAGCTTCACAGCATCCACATTATC
heterophylla CCTAACATTATGAACTCTAACAA
TATTTGCCCCTCCCAGAATCCCA
GTAGTAACAGAAGCAACAGTTG
CCGGGTCTCTTTCAGTTGCTTCA
GGGCGTTCGCAAATTTCGCCCAA
AAACCTCTTTCTCGAAGGCCCAA
TAAGAATCGGCCCACGAGAAAT

ACCCACGCTTTTCCTCC
651 Euphorbia DHP_A36_1 cDNAContig 1 heterophylla CATACCGAACCAAATAGTTCGGT
GGAAGTTCATTCTCAAGAGCAAG
AAGTAGTAATTGCATTAGGAAGC
AATGTGGGAGATAGAGTTCATA
ATTTCAACCAAGCATTGCGATTA
ATGAAAAGTTCCGGCATTAACGT
AACTAGACATGGTTGTTTGTACC
AGACAGCACCTGCTTA
652 Euphorbia DHP_A36_1 cDNAContig 1 heterophylla ACAACCATGTCTAGTTACGTTAA
TGCCGGAACTTTTCATTAATCGC
AATGCTTGGTTGAAATTATGAAC
TCTATCTCCCACATTGCTTCCTAA
TGCAATTACTACTTCTTGCTCTTG
AGAATGAACTTCCACCGAACTAT
TTGGTTCGGTATGGAGAAAGGA
TGATGACAATGCTGC
653 Euphorbia DHP_A36_2 cDNAContig 176 375 GTTTGTACCAGACAGCACCTGCT
heterophylla TATGTCACTGACCAACCTCACTTT
CTCAACTCAGCAGTTCGAGCTTT
CACGAAACTCGGACCCCACGAGT
TATTAGGAGTTTTAAAGCAGATC
GAAAAGGACTTGGGCCGTACCA
AAGGGATTAGGTACGGACCAAG
GCCAATCGATTTGGATATACTTTT
CTATGGAAAGTTCCGG
654 Euphorbia DHP_A36_2 cDNAContig 176 375 CCGGAACTTTCCATAGAAAAGTA
heterophylla TATCCAAATCGATTGGCCTTGGT
CCGTACCTAATCCCTTTGGTACG
GCCCAAGTCCTTTTCGATCTGCTT
TAAAACTCCTAATAACTCGTGGG
GTCCGAGTTTCGTGAAAGCTCGA
ACTGCTGAGTTGAGAAAGTGAG
GTTGGTCAGTGACATAAGCAGG
TGCTGTCTGGTACAAAC
655 Euphorbia DHP_A36_3 cDNAContig 351 550 TATACTTTTCTATGGAAAGTTCCG
heterophylla GATTAATTCCGATACACTTATTGT
TCCTCATGAGAGAATATGGGAG
AGACCCTTTGTGATGGCCCCATT
GGTGGATTTACTCGGCTCGGAAA
TCGAGAATGACACGGTCGCCAG
CTGGCATTCCTTGTCCGGCGGTC
TTTTTGAATCATGGGAAAAGTTG
GGCGGCGAAAGCCTGA
656 Euphorbia DHP_A36_3 cDNAContig 351 550 TCAGGCTTTCGCCGCCCAACTTTT

heterophylla CCCATGATTCAAAAAGACCGCCG
GACAAGGAATGCCAGCTGGCGA
CCGTGTCATTCTCGATTTCCGAG
CCGAGTAAATCCACCAATGGGG
CCATCACAAAGGGTCTCTCCCAT
ATTCTCTCATGAGGAACAATAAG
TGTATCGGAATTAATCCGGAACT
TTCCATAGAAAAGTATA
657 Euphorbia DHP_A36_4 cDNAContig 526 725 GAAAAGTTGGGCGGCGAAAGCC
heterophylla TGATCGGGAAGGACGGAATGAA
AAGAGTTACCCCGATCGGAAACC
ATTTATGGGATTGGTCGGAAAA
GACTTCTGTAATGGGAATTATCA
ATTTAACCCCCGATAGTTTCAGC
GATGGGGGCAAGTTGACAACTA
TTGATTCTATAGTTTCTAAGGTTC
GCTCGATGATTTCCGAAGG
658 Euphorbia DHP_A36_4 cDNAContig 526 725 CCTTCGGAAATCATCGAGCGAAC
heterophylla CTTAGAAACTATAGAATCAATAG
TTGTCAACTTGCCCCCATCGCTG
AAACTATCGGGGGTTAAATTGAT
AATTCCCATTACAGAAGTCTTTTC
CGACCAATCCCATAAATGGTTTC
CGATCGGGGTAACTCTTTTCATT
CCGTCCTTCCCGATCAGGCTTTC
GCCGCCCAACTTTTC
659 Euphorbia DHP_A36_5 cDNAContig 701 900 AGGTTCGCTCGATGATTTCCGAA
heterophylla GGGGCGGATATTGTCGATTTTG
GTGCTCAATCGACACGCCCTATG
GCTAAAAGGATATCCCCGCAAG
AGGAAATGGATAGGCTAATCCCT
GTATTGGAAGCGGTTGTGAAAA
TACCTGAGATGACCGGAAAGCTC
ATATCGGTCGACACATTTTACTC
GGAAGTCGCCTTAGAAGCG
660 Euphorbia DHP_A36_5 cDNAContig 701 900 CGCTTCTAAGGCGACTTCCGAGT
heterophylla AAAATGTGTCGACCGATATGAGC
TTTCCGGTCATCTCAGGTATTTTC
ACAACCGCTTCCAATACAGGGAT
TAGCCTATCCATTTCCTCTTGCGG
GGATATCCTTTTAGCCATAGGGC
GTGTCGATTGAGCACCAAAATCG
ACAATATCCGCCCCTTCGGAAAT
CATCGAGCGAACCT
661 Euphorbia DHP_A36_6 cDNAContig 876 1075 TTACTCGGAAGTCGCCTTAGAAG
heterophylla CGGTCCAAAGAGGAGCAAATCT
CGTAAATGACGTATCTGGGGGG

CAATTAGATCCAAAAATGACGGA
AAATGTCGCTAATCTCGAGGTAC
CATATATCTTAATGCACATGAGG
GGGGACCCCACCACAATGCAGA
ACACTCAGAATCTAAAATACGAT
AATGTTTGTAAAGAGGTTG
662 Euphorbia DH P_A36_6 cDNACo ntig 876 heterophylla ATTTTAGATTCTGAGTGTTCTGCA
TTGTGGTGGGGTCCCCCCTCATG
TGCATTAAGATATATGGTACCTC
GAGATTAGCGACATTTTCCGTCA
TTTTTGGATCTAATTGCCCCCCAG
ATACGTCATTTACGAGATTTGCT
CCTCTTTGGACCGCTTCTAAGGC
GACTTCCGAGTAA
663 Euphorbia DH P_A36_7 cDNACo ntig 1051 1250 TACGATAATGTTTGTAAAGAGGT
heterophylla TGCCTTTGAGTTGTTTTCGAGGG
TTAAAGAAGCCGAGATGTCCGG
AATTCCAGCCTGGCGAATGATTA
TTGACCCTGGAATTGGGTTTTCG
AAGAACACGAATCAGAATCTGG
AAATCCTGATGGGAATTCCAAGG
ATCCGGGCCGAGATTGGGAGGG
AAAGCGTGGGTATTTCTCG
664 Euphorbia DH P_A36_7 cDNACo ntig 1051 1250 CGAGAAATACCCACGCTTTCCCT
heterophylla CCCAATCTCGGCCCGGATCCTTG
GAATTCCCATCAGGATTTCCAGA
TTCTGATTCGTGTTCTTCGAAAAC
CCAATTCCAGGGTCAATAATCAT
TCGCCAGGCTGGAATTCCGGACA
TCTCGGCTTCTTTAACCCTCGAAA
ACAACTCAAAGGCAACCTCTTTA
CAAACATTATCGTA
665 Euphorbia DHP_A36_8 cDNAContig 1226 1425 GGAGGGAAAGCGTGGGTATTTC
heterophylla TCGTGGGCCGATTCTTATTGGGC
CTTCGAGAAAGAGGTTTTTGGGC
GAAATTTGCGAACGCCCTAAAGC
AACTGAAAGAGACCCGGCAACT
GTTGCTTCTGTTACTACTGGGAT
TCTGGGAGGGGCAAATATTGTTA
GAGTTCATAATGTTAGGGATAAT
GTGGATGCTGTGAAGCTA
666 Euphorbia DH P_A36_8 cDNACo ntig 1226 1425 TAGCTTCACAGCATCCACATTATC
heterophylla CCTAACATTATGAACTCTAACAA
TATTTGCCCCTCCCAGAATCCCA
GTAGTAACAGAAGCAACAGTTG
CCGGGTCTCTTTCAGTTGCTTTA

GGGCGTTCGCAAATTTCGCCCAA
AAACCTCTTTCTCGAAGGCCCAA
TAAGAATCGGCCCACGAGAAAT
ACCCACGCTTTCCCTCC
667 Euphorbia DHP_A40_1 gDNAContig 1 heterophylla TAATCAAGAAGAAAGAGATTTTA
ATGTAATTATTTAAATAATAAATT
CCTACCATTTTAATTGTGTGACAA
TTGGTTATAATGATTCCGTTGCAT
CGACAACTAAAACTAGATAGAA
GGATCAAAATATAAAATTTTAAC
ATAATTAATACATATAATATATA
AATGTATAATAGAT
668 Euphorbia DHP_A40_1 gDNAContig 1 heterophylla ATGTATTAATTATGTTAAAATTTT
ATATTTTGATCCTTCTATCTAGTT
TTAGTTGTCGATGCAACGGAATC
ATTATAACCAATTGTCACACAATT
AAAATGGTAGGAATTTATTATTT
AAATAATTACATTAAAATCTCTTT
CTTCTTGATTAGCAACTTATACTT
TCATCATAAC
669 Euphorbia DHP_A40_2 gDNAContig 176 375 TATAATATATAAATGTATAATAG
heterophylla ATACAATTATTATTCCTCGAATTA
AAATTGGCTAATTATATAATAAT
ATAATCCAACCTATAAAAACTTTT
GAGCTTTTAAGCTTGAGATGAGC
TTTGTAAAAATGATTGTACAAGC
CCGACCATGAAAGAGAGCCAAG
TAGGGTCAAATGCATACCCTGGC
TTGAATATAAATTCA
670 Euphorbia DHP_A40_2 gDNAContig 176 375 TGAATTTATATTCAAGCCAGGGT
heterophylla ATGCATTTGACCCTACTTGGCTCT
CTTTCATGGTCGGGCTTGTACAA
TCATTTTTACAAAGCTCATCTCAA
GCTTAAAAGCTCAAAAGTTTTTA
TAGGTTGGATTATATTATTATATA
ATTAGCCAATTTTAATTCGAGGA
ATAATAATTGTATCTATTATACAT
TTATATATTATA
671 Euphorbia DHP_A39_1 gDNAContig 1 heterophylla AGATGCTTATTCCTGGCAGAGAT
CGAAATGCTCCATTTTAGTTTCG
GGTTTTGTTAAAATGGGGATTTG
TTAAATTGTTTCAATGGATAATTC
ACTGTTGTATTAGACTTGATATT
GTTAGCAGACACTGATTTTTATG

TATTCGTGAACTGAAAAGGTTGA
TTTTCTTCCATGTTTT
672 Euphorbia DHP_A39_1 gDNAContig 1 heterophylla TTTTCAGTTCACGAATACATAAA
AATCAGTGTCTGCTAACAATATC
AAGTCTAATACAACAGTGAATTA
TCCATTGAAACAATTTAACAAAT
CCCCATTTTAACAAAACCCGAAA
CTAAAATGGAGCATTTCGATCTC
TGCCAGGAATAAGCATCTATTCC
AACCATCACTCCCCAGA
673 Euphorbia DHP_A39_2 gDNAContig 176 375 AAAGGTTGATTTTCTTCCATGTTT
heterophylla TGTCTGATTTATGATGGAACTTC
ATTTCTTAGTGGTTAATGTTGGT
ATTTCCTTCTGTTGTTTGATTTGT
ATCTGTAATTGGTACCATGTTAT
ATGCAATCTTTTAAAAAATGTTTT
AAAAAGCGCTATACGTGGCAGC
TGAGACTGTTGAGACTTGAAAAC
GCACGGGCATGTGC
674 Euphorbia DHP_A39_2 gDNAContig 176 375 GCACATGCCCGTGCGTTTTCAAG
heterophylla TCTCAACAGTCTCAGCTGCCACG
TATAGCGCTTTTTAAAACATTTTT
TAAAAGATTGCATATAACATGGT
ACCAATTACAGATACAAATCAAA
CAACAGAAGGAAATACCAACATT
AACCACTAAGAAATGAAGTTCCA
TCATAAATCAGACAAAACATGGA
AGAAAATCAACCTTT
675 Euphorbia DHP_A38_1 cDNAContig 1 heterophylla GGGCCGTACCAAAGGGATTAGG
TACGGACCAAGGCCAATCGATTT
GGATATACTTTTTCTATGGAAAG
TTCCGGATTAATTCCGATACACTT
ATTGTTCCTCATGAGAGAATATG
GGAGAGACCCTTTGTGATGGCCC
CATTGGTGGATTTACTCGGCTCG
GAAATCGAGAATGACA
676 Euphorbia DHP_A38_1 cDNAContig 1 heterophylla AGTAAATCCACCAATGGGGCCAT
CACAAAGGGTCTCTCCCATATTC
TCTCATGAGGAACAATAAGTGTA
TCGGAATTAATCCGGAACTTTCC
ATAGAAAAAGTATATCCAAATCG
ATTGGCCTTGGTCCGTACCTAAT
CCCTTTGGTACGGCCCAAGTCCT
TTTCGATCTGCTTTAA

677 Euphorbia DHP_A38_2 cDNAContig 176 375 CTCGGCTCGGAAATCGAGAATG
heterophylla ACACGGTCGCCAGCTGGCATTCC
TTGTCCGGCGGTCTTTTTGAATC
ATGGGAAAAGTTGGGCGGCGAA
AGCCTGATCGGGAAGGACGGAA
TGAAAAGAGTTACCCCGATCGG
AAACCATTTATGGGATTGGTCGG
AAAAGACTTCTGTAATGGGAATT
ATCAATTTAACCCCCGATAG
678 Euphorbia DHP_A38_2 cDNAContig 176 375 CTATCGGGGGTTAAATTGATAAT
heterophylla TCCCATTACAGAAGTCTTTTCCGA
CCAATCCCATAAATGGTTTCCGA
TCGGGGTAACTCTTTTCATTCCGT
CCTTCCCGATCAGGCTTTCGCCG
CCCAACTTTTCCCATGATTCAAAA
AGACCGCCGGACAAGGAATGCC
AGCTGGCGACCGTGTCATTCTCG
ATTTCCGAGCCGAG
679 Euphorbia DHP_A38_3 cDNAContig 351 550 GAATTATCAATTTAACCCCCGAT
heterophylla AGTTTCAGCGATGGGGGCAAGT
TGACAACTATTGATTCTATAGTTT
CTAAGGTTCGCTCGATGATTTCC
GAAGGGGCGGATATTGTCGATT
TTGGTGCTCAATCGACACGCCCT
ATGGCTAAAAGGATATCCCCGCA
AGAGGAAATGGATAGGCTAATC
CCTGTATTGGAAGCGGTT
680 Euphorbia DHP_A38_3 cDNAContig 351 550 AACCGCTTCCAATACAGGGATTA
heterophylla GCCTATCCATTTCCTCTTGCGGG
GATATCCTTTTAGCCATAGGGCG
TGTCGATTGAGCACCAAAATCGA
CAATATCCGCCCCTTCGGAAATC
ATCGAGCGAACCTTAGAAACTAT
AGAATCAATAGTTGTCAACTTGC
CCCCATCGCTGAAACTATCGGGG
GTTAAATTGATAATTC
681 Euphorbia DHP_A34_1 gDNAContig 1 200 TTTGTATATTAAAACAATAAAAA
heterophylla TGATCCAGATTAATAAATAGAAA
AAGTATTAATAACCCGAAAATAT
CAAATATCAAAATATAATGAAAC
ATGAACACGAAATCACAATAAA
GAAGTTGGTATCACAAACACAAA
GACACCCTTAAAGCTCCTATGTTT
GTGGAGAGTTGTAAGTCGACTA
ATTTCAGATTGCAAAAG
682 Euphorbia DHP_A34_1 gDNAContig 1 200 CTTTTGCAATCTGAAATTAGTCG
heterophylla ACTTACAACTCTCCACAAACATA

GGAGCTTTAAGGGTGTCTTTGTG
TTTGTGATACCAACTTCTTTATTG
TGATTTCGTGTTCATGTTTCATTA
TATTTTGATATTTGATATTTTCGG
GTTATTAATACTTTTTCTATTTATT
AATCTGGATCATTTTTATTGTTTT
AATATACAAA
683 Euphorbia DH P_A34_2 gDNACo ntig 176 375 GTCGACTAATTTCAGATTGCAAA
heterophylla AGTTAAAAATGGCCAACTTTTTT
AGCTATGAGGTTAGATTAGATAC
GAGAATGCCTTGGTGAAAAGCT
GGTCACTGTTTCTTCATTCGCGT
GGCAATTAACCCGGCATAATCGA
TACCCAATTCACGGACAAGGTCA
AAGGTATCAGCTTTACTCAACCC
TTCGCTTTGATACTAAA
684 Euphorbia DH P_A34_2 gDNACo ntig 176 375 TTTAGTATCAAAGCGAAGGGTTG
heterophylla AGTAAAGCTGATACCTTTGACCT
TGTCCGTGAATTGGGTATCGATT
ATGCCGGGTTAATTGCCACGCGA
ATGAAGAAACAGTGACCAGCTTT
TCACCAAGGCATTCTCGTATCTA
ATCTAACCTCATAGCTAAAAAAG
TTGGCCATTTTTAACTTTTGCAAT
CTGAAATTAGTCGAC
685 Euphorbia DH P_A34_3 gDNACo ntig 351 550 CTCAACCCTTCGCTTTGATACTAA
heterophylla ATTGCTGATTCTTATTCTGATTAT
GCTTTATTTCGTTACTTCATTTTA
TTGTCTATGCACATAAGCTGTTC
GACAAAAAGCCTGAATGAAACT
GTGAGTGCTGGTACGCGGTTAC
AATACTCCTGATTATGTCCAATG
ATTATTTGGGTACTTTAATACCCT
AATTTGTGAAGTTC
686 Euphorbia DH P_A34_3 gDNACo ntig 351 550 GAACTTCACAAATTAGGGTATTA
heterophylla AAGTACCCAAATAATCATTGGAC
ATAATCAGGAGTATTGTAACCGC
GTACCAGCACTCACAGTTTCATT
CAGGCTTTTTGTCGAACAGCTTA
TGTGCATAGACAATAAAATGAA
GTAACGAAATAAAGCATAATCA
GAATAAGAATCAGCAATTTAGTA
TCAAAGCGAAGGGTTGAG
687 Euphorbia DH P_A34_4 gDNACo ntig 526 725 TTTAATACCCTAATTTGTGAAGTT
heterophylla CACTAGCGAAAGGGTAGTTTCTT
CCCCGGTTATTTATCATTTTATGA
ATCCCCAAGTCTTTGAAGTACAG

CTGATTAAAATGCAAGTACTCAT
AAGTTGTCATTGTATGTTTGAAG
TCCTTACATTTTTGGTATTTTACA
GAATTTGTACTGAAGAAGCATAA
ATTCATACCTAGT
688 Euphorbia DHP_A34_4 gDNAContig 526 725 ACTAGGTATGAATTTATGCTTCTT
heterophylla CAGTACAAATTCTGTAAAATACC
AAAAATGTAAGGACTTCAAACAT
ACAATGACAACTTATGAGTACTT
GCATTTTAATCAGCTGTACTTCAA
AGACTTGGGGATTCATAAAATGA
TAAATAACCGGGGAAGAAACTA
CCCTTTCGCTAGTGAACTTCACA
AATTAGGGTATTAAA
689 Euphorbia DHP_A34_5 gDNAContig 701 900 GAAGAAGCATAAATTCATACCTA
heterophylla GTTAGGCTTCCTTGTTCCTAATAT
GCTTCTCCTCAAGCGGCTGGTGT
CCACTAAACAAGGGTTCAATAAT
GCCATCAACCGTTTTGGAGGTAA
TATAGTTATGCCTATGATGCTTTA
AGTCGCTTTTCATCGATTTGTTAC
ATTACCAGGCTAAGATTCTGCAA
TTGAAGTTAGAAA
690 Euphorbia DHP_A34_5 gDNAContig 701 900 TTTCTAACTTCAATTGCAGAATCT
heterophylla TAGCCTGGTAATGTAACAAATCG
ATGAAAAGCGACTTAAAGCATCA
TAGGCATAACTATATTACCTCCA
AAACGGTTGATGGCATTATTGAA
CCCTTGTTTAGTGGACACCAGCC
GCTTGAGGAGAAGCATATTAGG
AACAAGGAAGCCTAACTAGGTA
TGAATTTATGCTTCTTC
691 Euphorbia DHP_A34_6 gDNAContig 876 1075 AAGATTCTGCAATTGAAGTTAGA
heterophylla AATCGACGAGTCTTGTCTTGAAA
AGTATGGATTTTGTTTTGTCACCC
TGGGGCCGGTTCAAGATTGCTTT
CCCAGGTTGCTGTCTTGGCATCA
CGTCCTAATCCAAAACCCTAAGG
TGATGGGTTAATGGGTCCCTTCG
CAGTTATATATCATTCACTTAACT
CATTAACTTCCATG
692 Euphorbia DHP_A34_6 gDNAContig 876 1075 CATGGAAGTTAATGAGTTAAGTG
heterophylla AATGATATATAACTGCGAAGGG
ACCCATTAACCCATCACCTTAGG
GTTTTGGATTAGGACGTGATGCC
AAGACAGCAACCTGGGAAAGCA
ATCTTGAACCGGCCCCAGGGTGA

CAAAACAAAATCCATACTTTTCA
AGACAAGACTCGTCGATTTCTAA
CTTCAATTGCAGAATCTT
693 Euphorbia DH P_A34_7 gDNACo ntig 1051 1250 TTCACTTAACTCATTAACTTCCAT
heterophylla GTGGATAATCAACTCCACACTTG
CCCCAACACTGTATAAACGTAGA
TTTTGACCTTTGGAAATCATTAGC
TGGACAAATCCTAACTAATTAGT
ATCAAGAGCCAAAATCTTTTGAC
CAAGACCAAAATATGTTGTTTCA
TTGTTGCAGCATTGTCATCATCCT
TTCTCCATACCGA
694 Euphorbia DH P_A34_7 gDNACo ntig 1051 1250 TCGGTATGGAGAAAGGATGATG
heterophylla ACAATGCTGCAACAATGAAACAA
CATATTTTGGTCTTGGTCAAAAG
ATTTTGGCTCTTGATACTAATTAG
TTAGGATTTGTCCAGCTAATGAT
TTCCAAAGGTCAAAATCTACGTT
TATACAGTGTTGGGGCAAGTGT
GGAGTTGATTATCCACATGGAAG
TTAATGAGTTAAGTGAA
695 Euphorbia DH P_A34_8 gDNACo ntig 1226 1425 TGTCATCATCCTTTCTCCATACCG
heterophylla AACCAAATAGTTCGGTGGAAGTT
CATTCTCAAGAGCAAGAAGTAGT
AATTGCATTAGGAAGCAATGTG
GGAGATAGAGTTCATAATTTCAA
CCAAGCATTGCAATTAATGAAAA
GTTCCGGCATTAACATAACTAGA
CATGGTTGTTTGTACCAGACAGC
ACCTGCTTATGTCACT
696 Euphorbia DH P_A34_8 gDNACo ntig 1226 1425 AGTGACATAAGCAGGTGCTGTCT
heterophylla GGTACAAACAACCATGTCTAGTT
ATGTTAATGCCGGAACTTTTCATT
AATTGCAATGCTTGGTTGAAATT
ATGAACTCTATCTCCCACATTGCT
TCCTAATGCAATTACTACTTCTTG
CTCTTGAGAATGAACTTCCACCG
AACTATTTGGTTCGGTATGGAGA
AAGGATGATGACA
697 Euphorbia DH P_A34_9 gDNACo ntig 1401 1600 CCAGACAGCACCTGCTTATGTCA
heterophylla CTGACCAACCTCACTTTCTCAACT
CAGCAGTTCGAGCTTTCACGAAA
CTCGGACCCCACGAGTTATTAGG
AGTTTTAAAGCAGATCGAAAAG
GACTTGGGCCGTACCAAAGGGA
TTAGGTACGGACCAAGGCCAATC
GATTTGGATATACTTTTCTATGG

AAAGTTCCGGATTAATT
698 Euphorbia DHP_A34_9 gDNAContig 1401 1600 AATTAATCCGGAACTTTCCATAG
heterophylla AAAAGTATATCCAAATCGATTGG
CCTTGGTCCGTACCTAATCCCTTT
GGTACGGCCCAAGTCCTTTTCGA
TCTGCTTTAAAACTCCTAATAACT
CGTGGGGTCCGAGTTTCGTGAA
AGCTCGAACTGCTGAGTTGAGA
AAGTGAGGTTGGTCAGTGACAT
AAGCAGGTGCTGTCTGG
699 Euphorbia DHP_A34_1 gDNAContig 1576 1775 TTCTATGGAAAGTTCCGGATTAA
heterophylla 0 TTCCGATACACTTATTGTTCCTCA
TGAGAGAATATGGGAGAGACCC
TTTGTGATGGCCCCATTGGTGGA
TTTACTCGGCTCGGAAATCGAGA
ATGACACGGTCGCCAGCTGGCAT
TCCTTGTCCGGCGGTCTTTTTGA
ATCATGGGAAAAGTTGGGCGGC
GAAAGCCTGATCGGGAA
700 Euphorbia DHP_A34_1 gDNAContig 1576 1775 TTCCCGATCAGGCTTTCGCCGCC
heterophylla 0 CAACTTTTCCCATGATTCAAAAA
GACCGCCGGACAAGGAATGCCA
GCTGGCGACCGTGTCATTCTCGA
TTTCCGAGCCGAGTAAATCCACC
AATGGGGCCATCACAAAGGGTC
TCTCCCATATTCTCTCATGAGGAA
CAATAAGTGTATCGGAATTAATC
CGGAACTTTCCATAGAA
701 Euphorbia DHP_A34_1 gDNAContig 1751 1950 TGGGCGGCGAAAGCCTGATCGG
heterophylla 1 GAAGGACGGAATGAAAAGAGTT
ACCCCGATCGGAAACCATTTATG
GGATTGGTCGGAAAAGACTTCT
GTAATGGGAATTATCAATTTAAC
CCCCGATAGTTTCAGCGATGGGG
GCAAGTTGACAACTATTGATTCT
ATAGTTTCTAAGGTTCGCTCGAT
GATTTCCGAAGGGGCGGAT
702 Euphorbia DHP_A34_1 gDNAContig 1751 1950 ATCCGCCCCTTCGGAAATCATCG
heterophylla 1 AGCGAACCTTAGAAACTATAGAA
TCAATAGTTGTCAACTTGCCCCC
ATCGCTGAAACTATCGGGGGTTA
AATTGATAATTCCCATTACAGAA
GTCTTTTCCGACCAATCCCATAAA
TGGTTTCCGATCGGGGTAACTCT
TTTCATTCCGTCCTTCCCGATCAG
GCTTTCGCCGCCCA
703 Euphorbia DHP_A34_1 gDNAContig 1926 2125 CTCGATGATTTCCGAAGGGGCG

heterophylla 2 GATATTGTCGATTTTGGTGCTCA
ATCGACACGCCCTATGGCTAAAA
GGATATCCCCGCAAGAGGAAAT
GGATAGGCTAATCCCTGTATTGG
AAGCGGTTGTGAAAATACCCGA
GATGACCGAAAAGCTCATATCG
GTCGACACATTTTACTCGGAAGT
CGCCTTAGAAGCGGTCCAAA
704 Euphorbia DHP_A34_1 gDNAContig 1926 2125 TTTGGACCGCTTCTAAGGCGACT
heterophylla 2 TCCGAGTAAAATGTGTCGACCGA
TATGAGCTTTTCGGTCATCTCGG
GTATTTTCACAACCGCTTCCAATA
CAGGGATTAGCCTATCCATTTCC
TCTTGCGGGGATATCCTTTTAGC
CATAGGGCGTGTCGATTGAGCA
CCAAAATCGACAATATCCGCCCC
TTCGGAAATCATCGAG
705 Euphorbia DHP_A34_1 gDNAContig 2101 2300 GAAGTCGCCTTAGAAGCGGTCC
heterophylla 3 AAAGAGGAGCAAATCTCGTAAA
TGACGTATCTGGGGGGCAATTA
GATCCAAAAATGACGGAAAATG
TCGCTAATCTCGAGGTACCATAT
ATCTTAATGCACATGAGGGGGG
ACCCCACCACAATGCAGAACACT
CAGAATCTAAAATACGATAATGT
TTGTAAAGAGGTTGCCTTTGA
706 Euphorbia DHP_A34_1 gDNAContig 2101 2300 TCAAAGGCAACCTCTTTACAAAC
heterophylla 3 ATTATCGTATTTTAGATTCTGAGT
GTTCTGCATTGTGGTGGGGTCCC
CCCTCATGTGCATTAAGATATAT
GGTACCTCGAGATTAGCGACATT
TTCCGTCATTTTTGGATCTAATTG
CCCCCCAGATACGTCATTTACGA
GATTTGCTCCTCTTTGGACCGCTT
CTAAGGCGACTTC
707 Euphorbia DHP_A34_1 gDNAContig 2276 2475 ATGTTTGTAAAGAGGTTGCCTTT
heterophylla 4 GAGTTGTTTTCGAGGGTTAAAGA
AGCCGAGATGTCCGGAATTCCA
GCCTGGCGAATGTTTATTGACCC
TGGAATTGGGTTTTCGAAGAACA
CGAATCAGAATCTGGAAATCCTG
ATGGGAATTCCAAGGATCCGGG
CCGAGATTGGGAGGAAAAGCGT
GGGTATTTCTCGTGGGCCG
708 Euphorbia DHP_A34_1 gDNAContig 2276 2475 CGGCCCACGAGAAATACCCACG
heterophylla 4 CTTTTCCTCCCAATCTCGGCCCGG
ATCCTTGGAATTCCCATCAGGAT

TTCCAGATTCTGATTCGTGTTCTT
CGAAAACCCAATTCCAGGGTCAA
TAAACATTCGCCAGGCTGGAATT
CCGGACATCTCGGCTTCTTTAAC
CCTCGAAAACAACTCAAAGGCAA
CCTCTTTACAAACAT
709 Euphorbia DHP_A34_1 gDNAContig 2451 2650 AAGCGTGGGTATTTCTCGTGGGC
heterophylla 5 CGATTCTTATTGGGCCTTCGAGA
AAGAGGTTTTTGGGCGAAATTTG
CGAACGCCCTGAAGCAACTGAA
AGAGACCCGGCAACTGTTGCTTC
TGTTACTACTGGGATTCTGGGAG
GGGCAAATATTGTTAGAGTTCAT
AATGTTAGGGATAATGTGGATG
CTGTGAAGCTATGTGACT
710 Euphorbia DHP_A34_1 gDNAContig 2451 2650 AGTCACATAGCTTCACAGCATCC
heterophylla 5 ACATTATCCCTAACATTATGAACT
CTAACAATATTTGCCCCTCCCAG
AATCCCAGTAGTAACAGAAGCA
ACAGTTGCCGGGTCTCTTTCAGT
TGCTTCAGGGCGTTCGCAAATTT
CGCCCAAAAACCTCTTTCTCGAA
GGCCCAATAAGAATCGGCCCAC
GAGAAATACCCACGCTT
711 Euphorbia DHP_A34_1 gDNAContig 2626 2825 GTGGATGCTGTGAAGCTATGTG
heterophylla 6 ACTCGATGATGAAACTAAAGAG
GTCTACTTAAAAATTATCGGGTA
TAGTTCGATTTCTTTCTTTCCGAA
TCTTTTGTTTGACTTTCAGATTGT
CTTTGATTGGCAAAACAGTTTCG
GCTGCGGTTACTGTTTGCTGTTG
CAGTTTACCGTTGTTGTTTCTAAT
TGTGATTTTAAGTTA
712 Euphorbia DHP_A34_1 gDNAContig 2626 2825 TAACTTAAAATCACAATTAGAAA
heterophylla 6 CAACAACGGTAAACTGCAACAG
CAAACAGTAACCGCAGCCGAAA
CTGTTTTGCCAATCAAAGACAAT
CTGAAAGTCAAACAAAAGATTCG
GAAAGAAAGAAATCGAACTATA
CCCGATAATTTTTAAGTAGACCT
CTTTAGTTTCATCATCGAGTCACA
TAGCTTCACAGCATCCAC
713 Euphorbia DHP_A34_1 gDNAContig 2801 3000 TGTTTCTAATTGTGATTTTAAGTT
heterophylla 7 ATTGTTGTTAGTTGATTTGTACTT
AGTGCTTGGTGAAAATATAATTC
ACGGTTGCGGTTGGAGGTATAA
ATTACTAAAATAGACATATTTTA

AATAAATTAGAAGTTATATTGAA
GGGTATTTAGGATAAATAAAAGT
CCAAACCACAAAAAAAAAAAACC
GTAAAACTATTGATT
714 Euphorbia DH P_A34_1 gDNACo ntig 2801 3000 AATCAATAGTTTTACGGTTTTTTT
heterophylla 7 TTTTTGTGGTTTGGACTTTTATTT
ATCCTAAATACCCTTCAATATAAC
TTCTAATTTATTTAAAATATGTCT
ATTTTAGTAATTTATACCTCCAAC
CGCAACCGTGAATTATATTTTCA
CCAAGCACTAAGTACAAATCAAC
TAACAACAATAACTTAAAATCAC
AATTAGAAACA
715 Euphorbia DH P_A34_1 gDNACo ntig 2976 3175 AAAAAAAACCGTAAAACTATTGA
heterophylla 8 TTTGGTGAGGTTTGGAAAAGGA
GATAAATCCCTTATGAAAAGCAA
CTCCATATATGTTTTGAAACTTAA
CCAAACACTTGTATACCTCCTTTT
CCTTTTCAAACCTCAAAAGACCTT
TTTATAGTAAGCTCTTTTGAAGTA
TATACGCTATTGTTTCCGAATCAT
TTTGGACTTTTC
716 Euphorbia DH P_A34_1 gDNACo ntig 2976 3175 GAAAAGTCCAAAATGATTCGGA
heterophylla 8 AACAATAGCGTATATACTTCAAA
AGAGCTTACTATAAAAAGGTCTT
TTGAGGTTTGAAAAGGAAAAGG
AGGTATACAAGTGTTTGGTTAAG
TTTCAAAACATATATGGAGTTGC
TTTTCATAAGGGATTTATCTCCTT
TTCCAAACCTCACCAAATCAATA
GTTTTACGGTTTTTTTT
717 Euphorbia DH P_A34_1 gDNACo ntig 3151 3350 GTTTCCGAATCATTTTGGACTTTT
heterophylla 9 CGTCGAAATCAACAATACTGTTA
GCTAGTCATATTTCAAGATATTT
GGGATGTAAAGATCAAGGTAGT
TGTTGTTGTATTCTGTTCTCATCA
GCAAAATTTGTTATAACTCCACC

AAATGTCTTATGTTATAGTAAGA
AGTGAGATGAGTTT
718 Euphorbia DH P_A34_1 gDNACo ntig 3151 3350 AAACTCATCTCACTTCTTACTATA
heterophylla 9 ACATAAGACATTTTCAGATTGGA
AAAAATTAAATCTTGGTGGAGTT
ATAACAAATTTTGCTGATGAGAA
CAGAATACAACAACAACTACCTT
GATCTTTACATCCCAAATATCTTG
AAATATGACTAGCTAACAGTATT

GTTGATTTCGACGAAAAGTCCAA
AATGATTCGGAAAC
719 Euphorbia DH
P_A34_2 gDNACo ntig 3326 3525 TTATAGTAAGAAGTGAGATGAG
heterophylla 0 TTTATGTCTTTGTGAAAAGATTTT
GCCCAATTAATGCAAAAATTTTG
TGACAAGACAAGAGGGGTGAAA
GAGACAAGCAACAAGAGAAAGC
AGTGAAAGGGGCAAATGTTAGG
AAACTGTTAGCTAGAAAAGGGT
AGAGGGTGGCCTACTTTACCAAT
TTGAGCATTAAAAAAGCACA
720 Euphorbia DH
P_A34_2 gDNACo ntig 3326 3525 TGTGCTTTTTTAATGCTCAAATTG
heterophylla 0 GTAAAGTAGGCCACCCTCTACCC
TTTTCTAGCTAACAGTTTCCTAAC
ATTTGCCCCTTTCACTGCTTTCTC
TTGTTGCTTGTCTCTTTCACCCCT
CTTGTCTTGTCACAAAATTTTTGC
ATTAATTGGGCAAAATCTTTTCA
CAAAGACATAAACTCATCTCACT
TCTTACTATAA
721 Euphorbia DH P_A34_2 gDNACo ntig 3501 3700 CCAATTTGAGCATTAAAAAAGCA
heterophylla 1 CATGGCTATGTATTTTAGACCAA
AGTCCCTATTGTTGGCAGATGAA
CTAAGCAACCATATGGTTCATTA
ACTAACTAACTAGTTATTGCAAA
TTTGACTGTTCCAATTCATCAAAG
GACTCTCCCCATAGACCATTCAA
CACTTGGGTTCTAGCCCTCCCTCT
CACCCTCAGACAAC
722 Euphorbia DH
P_A34_2 gDNACo ntig 3501 3700 GTTGTCTGAGGGTGAGAGGGAG
heterophylla 1 GGCTAGAACCCAAGTGTTGAAT
GGTCTATGGGGAGAGTCCTTTGA
TGAATTGGAACAGTCAAATTTGC
AATAACTAGTTAGTTAGTTAATG
AACCATATGGTTGCTTAGTTCAT
CTGCCAACAATAGGGACTTTGGT
CTAAAATACATAGCCATGTGCTT
TTTTAATGCTCAAATTGG
723 Euphorbia DH P_A34_2 gDNACo ntig 3676 3875 GCCCTCCCTCTCACCCTCAGACA
heterophylla 2 ACCCTTGTGAACCTCATTTTCATC
ATTGGTCCCCTTTTTTGTTAGGAC
TACACTTGTCTCTATAAAATCTCT
TCTAGCCATGTGTTATGTGTAGA
CTTTTTCGGTTTGAGGATTGGGT
CGGGTTCGGGCTGGGTCTCGTC
GGGCTTTTTACTGCAAACATCAA
ACTAGGGTTCTAAA

724 Euphorbia DHP_A34_2 gDNAContig 3676 3875 TTTAGAACCCTAGTTTGATGTTTG
heterophylla 2 CAGTAAAAAGCCCGACGAGACC
CAGCCCGAACCCGACCCAATCCT
CAAACCGAAAAAGTCTACACATA
ACACATGGCTAGAAGAGATTTTA
TAGAGACAAGTGTAGTCCTAACA
AAAAAGGGGACCAATGATGAAA
ATGAGGTTCACAAGGGTTGTCTG
AGGGTGAGAGGGAGGGC
725 Euphorbia DHP_A34_2 gDNAContig 3851 4050 GCAAACATCAAACTAGGGTTCTA
heterophylla 3 AACCCATACTTCAGTACTCTGGTT
CGGATTGAACTTGCGAGATCATT
CTAAATTCAATTTACGGCTCATA
GATTATATTTGAGAGTTTTGAGT
TTTGGGTGGATTAGATTGAAAAC
GACTATTTTTTGTTGTATAAATAT
ATCTAAAAAGTTATATAATTACA
TTCTTTATTGGAAT
726 Euphorbia DHP_A34_2 gDNAContig 3851 4050 ATTCCAATAAAGAATGTAATTAT
heterophylla 3 ATAACTTTTTAGATATATTTATAC
AACAAAAAATAGTCGTTTTCAAT
CTAATCCACCCAAAACTCAAAAC
TCTCAAATATAATCTATGAGCCG
TAAATTGAATTTAGAATGATCTC
GCAAGTTCAATCCGAACCAGAGT
ACTGAAGTATGGGTTTAGAACCC
TAGTTTGATGTTTGC
727 Euphorbia DHP_A34_2 gDNAContig 4026 4225 ATATAATTACATTCTTTATTGGAA
heterophylla 4 TTCATCAATATATATAAGAATTTG
ACTTTGTTGTAGCCATTTTGAAA
GTTCGATAAGCTACTCCCTTCGTC
TAGTTTCAATAGTTCATTTAAAA
GTTTCATTAATTCTGTTTTCAATT
GTCAATTTAAATTTTCATAATATT
TTTCACCATTTTTTTTTCCAATTTG
CCCTTGTAT
728 Euphorbia DHP_A34_2 gDNAContig 4026 4225 ATACAAGGGCAAATTGGAAAAA
heterophylla 4 AAAATGGTGAAAAATATTATGAA
AATTTAAATTGACAATTGAAAAC
AGAATTAATGAAACTTTTAAATG
AACTATTGAAACTAGACGAAGG
GAGTAGCTTATCGAACTTTCAAA
ATGGCTACAACAAAGTCAAATTC
TTATATATATTGATGAATTCCAAT
AAAGAATGTAATTATAT
729 Euphorbia DHP_A34_2 gDNAContig 4201 4400 TTTTTTTTCCAATTTGCCCTTGTAT
heterophylla 5 TTATTGAGAAAGAGATTATGTTA

TGATGAAAGTATAAGTTGCTAAT
CAAGAAGAAAGAGATTTTAATGT
AATTATTTAAATAATAAATTCCTA
CCATTTTAATTGTGTGACAATTG
GTTATAATGATTCCGTTGCATCG
ACAACTAAAACTAGATAGAAGG
ATCAAAATATAAAA
730 Euphorbia DHP_A34_2 gDNAContig 4201 4400 TTTTATATTTTGATCCTTCTATCTA
heterophylla 5 GTTTTAGTTGTCGATGCAACGGA
ATCATTATAACCAATTGTCACAC
AATTAAAATGGTAGGAATTTATT
ATTTAAATAATTACATTAAAATCT
CTTTCTTCTTGATTAGCAACTTAT
ACTTTCATCATAACATAATCTCTT
TCTCAATAAATACAAGGGCAAAT
TGGAAAAAAAA
731 Euphorbia DHP_A34_2 gDNAContig 4376 4575 TAGATAGAAGGATCAAAATATA
heterophylla 6 AAATTTTAACATAATTAATACATA
TAATATATAAATGTATAATAGAT
ACAATTATTATTCCTCGAATTAAA
ATTGGCTAATTATATAATAATAT
AATCCAACCTATAAAAACTTTTG
AGCTTTTAAGCTTGAGATGAGCT
TTGTAAAAATGATTGTACAAGCC
CGACCATGAAAGAGA
732 Euphorbia DHP_A34_2 gDNAContig 4376 4575 TCTCTTTCATGGTCGGGCTTGTA
heterophylla 6 CAATCATTTTTACAAAGCTCATCT
CAAGCTTAAAAGCTCAAAAGTTT
TTATAGGTTGGATTATATTATTAT
ATAATTAGCCAATTTTAATTCGA
GGAATAATAATTGTATCTATTAT
ACATTTATATATTATATGTATTAA
TTATGTTAAAATTTTATATTTTGA
TCCTTCTATCTA
733 Kochia DHP_A43_1 gDNAContig 1 scoparia CAGCCAGTTTGATTTGGAAGGG
AATTTCCAAGTATGATAGAGGTA
AAGCACAGTTGTTTCATTTTTTGA
CTATATATTTAATTTGGGAATCTG
TACTGTTTCATTTTGTAACTTTAT
TTTGATCCTGAGTTATTGAATCTG
TCATGTCTCATTTTGAGACGGTA
TTTTGAATCTGAG
734 Kochia DHP_A43_1 gDNAContig 1 scoparia AAATGAGACATGACAGATTCAAT
AACTCAGGATCAAAATAAAGTTA
CAAAATGAAACAGTACAGATTCC

CAAATTAAATATATAGTCAAAAA
ATGAAACAACTGTGCTTTACCTC
TATCATACTTGGAAATTCCCTTCC
AAATCAAACTGGCTGATTGCAGC
CGCCTAAGCACATTC
735 Kochia D H P_A43_2 gD NACo ntig 176 375 TTTGAGACGGTATTTTGAATCTG
scoparia AGTCTGGATATGAAATTATGAAT
AG G C CATAG GTATTTATAAATAT
AG G GTTTAAGTTG ATG ATCTG G A
TG CTATCAG AG CTCTATTATG CA
GGATTACAAATCATAATTTCATT
GTGAAATTTACTTCTTTATGTGTA
TTCACTTGAAGATTCATAATTTTG
ATGTATTCATAAAT
736 Kochia D H P_A43_2 gD NACo ntig 176 375 ATTTATGAATACATCAAAATTAT
scoparia GAATCTTCAAGTGAATACACATA
AAG AAGTAAATTTCACAATG AAA
TTATGATTTGTAATCCTGCATAAT
AG AG CTCTG ATAG CATCCAG ATC
ATCAACTTAAACCCTATATTTATA
AATACCTATGGCCTATTCATAATT
TCATATCCAGACTCAGATTCAAA
ATACCGTCTCAAA
737 Kochia D H P_A43_3 gD NACo ntig 351 550 TCATAATTTTGATGTATTCATAAA
scoparia TTTGATGTGCCCTAAACAGAAAG
AGTCAGCATGTGCTGAAAGTATA
AG G G G GAAAAC CAAG ATGTATA
AATCTTTTCCTTGATGAGTTGCTT
ATATGATTGATGTCATGATTCTA
AAATGCCTTTACCTAATTCAAAT
GGATTTTAAAGATTACGTATGTA
CTTTTGCAGCTTCAA
738 Kochia D H P_A43_3 gD NACo ntig 351 550 TTGAAGCTGCAAAAGTACATACG
scoparia TAATCTTTAAAATCCATTTGAATT
AG GTAAAG G CATTTTAG AATCAT
GACATCAATCATATAAGCAACTC
ATCAAGGAAAAGATTTATACATC
TTGGTTTTCCCCCTTATACTTTCA
GCACATGCTGACTCTTTCTGTTTA
GGGCACATCAAATTTATGAATAC
ATCAAAATTATG A
739 Kochia D H P_A43_4 gD NACo ntig 526 725 TACGTATGTACTTTTGCAGCTTCA
scoparia AGTCTTGCTTTTTTGCACTCATCA
CCAG AAACTACTATTG AG GTTTG
TTCTAAAG AG CATG AAGTTGTAA
TTG CTCTAG G G AG CAATGTAG G
AG ACAG ATTAG ATAACTTTAACC

AAGCTCTGCAGCTAATGAAGAA
ATTAGGAGTAAATATCACAAGGC
ATGGCTGCTTATACGA
740 Kochia DH P_A43_4 gDNAContig 526 725 TCGTATAAGCAGCCATGCCTTGT
scoparia GATATTTACTCCTAATTTCTTCAT
TAG CTG CAGAG CTTGGTTAAAGT
TATCTAATCTGTCTCCTACATTGC
TCCCTAGAGCAATTACAACTTCA
TGCTCTTTAGAACAAACCTCAAT
AGTAGTTTCTGGTGATGAGTGCA
AAAAAGCAAGACTTGAAGCTGC
AAAAGTACATACGTA
741 Kochia DH P_A43_5 gDNACo ntig 701 900 TCACAAGGCATGGCTGCTTATAC
scoparia GAGACAGATCCTGCCTATGTGAC
TGATCAACCAAAGTTTCTTAACTC
TGCAGTGAGGGGCTTCACAAAA
CTTGGGCCTCTAGAACTATTAGG
GATGCTGAAGAAAATTGAGAAG
GATATGGGTCGAACTAATGGAA
TAAGATATGGCCCTAGGCCAATT
GACTTAGACATTCTTTTT
742 Kochia DH P_A43_5 gDNACo ntig 701 900 AAAAAGAATGTCTAAGTCAATTG
scoparia GCCTAGGGCCATATCTTATTCCA
TTAGTTCGACCCATATCCTTCTCA
ATTTTCTTCAGCATCCCTAATAGT
TCTAGAGGCCCAAGTTTTGTGAA
GCCCCTCACTGCAGAGTTAAGAA
ACTTTGGTTGATCAGTCACATAG
G CAG GATCTGTCTCGTATAAG CA
GCCATGCCTTGTGA
743 Kochia DH P_A43_6 gDNACo ntig 876 scoparia TTATG G GAAGTTTAG G GTAAG CT
CTGAGAAACTTACAGTTCCG CAT
GAAAGGATATGGGAAAGACCCT
TTGTGATGGCACCACTAATTGAT
ATAATTGGATCGGATGTAGAAA
ATGACACTGTTG CTG CATG G CAT
TCATTATCAAAATTTTCTGGTGG
ACTATTTGAAGCGTGGG
744 Kochia DH P_A43_6 gDNACo ntig 876 scoparia GAAAATTTTGATAATGAATGCCA
TGCAGCAACAGTGTCATTTTCTA
CATCCGATCCAATTATATCAATTA
GTGGTGCCATCACAAAGGGTCTT
TCCCATATCCTTTCATGCGGAACT
GTAAGTTTCTCAGAGCTTACCCT
AAACTTCCCATAAAAAAGAATGT

CTAAGTCAATTGGC
745 Kochia DHP_A43_7 gDNAContig 1051 1250 TCTGGTGGACTATTTGAAGCGTG
scoparia GGATAAACTTGGTGGAGATTCAC
TCATTGGGAAGGACGGAATGAG
TAGGGTTTTGCCAGTTGGGAACC
ACTTGTGGGATTGGTCGTGCAAA
ACCTCTGTAATGGGAGTCTTGAA
TTTGACTCCGGACAGCTTTAGTG
ATGGAGGAAAGTTTCTACCTGTA
GAAAATGCAGTTTCTCA
746 Kochia DHP_A43_7 gDNAContig 1051 1250 TGAGAAACTGCATTTTCTACAGG
scoparia TAGAAACTTTCCTCCATCACTAAA
GCTGTCCGGAGTCAAATTCAAGA
CTCCCATTACAGAGGTTTTGCAC
GACCAATCCCACAAGTGGTTCCC
AACTGGCAAAACCCTACTCATTC
CGTCCTTCCCAATGAGTGAATCT
CCACCAAGTTTATCCCACGCTTCA
AATAGTCCACCAGA
747 Kochia DHP_A43_8 gDNAContig 1226 1425 TACCTGTAGAAAATGCAGTTTCT
scoparia CAGGTTCGTCAAATGATCTCAGA
AGGTGCTGACATAATTGATATTG
GAGCGCAATCAACAAGGCCCAT
GGCAACTAGGATTTCTGCTGAGG
AAGAGCTGGAAAGACTAGTCCC
TGTTTTAGAAGGTGTCAAGGATG
TTATCGAGGAAGAAGGAAGAAT
GTTATCAGTGGATACATTT
748 Kochia DHP_A43_8 gDNAContig 1226 1425 AAATGTATCCACTGATAACATTC
scoparia TTCCTTCTTCCTCGATAACATCCT
TGACACCTTCTAAAACAGGGACT
AGTCTTTCCAGCTCTTCCTCAGCA
GAAATCCTAGTTGCCATGGGCCT
TGTTGATTGCGCTCCAATATCAA
TTATGTCAGCACCTTCTGAGATC
ATTTGACGAACCTGAGAAACTGC
ATTTTCTACAGGTA
749 Kochia DHP_A43_9 gDNAContig 1401 1600 AAGAATGTTATCAGTGGATACAT
scoparia TTTACTCAAAAGTTGCTTCTGAA
GCTGTCAATAAGGGAGCACATAT
GGTGAATGATGTTTCGAGTGGA
AAGCTAGATCCTGAGATGTTCAA
TGTTGTTGCAGGGCTTAAAGTGC
CTTATATAGCAATGCACATGCGA
GGTGATCCTTCTTCAATGCAAAA
TGCTGATAATTTGACAT
750 Kochia DHP_A43_9 gDNAContig 1401 1600 ATGTCAAATTATCAGCATTTTGC

scoparia ATTGAAGAAG GATCACCTCG
CAT
GTGCATTGCTATATAAGGCACTT
TAAGCCCTGCAACAACATTGAAC
ATCTCAGGATCTAGCTTTCCACTC
GAAACATCATTCACCATATGTGC
TCCCTTATTGACAGCTTCAGAAG
CAACTTTTGAGTAAAATGTATCC
ACTGATAACATTCTT
751 Kochia DH P_A43_1 gDNACo ntig 1576 1775 ATGCAAAATGCTGATAATTTGAC
scoparia 0 ATACAATGATGTTTGTAAG GAG
G
TGGCTTTAGAGTTGAGCTCTAGG
ATTACAGATGCAGAATTATCAGG
TATTCCTG CTTG GAG GATAGTTA
TTGATCCTGGCATTGGATTTTCCA
AGAATACAAAG CAAAATTTG GA
AATTCTCACAGGGTTGAAAAGAA
TTCGGCAAGAAATAGC
752 Kochia DH P_A43_1 gDNACo ntig 1576 1775 GCTATTTCTTGCCGAATTCTTTTC
scoparia 0 AACCCTGTGAGAATTTCCAAATT
TTGCTTTGTATTCTTGGAAAATCC
AATGCCAGGATCAATAACTATCC
TCCAAGCAGGAATACCTGATAAT
TCTG CATCTGTAATCCTAGAG CT
CAACTCTAAAGCCACCTCCTTAC
AAACATCATTGTATGTCAAATTA
TCAG CATTTTG CAT
753 Kochia DH P_A43_1 gDNACo ntig 1751 1950 TGAAAAGAATTCGGCAAGAAAT
scoparia 1 AG CAAAAAAGAGTTTGG CTGTG
GCTCATGGTCCCTTACTGATTGG
ACCTTCAAGAAAGAGGTTTTTGG
GTGAGATCTGCAATCGTCCTGTA
GCATCTGATAGAGATCCGGCAAC
TGTTGCTTCTATCACCGCTGGAG
TTTTGGGTGGTGCAAACATTGTA
AGAGTACATAATGTTCGG
754 Kochia DH P_A43_1 gDNACo ntig 1751 1950 CCGAACATTATGTACTCTTACAAT
scoparia 1 GTTTGCACCACCCAAAACTCCAG
CGGTGATAGAAGCAACAGTTGC
CGGATCTCTATCAGATGCTACAG
GACGATTGCAGATCTCACCCAAA
AACCTCTTTCTTGAAGGTCCAATC
AGTAAGGGACCATGAGCCACAG
CCAAACTCTTTTTTGCTATTTCTT
GCCGAATTCTTTTCA
755 Kochia DH P_A43_1 gDNACo ntig 1926 2125 CATTGTAAGAGTACATAATGTTC
scoparia 2 GGGATAGCCTTGATGGTGTCAA
GCTATGTGATGCAATGCTTGAAT

ATCAGTATAACTGAAGATTCTTA
GATTCTTAGATTCTTAGATTCTAA
GAGTTGATTTTATAGATTATTGTC
TTTGTTGTGTGCCTTCGGCAGAT
ATGAATAATATGATTGTAATTTT
GTTGCTTATGATTTT
756 Kochia DH P_A43_1 gDNACo ntig 1926 2125 AAAATCATAAGCAACAAAATTAC
scoparia 2 AATCATATTATTCATATCTGCCGA
AG G CACACAACAAAGACAATAA
TCTATAAAATCAACTCTTAGAATC
TAAGAATCTAAGAATCTAAGAAT
CTTCAGTTATACTGATATTCAAGC
ATTGCATCACATAGCTTGACACC
ATCAAGGCTATCCCGAACATTAT
GTACTCTTACAATG
757 Kochia DH P_A43_1 gDNACo ntig 2101 2300 TTGTAATTTTGTTGCTTATGATTT
scoparia 3 TCTTCCTACCTTTCTTTTATCATA
GAATTTAGATTAAAAAATGTACT
TGAATTTCATAAATGGTGAAATA
AAGTTTGTCGGTGCTTCATGCAA
TACGACTTTTCTAGTTTGCATTGC
TCTATCATAGGGGCTGTAAGCAG
ATTAGCCCAGTCAATTCACATTA
GATTTAGACGGCC
758 Kochia DH P_A43_1 gDNACo ntig 2101 2300 GGCCGTCTAAATCTAATGTGAAT
scoparia 3 TGACTGGGCTAATCTGCTTACAG
CCCCTATGATAGAGCAATGCAAA
CTAGAAAAGTCGTATTGCATGAA
GCACCGACAAACTTTATTTCACC
ATTTATGAAATTCAAGTACATTTT
TTAATCTAAATTCTATGATAAAA
GAAAGGTAGGAAGAAAATCATA
AG CAACAAAATTACAA
759 Kochia DH P_A43_1 gDNACo ntig 2276 2475 CAATTCACATTAGATTTAGACGG
scoparia 4 CCGGTGCAAAAACAGCATAATGT
TGCTAACGCTGTTTATACATTTAA
ACTATATGATCTCTAAGAGCAAA
ATACAAAATAATACAATGTGTTT
CATGAAGATGTCCAATCATTTCT
CCCTCAAAAAAAGATCGTGATGA
ACAATCAGGTACTTTGATTTTGTT
GTAGAACCTCAGCT
760 Kochia DH P_A43_1 gDNACo ntig 2276 2475 AGCTGAGGTTCTACAACAAAATC
scoparia 4 AAAGTACCTGATTGTTCATCACG
ATCTTTTTTTGAGGGAGAAATGA
TTGGACATCTTCATGAAACACAT
TGTATTATTTTGTATTTTGCTCTT

AGAGATCATATAGTTTAAATGTA
TAAACAGCGTTAGCAACATTATG
CTGTTTTTGCACCGGCCGTCTAA
ATCTAATGTGAATTG
761 Kochia DH P_A43_1 gDNACo ntig 2451 2650 TTGATTTTGTTGTAGAACCTCAG
scoparia 5 CTTCAGCCCTAGCCATGGGATCA
TCTTTTTCTCCTTCTCGCTCCTCA
GCCAATTTCTTTCTGTGCATCTCC
TCTGCAGCTTCTATTGAAGCTTTG
TGCTCAGCCTGGAGACGCTGCAT
TTCCTCTTCCATCTGCTGTCTTTC
GAACCATGTATCAGCATCCGCCC
AAACTGCAGAAA
762 Kochia DH P_A43_1 gDNACo ntig 2451 2650 TTTCTGCAGTTTGGGCGGATGCT
scoparia 5 GATACATGGTTCGAAAGACAGC
AGATGGAAGAGGAAATGCAGCG
TCTCCAGGCTGAGCACAAAGCTT
CAATAGAAGCTGCAGAGGAGAT
GCACAGAAAGAAATTGGCTGAG
GAG CGAGAAG GAGAAAAAGAT
GATCCCATGGCTAGGGCTGAAG
CTGAGGTTCTACAACAAAATCAA
763 Kochia DH P_A43_1 gDNACo ntig 2626 2825 TCAGCATCCGCCCAAACTGCAGA
scoparia 6 AATAATTTAAACAAGTTAATCAT
ACGGAGTGTGCAGCATGGCAAA
TTGGCAATAAGATGGTGCAAGT
AACAAGCTCAAATGATCCACCAT
AG CCAAATTCCTAACCATTGGAC
TGTGTCATATACTCATATCAGCTA
GTAGAAACATTCTCACCATAACC
CTAACTATTCGAGGATA
764 Kochia DH P_A43_1 gDNACo ntig 2626 2825 TATCCTCGAATAGTTAGGGTTAT
scoparia 6 GGTGAGAATGTTTCTACTAGCTG
ATATGAGTATATGACACAGTCCA
ATG GTTAGG AATTTG G CTATG GT
GGATCATTTGAGCTTGTTACTTG
CACCATCTTATTGCCAATTTGCCA
TGCTGCACACTCCGTATGATTAA
CTTGTTTAAATTATTTCTGCAGTT
TGGGCGGATGCTGA
765 Kochia DH P_A43_1 gDNACo ntig 2801 3000 CCATAACCCTAACTATTCGAGGA
scoparia 7 TAAGTGATACCATTCAACAATAG
TAAAGATCAAATCAGGTATTACT
AGACCTATCAAAGTAATACG GA
GTAGTTGTTATTGTTACAGAGTT
AG GAAGAATCCTATTTTCCCATTT
CTCCTATCAATCCTAAACTTTTGT

GACTGAACTATCGACATATAGTG
TGAAGAACATGAATG
766 Kochia DH P_A43_1 gDNACo ntig 2801 3000 CATTCATGTTCTTCACACTATATG
scoparia 7 TCGATAGTTCAGTCACAAAAGTT
TAGGATTGATAGGAGAAATGGG
AAAATAGGATTCTTCCTAACTCT
GTAACAATAACAACTACTCCGTA
TTACTTTGATAGGTCTAGTAATA
CCTGATTTGATCTTTACTATTGTT
GAATGGTATCACTTATCCTCGAA
TAGTTAGGGTTATGG
767 Kochia DH P_A43_1 gDNACo ntig 2976 3175 ACATATAGTGTGAAGAACATGA
scoparia 8 ATGGCAGAAGTCACAACTCTGAT
TCCTGAGTCCTGACTATAAACTA
TTGGATGACTGTGATACATCATT
AGTCCTTTAAGCATTGAGTTACT
CTATTCTACATAGTTAAATTATAT
AGATTCCAAGATCCGAATCCATG
AATTATCAATTACCATAAATTGAT
CTTCTTCCTTTGAGT
768 Kochia DH P_A43_1 gDNACo ntig 2976 3175 ACTCAAAGGAAGAAGATCAATTT
scoparia 8 ATG GTAATTGATAATTCATG GAT
TCGGATCTTGGAATCTATATAAT
TTAACTATGTAGAATAGAGTAAC
TCAATGCTTAAAGGACTAATGAT
GTATCACAGTCATCCAATAGTTT
ATAGTCAGGACTCAGGAATCAG
AGTTGTGACTTCTGCCATTCATGT
TCTTCACACTATATGT
769 Kochia DH P_A43_1 gDNACo ntig 3151 3350 ATAAATTGATCTTCTTCCTTTGAG
scoparia 9 TTTTGTCAACAGTTCCTACTCCGA
AATATGTCTTAAATCTAGAAG CA
ATAGACACTTATCAATGATACAG
CAATAGACGAATTCATCTACCCA
AGGCAGCATCAACAACAGCTGC
CGTTTGCGATAATCGAAACTATC
ATAGTGTCCTTTTCACTATTAGTG
CAGATGTTATCTAG
770 Kochia DH P_A43_1 gDNACo ntig 3151 3350 CTAGATAACATCTGCACTAATAG
scoparia 9 TGAAAAGGACACTATGATAGTTT
CGATTATCGCAAACGGCAGCTGT
TGTTGATGCTGCCTTGGGTAGAT
GAATTCGTCTATTGCTGTATCATT
GATAAGTGTCTATTGCTTCTAGA
TTTAAGACATATTTCGGAGTAGG
AACTGTTGACAAAACTCAAAG GA
AGAAGATCAATTTAT

771 Kochia DH P_A43_2 gDNACo ntig 3326 3525 CACTATTAGTGCAGATGTTATCT
scoparia 0 AG G
GTCTAAACCTCTATGTTTCT
ACATTCCTGGAAAATCTTATTCTG
TACTGCATAATCCTCTCACAAAA
AATTCGCCAATGAATGACAAATT
AG CTATCCAGAATTG CAGATTGA
TTGAATCAAATTGATCATGGCAG
CAGCACAATTGCAGCAGTTATCA
ATTGAAGCACAATAT
772 Kochia DH P_A43_2 gDNACo ntig 3326 3525 ATATTGTGCTTCAATTGATAACT
scoparia 0 GCTGCAATTGTGCTGCTGCCATG
ATCAATTTGATTCAATCAATCTGC
AATTCTGGATAGCTAATTTGTCA
TTCATTGGCGAATTTTTTGTGAG
AG GATTATG CAGTACAGAATAA
GATTTTCCAGGAATGTAGAAACA
TAGAGGTTTAGACCCTAGATAAC
ATCTGCACTAATAGTG
773 Kochia DH P_A43_2 gDNACo ntig 3501 3700 GCAGTTATCAATTGAAGCACAAT
scoparia 1 ATTACCTCTCAATCATAACAATCA
AAGCACAGAAATTCCAATCAATA
ACTCCACAATATAGTATCAATCTC
TAACTCAGAAACTAAACAGAAGC
AAAAACCCATTCAATCAAAG CAA
CAGTAAAATTAGGGTTTGAATTA
GAAAGAAAGAGAGGGAAGAGA
AACATACTGGGTTGCG
774 Kochia DH P_A43_2 gDNACo ntig 3501 3700 CGCAACCCAGTATGTTTCTCTTCC
scoparia 1 CTCTCTTTCTTTCTAATTCAAACC
CTAATTTTACTGTTGCTTTGATTG
AATGGGTTTTTGCTTCTGTTTAGT
TTCTGAGTTAGAGATTGATACTA
TATTGTGGAGTTATTGATTGGAA
TTTCTGTGCTTTGATTGTTATGAT
TGAGAGGTAATATTGTGCTTCAA
TTGATAACTGC
775 Kochia DH P_A43_2 gDNACo ntig 3676 3875 GGGAAGAGAAACATACTGGGTT
scoparia 2 GCGCAGCCCATCCCTGTTCACCA
CCCTTAATCTTCTCGGGAAGAGC
GTAATTGACAGTGAGAACACGA
CCGTAAAGCTCAGCACCATCCAT
GTTATCCATGGCAGAAGAAGCG
TCGTCTCTCTCCAAGAAAGTGAC
GAAACCGAAAGAACGATGCTTG
TTGGTGGCCAAATCAAGAGG
776 Kochia DH P_A43_2 gDNACo ntig 3676 3875 CCTCTTGATTTGGCCACCAACAA
scoparia 2 GCATCGTTCTTTCGGTTTCGTCAC

TTTCTTGGAGAGAGACGACGCTT
CTTCTGCCATGGATAACATGGAT
GGTGCTGAGCTTTACGGTCGTGT
TCTCACTGTCAATTACGCTCTTCC
CGAGAAGATTAAGGGTGGTGAA
CAGGGATGGGCTGCGCAACCCA
GTATGTTTCTCTTCCC
777 Kochia DHP_A46_1 cDNAContig 1 scoparia CACTCATCACCAGAAACTACTAT
TGAGGTTTGTTCTAAAGAGCATG
AAGTTGTAATTGCTCTAGGGAGC
AATGTAGGAGACAGATTAGATA
ACTTTAACCAAGCTCTGCAGCTA
ATGAAGAAATTAGGAGTAAATA
TCACAAGGCATGGCTGCTTATAC
GAGACAGATCCTGCCTA
778 Kochia DHP_A46_1 cDNAContig 1 scoparia GCAGCCATGCCTTGTGATATTTA
CTCCTAATTTCTTCATTAGCTGCA
GAGCTTGGTTAAAGTTATCTAAT
CTGTCTCCTACATTGCTCCCTAGA
GCAATTACAACTTCATGCTCTTTA
GAACAAACCTCAATAGTAGTTTC
TGGTGATGAGTGCAAAAAAGCA
AGACTTGAAGCTGC
779 Kochia D H P_A46_2 cDNAContig 176 375 G
CTTATACGAGACAGATCCTG CC
scoparia TATGTGACTGATCAACCAAAGTT
TCTTAACTCTGCAGTGAGGGGCT
TCACAAAACTTGGGCCTCTAGAA
CTATTAGGGATGCTGAAGAAAAT
TGAGAAGGATATGGGTCGAACT
AATGGAATAAGATATGGCCCTA
GGCCAATTGACTTAGACATTCTT
TTTTATGGGAAGTTTAGG
780 Kochia D H P_A46_2 cDNAContig 176 375 CCTAAACTTCCCATAAAAAAGAA
scoparia TGTCTAAGTCAATTGGCCTAGGG
CCATATCTTATTCCATTAGTTCGA
CCCATATCCTTCTCAATTTTCTTC
AGCATCCCTAATAGTTCTAGAGG
CCCAAGTTTTGTGAAGCCCCTCA
CTGCAGAGTTAAGAAACTTTGGT
TGATCAGTCACATAGGCAGGATC
TGTCTCGTATAAGC
781 Kochia D H P_A46_3 cDNAContig 351 550 CATTCTTTTTTATGGGAAGTTTAG
scoparia GGTAAGCTCTGAGAAACTTACAG
TTCCGCATGAAAGGATATGGGA
AAGACCCTTTGTGATGGCACCAC

TAATTGATATAATTGGATCGGAT
GTAGAAAATGACACTGTTGCTGC
ATGGCATTCATTATCAAAATTTTC
TGGTGGACTATTTGAAGCGTGG
GATAAACTTGGTGGAG
782 Kochia DHP_A46_3 cDNAContig 351 550 CTCCACCAAGTTTATCCCACGCTT
scoparia CAAATAGTCCACCAGAAAATTTT
GATAATGAATGCCATGCAGCAAC
AGTGTCATTTTCTACATCCGATCC
AATTATATCAATTAGTGGTGCCA
TCACAAAGGGTCTTTCCCATATC
CTTTCATGCGGAACTGTAAGTTT
CTCAGAGCTTACCCTAAACTTCCC
ATAAAAAAGAATG
783 Kochia DHP_A46_4 cDNAContig 526 725 GAAGCGTGGGATAAACTTGGTG
scoparia GAGATTCACTCATTGGGAAGGA
CGGAATGAGTAGGGTTTTGCCA
GTTGGGAACCACTTGTGGGATTG
GTCGTGCAAAACCTCTGTAATGG
GAGTCTTGAATTTGACTCCGGAC
AGCTTTAGTGATGGAGGAAAGT
TTCTACCTGTAGAAAATGCAGTT
TCTCAGGTTCGTCAAATGAT
784 Kochia DHP_A46_4 cDNAContig 526 725 ATCATTTGACGAACCTGAGAAAC
scoparia TGCATTTTCTACAGGTAGAAACT
TTCCTCCATCACTAAAGCTGTCCG
GAGTCAAATTCAAGACTCCCATT
ACAGAGGTTTTGCACGACCAATC
CCACAAGTGGTTCCCAACTGGCA
AAACCCTACTCATTCCGTCCTTCC
CAATGAGTGAATCTCCACCAAGT
TTATCCCACGCTTC
785 Kochia DHP_A46_5 cDNAContig 701 900 CAGTTTCTCAGGTTCGTCAAATG
scoparia ATCTCAGAAGGTGCTGACATAAT
TGATATTGGAGCGCAATCAACAA
GGCCCATGGCAACTAGGATTTCT
GCTGAGGAAGAGCTGGAAAGAC
TAGTCCCTGTTTTAGAAGGTGTC
AAGGATGTTATCGAGGAAGAAG
GAAGAATGTTATCAGTGGATACA
TTTTACTCAAAAGTTGCT
786 Kochia DHP_A46_5 cDNAContig 701 900 AGCAACTTTTGAGTAAAATGTAT
scoparia CCACTGATAACATTCTTCCTTCTT
CCTCGATAACATCCTTGACACCTT
CTAAAACAGGGACTAGTCTTTCC
AGCTCTTCCTCAGCAGAAATCCT
AGTTGCCATGGGCCTTGTTGATT

GCGCTCCAATATCAATTATGTCA
GCACCTTCTGAGATCATTTGACG
AACCTGAGAAACTG
787 Kochia DH P_A46_6 cDNACo ntig 876 scoparia CTTCTGAAGCTGTCAATAAG G GA
GCACATATGGTGAATGATGTTTC
GAGTGGAAAGCTAGATCCTGAG
ATGTTCAATGTTGTTG CAG GG CT
TAAAGTGCCTTATATAGCAATGC
ACATGCGAGGTGATCCTTCTTCA
ATGCAAAATGCTGATAATTTGAC
ATACAATGATGTTTGTA
788 Kochia DH P_A46_6 cDNACo ntig 876 scoparia TTATCAGCATTTTGCATTGAAGA
AG GATCACCTCGCATGTG CATTG
CTATATAAGGCACTTTAAGCCCT
GCAACAACATTGAACATCTCAGG
ATCTAGCTTTCCACTCGAAACATC
ATTCACCATATGTGCTCCCTTATT
GACAGCTTCAGAAGCAACTTTTG
AGTAAAATGTATCC
789 Kochia DH P_A46_7 cDNACo ntig 1051 1250 AATTTGACATACAATGATGTTTG
scoparia TAAG GAG GTG G CTTTAG AGTTG
AG CTCTAG GATTACAGATG CAGA
ATTATCAG GTATTCCTG CTTG GA
GGATAGTTATTGATCCTGGCATT
G GATTTTCCAAGAATACAAAG CA
AAATTTG GAAATTCTCACAGG GT
TGAAAAGAATTCGGCAAGAAAT
AG CAAAAAAGAGTTTGG C
790 Kochia DH P_A46_7 cDNACo ntig 1051 1250 GCCAAACTCTTTTTTGCTATTTCT
scoparia TGCCGAATTCTTTTCAACCCTGTG
AGAATTTCCAAATTTTGCTTTGTA
TTCTTGGAAAATCCAATGCCAGG
ATCAATAACTATCCTCCAAGCAG
GAATACCTGATAATTCTGCATCT
GTAATCCTAGAGCTCAACTCTAA
AG CCACCTCCTTACAAACATCATT
GTATGTCAAATT
791 Kochia DH P_A46_8 cDNACo ntig 1226 1425 AAGAAATAGCAAAAAAGAGTTT
scoparia GGCTGTGGCTCATGGTCCCTTAC
TGATTGGACCTTCAAGAAAGAG
GTTTTTGGGTGAGATCTGCAATC
GTCCTGTAGCATCTGATAGAGAT
CCGGCAACTGTTGCTTCTATCAC
CGCTGGAGTTTTGGGTGGTGCA
AACATTGTAAGAGTACATAATGT

TCGGGATAGCCTTGATGGT
792 Kochia DHP_A46_8 cDNAContig 1226 1425 ACCATCAAGGCTATCCCGAACAT
scoparia TATGTACTCTTACAATGTTTGCAC
CACCCAAAACTCCAGCGGTGATA
GAAGCAACAGTTGCCGGATCTCT
ATCAGATGCTACAGGACGATTGC
AGATCTCACCCAAAAACCTCTTTC
TTGAAGGTCCAATCAGTAAGGG
ACCATGAGCCACAGCCAAACTCT
TTTTTGCTATTTCTT
793 Kochia DHP_A44_1 gDNAContig 1 scoparia TACGTATGTACTTTTGCAGCTTCA
AGTCTTGCTTTTTTGCACTCATCA
CCAGAAACTACTATTGAGGTTTG
TTCTAAAGAGCATGAAGTTGTAA
TTGCTCTAGGGAGCAATGTAGG
AGACAGATTAGATAACTTTAACC
AAGCTCTGCAGCTAATGAAGAA
ATTAGGAGTAAATATC
794 Kochia DHP_A44_1 gDNAContig 1 scoparia TAGCTGCAGAGCTTGGTTAAAGT
TATCTAATCTGTCTCCTACATTGC
TCCCTAGAGCAATTACAACTTCA
TGCTCTTTAGAACAAACCTCAAT
AGTAGTTTCTGGTGATGAGTGCA
AAAAAGCAAGACTTGAAGCTGC
AAAAGTACATACGTAATCTTTAA
AATCCATTTGAATTA
795 Kochia DHP_A44_2 gDNAContig 176 375 AATGAAGAAATTAGGAGTAAAT
scoparia ATCACAAGGCATGGCTGCTTATA
CGAGACAGATCCTGCCTATGTGA
CTGATCAACCAAAGTTTCTTAACT
CTGCAGTGAGGGGCTTCACAAA
ACTTGGGCCTCTAGAACTATTAG
GGATGCTGAAGAAAATTGAGAA
GGATATGGGTCGAACTAATGGA
ATAAGATATGGCCCTAGGC
796 Kochia DHP_A44_2 gDNAContig 176 375 GCCTAGGGCCATATCTTATTCCA
scoparia TTAGTTCGACCCATATCCTTCTCA
ATTTTCTTCAGCATCCCTAATAGT
TCTAGAGGCCCAAGTTTTGTGAA
GCCCCTCACTGCAGAGTTAAGAA
ACTTTGGTTGATCAGTCACATAG
GCAGGATCTGTCTCGTATAAGCA
GCCATGCCTTGTGATATTTACTCC
TAATTTCTTCATT
797 Kochia DHP_A44_3 gDNAContig 351 550 AATGGAATAAGATATGGCCCTA

scoparia GGCCAATTGACTTAGACATTCTT
TTTTATGGGAAGTTTAGGGTAAG
CTCTGAGAAACTTACAGTTCCGC
ATGAAAGGATATGGGAAAGACC
CTTTGTGATGGCACCACTAATTG
ATATAATTGGATCGGATGTAGAA
AATGACACTGTTGCTGCATGGCA
TTCATTATCAAAATTTTC
798 Kochia DH P_A44_3 gDNACo ntig 351 550 GAAAATTTTGATAATGAATGCCA
scoparia TGCAGCAACAGTGTCATTTTCTA
CATCCGATCCAATTATATCAATTA
GTGGTGCCATCACAAAGGGTCTT
TCCCATATCCTTTCATGCGGAACT
GTAAGTTTCTCAGAGCTTACCCT
AAACTTCCCATAAAAAAGAATGT
CTAAGTCAATTGGCCTAGGGCCA
TATCTTATTCCATT
799 Kochia DH P_A44_4 gDNACo ntig 526 725 CATGGCATTCATTATCAAAATTTT
scoparia CTGGTGGACTATTTGAAGCGTGG
GATAAACTTGGTGGAGATTCACT
CATTGGGAAGGACGGAATGAGT
AGGGTTTTGCCAGTTGGGAACCA
CTTGTGGGATTGGTCGTGCAAAA
CCTCTGTAATGGGAGTCTTGAAT
TTGACTCCGGACAGCTTTAGTGA
TG GAG GAAAGTTTCTA
800 Kochia DH P_A44_4 gDNACo ntig 526 725 TAGAAACTTTCCTCCATCACTAAA
scoparia GCTGTCCGGAGTCAAATTCAAGA
CTCCCATTACAGAG GTTTTG CAC
GACCAATCCCACAAGTGGTTCCC
AACTGGCAAAACCCTACTCATTC
CGTCCTTCCCAATGAGTGAATCT
CCACCAAGTTTATCCCACGCTTCA
AATAGTCCACCAGAAAATTTTGA
TAATGAATGCCATG
801 Kochia DH P_A44_5 gDNACo ntig 701 900 CTTTAGTGATGGAGGAAAGTTTC
scoparia TACCTGTAGAAAATGCAGTTTCT
CAGGTTCGTCAAATGATCTCAGA
AG GTG CTGACATAATTGATATTG
GAGCGCAATCAACAAGGCCCAT
GGCAACTAGGATTTCTGCTGAGG
AAGAGCTGGAAAGACTAGTCCC
TGTTTTAGAAGGTGTCAAGGATG
TTATCGAGGAAGAAGGAA
802 Kochia DH P_A44_5 gDNACo ntig 701 900 TTCCTTCTTCCTCGATAACATCCT
scoparia TGACACCTTCTAAAACAGGGACT
AGTCTTTCCAG CTCTTCCTCAG CA

GAAATCCTAGTTGCCATGGGCCT
TGTTGATTGCGCTCCAATATCAA
TTATGTCAGCACCTTCTGAGATC
ATTTGACGAACCTGAGAAACTGC
ATTTTCTACAGGTAGAAACTTTCC
TCCATCACTAAAG
803 Kochia DH P_A44_6 gDNACo ntig 876 scoparia GAAGAATGTTATCAGTGGATACA
TTTTACTCAAAAGTTGCTTCTGAA
G CTGTCAATAAG G GAG CACATAT
GGTGAATGATGTTTCGAGTGGA
AAGCTAGATCCTGAGATGTTCAA
TGTTGTTGCAGGGCTTAAAGTGC
CTTATATAGCAATGCACATGCGA
GGTGATCCTTCTTCAAT
804 Kochia DH P_A44_6 gDNACo ntig 876 scoparia GTGCATTGCTATATAAGGCACTT
TAAGCCCTGCAACAACATTGAAC
ATCTCAGGATCTAGCTTTCCACTC
GAAACATCATTCACCATATGTGC
TCCCTTATTGACAGCTTCAGAAG
CAACTTTTGAGTAAAATGTATCC
ACTGATAACATTCTTCCTTCTTCC
TCGATAACATCCTT
805 Kochia DH P_A44_7 gDNACo ntig 1051 1250 ACATGCGAGGTGATCCTTCTTCA
scoparia ATGCAAAATGCTGATAATTTGAC
ATACAATGATGTTTGTAAG GAG G
TGGCTTTAGAGTTGAGCTCTAGG
ATTACAGATGCAGAATTATCAGG
TATTCCTG CTTG GAG GATAGTTA
TTGATCCTGGCATTGGATTTTCCA
AGAATACAAAG CAAAATTTG GA
AATTCTCACAGGGTTG
806 Kochia DH P_A44_7 gDNACo ntig 1051 1250 CAACCCTGTGAGAATTTCCAAAT
scoparia TTTGCTTTGTATTCTTGGAAAATC
CAATGCCAGGATCAATAACTATC
CTCCAAGCAGGAATACCTGATAA
TTCTG CATCTGTAATCCTAGAG CT
CAACTCTAAAGCCACCTCCTTAC
AAACATCATTGTATGTCAAATTA
TCAGCATTTTGCATTGAAGAAGG
ATCACCTCGCATGT
807 Kochia DH P_A44_8 gDNACo ntig 1226 1425 AAATTTGGAAATTCTCACAGGGT
scoparia TGAAAAGAATTCGGCAAGAAAT
AG CAAAAAAGAGTTTGG CTGTG
GCTCATGGTCCCTTACTGATTGG
ACCTTCAAGAAAGAGGTTTTTGG

GTGAGATCTGCAATCGTCCTGTA
GCATCTGATAGAGATCCGGCAAC
TGTTGCTTCTATCACCGCTGGAG
TTTTGGGTGGTGCAAACA
808 Kochia DH
P_A44_8 gDNACo ntig 1226 1425 TGTTTGCACCACCCAAAACTCCA
scoparia GCGGTGATAGAAGCAACAGTTG
CCGGATCTCTATCAGATGCTACA
GGACGATTGCAGATCTCACCCAA
AAACCTCTTTCTTGAAGGTCCAA
TCAGTAAGGGACCATGAGCCAC
AG CCAAACTCTTTTTTG CTATTTC
TTGCCGAATTCTTTTCAACCCTGT
GAGAATTTCCAAATTT
809 Kochia DH
P_A44_9 gDNACo ntig 1401 1600 GCTGGAGTTTTGGGTGGTGCAA
scoparia ACATTGTAAGAGTACATAATGTT
CGGGATAGCCTTGATGGTGTCAA
GCTATGTGATGCAATGCTTGAAT
ATCAGTATAACTGAAGATTCTTA
GATTCTTAGATTCTTAGATTCTAA
GAGTTGATTTTATAGATTATTGTC
TTTGTTGTGTGCCTTCGGCAGAT
ATGAATAATATGATT
810 Kochia DH P_A44_9 gDNACo ntig 1401 1600 AATCATATTATTCATATCTGCCGA
scoparia AG G CACACAACAAAGACAATAA
TCTATAAAATCAACTCTTAGAATC
TAAGAATCTAAGAATCTAAGAAT
CTTCAGTTATACTGATATTCAAGC
ATTGCATCACATAGCTTGACACC
ATCAAGGCTATCCCGAACATTAT
GTACTCTTACAATGTTTGCACCAC
CCAAAACTCCAGC
811 Kochia DH
P_A44_1 gDNACo ntig 1576 1775 TTCGGCAGATATGAATAATATGA
scoparia 0 TTGTAATTTTGTTGCTTATGATTT
TCTTCCTACCTTTCTTTTATCATA
GAATTTAGATTAAAAAATGTACT
TGAATTTCATAAATGGTGAAATA
AAGTTTGTCGGTGCTTCATGCAA
TACGACTTTTCTAGTTTGCATTGC
TCTATCATAGGGGCTGTAAGCAG
ATTAGCCCAGTCA
812 Kochia DH
P_A44_1 gDNACo ntig 1576 1775 TGACTGGGCTAATCTGCTTACAG
scoparia 0 CCCCTATGATAGAGCAATGCAAA
CTAGAAAAGTCGTATTGCATGAA
GCACCGACAAACTTTATTTCACC
ATTTATGAAATTCAAGTACATTTT
TTAATCTAAATTCTATGATAAAA
GAAAGGTAGGAAGAAAATCATA

AGCAACAAAATTACAATCATATT
ATTCATATCTGCCGAA
813 Kochia DH P_A44_1 g D NACo nt ig 1751 1950 GGCTGTAAGCAGATTAGCCCAGT
scoparia 1 CAATTCACATTAGATTTAGACGG
CCGGTGCAAAAACAGCATAATGT
TGCTAACGCTGTTTATACATTTAA
ACTATATGATCTCTAAGAGCAAA
ATACAAAATAATACAATGTGTTT
CATGAAGATGTCCAATCATTTCT
CCCTCAAAAAAAGATCGTGATGA
ACAATCAGGTACTTT
814 Kochia D H P_A44_1 g D NACo nt ig 1751 1950 AAAGTACCTGATTGTTCATCACG
scoparia 1 ATCTTTTTTTGAGGGAGAAATGA
TTGGACATCTTCATGAAACACAT
TGTATTATTTTGTATTTTGCTCTT
AGAGATCATATAGTTTAAATGTA
TAAACAGCGTTAGCAACATTATG
CTGTTTTTGCACCGGCCGTCTAA
ATCTAATGTGAATTGACTGGGCT
AATCTGCTTACAGCC
815 Kochia D H P_A44_1 g D NACo nt ig 1926 2125 ATCGTGATGAACAATCAGGTACT
scoparia 2 TTGATTTTGTTGTAGAACCTCAG
CTTCAGCCCTAGCCATGGGATCA
TCTTTTTCTCCTTCTCGCTCCTCA
GCCAATTTCTTTCTGTGCATCTCC
TCTGCAGCTTCTATTGAAGCTTTG
TGCTCAGCCTGGAGACGCTGCAT
TTCCTCTTCCATCTGCTGTCTTTC
GAACCATGTATC
816 Kochia D H P_A44_1 g D NACo nt ig 1926 2125 GATACATGGTTCGAAAGACAGC
scoparia 2 AGATGGAAGAGGAAATGCAGCG
TCTCCAGGCTGAGCACAAAGCTT
CAATAGAAGCTGCAGAGGAGAT
GCACAGAAAGAAATTGGCTGAG
GAGCGAGAAGGAGAAAAAGAT
GATCCCATGGCTAGGGCTGAAG
CTGAGGTTCTACAACAAAATCAA
AGTACCTGATTGTTCATCACGAT
817 Kochia D H P_A44_1 g D NACo nt ig 2101 2300 TCTGCTGTCTTTCGAACCATGTAT
scoparia 3 CAGCATCCGCCCAAACTGCAGAA
ATAATTTAAACAAGTTAATCATA
CGGAGTGTGCAGCATGGCAAAT
TGGCAATAAGATGGTGCAAGTA
ACAAGCTCAAATGATCCACCATA
GCCAAATTCCTAACCATTGGACT
GTGTCATATACTCATATCAGCTA
GTAGAAACATTCTCACC

818 Kochia DH P_A44_1 gDNACo ntig 2101 2300 GGTGAGAATGTTTCTACTAGCTG
scoparia 3 ATATGAGTATATGACACAGTCCA
ATG GTTAGG AATTTG G CTATG GT
GGATCATTTGAGCTTGTTACTTG
CACCATCTTATTGCCAATTTGCCA
TGCTGCACACTCCGTATGATTAA
CTTGTTTAAATTATTTCTGCAGTT
TGGGCGGATGCTGATACATGGTT
CGAAAGACAGCAGA
819 Kochia DH P_A44_1 gDNACo ntig 2276 2475 ATCAGCTAGTAGAAACATTCTCA
scoparia 4 CCATAACCCTAACTATTCGAG GA
TAAGTGATACCATTCAACAATAG
TAAAGATCAAATCAGGTATTACT
AGACCTATCAAAGTAATACG GA
GTAGTTGTTATTGTTACAGAGTT
AG GAAGAATCCTATTTTCCCATTT
CTCCTATCAATCCTAAACTTTTGT
GACTGAACTATCGAC
820 Kochia DH P_A44_1 gDNACo ntig 2276 2475 GTCGATAGTTCAGTCACAAAAGT
scoparia 4 TTAGGATTGATAGGAGAAATGG
GAAAATAGGATTCTTCCTAACTC
TGTAACAATAACAACTACTCCGT
ATTACTTTGATAGGTCTAGTAAT
ACCTGATTTGATCTTTACTATTGT
TGAATGGTATCACTTATCCTCGA
ATAGTTAGGGTTATGGTGAGAAT
GTTTCTACTAGCTGAT
821 Kochia DH P_A44_1 gDNACo ntig 2451 2650 AAACTTTTGTGACTGAACTATCG
scoparia 5 ACATATAGTGTGAAGAACATGA
ATGGCAGAAGTCACAACTCTGAT
TCCTGAGTCCTGACTATAAACTA
TTGGATGACTGTGATACATCATT
AGTCCTTTAAGCATTGAGTTACT
CTATTCTACATAGTTAAATTATAT
AGATTCCAAGATCCGAATCCATG
AATTATCAATTACCAT
822 Kochia DH P_A44_1 gDNACo ntig 2451 2650 ATGGTAATTGATAATTCATGGAT
scoparia 5 TCGGATCTTGGAATCTATATAAT
TTAACTATGTAGAATAGAGTAAC
TCAATGCTTAAAGGACTAATGAT
GTATCACAGTCATCCAATAGTTT
ATAGTCAGGACTCAGGAATCAG
AGTTGTGACTTCTGCCATTCATGT
TCTTCACACTATATGTCGATAGTT
CAGTCACAAAAGTTT
823 Kochia DH P_A44_1 gDNACo ntig 2626 2825 GAATCCATGAATTATCAATTACC
scoparia 6 ATAAATTGATCTTCTTCCTTTGAG

TTTTGTCAACAGTTCCTACTCCGA
AATATGTCTTAAATCTAGAAG CA
ATAGACACTTATCAATGATACAG
CAATAGACGAATTCATCTACCCA
AGGCAGCATCAACAACAGCTGC
CGTTTGCGATAATCGAAACTATC
ATAGTGTCCTTTTCA
824 Kochia DH P_A44_1 gDNACo ntig 2626 2825 TGAAAAGGACACTATGATAGTTT
scoparia 6 CGATTATCGCAAACGGCAGCTGT
TGTTGATGCTGCCTTGGGTAGAT
GAATTCGTCTATTGCTGTATCATT
GATAAGTGTCTATTGCTTCTAGA
TTTAAGACATATTTCGGAGTAGG
AACTGTTGACAAAACTCAAAG GA
AGAAGATCAATTTATGGTAATTG
ATAATTCATGGATTC
825 Kochia DH P_A44_1 gDNACo ntig 2801 3000 CGAAACTATCATAGTGTCCTTTTC
scoparia 7 ACTATTAGTGCAGATGTTATCTA
GGGTCTAAACCTCTATGTTTCTAC
ATTCCTGGAAAATCTTATTCTGTA
CTGCATAATCCTCTCACAAAAAA
TTCGCCAATGAATGACAAATTAG
CTATCCAGAATTGCAGATTGATT
GAATCAAATTGATCATG G CAG CA
GCACAATTGCAGC
826 Kochia DH P_A44_1 gDNACo ntig 2801 3000 GCTGCAATTGTGCTGCTGCCATG
scoparia 7 ATCAATTTGATTCAATCAATCTGC
AATTCTGGATAGCTAATTTGTCA
TTCATTGGCGAATTTTTTGTGAG
AG GATTATG CAGTACAGAATAA
GATTTTCCAGGAATGTAGAAACA
TAGAGGTTTAGACCCTAGATAAC
ATCTG CACTAATAGTGAAAAG GA
CACTATGATAGTTTCG
827 Kochia DH P_A44_1 gDNACo ntig 2976 3175 ATCATGGCAGCAGCACAATTGCA
scoparia 8 GCAGTTATCAATTGAAGCACAAT
ATTACCTCTCAATCATAACAATCA
AAGCACAGAAATTCCAATCAATA
ACTCCACAATATAGTATCAATCTC
TAACTCAGAAACTAAACAGAAGC
AAAAACCCATTCAATCAAAG CAA
CAGTAAAATTAGGGTTTGAATTA
GAAAGAAAGAGAGG
828 Kochia DH P_A44_1 gDNACo ntig 2976 3175 CCTCTCTTTCTTTCTAATTCAAAC
scoparia 8 CCTAATTTTACTGTTGCTTTGATT
GAATGGGTTTTTGCTTCTGTTTA
GTTTCTGAGTTAGAGATTGATAC

TATATTGTGGAGTTATTGATTGG
AATTTCTGTGCTTTGATTGTTATG
ATTGAGAGGTAATATTGTGCTTC
AATTGATAACTGCTGCAATTGTG
CTGCTGCCATGAT
829 Kochia DH P_A44_1 gDNACo ntig 3151 3350 GGTTTGAATTAGAAAGAAAGAG
scoparia 9 AG G GAAGAGAAACATACTG G GT
TGCGCAGCCCATCCCTGTTCACC
ACCCTTAATCTTCTCGGGAAGAG
CGTAATTGACAGTGAGAACACG
ACCGTAAAGCTCAGCACCATCCA
TGTTATCCATGGCAGAAGAAGC
GTCGTCTCTCTCCAAGAAAGTGA
CGAAACCGAAAGAACGATGC
830 Kochia DH P_A44_1 gDNACo ntig 3151 3350 GCATCGTTCTTTCGGTTTCGTCAC
scoparia 9 TTTCTTGGAGAGAGACGACGCTT
CTTCTGCCATG GATAACATG GAT
GGTGCTGAGCTTTACGGTCGTGT
TCTCACTGTCAATTACGCTCTTCC
CGAGAAGATTAAGGGTGGTGAA
CAGGGATGGGCTGCGCAACCCA
GTATGTTTCTCTTCCCTCTCTTTCT
TTCTAATTCAAACC
831 Lolium DH P_A47_1 gDNACo ntig 1 200 ACGAAAGCTTTGAACTCTCAAGT
multiflorum GGTGCAACATAGATAGATTATAT
ATATTTCGAATATAATTCGAATG
AACATAAAAATTACATATAAAAA
CTTTAAAACAAACTTAAACTACTT
CTTCTTCCTCGATGGCCCCGCCTC
ATCGTCGGGGCGGCGACGCTTC
CGGCTCGTCACCTCCTCGTCGGA
GGAAGTTGGGTCCTC
832 Lolium DH P_A47_1 gDNACo ntig 1 200 GAGGACCCAACTTCCTCCGACGA
multiflorum GGAGGTGACGAGCCGGAAGCGT
CGCCGCCCCGACGATGAGGCGG
GGCCATCGAGGAAGAAGAAGTA
GTTTAAGTTTGTTTTAAAGTTTTT
ATATGTAATTTTTATGTTCATTCG
AATTATATTCGAAATATATATAAT
CTATCTATGTTGCACCACTTGAG
AGTTCAAAGCTTTCGT
833 Lolium DH P_A47_2 gDNACo ntig 176 375 CCTCGTCGGAGGAAGTTGGGTC
multiflorum CTCCTCCTCGTCAGTGTCCTCAGC
CTCTTCGTCGTCCTCCTCCTCTTC
CTCGGCCTCTTCGTCGGCCTGCT
CCTTGGCCTCTTCGTCCTCCTCCT
CGTCGTCATCCCATGCGTCCTCCT

CCTCGTCGTCATCCCATTCGTCCT
TGCTGGCCGGCGGGGGGGAATC
GTCGCTGCTGGAC
834 Lolium DHP_A47_2 gDNAContig 176 375 GTCCAGCAGCGACGATTCCCCCC
multiflorum CGCCGGCCAGCAAGGACGAATG
GGATGACGACGAGGAGGAGGA
CGCATGGGATGACGACGAGGAG
GAGGACGAAGAGGCCAAGGAG
CAGGCCGACGAAGAGGCCGAGG
AAGAGGAGGAGGACGACGAAG
AGGCTGAGGACACTGACGAGGA
GGAGGACCCAACTTCCTCCGACG
AGG
835 Lolium DHP_A47_3 gDNAContig 351 550 CGGGGGGGAATCGTCGCTGCTG
multiflorum GACGATGCAGCTTTATCCCACCA
ATGGCGCCATCCAGGCGGCTTCC
CCTCGCTGTCGGTGTCCGATGGC
CAAGAGAGATCGCTCATGGTTG
ACGGAGGATGGTGAGGAGAGA
ACAGATGAATGGCGTCGGCCGT
CGTAAACCGTATATGTAGGTCTC
TCGACGAAGAGAGCGGCGGTT
836 Lolium DHP_A47_3 gDNAContig 351 550 AACCGCCGCTCTCTTCGTCGAGA
multiflorum GACCTACATATACGGTTTACGAC
GGCCGACGCCATTCATCTGTTCT
CTCCTCACCATCCTCCGTCAACCA
TGAGCGATCTCTCTTGGCCATCG
GACACCGACAGCGAGGGGAAGC
CGCCTGGATGGCGCCATTGGTG
GGATAAAGCTGCATCGTCCAGCA
GCGACGATTCCCCCCCG
837 Lolium DHP_A47_4 gDNAContig 526 725 TCTCTCGACGAAGAGAGCGGCG
multiflorum GTTGCTCTTCCGCGGAGTTCGTG
CTCCATTACAGCGGTTCTCGCAT
CGAGGCCACTTCGGCCGTTCCCG
ACGAGTCGTTTGGGCTCTCCAGA
CCACTTTGCGACGGTTCAATGCG
TCGAGGGCACTCCGACGATTGCC
CTTCCCGGTGACTGCGCCGTCGC
TATGCACGCGGTGTGTG
838 Lolium DHP_A47_4 gDNAContig 526 725 CACACACCGCGTGCATAGCGAC
multiflorum GGCGCAGTCACCGGGAAGGGCA
ATCGTCGGAGTGCCCTCGACGCA
TTGAACCGTCGCAAAGTGGTCTG
GAGAGCCCAAACGACTCGTCGG
GAACGGCCGAAGTGGCCTCGAT
GCGAGAACCGCTGTAATGGAGC

ACGAACTCCGCGGAAGAGCAAC
CGCCGCTCTCTTCGTCGAGAGA
839 Lolium DH P_A47_5 gDNAContig 701 900 GCCGTCGCTATGCACGCGGTGTG
multiflorum TGCGCAACCATGGGCTCGCGGCT
GGGAAAATGGGCCTCCCCAGGC
CACAAAATACATCCATCCGGCGA
TAACTAACGCCGGATTTCGGCCT
GGGAGCCCCAACGGCTGGGATG
CTCTTAGCCCGTGGAACACATTC
CCGAATCGGTACCGACGGTCTCA
TCTCTCTCGCCCTGATCT
840 Lolium DHP_A47_5 gDNAContig 701 900 AGATCAGGGCGAGAGAGATGAG
multiflorum ACCGTCGGTACCGATTCGGGAAT
GTGTTCCACGGGCTAAGAGCATC
CCAGCCGTTGGGGCTCCCAGGCC
GAAATCCGGCGTTAGTTATCGCC
GGATGGATGTATTTTGTGGCCTG
GGGAGGCCCATTTTCCCAGCCGC
GAGCCCATGGTTGCGCACACACC
GCGTGCATAGCGACGGC
841 Lolium DH P_A47_6 gDNAContig 876 multiflorum TATCTCTCTTCCGCGATCTGGAA
GGGCCGACGGCGTGGCGGCGCA
ACCACGGGCGCTGATGGGCGGC
GGCGCGCAGTCTGTTAAGCAGG
ACGCCTGCTTCTCGCTCCGTCCTC
CCTCTCCAACCGAGCGGCACGAG
GTAGACCCGGAGACCCCAACTCC
GTCCTAGCCCAGTGGCG
842 Lolium DH P_A47_6 gDNAContig 876 multiflorum TGGGGTCTCCGGGTCTACCTCGT
GCCGCTCGGTTGGAGAGGGAGG
ACGGAGCGAGAAGCAGGCGTCC
TGCTTAACAGACTGCGCGCCGCC
GCCCATCAGCGCCCGTGGTTGCG
CCGCCACGCCGTCGGCCCTTCCA
GATCGCGGAAGAGAGATAGATC
AGGGCGAGAGAGATGAGACC
843 Lolium DH P_A47_7 gDNAContig 1051 1250 CCAACTCCGTCCTAGCCCAGTGG
multiflorum CGCCCGTGAGGCGTCATCTCCGG
CGCCCTCTCCATCTCCGTCTGCTT
CGCACTTGTATGCACATACTCTTC
CTCCTTACCCCAGTTTCTTGGTCT
TGGCTTGTTTGATTACGATTTCTA
GGGTTCTTGGCATGCTCGGTAGT
TGCAGATTTGTCTTCTGTTGGGT
GTTTGTTTCCAT

844 Lolium DH
P_A47_7 gDNACo ntig 1051 1250 ATGGAAACAAACACCCAACAGA
multiflorum AGACAAATCTGCAACTACCGAGC
ATGCCAAGAACCCTAGAAATCGT
AATCAAACAAGCCAAGACCAAG
AAACTGGGGTAAGGAGGAAGA
GTATGTGCATACAAGTGCGAAG
CAGACGGAGATGGAGAGGGCG
CCGGAGATGACGCCTCACGGGC
GCCACTGGGCTAGGACGGAGTT
GG
845 Lolium DH
P_A47_8 gDNACo ntig 1226 1425 TCTTCTGTTGGGTGTTTGTTTCCA
multiflorum TGGCCTTGGCTGCATCCATCGTT
TCGTATTATGTAGTTGTTTGTTTC
CATGCCATTGCTTGTATCCATCAA
TTGGAAAGGGAAGAAAGGGCTA
CAGGGATATTAGGAATTAGATCA
GTCCTTCCTAGCTGATTTTCTCTG
ACAGGTTGTTAGTCTCGCGCATG
TGGTGGACTTCTT
846 Lolium DH
P_A47_8 gDNACo ntig 1226 1425 AAGAAGTCCACCACATGCGCGA
multiflorum GACTAACAACCTGTCAGAGAAA
ATCAGCTAGGAAGGACTGATCTA
ATTCCTAATATCCCTGTAGCCCTT
TCTTCCCTTTCCAATTGATGGATA
CAAGCAATGGCATGGAAACAAA
CAACTACATAATACGAAACGATG
GATGCAGCCAAGGCCATGGAAA
CAAACACCCAACAGAAGA
847 Lolium DH
P_A47_9 gDNACo ntig 1401 1600 GTCTCGCGCATGTGGTGGACTTC
multiflorum TTGTGCTTTTGGCTAGCTCCAAG
TCTGATGTGTAGCTGCTTTCTGA
GATTTTCCACATAAACGTTGCTAT
GGCTAGTAAGTTGTGGCTAACTA
AATCCTTGGGCACAAGCTAGTAA
TCTGAATGGCATATCCGCCCCCA
TGCCTTTAATTGTTGCCTAACGAT
GGGCTAGGTTCTCT
848 Lolium DH P_A47_9 gDNACo ntig 1401 1600 AGAGAACCTAGCCCATCGTTAGG
multiflorum CAACAATTAAAGGCATGGGGGC
GGATATGCCATTCAGATTACTAG
CTTGTGCCCAAGGATTTAGTTAG
CCACAACTTACTAGCCATAGCAA
CGTTTATGTGGAAAATCTCAGAA
AG CAG CTACACATCAGACTTG GA
GCTAGCCAAAAGCACAAGAAGT
CCACCACATGCGCGAGAC
849 Lolium DH
P_A47_1 gDNACo ntig 1576 1775 TGCCTAACGATGGGCTAGGTTCT

multiflorum 0 CTTATTTATTCATTTTTGTTAAAA
GAAGAACTTGGGCATGCTAATTC
AG CAAAATAGAAAAAATATGTG
TTGTTTCTGTATATAGAGGTTCTT
GGTTTTCCCTTGCCGATTCTGACC
GATTTGCGGGTTTTTTTTTTTTTT
GTCTTTCCTCATCGTCAGGCAAG
AAGAGCAAGATGT
850 Lolium DH
P_A47_1 gDNACo ntig 1576 1775 ACATCTTGCTCTTCTTGCCTGACG
multiflorum 0 ATGAGGAAAGACAAAAAAAAAA
AAAACCCGCAAATCGGTCAGAAT
CGGCAAGGGAAAACCAAGAACC
TCTATATACAGAAACAACACATA
TTTTTTCTATTTTGCTGAATTAGC
ATGCCCAAGTTCTTCTTTTAACAA
AAATGAATAAATAAGAGAACCTA
GCCCATCGTTAGGCA
851 Lolium DH
P_A47_1 gDNACo ntig 1751 1950 TCGTCAGGCAAGAAGAGCAAGA
multiflorum 1 TGTGACAGAGGATTTAAGCAGC
AG CAGAACTAGACCTG G CTCCTA
TGCTCTAAGATGCTTCGTGCCAA
GGACACATTCAGGAAGATGTACT
CAGCTGCCAAGGGCTACTACTGC
GGAGGGCTAGCGTCTCCTAATGC
CTTCTCAGGTAGCTTGCCCAAAG
TTCCCCAATAATAACTAG
852 Lolium DH
P_A47_1 gDNACo ntig 1751 1950 CTAGTTATTATTGGGGAACTTTG
multiflorum 1 G
G CAAG CTACCTGAGAAG G CAT
TAGGAGACGCTAGCCCTCCGCA
GTAGTAGCCCTTGGCAGCTGAGT
ACATCTTCCTGAATGTGTCCTTG
GCACGAAGCATCTTAGAGCATA
GGAGCCAGGTCTAGTTCTGCTGC
TGCTTAAATCCTCTGTCACATCTT
GCTCTTCTTGCCTGACGA
853 Lolium DH
P_A47_1 gDNACo ntig 1926 2125 CCCAAAGTTCCCCAATAATAACT
multiflorum 2 AG G GAACATCTCTTTTCCACCTCT
TTCACATTCCAACCAAAGACAGT
CCTAACTCGTTTCCCCTCTGAACA
TACCAGCATTGGATCTTCGGCAT
CCTCTCAGCTCCTCAAGAAAACC
ACCAGGCCACGCTAACCTGTTCA
GGGTCCGTTCATACACGCAATGC
GCCCTCACCAACGA
854 Lolium DH
P_A47_1 gDNACo ntig 1926 2125 TCGTTGGTGAGGGCGCATTGCG
multiflorum 2 TGTATGAACGGACCCTGAACAG
GTTAGCGTGGCCTGGTGGTTTTC

TTGAGGAGCTGAGAGGATGCCG
AAGATCCAATGCTGGTATGTTCA
GAGGGGAAACGAGTTAGGACTG
TCTTTGGTTGGAATGTGAAAGAG
GTGGAAAAGAGATGTTCCCTAGT
TATTATTGGGGAACTTTGGG
855 Lolium DH P_A47_1 gDNAContig 2101 2300 ACACGCAATGCGCCCTCACCAAC
multiflorum 3 GATTCCGCCGACCAGGAGGTCG
TGATTGCCCTGGGCAGCAACGTG
GGAGACAGGGTCAGCATGTTCG
ACAGGGCGCTGCGGCTGATGAG
GAGCTCGGGCATCAAGGTCACC
AGGCACGCCTGCCTGTACGAGA
CCGCCCCAGCCTACGTGACCGAC
CAGCCGCGGTTCCTCAACTCT
856 Lolium DHP_A47_1 gDNAContig 2101 2300 AGAGTTGAGGAACCGCGGCTGG
multiflorum 3 TCGGTCACGTAGGCTGGGGCGG
TCTCGTACAGGCAGGCGTGCCTG
GTGACCTTGATGCCCGAGCTCCT
CATCAGCCGCAGCGCCCTGTCGA
ACATGCTGACCCTGTCTCCCACG
TTGCTGCCCAGGGCAATCACGAC
CTCCTGGTCGGCGGAATCGTTGG
TGAGGGCGCATTGCGTGT
857 Lolium DH P_A47_1 gDNAContig 2276 2475 CGACCAGCCGCGGTTCCTCAACT
multiflorum 4 CTGCCGTTAGGGGCACGACGAA
GCTGGGGCCTCACGAGTTGCTCA
GGAAGCTCAAGGAGATCGAGAA
GGATATAGGACGTACCGCCGGG
GTAAGGTACGGCCCGAGGCCGA
TCGATCTGGACATTCTTCTGTATG
GGGACTCCCGGATCAAGACCGA
GTCTCTGATTGTGCCGCATG
858 Lolium DH P_A47_1 gDNAContig 2276 2475 CATGCGGCACAATCAGAGACTC
multiflorum 4 GGTCTTGATCCGGGAGTCCCCAT
ACAGAAGAATGTCCAGATCGATC
GGCCTCGGGCCGTACCTTACCCC
GGCGGTACGTCCTATATCCTTCT
CGATCTCCTTGAGCTTCCTGAGC
AACTCGTGAGGCCCCAGCTTCGT
CGTGCCCCTAACGGCAGAGTTGA
GGAACCGCGGCTGGTCG
859 Lolium DH P_A47_1 gDNAContig 2451 2650 ACCGAGTCTCTGATTGTGCCGCA
multiflorum 5 TGAACGCATCCATGAGAGACCGT
TCGTCTTGGCGCCTCTTGTTGAC
CTCCTGGGTTCGTCGGCTGAGGA
CGGTATGGAGAAAAGCTGGCAC

TCTCTCTCGAAGTGCAGTGGCGG
GTTCTTTGATTTGTGGAACAAGC
TCG G CG GTGAATCTGTTGTTG GA
ACAGAAGGCATTAAAAG
860 Lolium DH P_A47_1 gDNACo ntig 2451 2650 CTTTTAATGCCTTCTGTTCCAACA
multiflorum 5 ACAGATTCACCGCCGAGCTTGTT
CCACAAATCAAAGAACCCGCCAC
TGCACTTCGAGAGAGAGTGCCA
GCTTTTCTCCATACCGTCCTCAGC
CGACGAACCCAGGAGGTCAACA
AGAGGCGCCAAGACGAACGGTC
TCTCATGGATGCGTTCATGCGGC
ACAATCAGAGACTCGGT
861 Lolium DH P_A47_1 gDNACo ntig 2626 2825 TTGTTGGAACAGAAGGCATTAAA
multiflorum 6 AG G GTCATGTCTGTTG GAAATAC
GCTGTTGGACTGGCGTCAGAGG
ACCCTTGTTATGGGGGTGCTTAA
CCTCACGCCAGACAGCTTCAGCG
ACGGAGGTAAGTTTCAAGAAGT
GGAAGCTGCCATTTCCCAGGCCA
G GTTGTTGATATCAGAAG GTG CT
GACATAATTGATATTG GT
862 Lolium DH P_A47_1 gDNACo ntig 2626 2825 ACCAATATCAATTATGTCAGCAC
multiflorum 6 CTTCTGATATCAACAACCTG G CC
TGGGAAATGGCAGCTTCCACTTC
TTGAAACTTACCTCCGTCGCTGA
AGCTGTCTGGCGTGAGGTTAAG
CACCCCCATAACAAGGGTCCTCT
GACGCCAGTCCAACAGCGTATTT
CCAACAGACATGACCCTTTTAAT
GCCTTCTGTTCCAACAA
863 Lolium DH P_A47_1 gDNACo ntig 2801 3000 AGGTGCTGACATAATTGATATTG
multiflorum 7 GTGCCCAGTCCACCAGGCCCTTT
GCAAGGAGGCTATCCGCAGAAG
AAGAGCTTGAGAGGCTGGTCCC
TGTTCTGGATGCTATCATGAAAC
TCCCAGAGATGGAAGGGAAGTT
GCTTTCGGTAGACACGTTCTACG
CGCAAGTCGCTGCTGAAGCTGTA
AAAAGAGGAGCCACCATGA
864 Lolium DH P_A47_1 gDNACo ntig 2801 3000 TCATGGTGGCTCCTCTTTTTACAG
multiflorum 7 CTTCAGCAGCGACTTGCGCGTAG
AACGTGTCTACCGAAAGCAACTT
CCCTTCCATCTCTGGGAGTTTCAT
GATAGCATCCAGAACAGGGACC
AG CCTCTCAAG CTCTTCTTCTG CG
GATAGCCTCCTTGCAAAGGGCCT

GGTGGACTGGGCACCAATATCA
ATTATGTCAGCACCT
865 Lolium DH P_A47_1 gDNACo ntig 2976 3175 GCTGTAAAAAGAGGAGCCACCA
multiflorum 8 TGATCAATGATGTATCTGGTGGG
CAGCTTGACCCAAGTATTCTTCA
AGTTGTTGCTGAACTGGGAGTTC
CGTATGTTACCATGCACATGAGA
GGCGATCCATCAACTATGCAGAA
TGAACAGAATCTACAGTATGATG
ATGTCTGCAAAGAAGTTGCTTCT
GAGTTATACGCCCGGTT
866 Lolium DH P_A47_1 gDNACo ntig 2976 3175 AACCGGGCGTATAACTCAGAAG
multiflorum 8 CAACTTCTTTGCAGACATCATCAT
ACTGTAGATTCTGTTCATTCTG CA
TAGTTGATGGATCGCCTCTCATG
TGCATGGTAACATACGGAACTCC
CAGTTCAGCAACAACTTGAAGAA
TACTTGGGTCAAGCTGCCCACCA
GATACATCATTGATCATGGTGGC
TCCTCTTTTTACAGC
867 Lolium DH P_A47_1 gDNACo ntig 3151 3350 TTGCTTCTGAGTTATACGCCCGG
multiflorum 9 TTGAGAGCAGCAGAGCTTTCTGG
AATTCCTTTGTGGAGGATTATTCT
TGACCCTGGCATTGGGTTTTCTA
AGAAATCCACACAGAATATTGAA
GTAATCGCGGGTTTGGAATCCAT
TAGAGAAGAGATGGGTAAAATG
AG CCTAG GTG CTTCACATGTG CC
AATATTACTTGGACCC
868 Lolium DH P_A47_1 gDNACo ntig 3151 3350 GGGTCCAAGTAATATTGGCACAT
multiflorum 9 GTGAAGCACCTAGGCTCATTTTA
CCCATCTCTTCTCTAATGGATTCC
AAACCCGCGATTACTTCAATATT
CTGTGTGGATTTCTTAGAAAACC
CAATGCCAGGGTCAAGAATAATC
CTCCACAAAGGAATTCCAGAAAG
CTCTGCTGCTCTCAACCGGGCGT
ATAACTCAGAAG CAA
869 Lolium DH P_A47_2 gDNACo ntig 3326 3525 ACATGTGCCAATATTACTTGGAC
multiflorum 0 CCTCGAG GAAAAGTTTCCTAG GT
GAAATATGTAGTCGCGCCGATCC
AGTTCAGAGAGATGCTGCTACTG
CTTCTGCCGTTACAATTGCGATCT
TGAATGGCGCTAATATAGTAAG
GGTCCATAATGTTAGATACAATG
TGGATGCTGCAAAGGTCTCTGAT
GCATTACTCAAGTACA

870 Lolium DH P_A47_2 gDNACo ntig 3326 3525 TGTACTTGAGTAATGCATCAGAG
multiflorum 0 ACCTTTGCAGCATCCACATTGTAT
CTAACATTATGGACCCTTACTATA
TTAGCGCCATTCAAGATCGCAAT
TGTAACGGCAGAAGCAGTAGCA
GCATCTCTCTGAACTGGATCGGC
G CGACTACATATTTCACCTAG GA
AACTTTTCCTCGAGGGTCCAAGT
AATATTGGCACATGT
871 Lolium DH P_A47_2 gDNACo ntig 3501 3700 GTCTCTGATGCATTACTCAAGTA
multiflorum 1 CAGAAGAAAATAATAGAAAGTA
TACAGCCCGGATAGAAGCCATAC
CAGTTGCCAGTTTTGTGCAAGGG
AATG CTGATGTG GAG CTCAAACC
ATATGGGGTGTATCATCACTTAA
TAAGATCAAAGCATGCGTGAATA
ACTATTACAGTGAACAAGAGATA
TACAGTTTTTTCGTGCG
872 Lolium DH P_A47_2 gDNACo ntig 3501 3700 CGCACGAAAAAACTGTATATCTC
multiflorum 1 TTGTTCACTGTAATAGTTATTCAC
GCATGCTTTGATCTTATTAAGTG
ATGATACACCCCATATGGTTTGA
GCTCCACATCAGCATTCCCTTGC
ACAAAACTGGCAACTGGTATGG
CTTCTATCCGGGCTGTATACTTTC
TATTATTTTCTTCTGTACTTGAGT
AATGCATCAGAGAC
873 Lolium DH P_A47_2 gDNACo ntig 3676 3875 AAGAGATATACAGTTTTTTCGTG
multiflorum 2 CGCCTCCTCCTTCGTAGAATCTTC
AAAGAAGCAAAGGTAACACAGA
CCTAGGCCTCTGGGGTTGGTATA
TGATGTAACCAGTTTTGTGAGGG
TTTAATAATTATCTAATAGTGAG
ACCTAAGAGTAAGACCTTTATAA
TATACTTTGCTTGGAATTTCCTAC
TTGAGAGCATCATTT
874 Lolium DH P_A47_2 gDNACo ntig 3676 3875 AAATGATGCTCTCAAGTAGGAAA
multiflorum 2 TTCCAAGCAAAGTATATTATAAA
GGTCTTACTCTTAGGTCTCACTAT
TAGATAATTATTAAACCCTCACA
AAACTGGTTACATCATATACCAA
CCCCAGAGGCCTAGGTCTGTGTT
ACCTTTGCTTCTTTGAAGATTCTA
CGAAGGAGGAGGCGCACGAAA
AAACTGTATATCTCTT
875 Lolium DH P_A48_1 cDNACo ntig 1 200 AG CTCCTCAAGAAAACCACCAG G
multiflorum CCACGCTAACCTGTTCAGGGTCC

GTTCATACACGCAATGCGCCCTC
ACCAACGATTCCGCCGACCAGGA
GGTCGTGATTGCCCTGGGCAGC
AACGTGGGAGACAGGGTCAGCA
TGTTCGACAGGGCGCTGCGGCT
GATGAGGAGCTCGGGCATCAAG
GTCACCAGGCACGCCTGCCT
876 Lolium DHP_A48_1 cDNAContig 1 multiflorum TGATGCCCGAGCTCCTCATCAGC
CGCAGCGCCCTGTCGAACATGCT
GACCCTGTCTCCCACGTTGCTGC
CCAGGGCAATCACGACCTCCTGG
TCGGCGGAATCGTTGGTGAGGG
CGCATTGCGTGTATGAACGGACC
CTGAACAGGTTAGCGTGGCCTG
GTGGTTTTCTTGAGGAGCT
877 Lolium DHP_A48_2 cDNAContig 176 375 TCAAGGTCACCAGGCACGCCTGC
multiflorum CTGTACGAGACCGCCCCAGCCTA
CGTGACCGACCAGCCGCGGTTCC
TCAACTCTGCCGTTAGGGGCACG
ACGAAGCTGGGGCCTCACGAGT
TGCTCAGGAAGCTCAAGGAGAT
CGAGAAGGATATAGGACGTACC
GCCGGGGTAAGGTACGGCCCGA
GGCCGATCGATCTGGACATT
878 Lolium DHP_A48_2 cDNAContig 176 375 AATGTCCAGATCGATCGGCCTCG
multiflorum GGCCGTACCTTACCCCGGCGGTA
CGTCCTATATCCTTCTCGATCTCC
TTGAGCTTCCTGAGCAACTCGTG
AGGCCCCAGCTTCGTCGTGCCCC
TAACGGCAGAGTTGAGGAACCG
CGGCTGGTCGGTCACGTAGGCT
GGGGCGGTCTCGTACAGGCAGG
CGTGCCTGGTGACCTTGA
879 Lolium DHP_A48_3 cDNAContig 351 550 CCCGAGGCCGATCGATCTGGAC
multiflorum ATTCTTCTGTATGGGGACTCCCG
GATCAAGACCGAGTCTCTGATTG
TGCCGCATGAACGCATCCATGAG
AGACCGTTCGTCTTGGCGCCTCT
TGTTGACCTCCTGGGTTCGTCGG
CTGAGGACGGTATGGAGAAAAG
CTGGCACTCTCTCTCGAAGTGCA
GTGGCGGGTTCTTTGATT
880 Lolium DHP_A48_3 cDNAContig 351 550 AATCAAAGAACCCGCCACTGCAC
multiflorum TTCGAGAGAGAGTGCCAGCTTTT
CTCCATACCGTCCTCAGCCGACG
AACCCAGGAGGTCAACAAGAGG

CGCCAAGACGAACGGTCTCTCAT
GGATGCGTTCATGCGGCACAATC
AGAGACTCGGTCTTGATCCGGG
AGTCCCCATACAGAAGAATGTCC
AGATCGATCGGCCTCGGG
881 Lolium DH P_A48_4 cDNACo ntig 526 725 AAGTGCAGTGGCGGGTTCTTTGA
multiflorum TTTGTGGAACAAGCTCGGCGGT
GAATCTGTTGTTGGAACAGAAG
GCATTAAAAGGGTCATGTCTGTT
GGAAATACGCTGTTGGACTGGC
GTCAGAGGACCCTTGTTATGGG
GGTGCTTAACCTCACGCCAGACA
GCTTCAGCGACGGAGGTAAGTTT
CAAGAAGTGGAAGCTGCCAT
882 Lolium DH P_A48_4 cDNACo ntig 526 725 ATGGCAGCTTCCACTTCTTGAAA
multiflorum CTTACCTCCGTCGCTGAAGCTGT
CTGGCGTGAGGTTAAGCACCCCC
ATAACAAGGGTCCTCTGACGCCA
GTCCAACAGCGTATTTCCAACAG
ACATGACCCTTTTAATGCCTTCTG
TTCCAACAACAGATTCACCGCCG
AG CTTGTTCCACAAATCAAAG AA
CCCGCCACTGCACTT
883 Lolium DH P_A48_5 cDNACo ntig 701 900 AGTTTCAAGAAGTGGAAGCTGC
multiflorum CATTTCCCAGGCCAGGTTGTTGA
TATCAGAAGGTGCTGACATAATT
GATATTGGTGCCCAGTCCACCAG
GCCCTTTGCAAGGAGGCTATCCG
CAGAAGAAGAGCTTGAGAGGCT
GGTCCCTGTTCTGGATGCTATCA
TGAAACTCCCAGAGATGGAAGG
GAAGTTGCTTTCGGTAGAC
884 Lolium DH P_A48_5 cDNACo ntig 701 900 GTCTACCGAAAGCAACTTCCCTT
multiflorum CCATCTCTGGGAGTTTCATGATA
GCATCCAGAACAGGGACCAGCC
TCTCAAGCTCTTCTTCTGCGGATA
GCCTCCTTGCAAAGGGCCTGGTG
GACTGGGCACCAATATCAATTAT
GTCAGCACCTTCTGATATCAACA
ACCTGGCCTGGGAAATGGCAGC
TTCCACTTCTTGAAACT
885 Lolium DH P_A48_6 cDNACo ntig 876 1075 GGAAGGGAAGTTGCTTTCGGTA
multiflorum GACACGTTCTACGCGCAAGTCGC
TG CTGAAG CTGTAAAAAGAG GA
GCCACCATGATCAATGATGTATC
TGGTGGGCAGCTTGACCCAAGT
ATTCTTCAAGTTGTTGCTGAACT

GGGAGTTCCGTATGTTACCATGC
ACATGAGAGGCGATCCATCAACT
ATGCAGAATGAACAGAATC
886 Lolium DH P_A48_6 cDNACo ntig 876 multiflorum ATGGATCGCCTCTCATGTGCATG
GTAACATACGGAACTCCCAGTTC
AG CAACAACTTGAAGAATACTTG
GGTCAAGCTGCCCACCAGATACA
TCATTGATCATGGTGGCTCCTCTT
TTTACAGCTTCAGCAGCGACTTG
CGCGTAGAACGTGTCTACCGAAA
GCAACTTCCCTTCC
887 Lolium DH P_A48_7 cDNACo ntig 1051 1250 TCAACTATGCAGAATGAACAGAA
multiflorum TCTACAGTATGATGATGTCTG CA
AAGAAGTTGCTTCTGAGTTATAC
GCCCGGTTGAGAGCAGCAGAGC
TTTCTG GAATTCCTTTGTG GAG G
ATTATTCTTGACCCTGGCATTGG
GTTTTCTAAGAAATCCACACAGA
ATATTGAAGTAATCGCGGGTTTG
GAATCCATTAGAGAAGA
888 Lolium DH P_A48_7 cDNACo ntig 1051 1250 TCTTCTCTAATGGATTCCAAACCC
multiflorum GCGATTACTTCAATATTCTGTGT
GGATTTCTTAGAAAACCCAATGC
CAGGGTCAAGAATAATCCTCCAC
AAAGGAATTCCAGAAAGCTCTGC
TGCTCTCAACCGGGCGTATAACT
CAGAAGCAACTTCTTTGCAGACA
TCATCATACTGTAGATTCTGTTCA
TTCTGCATAGTTGA
889 Lolium DH P_A48_8 cDNACo ntig 1226 1425 CGGGTTTGGAATCCATTAGAGAA
multiflorum GAGATGGGTAAAATGAGCCTAG
GTGCTTCACATGTGCCAATATTA
CTTGGACCCTCGAGGAAAAGTTT
CCTAGGTGAAATATGTAGTCGCG
CCGATCCAGTTCAGAGAGATGCT
GCTACTGCTTCTGCCGTTACAATT
GCGATCTTGAATGGCGCTAATAT
AGTAAGGGTCCATAAT
890 Lolium DH P_A48_8 cDNACo ntig 1226 1425 ATTATGGACCCTTACTATATTAGC
multiflorum GCCATTCAAGATCGCAATTGTAA
CGGCAGAAGCAGTAGCAGCATC
TCTCTGAACTGGATCGGCGCGAC
TACATATTTCACCTAGGAAACTTT
TCCTCGAGGGTCCAAGTAATATT
GGCACATGTGAAGCACCTAGGC
TCATTTTACCCATCTCTTCTCTAAT

GGATTCCAAACCCG
891 Lolium DHP_A51_1 gDNAContig 1 multiflorum GATAAGGTACGGTCCGAGGCCG
ATCGATCTGGACATTCTTCTGTAT
GGGGATTCCCGGATCAAGACCG
AGTCTCTGACTGTGCCGCATGAA
CGCATCCATGAGAGACCGTTCGT
CTTGGCGCCTCTTGTTGACCTCCT
GGGTTCATCGGGTGAGGATGGT
ATGGAGAGAAGATGGCAC
892 Lolium DHP_A51_1 gDNAContig 1 multiflorum CTCACCCGATGAACCCAGGAGGT
CAACAAGAGGCGCCAAGACGAA
CGGTCTCTCATGGATGCGTTCAT
GCGGCACAGTCAGAGACTCGGT
CTTGATCCGGGAATCCCCATACA
GAAGAATGTCCAGATCGATCGG
CCTCGGACCGTACCTTATCCCGG
CGGTGCGCCCTATATCCT
893 Lolium DHP_A50_1 cDNAContig 1 multiflorum GCTGTTGGATTGGCGGGAGAGG
ACCCTGGTTATGGGGGTGCTTAA
CCTCACGCCAGACAGCTTTAGCG
ATGGAGGTAAGTTTCAAGAGGT
GGAAGCTGCCATTTCTCAGGCCA
GGCTGTTAATTTCAGAAGGTGCA
GGCATAATTGATATTGGCGCTCA
GTCCACCAGGCCCTTTGC
894 Lolium DHP_A50_1 cDNAContig 1 multiflorum CGCCAATATCAATTATGCCTGCA
CCTTCTGAAATTAACAGCCTGGC
CTGAGAAATGGCAGCTTCCACCT
CTTGAAACTTACCTCCATCGCTAA
AGCTGTCTGGCGTGAGGTTAAG
CACCCCCATAACCAGGGTCCTCT
CCCGCCAATCCAACAGCGTATTT
CCAACAGACATGACCCT
895 Lolium DHP_A50_2 cDNAContig 176 375 GCGCTCAGTCCACCAGGCCCTTT
multiflorum GCAAGGTGGCTATCTGCAGAAG
AAGAGCTTGAGAGGCTGGTCCC
TGTTCTTAATGCTATCATGAAACT
CCCCGAGATGGAAGGGAAGTTG
CTTTCAGTAGATACGTTCTACGC
GCAAGTCGCGGCTGAAGCCGTG
AAAAGAGGGGCCACCATGATCA
ATGATGTATCTGGTGGGCAG
896 Lolium DHP_A50_2 cDNAContig 176 375 CTGCCCACCAGATACATCATTGA

multiflorum TCATGGTGGCCCCTCTTTTCACG
GCTTCAGCCGCGACTTGCGCGTA
GAACGTATCTACTGAAAGCAACT
TCCCTTCCATCTCGGGGAGTTTC
ATGATAGCATTAAGAACAGGGA
CCAGCCTCTCAAGCTCTTCTTCTG
CAGATAGCCACCTTGCAAAGGG
CCTGGTGGACTGAGCGC
897 Lolium DH P_A50_3 cDNACo ntig 351 550 GATCAATGATGTATCTGGTGGGC
multiflorum AG CTTGACCCAGATATTCTTCAA
GTTGTTGCTGAATTGGGAGTTCC
GTATGTTGCCATGCACATGAGAG
GGGATCCATCAACTATGCAGAAT
GAG CAGAATTTACAGTATGATGA
TGTCTGCAAAGAAGTTGCTTCTG
AGTTATACTCTCG GTTGAGAG CA
GCAGAGTTGTCTGGAA
898 Lolium DH P_A50_3 cDNACo ntig 351 550 TTCCAGACAACTCTGCTGCTCTCA
multiflorum ACCGAGAGTATAACTCAGAAGC
AACTTCTTTGCAGACATCATCATA
CTGTAAATTCTG CTCATTCTG CAT
AGTTGATGGATCCCCTCTCATGT
GCATGGCAACATACGGAACTCCC
AATTCAGCAACAACTTGAAGAAT
ATCTGGGTCAAGCTGCCCACCAG
ATACATCATTGATC
899 Lolium DH P_A50_4 cDNACo ntig 526 725 TTGAGAGCAGCAGAGTTGTCTG
multiflorum GAATTCCTTTGTG GAG
GATTATT
CTTGACCCTGGCATTGGGTTTTC
CAAGAAATCCACACAGAATATTG
AAGTAATCGCGGGCTTGGAATCC
ATTAGAGAAGAGATGGGTAAAA
TGAGTCTAGGTGCTTCACATGTG
CCAATATTACTTGGACCCTCCAG
GAAACGTTTCTTAG G G CA
900 Lolium DH P_A50_4 cDNACo ntig 526 725 TGCCCTAAGAAACGTTTCCTGGA
multiflorum GGGTCCAAGTAATATTGGCACAT
GTGAAGCACCTAGACTCATTTTA
CCCATCTCTTCTCTAATGGATTCC
AAGCCCGCGATTACTTCAATATT
CTGTGTGGATTTCTTGGAAAACC
CAATGCCAGGGTCAAGAATAATC
CTCCACAAAGGAATTCCAGACAA
CTCTGCTGCTCTCAA
901 Lolium DH P_A53_1 gDNACo ntig 1 200 CGCTAACCTGTTCAGGGTCCGTT
multiflorum CGTACATGCAATGCGCGGTCACC
AACGATTCCGCCGACCAAGAGAT

CGTGATTGCCCTGGGCAGCAAC
GTGGGAGACAGGGTCAGCACGT
TCGACAGGGCGCTGCGGCTGAT
GAGGAGCTCGGGCATCAGGATC
ACCAGGCACGCCTGCCTGTACGA
GACCGCCCCTGCTTACGTGA
902 Lolium DHP_A53_1 gDNAContig 1 multiflorum GTACAGGCAGGCGTGCCTGGTG
ATCCTGATGCCCGAGCTCCTCAT
CAGCCGCAGCGCCCTGTCGAAC
GTGCTGACCCTGTCTCCCACGTT
GCTGCCCAGGGCAATCACGATCT
CTTGGTCGGCGGAATCGTTGGT
GACCGCGCATTGCATGTACGAAC
GGACCCTGAACAGGTTAGCG
903 Lolium DHP_A52_1 cDNAContig 1 multiflorum TAAGGTACGGTCCGAGGCCGAT
CGATCTGGACATTCTTCTGTATG
GGGATTCCCGGATCAAGACCGA
GTCTCTGACTGTGCCGCATGAAC
GCATCCATGAGAGACCGTTCGTC
TTGGCGCCTCTTGTTGACCTCCT
GGGTTCATCGGGTGAGGATGGT
ATGGAGAGAAGATGGCACTC
904 Lolium DHP_A52_1 cDNAContig 1 multiflorum TCCTCACCCGATGAACCCAGGAG
GTCAACAAGAGGCGCCAAGACG
AACGGTCTCTCATGGATGCGTTC
ATGCGGCACAGTCAGAGACTCG
GTCTTGATCCGGGAATCCCCATA
CAGAAGAATGTCCAGATCGATC
GGCCTCGGACCGTACCTTATCCC
GGCGGTGCGCCCTATATC
905 Lolium DHP_A54_1 cDNAContig 1 multiflorum GATTGCCCTGGGCAGCAACGTG
GGAGACAGGGTCAGCACGTTCG
ACAGGGCGCTGCGGCTGATGAG
GAGCTCGGGCATCAGGATCACC
AGGCACGCCTGCCTGTACGAGA
CCGCCCCTGCTTACGTG
906 Lolium DHP_A54_1 cDNAContig 1 multiflorum TACAGGCAGGCGTGCCTGGTGA
TCCTGATGCCCGAGCTCCTCATC
AGCCGCAGCGCCCTGTCGAACGT
GCTGACCCTGTCTCCCACGTTGC
TGCCCAGGGCAATCACGATCTCT
TGGTCGGCGGAATC

Table 3 SEQ ID NO Seq Gene #Species Species 907 TTATGTACTCTTACAATGTTT DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 908 TGTACTCTTACAATGTTTGCA DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 909 TGGTGCAAACATTGTAAGAGT DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 910 TGAAAGGATATGGGAAAGACC DHP 5 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 911 TCTTTCCCATATCCTTTCATG DHP 5 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 912 TCTTACAATGTTTGCACCACC DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 913 TATGTACTCTTACAATGTTTG DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 914 TACTCTTACAATGTTTGCACC DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 915 GTGGTGCAAACATTGTAAGAG DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 916 GTGCAAACATTGTAAGAGTAC DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 917 GTCTTTCCCATATCCTTTCAT DHP 5 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 918 GCAAACATTGTAAGAGTACAT DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 919 CATTGTAAGAGTACATAATGT DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 920 CATTATGTACTCTTACAATGT DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 921 ATTATGTACTCTTACAATGTT DHP 5 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 922 TTTTCTACATCAGACCCAATA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 923 TTTTCATTCCATCCTTCCCGA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 924 TTTTCAATCTGTCGATACTGC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 925 TTTTATGAGACCAATCCCATA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 926 TTTTAGGTGGTGCAAACATTG DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 927 TTTGCACCACCTAAAACTCCA DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 928 TTTCTACATCAGACCCAATAC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 929 TTTCCCATATCCTTTCATGGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 930 TTTCATTCCATCCTTCCCGAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 931 TTTCAATCTGTCGATACTGCG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 932 TTTATGAGACCAATCCCATAA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 933 TTTAGGTGGTGCAAACATTGT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 934 TTTAGGGTGAGCTCTGAGAGC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 935 TTGTATTGGGTCTGATGTAGA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 936 TTGTAAGAGTACATAATGTGA DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 937 TTGGTCTCATAAAACCTCTGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 938 TTGGGTCTGATGTAGAAAATG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 939 TTGGCCTAGGACCATACCTTA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 940 TTGGACATACTATTTTATGGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 941 TTGCTAAGGTTCGTCAGATGA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 942 TTGCACCACCTAAAACTCCAG DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 943 TTGATTGTATTGGGTCTGATG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 944 TTGACTTGGACATACTATTTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 945 TTGACTCCTGATAGCTTTAGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 946 TTGAACTTGACTCCTGATAGC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 947 TTCTACATCAGACCCAATACA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 948 TTCCGCCATCACTAAAGCTAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 949 TTCCCTAATCGGGAAGGATGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 950 TTCCCGATTAGGGAACTTCCA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 951 TTCCCATATCCTTTCATGGGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 952 TTCCCATAAAATAGTATGTCC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 953 TTCCATCCTTCCCGATTAGGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 954 TTCATTCCATCCTTCCCGATT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 955 TTCAATCTGTCGATACTGCGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 956 TTCAAGACTCCCATTACAGAG DHP 4 Amaranthus lividus,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 957 TTATGAGACCAATCCCATAAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 958 TTATCCCTCACATTATGTACT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 959 TTATATAGCAATGCACATGCG DHP 4 Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 960 TTAGGTGGTGCAAACATTGTA DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 961 TTAGGGTGAGCTCTGAGAGCC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 962 TTAGGGAACTTCCACCGAGTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 963 TTAGCAACCGCAGTATCGACA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 964 TTACAATGTTTGCACCACCTA DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 965 TGTTTGCACCACCTAAAACTC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 966 TGTGAGGGATAACCTTGATGC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 967 TGTCCAAGTCAATTGGCCTAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 968 TGTCATTTTCTACATCAGACC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 969 TGTAGAAAATGACACTATTTG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 970 TGTAAGAGTACATAATGTGAG DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 971 TGGTGCCATCACAAATGGTCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 972 TGGTCTTTCCCATATCCTTTC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 973 TGGTCCTAGGCCAATTGACTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 974 TGGGTCTGATGTAGAAAATGA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 975 TGGGATTGGTCTCATAAAACC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 976 TGGGAGTCTTGAACTTGACTC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 977 TGGGAAAGACCATTTGTGATG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 978 TGGCCTAGGACCATACCTTAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 979 TGGACATACTATTTTATGGGA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 980 TGGAATGAAAAGGGTTTTGCC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 981 TGCTGGAGTTTTAGGTGGTGC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 982 TGCTAAGGTTCGTCAGATGAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 983 TGCGGTTGCTAAGGTTCGTCA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 984 TGCCATCACAAATGGTCTTTC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 985 TGCACCACCTAAAACTCCAGC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 986 TGATTGTATTGGGTCTGATGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 987 TGATGTAGAAAATGACACTAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 988 TGATAGCTTTAGTGATGGCGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 989 TGAGGCTCTCAGAGCTCACCC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 990 TGAGCTCTGAGAGCCTCACTA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 991 TGACTTGGACATACTATTTTA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 992 TGACTCCTGATAGCTTTAGTG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 993 TGAACTTGACTCCTGATAGCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 994 TGAAAAGGGTTTTGCCCGTTG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 995 TCTTGAACTTGACTCCTGATA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 996 TCTGTCGATACTGCGGTTGCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 997 TCTGATGTAGAAAATGACACT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 998 TCTGACGAACCTTAGCAACCG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 999 TCGGTGGAAGTTCCCTAATCG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1000 TCGCATGTGCATTGCTATATA DHP 4 Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1001 TCGATACTGCGGTTGCTAAGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1002 TCCTTCCCGATTAGGGAACTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1003 TCCTGATAGCTTTAGTGATGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1004 TCCTAGGCCAATTGACTTGGA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1005 TCCGCCATCACTAAAGCTATC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1006 TCCCTCACATTATGTACTCTT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1007 TCCCTAATCGGGAAGGATGGA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1008 TCCCGATTAGGGAACTTCCAC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1009 TCATTCCATCCTTCCCGATTA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1010 TCAGGAGTCAAGTTCAAGACT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1011 TCACTAAAGCTATCAGGAGTC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1012 TCACAAATGGTCTTTCCCATA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1013 TCAATTGGCCTAGGACCATAC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1014 TCAATCTGTCGATACTGCGGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1015 TCAAGTTATGTGATGCCATAC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1016 TCAAGGTTATCCCTCACATTA DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1017 TCAAGACTCCCATTACAGAGG DHP 4 Amaranthus lividus,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1018 TATGTCCAAGTCAATTGGCCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1019 TATGGTCCTAGGCCAATTGAC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1020 TATGGCATCACATAACTTGAC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1021 TATGAGACCAATCCCATAAGC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1022 TATCGACAGATTGAAAACTTC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1023 TATCCCTCACATTATGTACTC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1024 TATAGCAATGCACATGCGAGG DHP 4 Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1025 TAGTGTCATTTTCTACATCAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1026 TAGTATGTCCAAGTCAATTGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1027 TAGGGTGAGCTCTGAGAGCCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1028 TAGGGAACTTCCACCGAGTTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1029 TAGGCCAATTGACTTGGACAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1030 TAGGACCATACCTTATTCCCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1031 TAGCTTTAGTGATGGCGGAAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1032 TAGCAACCGCAGTATCGACAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1033 TAGAAAATGACACTATTTGTA DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1034 TACTGCGGTTGCTAAGGTTCG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1035 TACATCAGACCCAATACAATC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1036 TACATAATGTGAGGGATAACC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1037 TAAGGTTCGTCAGATGATCTC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1038 TAAGAGTACATAATGTGAGGG DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1039 TAAAGCTATCAGGAGTCAAGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1040 TAAACTCGGTGGAAGTTCCCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1041 GTTTTCAATCTGTCGATACTG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1042 GTTTTATGAGACCAATCCCAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1043 GTTTTAGGTGGTGCAAACATT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1044 GTTTGCACCACCTAAAACTCC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1045 GTTGCTAAGGTTCGTCAGATG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1046 GTTCCCTAATCGGGAAGGATG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1047 GTTATCCCTCACATTATGTAC DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1048 GTGTCATTTTCTACATCAGAC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1049 GTGGAATCTTTGAAGCATGGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1050 GTGCCATCACAAATGGTCTTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1051 GTGAGGCTCTCAGAGCTCACC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1052 GTGAGCTCTGAGAGCCTCACT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1053 GTCTTGAACTTGACTCCTGAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1054 GTCGATACTGCGGTTGCTAAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1055 GTCCTAGGCCAATTGACTTGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1056 GTCCAAGTCAATTGGCCTAGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1057 GTCATTTTCTACATCAGACCC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1058 GTATGTCCAAGTCAATTGGCC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1059 GTATCGACAGATTGAAAACTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1060 GTAGAAAATGACACTATTTGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1061 GTACAAATAGTGTCATTTTCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1062 GTAAGAGTACATAATGTGAGG DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1063 GGTTGCTAAGGTTCGTCAGAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1064 GGTGGAATCTTTGAAGCATGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1065 GGTGGAAGTTCCCTAATCGGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1066 GGTGCCATCACAAATGGTCTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1067 GGTCCTAGGCCAATTGACTTG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1068 GGTATGGTCCTAGGCCAATTG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1069 GGGTGGAATCTTTGAAGCATG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1070 GGGCAAAACCCTTTTCATTCC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1071 GGGATTGGTCTCATAAAACCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1072 GGGAGTCTTGAACTTGACTCC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1073 GGGAATAAGGTATGGTCCTAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1074 GGGAAGGATGGAATGAAAAGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1075 GGGAAAGACCATTTGTGATGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1076 GGCCTAGGACCATACCTTATT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1077 GGATTGGTCTCATAAAACCTC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1078 GGATGGAATGAAAAGGGTTTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1079 GGATATGGGAAAGACCATTTG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1080 GGAGTCTTGAACTTGACTCCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1081 GGAATAAGGTATGGTCCTAGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1082 GGAAGTTTTCAATCTGTCGAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1083 GGAAGTTCCCTAATCGGGAAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1084 GGAAGGATGGAATGAAAAGGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1085 GGAAAGACCATTTGTGATGGC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1086 GCTAAGGTTCGTCAGATGATC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1087 GCGGTTGCTAAGGTTCGTCAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1088 GCCTAGGACCATACCTTATTC DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1089 GCCATCACTAAAGCTATCAGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1090 GCCAATTGACTTGGACATACT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1091 GCATGTGCATTGCTATATAAG DHP 4 Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1092 GCAACCGCAGTATCGACAGAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1093 GCAAAACCCTTTTCATTCCAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1094 GATTGGTCTCATAAAACCTCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1095 GATTAGGGAACTTCCACCGAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1096 GATGTAGAAAATGACACTATT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1097 GATGGAATGAAAAGGGTTTTG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1098 GATATGGGAAAGACCATTTGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1099 GATACTGCGGTTGCTAAGGTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1100 GAGTCTTGAACTTGACTCCTG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1101 GAGTATGGCATCACATAACTT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1102 GAGGCTCTCAGAGCTCACCCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1103 GAGCTCTGAGAGCCTCACTAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1104 GACTTGGACATACTATTTTAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1105 GACTCCCATTACAGAGGTTTT DHP 4 Amaranthus lividus,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1106 GACGAACCTTAGCAACCGCAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1107 GACCATTTGTGATGGCACCAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1108 GAATGAAAAGGGTTTTGCCCG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1109 GAAGTTCCCTAATCGGGAAGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1110 GAAGGATGGAATGAAAAGGGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1111 GAACTTGACTCCTGATAGCTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1112 GAACCTTAGCAACCGCAGTAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1113 GAAAAGGGTTTTGCCCGTTGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1114 CTTTTCATTCCATCCTTCCCG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1115 CTTTCCCATATCCTTTCATGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1116 CTTGGACATACTATTTTATGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1117 CTTGACTCCTGATAGCTTTAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1118 CTTGAACTTGACTCCTGATAG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1119 CTTACAATGTTTGCACCACCT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1120 CTGCTGGAGTTTTAGGTGGTG DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1121 CTGATAGCTTTAGTGATGGCG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1122 CTCGCATGTGCATTGCTATAT DHP 4 Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1123 CTCCTGATAGCTTTAGTGATG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1124 CTACATCAGACCCAATACAAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1125 CTAATCGGGAAGGATGGAATG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1126 CTAAGGTTCGTCAGATGATCT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1127 CGGTGGAAGTTCCCTAATCGG DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1128 CGCTTATGGGATTGGTCTCAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1129 CGATACTGCGGTTGCTAAGGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1130 CCTTATATAGCAATGCACATG DHP 4 Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1131 CCTAATCGGGAAGGATGGAAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1132 CATCAAGGTTATCCCTCACAT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1133 CATAATGTGAGGGATAACCTT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1134 CATAAAATAGTATGTCCAAGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1135 CAGAGGTTTTATGAGACCAAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1136 CACATTATGTACTCTTACAAT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1137 CACAAATGGTCTTTCCCATAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1138 CAATTGACTTGGACATACTAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1139 CAATCTGTCGATACTGCGGTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1140 CAAGTTATGTGATGCCATACT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1141 CAAGGTTATCCCTCACATTAT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1142 CAAGACTCCCATTACAGAGGT DHP 4 Amaranthus lividus,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1143 CAACCGCAGTATCGACAGATT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1144 ATTTTCTACATCAGACCCAAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1145 ATTGGCCTAGGACCATACCTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1146 ATTGATTGTATTGGGTCTGAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1147 ATTGACTTGGACATACTATTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1148 ATTAGGGAACTTCCACCGAGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1149 ATGTTTGCACCACCTAAAACT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1150 ATGTAGAAAATGACACTATTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1151 ATGGTCTTTCCCATATCCTTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1152 ATGGTCCTAGGCCAATTGACT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1153 ATGGGAGTCTTGAACTTGACT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1154 ATGGGAAAGACCATTTGTGAT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1155 ATGAAAAGGGTTTTGCCCGTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1156 ATCCTTCCCGATTAGGGAACT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1157 ATCCCTCACATTATGTACTCT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1158 ATCACTAAAGCTATCAGGAGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1159 ATCAAGGTTATCCCTCACATT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1160 AGTTTTCAATCTGTCGATACT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1161 AGGTTATCCCTCACATTATGT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1162 AGGTATGGTCCTAGGCCAATT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1163 AGGATGGAATGAAAAGGGTTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1164 AGGATATGGGAAAGACCATTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1165 AGGACCATACCTTATTCCCTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1166 AGACTCCCATTACAGAGGTTT DHP 4 Amaranthus lividus,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1167 ACTGCTGGAGTTTTAGGTGGT DHP 4 Amaranthus hybridus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1168 ACTGCGGTTGCTAAGGTTCGT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1169 ACGGGCAAAACCCTTTTCATT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1170 ACCATTTGTGATGGCACCATT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1171 AATTGACTTGGACATACTATT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1172 AATGGTCTTTCCCATATCCTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1173 AAGGATGGAATGAAAAGGGTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis 1174 AAGACTCCCATTACAGAGGTT DHP 4 Amaranthus lividus,Amaranthus rudis,Amaranthus viridis,Kochia scoparia 1175 AACTTGACTCCTGATAGCTTT DHP 4 Amaranthus lividus,Amaranthus palmeri,Amaranthus rudis,Amaranthus viridis

Claims (32)

We Claim:
1. A method of plant control comprising: treating a plant with a composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to a DHPS gene sequence or fragment thereof, or to an RNA
transcript of said DHPS gene sequence or fragment thereof, wherein said DHPS
gene sequence is selected from the group consisting of SEQ ID NO:1-54 or a polynucleotide fragment thereof, whereby said plant growth or development or reproductive ability is regulated, suppressed or delayed or said plant is more sensitive to a DHPS inhibitor herbicide or mitosis inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
2. The method as claimed in claim 1, wherein said transfer agent comprises an organosilicone surfactant composition or compound contained therein.
3. The method as claimed in claim 1, wherein said polynucleotide fragment is 18 contiguous, 19 contiguous nucleotides, 20 contiguous nucleotides, or at least 21 contiguous nucleotides in length and at least 85 percent identical to an DHPS gene sequence selected from the group consisting of SEQ ID NO:1-54.
4. The method as claimed in claim 3, wherein said polynucleotide fragment is selected from the group consisting of sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA
hybrids.
5. The method as claimed in claim 1, wherein said plant is selected from the group consisting of Amaranthus palmeri, Amaranthus rudis, Amaranthus hybridus, Amaranthus lividus, Amaranthus viridis, Ambrosia trifida, Conyza candensis, Digitaria sanguinalis, Euphorbia heterophylla, Kochia scoparia, Lolium multiflorum,
6. The method as claimed in claim 1, wherein said composition further comprises said DHPS
inhibitor or mitosis inhibitor herbicide and external application to a plant with said composition.
7. The method as claimed in claim 6, wherein said composition further comprises one or more co-herbicides different from said DHPS inhibitor or mitosis inhibitor herbicide.
8. The method as claimed in claim 3, wherein said composition comprises any combination of two or more of said polynucleotide fragments and external application to a plant with said composition.
9. A composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to an DHPS gene sequence, or to an RNA
transcript of said DHPS gene sequence, wherein said DHPS gene sequence is selected from the group consisting of SEQ ID NO:1-54 or a polynucleotide fragment thereof and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a DHPS inhibitor herbicide or mitosis inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
10. The composition of claim 9, wherein said transfer agent is an organosilicone composition.
11. The composition of claim 9, wherein said polynucleotide fragment is 18 contiguous, 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an DHPS gene sequence selected from the group consisting of SEQ ID NO:1-54.
12. The composition of claim 9, wherein said polynucleotide is selected from the group consisting of SEQ ID NO:55-906.
13. The composition of claim 9, wherein said polynucleotide is selected from the group consisting of SEQ ID NO: 907-1222.
14. The composition of claim 9, further comprising a DHPS inhibitor herbicide or mitosis inhibitor herbicide.
15. The composition of claim 14, wherein said DHPS inhibitor molecule is selected from the group consisting of carbamates and asulam.
16. The composition of claim 14, wherein said mitosis inhibitor molecule is selected from the group consisting of dinitroaniline herbicides.
17. The composition of claim 14, further comprising a co-herbicide.
18. A method of reducing expression of an DHPS gene in a plant comprising:
external application to a plant of a composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to an DHPS gene sequence, or to the RNA transcript of said DHPS gene sequence, wherein said DHPS gene sequence is selected from the group consisting of SEQ ID NO:1-54 or a polynucleotide fragment thereof, whereby said expression of said DHPS gene is reduced relative to a plant in which the composition was not applied.
19. The method as claimed in claim 18, wherein said transfer agent comprises an organosilicone compound.
20. The method as claimed in claim 18, wherein said polynucleotide fragment is 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an DHPS gene sequence selected from the group consisting of SEQ ID
NO:1-54.
21. The method as claimed in 18, wherein said polynucleotide molecule is selected from the group consisting of sense or anti-sense ssDNA or ssRNA, dsRNA, or dsDNA, or dsDNA/RNA
hybrids.
22. A microbial expression cassette comprising a polynucleotide fragment of 18 contiguous, 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an DHPS gene sequence selected from the group consisting of SEQ ID NO:1-54.
23. A method of making a polynucleotide comprising a) transforming the microbial expression cassette of claim 21 into a microbe; b) growing said microbe; c) harvesting a polynucleotide from said microbe, wherein said polynucleotide is at least 18 contiguous, at least 19 contiguous nucleotides, at least 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an DHPS gene sequence selected from the group consisting of SEQ ID NO:1-54.
24. A method of identifying polynucleotides useful in modulating DHPS gene expression when externally treating a plant comprising: a) providing a plurality of polynucleotides that comprise a region essentially identical or essentially complementary to a polynucleotide fragment of 18 contiguous, 19 contiguous nucleotides, 20 contiguous nucleotides or at least 21 contiguous nucleotides in length and at least 85 percent identical to an DHPS gene sequence selected from the group consisting of SEQ ID NO:1-54; b) externally treating said plant with one or more of said polynucleotides and a transfer agent; c) analyzing said plant or extract for modulation of DHPS gene expression,and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a DHPS inhibitor herbicide or mitosis inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
25. The method as claimed in 24, wherein said plant is selected from the group consisting of Amaranthus palmeri, Amaranthus rudis, Amaranthus hybridus, Amaranthus lividus, Amaranthus viridis, Ambrosia trifida, Conyza candensis, Digitaria sanguinalis, Euphorbia heterophylla, Kochia scoparia, Lolium multiflorum,
26. The method as claimed in 24, wherein said DHPS gene expression is reduced relative to a plant not treated with said polynucleotide fragment and a transfer agent.
27. The method as claimed in 24, wherein said transfer agent is an organosilicone compound.
28. An agricultural chemical composition comprising an admixture of a polynucleotide and a DHPS inhibitor or mitosis inhibitor herbicide and a co-herbicide, wherein said polynucleotide is essentially identical or essentially complementary to a portion of a DHPS gene sequence, or to a portion of an RNA transcript of said DHPS gene sequence, wherein said DHPS
gene sequence is selected from the group consisting of SEQ ID NO:1-54 or a polynucleotide fragment thereof, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a DHPS inhibitor herbicide or mitosis inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
29. The agricultural chemical composition of claim 28, wherein said co-herbicide is selected from the group consisting of amide herbicides, arsenical herbicides, benzothiazole herbicides, benzoylcyclohexanedione herbicides, benzofuranyl alkylsulfonate herbicides, cyclohexene oxime herbicides, cyclopropylisoxazole herbicides, dicarboximide herbicides, dinitroaniline herbicides, dinitrophenol herbicides, diphenyl ether herbicides, dithiocarbamate herbicides, glycine herbicides, halogenated aliphatic herbicides, imidazolinone herbicides, inorganic herbicides, nitrile herbicides, organophosphorus herbicides, oxadiazolone herbicides, oxazole herbicides, phenoxy herbicides, phenylenediamine herbicides, pyrazole herbicides, pyridazine herbicides, pyridazinone herbicides, pyridine herbicides, pyrimidinediamine herbicides, pyrimidinyloxybenzylamine herbicides, quaternary ammonium herbicides, thiocarbamate herbicides, thiocarbonate herbicides, thiourea herbicides, triazine herbicides, triazinone herbicides, triazole herbicides, triazolone herbicides, triazolopyrimidine herbicides, uracil herbicides, and urea herbicides.
30. An agricultural chemical composition comprising an admixture of a polynucleotide and a DHPS inhibitor herbicide and a pesticide, wherein said polynucleotide is essentially identical or essentially complementary to a portion of a DHPS gene sequence, or to a portion of an RNA

transcript of said DHPS gene sequence, wherein said DHPS gene sequence is selected from the group consisting of SEQ ID NO:1-54 or a polynucleotide fragment thereof, whereby a field of crop plants in need of weed and pest control are treated with said composition and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a DHPS
inhibitor herbicide or mitosis inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
31. The agricultural chemical composition of claim 30, wherein said pesticide is selected from the group consisting of insecticides, fungicides, nematocides, bactericides, acaricides, growth regulators, chemosterilants, semiochemicals, repellents, attractants, pheromones, feeding stimulants, and biopesticides.
32. A composition comprising a polynucleotide and a transfer agent, wherein said polynucleotide is essentially identical or essentially complementary to a DHPS
gene sequence, or to an RNA transcript of said DHPS gene sequence, wherein said polynucleotide is selected from the group consisting of SEQ ID NO:1176 and 1186 or a complement or polynucleotide fragment thereof, and whereby a plant treated with said composition has its growth or development or reproductive ability regulated, suppressed or delayed or said plant is more sensitive to a DHPS
inhibitor herbicide or mitosis inhibitor herbicide as a result of said polynucleotide containing composition relative to a plant not treated with said composition.
CA2848699A 2011-09-13 2012-09-13 Methods and compositions for weed control targeting 7,8-dihydropteroate synthase (dhps) Abandoned CA2848699A1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US201161534097P 2011-09-13 2011-09-13
US61/534,097 2011-09-13
PCT/US2012/054980 WO2013040117A1 (en) 2011-09-13 2012-09-13 Methods and compositions for weed control

Publications (1)

Publication Number Publication Date
CA2848699A1 true CA2848699A1 (en) 2013-03-21

Family

ID=47883712

Family Applications (1)

Application Number Title Priority Date Filing Date
CA2848699A Abandoned CA2848699A1 (en) 2011-09-13 2012-09-13 Methods and compositions for weed control targeting 7,8-dihydropteroate synthase (dhps)

Country Status (11)

Country Link
US (1) US20130326731A1 (en)
EP (2) EP2755987B1 (en)
CN (1) CN103958539B (en)
AR (1) AR087862A1 (en)
AU (1) AU2012308660B2 (en)
BR (1) BR112014005954A2 (en)
CA (1) CA2848699A1 (en)
MX (1) MX348495B (en)
UA (1) UA116092C2 (en)
UY (1) UY34333A (en)
WO (1) WO2013040117A1 (en)

Families Citing this family (34)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8097712B2 (en) 2007-11-07 2012-01-17 Beelogics Inc. Compositions for conferring tolerance to viral disease in social insects, and the use thereof
US8962584B2 (en) 2009-10-14 2015-02-24 Yissum Research Development Company Of The Hebrew University Of Jerusalem, Ltd. Compositions for controlling Varroa mites in bees
WO2011112570A1 (en) 2010-03-08 2011-09-15 Monsanto Technology Llc Polynucleotide molecules for gene regulation in plants
CN103957696B (en) 2011-09-13 2019-01-18 孟山都技术公司 Method and composition for Weeds distribution
US10760086B2 (en) 2011-09-13 2020-09-01 Monsanto Technology Llc Methods and compositions for weed control
EP2756086B1 (en) 2011-09-13 2018-02-21 Monsanto Technology LLC Methods and compositions for weed control
US10806146B2 (en) 2011-09-13 2020-10-20 Monsanto Technology Llc Methods and compositions for weed control
US10829828B2 (en) 2011-09-13 2020-11-10 Monsanto Technology Llc Methods and compositions for weed control
CA2848695A1 (en) 2011-09-13 2013-03-21 Monsanto Technology Llc Methods and composition for weed control comprising inhibiting ppg oxidase
US9840715B1 (en) 2011-09-13 2017-12-12 Monsanto Technology Llc Methods and compositions for delaying senescence and improving disease tolerance and yield in plants
ES2645927T3 (en) 2011-09-13 2017-12-11 Monsanto Technology Llc Procedures and compositions for weed control
US9920326B1 (en) 2011-09-14 2018-03-20 Monsanto Technology Llc Methods and compositions for increasing invertase activity in plants
UY34822A (en) 2012-05-24 2013-12-31 Seeds Ltd Ab COMPOSITIONS AND METHODS TO SILENCE GENETIC EXPRESSION
EP2908620A4 (en) 2012-10-18 2016-07-27 Monsanto Technology Llc Methods and compositions for plant pest control
CA2896762A1 (en) 2013-01-01 2014-07-10 A.B. Seeds Ltd. Methods of introducing dsrna to plant seeds for modulating gene expression
US10683505B2 (en) 2013-01-01 2020-06-16 Monsanto Technology Llc Methods of introducing dsRNA to plant seeds for modulating gene expression
US10000767B2 (en) 2013-01-28 2018-06-19 Monsanto Technology Llc Methods and compositions for plant pest control
BR112015022797A2 (en) * 2013-03-13 2017-11-07 Monsanto Technology Llc weed control method, herbicidal composition, microbial expression cassette and polynucleotide production method
US10609930B2 (en) 2013-03-13 2020-04-07 Monsanto Technology Llc Methods and compositions for weed control
US20140283211A1 (en) 2013-03-14 2014-09-18 Monsanto Technology Llc Methods and Compositions for Plant Pest Control
US10568328B2 (en) 2013-03-15 2020-02-25 Monsanto Technology Llc Methods and compositions for weed control
WO2014167514A1 (en) * 2013-04-09 2014-10-16 Tuttle Chris Formulations and methods for control of weedy species
BR112016000555B1 (en) 2013-07-19 2022-12-27 Monsanto Technology Llc METHOD FOR CONTROLLING AN INFESTATION OF THE LEPTINOTARSA SPECIES IN A PLANT, INSECTICIDAL COMPOSITION AND CONSTRUCTION OF RECOMBINANT DNA
US9850496B2 (en) 2013-07-19 2017-12-26 Monsanto Technology Llc Compositions and methods for controlling Leptinotarsa
UY35817A (en) 2013-11-04 2015-05-29 Us Agriculture ? COMPOSITIONS AND METHODS TO CONTROL INFESTATIONS OF PESTS AND PARASITES OF ARTHROPODES ?.
UA119253C2 (en) 2013-12-10 2019-05-27 Біолоджикс, Інк. Compositions and methods for virus control in varroa mite and bees
MX368629B (en) * 2014-01-15 2019-10-08 Monsanto Technology Llc Methods and compositions for weed control using epsps polynucleotides.
EP3420809A1 (en) 2014-04-01 2019-01-02 Monsanto Technology LLC Compositions and methods for controlling insect pests
CN106795515B (en) 2014-06-23 2021-06-08 孟山都技术公司 Compositions and methods for modulating gene expression via RNA interference
EP3161138A4 (en) 2014-06-25 2017-12-06 Monsanto Technology LLC Methods and compositions for delivering nucleic acids to plant cells and regulating gene expression
RU2021123470A (en) 2014-07-29 2021-09-06 Монсанто Текнолоджи Ллс COMPOSITIONS AND METHODS FOR COMBATING PESTS
WO2016118762A1 (en) 2015-01-22 2016-07-28 Monsanto Technology Llc Compositions and methods for controlling leptinotarsa
WO2016196738A1 (en) 2015-06-02 2016-12-08 Monsanto Technology Llc Compositions and methods for delivery of a polynucleotide into a plant
AU2016270913A1 (en) 2015-06-03 2018-01-04 Monsanto Technology Llc Methods and compositions for introducing nucleic acids into plants

Family Cites Families (235)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2171808A (en) 1935-11-25 1939-09-05 Messerschmitt Boelkow Blohm Vibration generator for test purposes
US4535060A (en) 1983-01-05 1985-08-13 Calgene, Inc. Inhibition resistant 5-enolpyruvyl-3-phosphoshikimate synthetase, production and use
US5304732A (en) 1984-03-06 1994-04-19 Mgi Pharma, Inc. Herbicide resistance in plants
US4761373A (en) 1984-03-06 1988-08-02 Molecular Genetics, Inc. Herbicide resistance in plants
DE3587548T2 (en) 1984-12-28 1993-12-23 Plant Genetic Systems Nv Recombinant DNA that can be introduced into plant cells.
DE3687682T2 (en) 1985-08-07 1993-08-19 Monsanto Co GLYPHOSATE RESISTANT PLANTS.
US4940835A (en) 1985-10-29 1990-07-10 Monsanto Company Glyphosate-resistant plants
US4810648A (en) 1986-01-08 1989-03-07 Rhone Poulenc Agrochimie Haloarylnitrile degrading gene, its use, and cells containing the gene
EP0242236B2 (en) 1986-03-11 1996-08-21 Plant Genetic Systems N.V. Plant cells resistant to glutamine synthetase inhibitors, made by genetic engineering
US5273894A (en) 1986-08-23 1993-12-28 Hoechst Aktiengesellschaft Phosphinothricin-resistance gene, and its use
US5378824A (en) 1986-08-26 1995-01-03 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5013659A (en) 1987-07-27 1991-05-07 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US5605011A (en) 1986-08-26 1997-02-25 E. I. Du Pont De Nemours And Company Nucleic acid fragment encoding herbicide resistant plant acetolactate synthase
US4971908A (en) 1987-05-26 1990-11-20 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthase
US5145783A (en) 1987-05-26 1992-09-08 Monsanto Company Glyphosate-tolerant 5-endolpyruvyl-3-phosphoshikimate synthase
GB8825402D0 (en) * 1988-10-31 1988-11-30 Cambridge Advanced Tech Sulfonamide resistance genes
US5550318A (en) 1990-04-17 1996-08-27 Dekalb Genetics Corporation Methods and compositions for the production of stably transformed, fertile monocot plants and cells thereof
US5633435A (en) 1990-08-31 1997-05-27 Monsanto Company Glyphosate-tolerant 5-enolpyruvylshikimate-3-phosphate synthases
US5866775A (en) 1990-09-28 1999-02-02 Monsanto Company Glyphosate-tolerant 5-enolpyruvyl-3-phosphoshikimate synthases
FR2673643B1 (en) 1991-03-05 1993-05-21 Rhone Poulenc Agrochimie TRANSIT PEPTIDE FOR THE INSERTION OF A FOREIGN GENE INTO A PLANT GENE AND PLANTS TRANSFORMED USING THIS PEPTIDE.
USRE36449E (en) 1991-03-05 1999-12-14 Rhone-Poulenc Agro Chimeric gene for the transformation of plants
FR2673642B1 (en) 1991-03-05 1994-08-12 Rhone Poulenc Agrochimie CHIMERIC GENE COMPRISING A PROMOTER CAPABLE OF GIVING INCREASED TOLERANCE TO GLYPHOSATE.
US5731180A (en) 1991-07-31 1998-03-24 American Cyanamid Company Imidazolinone resistant AHAS mutants
JPH0557182A (en) 1991-09-03 1993-03-09 Central Glass Co Ltd Carbon dioxide absorbent
US5339107A (en) 1992-08-19 1994-08-16 Hewlett-Packard Company Color optical scanner with rotating color filter assembly
US5393175A (en) 1993-06-18 1995-02-28 Courville; Leo Diamond core drill
US5767373A (en) 1994-06-16 1998-06-16 Novartis Finance Corporation Manipulation of protoporphyrinogen oxidase enzyme activity in eukaryotic organisms
US5392910A (en) 1994-07-21 1995-02-28 Transidyne General Corporation Package for a device having a sharp cutting edge
DE4430307A1 (en) 1994-08-26 1996-02-29 Bayer Ag Method and device for the simultaneous dispersion and atomization of at least two liquids
US5550398A (en) 1994-10-31 1996-08-27 Texas Instruments Incorporated Hermetic packaging with optical
US5853973A (en) 1995-04-20 1998-12-29 American Cyanamid Company Structure based designed herbicide resistant products
NZ307012A (en) 1995-04-20 2000-01-28 American Cyanamid Co Structure-based designed herbicide resistant products
FR2734842B1 (en) 1995-06-02 1998-02-27 Rhone Poulenc Agrochimie DNA SEQUENCE OF A HYDROXY-PHENYL PYRUVATE DIOXYGENASE GENE AND OBTAINING PLANTS CONTAINING A HYDROXY-PHENYL PYRUVATE DIOXYGENASE GENE, TOLERANT TO CERTAIN HERBICIDES
IL122290A0 (en) 1995-06-07 1998-04-05 Inex Pharmaceuticals Corp Lipid-nucleic acid complex its preparation and use
US5739180A (en) 1996-05-02 1998-04-14 Lucent Technologies Inc. Flat panel displays and methods and substrates therefor
FR2751347B1 (en) 1996-07-16 2001-12-07 Rhone Poulenc Agrochimie CHIMERIC GENE WITH MULTIPLE HERBICIDE TOLERANCE GENES, PLANT CELL AND PLANT TOLERANT WITH MULTIPLE HERBICIDES
DE19652284A1 (en) 1996-12-16 1998-06-18 Hoechst Schering Agrevo Gmbh Novel genes encoding amino acid deacetylases with specificity for N-acetyl-L-phosphinothricin, their isolation and use
US7105724B2 (en) 1997-04-04 2006-09-12 Board Of Regents Of University Of Nebraska Methods and materials for making and using transgenic dicamba-degrading organisms
US6245968B1 (en) 1997-11-07 2001-06-12 Aventis Cropscience S.A. Mutated hydroxyphenylpyruvate dioxygenase, DNA sequence and isolation of plants which contain such a gene and which are tolerant to herbicides
US6069115A (en) 1997-11-12 2000-05-30 Rhone-Poulenc Agrochimie Method of controlling weeds in transgenic crops
US6506559B1 (en) * 1997-12-23 2003-01-14 Carnegie Institute Of Washington Genetic inhibition by double-stranded RNA
JP4036407B2 (en) * 1997-12-26 2008-01-23 キヤノン株式会社 Inkjet printing apparatus and method
US6121513A (en) 1998-07-20 2000-09-19 Mendel Biotechnology, Inc. Sulfonamide resistance in plants
US6642435B1 (en) * 1998-12-18 2003-11-04 E. I. Du Pont De Nemours And Company Plant folate biosynthetic genes
JP2000247810A (en) * 1999-02-26 2000-09-12 Meiji Seika Kaisha Ltd Accelerator of pharmacological effect of agrochemical
US6271359B1 (en) 1999-04-14 2001-08-07 Musc Foundation For Research Development Tissue-specific and pathogen-specific toxic agents and ribozymes
EP1200611A1 (en) 1999-08-13 2002-05-02 Syngenta Participations AG Herbicide-tolerant protoporphyrinogen oxidase
DE10000600A1 (en) 2000-01-10 2001-07-12 Bayer Ag New N-substituted oxazolyl-uracil and thiazolyl-uracil derivatives useful as herbicides, especially for weed control in crops
ES2260193T3 (en) 2000-01-25 2006-11-01 Syngenta Participations Ag DERIVATIVES OF 3-FENOXI-1-PHENYL-ACETYLENE AND ITS USE AS HERBICIDES.
WO2001056979A1 (en) 2000-01-31 2001-08-09 Nippon Soda Co., Ltd. Substituted cyanoacetamide derivatives and herbicides
DE10004084A1 (en) 2000-01-31 2001-08-02 Bayer Ag Substituted imide derivatives
JP2001253874A (en) 2000-03-10 2001-09-18 Ishihara Sangyo Kaisha Ltd Pyrimidine compound, their manufacturing method and herbicide including them
US6444615B1 (en) 2000-04-18 2002-09-03 Dow Agrosciences Llc Herbicidal imidazolidinetrione and thioxo-imidazolidinediones
DE10024938A1 (en) 2000-05-19 2001-11-22 Bayer Ag New substituted iminoazine derivatives useful as herbicides, especially for weed control in crops
CA2408604A1 (en) 2000-05-19 2001-11-29 Basf Aktiengesellschaft Method of combating undesired plant growth on cereals
JP2002080454A (en) 2000-06-26 2002-03-19 Nippon Nohyaku Co Ltd Pyridine-2,3-dicarboxylic acid diamide derivative and herbicide
ES2296051T3 (en) 2000-07-04 2008-04-16 Kyoyu Agri Co., Ltd. BENZOXAZOL COMPOSITE, PROCESS TO PRODUCE THE SAME, AND HERBICIDES.
KR100392072B1 (en) 2000-09-07 2003-07-22 한국화학연구원 5-Benzyloxymethyl-1,2-isoxazoline Derivatives Which Possess Weeding Activity
AU2002218200B2 (en) 2000-10-03 2004-08-05 Syngenta Participations Ag Phenylpropynyloxypyridine herbicides
JP2002138075A (en) 2000-10-30 2002-05-14 Nippon Soda Co Ltd 3-aminoacrylic acid derivative and herbicide
FR2815969B1 (en) 2000-10-30 2004-12-10 Aventis Cropscience Sa TOLERANT PLANTS WITH HERBICIDES BY METABOLIC BYPASS
SK5222003A3 (en) 2000-10-30 2004-12-01 Maxygen Inc Novel glyphosate N-acetyltransferase (GAT) genes
JP2002145707A (en) 2000-11-10 2002-05-22 Sankyo Co Ltd Herbicide comprising n-substituted dihydropyrrole derivative
AU2002215222A1 (en) 2000-11-17 2002-05-27 Ishihara Sangyo Kaisha Ltd. Pyrimidine compounds or salts thereof, herbicides containing the compounds or the salts, methods for control of weeds by applying the same
EP1337531A2 (en) 2000-12-01 2003-08-27 E. I. du Pont de Nemours and Company Herbicidal heterocycles
JP2002220389A (en) 2001-01-26 2002-08-09 Hokko Chem Ind Co Ltd Pyridylbenzoxazine derivative, herbicide and its intermediate
AU2002256619A1 (en) * 2001-02-16 2002-09-04 Metanomics Gmbh And Co. Kgaa Method for identifying herbicidally active substances
ES2363423T3 (en) 2001-02-20 2011-08-03 Sagami Chemical Research Institute DERIVATIVE OF PIRAZOL, INTERMEDIATE PRODUCT OF THE SAME, PROCEDURE FOR THE PRODUCTION OF THE SAME AND HERBICIDE THAT CONTAINS THIS AS ACTIVE PRINCIPLE.
EP1238586A1 (en) 2001-03-09 2002-09-11 Basf Aktiengesellschaft Herbicidal 2-alkynyl-pyri(mi)dines
DE10116399A1 (en) 2001-04-03 2002-10-10 Bayer Ag Substituted azolazine (thi) one
US6743905B2 (en) 2001-04-16 2004-06-01 Applera Corporation Mobility-modified nucleobase polymers and methods of using same
JP2003064059A (en) 2001-06-14 2003-03-05 Nippon Soda Co Ltd Pyrimidine compound, method for producing the same and herbicide
DE10130397A1 (en) 2001-06-23 2003-01-09 Bayer Cropscience Gmbh Herbicidally substituted pyridines, processes for their preparation and their use as herbicides and plant growth regulators
ITMI20011497A1 (en) 2001-07-13 2003-01-13 Isagro Ricerca Srl NEW ANILINE DERIVATIVES SUBSTITUTED FOR HERBICIDE ACTIVITIES
AR035087A1 (en) 2001-08-09 2004-04-14 Syngenta Participations Ag PIRIDIL-ALQUINOS AND PIRIDIL-N-OXIDO-ACTIVE HERBICIDE ALKINES, PROCEDURE FOR PREPARATION, HERBICIDE COMPOSITION AND TO INHIBIT THE GROWTH OF PLANTS, METHOD FOR CONTROLLING GROWTH OF INDESEABLE PLANTS, AND METHOD OF CREAM INHIBITION
US20040198758A1 (en) 2001-08-17 2004-10-07 Rapado Liliana Parra N-heterocyclyl substituted thienyloxy-pyrimidines used as herbicides
MXPA04001685A (en) 2001-08-28 2004-05-31 Syngenta Participations Ag Sulfonylamino derivatives useful as herbicides.
MXPA04001981A (en) 2001-09-06 2004-06-07 Syngenta Participations Ag Herbicidal n-alkylsulfonamino derivatives.
US20040198609A1 (en) 2001-09-07 2004-10-07 Michael Hoffmann 4-alkyl-substituted thienyloxy-pyridines
DE50202573D1 (en) 2001-09-07 2005-04-28 Basf Ag Pyrazolylsubstituierte thienyloxy-pyridine
JP2003096059A (en) 2001-09-21 2003-04-03 Otsuka Chem Co Ltd Thiazole compound and herbicidal composition containing the same
WO2003029243A2 (en) 2001-09-24 2003-04-10 Basf Aktiengesellschaft 2-aryloxy-6-pyrazolyl-pyridines
AU2002212806B2 (en) 2001-11-01 2006-06-08 Dongbu Farm Hannong Co., Ltd. Optically active herbicidal (R)-phenoxypropionic acid-N-methyl-N-2-fluorophenyl amides
DE10154075A1 (en) 2001-11-02 2003-05-15 Bayer Cropscience Ag Substituted pyrimidines
WO2003077648A2 (en) * 2001-11-08 2003-09-25 Paradigm Genetics, Inc. Methods for the identification of herbicides and the modulation of plant growth
WO2003045878A2 (en) 2001-11-29 2003-06-05 Basf Aktiengesellschaft 2,w-diaminocarboxylic acid compounds
DE10256353A1 (en) 2001-12-06 2003-06-18 Syngenta Participations Ag New 4-pyridylcarbonyl-cyclohexene-dione derivatives, useful as both total and selective herbicides and effective against mono- and di-cotyledonous weeds, for use on e.g. cereals, cotton, soya, sugar beet/cane and rape
DE10256367A1 (en) 2001-12-06 2003-06-26 Syngenta Participations Ag New 4-(pyridine-3-carbonyl)-cyclohex-4-ene-1,3-dione derivatives, useful as herbicides and plant growth inhibitors, especially for selective weed control in crops such as cereals, cotton or soya
DE10256354A1 (en) 2001-12-06 2003-06-18 Syngenta Participations Ag New 5-thiol-4-pyridylcarbonyl-cyclohexene-dione derivatives, useful as herbicides and plant growth inhibitors, with improved leaching properties and selectivity
AR037754A1 (en) 2001-12-11 2004-12-01 Syngenta Participations Ag HERBICIDES
DE10161765A1 (en) 2001-12-15 2003-07-03 Bayer Cropscience Gmbh Substituted phenyl derivatives
AU2002360990A1 (en) 2001-12-19 2003-06-30 Basf Aktiengesellschaft Alpha-CYANOACRYLATES
CA2470156A1 (en) 2001-12-19 2003-06-26 Basf Aktiengesellschaft .beta.-amino-.alpha.-cyanoacrylates and their use as herbicides
DE10204951A1 (en) 2002-02-06 2003-08-14 Basf Ag Phenylalanine derivatives as herbicides
AU2003218758A1 (en) 2002-03-14 2003-09-22 Syngenta Participations Ag Derivatives of 1-phenyl-3-phenylpyrazole as herbicides
AR039208A1 (en) 2002-04-03 2005-02-09 Syngenta Participations Ag PHENYL AND PIRIDYL ALKIN COMPOUNDS, HERBICIDE COMPOSITION CONTAINING THEM, PROCEDURE FOR PREPARATION OF THOSE AND PROCEDURE TO COMBAT THE GROWTH OF INDENATED PLANTS
JP4651945B2 (en) 2002-04-25 2011-03-16 ビーエーエスエフ ソシエタス・ヨーロピア 3-heteroaryl substituted isoxazolines
MXPA04010618A (en) 2002-04-26 2004-12-13 Ishihara Sangyo Kaisha Pyridine compounds or salts thereof and herbicides containing the same.
DE10219435A1 (en) 2002-05-02 2003-11-13 Bayer Cropscience Ag Substituted pyrazolo-pyrimidin-4-ones
JP2004051628A (en) 2002-05-28 2004-02-19 Ishihara Sangyo Kaisha Ltd Pyridine-based compound or its salt, method for producing the same, and herbicide containing the same
AR040413A1 (en) 2002-05-31 2005-04-06 Syngenta Participations Ag HETEROCICLILALQUINOS ACTIVE AS HERBICIDES
AR041181A1 (en) 2002-07-01 2005-05-04 Syngenta Participations Ag HERBICIDE TENYLALKINS AND PROCEDURE FOR PREPARING SUCH COMPOUNDS
AR041182A1 (en) 2002-07-01 2005-05-04 Syngenta Participations Ag DERIVATIVES OF PHENOXIPROPENYLPHENYL AND ITS USE AS HERBICIDES
DE10234876A1 (en) 2002-07-25 2004-02-05 Bayer Cropscience Gmbh 4-trifluoromethylpyrazolyl substituted pyridines and pyrimidines
DE10234875A1 (en) 2002-07-25 2004-02-05 Bayer Cropscience Gmbh 4-trifluoromethylpyrazolyl substituted pyridines and pyrimidines
AU2003252259A1 (en) 2002-07-26 2004-02-16 Nihon Nohyaku Co., Ltd. Novel haloalkylsulfonanilide derivatives, herbicides and usage thereof
FR2844415B1 (en) 2002-09-05 2005-02-11 At & T Corp FIREWALL SYSTEM FOR INTERCONNECTING TWO IP NETWORKS MANAGED BY TWO DIFFERENT ADMINISTRATIVE ENTITIES
JP2004107228A (en) 2002-09-17 2004-04-08 Nippon Nohyaku Co Ltd Bicyclic pyrimidinone derivative and herbicide comprising the same as active ingredient
AR044743A1 (en) 2002-09-26 2005-10-05 Nihon Nohyaku Co Ltd HERBICIDE, METHOD OF USE, DERIVED FROM REPLACED TIENOPIRIMIDINE, INTERMEDIATE COMPOUNDS, AND PROCEDURES USED TO PRODUCE THEM,
WO2004035564A1 (en) 2002-10-17 2004-04-29 Syngenta Participations Ag Pyridine derivatives useful as herbicides
WO2004035563A1 (en) 2002-10-17 2004-04-29 Syngenta Participations Ag 3-heterocyclylpyridine derivatives useful as herbicides
AU2003301443A1 (en) 2002-10-18 2004-05-04 E.I. Du Pont De Nemours And Company Azolecarboxamide herbicides
EP1556346A1 (en) 2002-10-18 2005-07-27 Basf Aktiengesellschaft 1-phenylpyrrolidine-2-one-3-carboxamides
EP2305812A3 (en) * 2002-11-14 2012-06-06 Dharmacon, Inc. Fuctional and hyperfunctional sirna
US20040133944A1 (en) * 2003-01-08 2004-07-08 Delta And Pine Land Company Seed oil suppression to enhance yield of commercially important macromolecules
CN1521165A (en) 2003-01-30 2004-08-18 拜尔农作物科学股份公司 Thiophene derivative
DE10303883A1 (en) 2003-01-31 2004-08-12 Bayer Cropscience Ag Substituted pyrimidines
CN1526704A (en) 2003-03-06 2004-09-08 拜尔农作物科学股份公司 Substituted triazolformamide compound
JP2005008583A (en) 2003-06-20 2005-01-13 Nippon Soda Co Ltd Guanidine compound, herbicide and plant growth regulator
JP2005015390A (en) 2003-06-26 2005-01-20 Bayer Cropscience Ag Azolidine derivative and herbicide
WO2005017108A2 (en) * 2003-06-30 2005-02-24 United Soybean Board Soybean selection system based on aec-resistance
CN1208325C (en) 2003-07-04 2005-06-29 中国科学院上海有机化学研究所 2-pyrimidine oxy-N-ureido phenyl-benzyl amide compound, preparing method and use thereof
WO2005007627A1 (en) 2003-07-18 2005-01-27 Nihon Nohyaku Co., Ltd. Phenylpyridine derivative, intermediate therefor, and herbicide containing the same as active ingredient
WO2005040152A1 (en) 2003-10-20 2005-05-06 E.I. Dupont De Nemours And Company Heteroyclylphenyl-and heterocyclylpyridyl-substituted azolecarboxamides as herbicides
WO2005047233A1 (en) 2003-10-31 2005-05-26 Syngenta Participations Ag Novel herbicides
WO2005047281A1 (en) 2003-11-13 2005-05-26 Syngenta Participations Ag Novel herbicides
EP1716120A1 (en) 2003-12-19 2006-11-02 Basf Aktiengesellschaft Herbicidal heteroaroyl-substituted phenylalanine amides
MXPA06005989A (en) 2003-12-19 2006-08-23 Basf Ag Benzoyl-substituted phenylalanine amides.
WO2005070889A1 (en) 2004-01-23 2005-08-04 E.I. Dupont De Nemours And Company Herbicidal amides
JP4596795B2 (en) 2004-02-27 2010-12-15 住友林業株式会社 Plant inhibitor containing piperitol or its derivatives as active ingredients
DE102004011705A1 (en) 2004-03-10 2005-09-29 Bayer Cropscience Gmbh Substituted 4- (4-trifluoromethylpyrazolyl) -pyrimidines
JP2005314407A (en) 2004-03-31 2005-11-10 Nippon Nohyaku Co Ltd New haloalkylsulfonanilide derivative, herbicide, method for using the same and intermediate therefor
JPWO2005095335A1 (en) 2004-03-31 2008-02-21 株式会社クレハ Ylide compound, its production method, herbicide and use as pharmaceutical intermediate
NZ580248A (en) 2004-04-30 2012-01-12 Dow Agrosciences Llc Plants comprising herbicide resistance gene encoding aryloxyalkanoate dioxygenase
WO2006006569A1 (en) 2004-07-12 2006-01-19 Nihon Nohyaku Co., Ltd. Phenylpyridine derivative or salt thereof, herbicide containing the same as active ingredient, and method of use thereof
NZ553172A (en) 2004-09-03 2009-07-31 Syngenta Ltd Isoxazoline derivatives and their use as herbicides
UA82453C2 (en) 2004-09-16 2008-04-10 Басф Акциенгезелльшафт Heteroaroyl-substituted serine amides used as herbicides, process for the preparation thereof (variants), intermediates, an agent and process for the preparation thereof, method for controlling unwanted plants
ATE408608T1 (en) 2004-09-16 2008-10-15 Basf Se BENZOYL SUBSTITUTED SERINE AMIDES
ES2333977T3 (en) 2004-10-05 2010-03-03 Syngenta Limited ISOXAZOLINE DERIVATIVES AND ITS USE AS HERBICIDES.
DE102004054665A1 (en) 2004-11-12 2006-05-18 Bayer Cropscience Gmbh Substituted bicyclic and tricyclic pyrazole derivatives Methods for the preparation and use as herbicides and plant growth regulators
DE102004054666A1 (en) 2004-11-12 2006-05-18 Bayer Cropscience Gmbh New substituted pyrazol-3-carboxamide derivatives useful to combat harmful plants and for growth regulation of plants
US7393812B2 (en) 2004-11-19 2008-07-01 Dow Agrosciences Llc Methylidene mevalonates and their use as herbicides
JP2006232824A (en) 2005-01-27 2006-09-07 Sagami Chem Res Center Imidazole derivative, method for producing the same and herbicide comprising the same as active ingredient
KR100890886B1 (en) 2005-02-24 2009-03-31 니혼노야쿠가부시키가이샤 Novel haloalkylsulfonanilide derivative, herbicide, and method of use thereof
DE102005014638A1 (en) 2005-03-31 2006-10-05 Bayer Cropscience Gmbh Substituted pyrazolyloxyphenyl derivatives as herbicides
JP2006282552A (en) 2005-03-31 2006-10-19 Nippon Nohyaku Co Ltd Phenylheteroaryls or their salts and herbicide comprising the same as active ingredient
DE102005014906A1 (en) 2005-04-02 2006-10-05 Bayer Cropscience Gmbh New pyrimidine compounds e.g. N-((4-ethyl-6((2-(trifluoromethyl) pyridine-4-yl)oxy) pyrimidine-2-yl)methyl) cyclopropane carboxamide useful for combating weeds
GB0510151D0 (en) 2005-05-18 2005-06-22 Syngenta Ltd Novel herbicides
AU2006251303A1 (en) 2005-05-25 2006-11-30 Basf Aktiengesellschaft Benzoyl-substituted serine amides
CN101228133A (en) 2005-05-25 2008-07-23 巴斯福股份公司 Heteroaroyl-substituted serineamides
DE102005031412A1 (en) 2005-07-06 2007-01-11 Bayer Cropscience Gmbh 3- [1-Halo-1-aryl-methane-sulfonyl] and 3- [1-halo-1-heteroaryl-methanesulfonyl] -isoxazoline derivatives, processes for their preparation and use as herbicides and plant growth regulators
WO2007026834A1 (en) 2005-09-01 2007-03-08 Kumiai Chemical Industry Co., Ltd. Pyrazole derivatives and herbicides for agricultural and horticultural use
CN101268194A (en) * 2005-09-20 2008-09-17 巴斯福植物科学有限公司 Methods for controlling gene expression using ta-siRNA
JP2007161701A (en) 2005-11-15 2007-06-28 Hokko Chem Ind Co Ltd Aryloxy-n-(oxyiminoalkyl)alkanoic acid amino derivative and use
JP2007153847A (en) 2005-12-08 2007-06-21 Hokko Chem Ind Co Ltd Phenoxyalkanoic acid amide derivative and herbicide
GB0526044D0 (en) 2005-12-21 2006-02-01 Syngenta Ltd Novel herbicides
US9060516B2 (en) * 2005-12-23 2015-06-23 Basf Se Method for controlling aquatic weeds
AR058408A1 (en) 2006-01-02 2008-01-30 Basf Ag PIPERAZINE COMPOUNDS WITH HERBICITY ACTION
CN101365687B (en) 2006-01-05 2013-05-01 巴斯夫欧洲公司 Piperazine compounds with a herbicidal action
JP2007182404A (en) 2006-01-10 2007-07-19 Hokko Chem Ind Co Ltd Aryloxy-n-(alkoxyalkyl)alkanoic acid amide derivative and herbicide
WO2007093529A2 (en) 2006-02-16 2007-08-23 Basf Se Heteroaroyl-substituted alanines
BRPI0707909A2 (en) 2006-02-16 2011-05-17 Basf Se compound, process for preparing compounds, agent, processes for preparing agents, and for combating unwanted vegetation, and use of compounds
GB0603891D0 (en) 2006-02-27 2006-04-05 Syngenta Ltd Novel herbicides
TWI375669B (en) 2006-03-17 2012-11-01 Sumitomo Chemical Co Pyridazinone compound and use thereof
EP2024327A1 (en) 2006-05-19 2009-02-18 Basf Se Benzoyl-substituted alanines
EP2027095A1 (en) 2006-05-19 2009-02-25 Basf Se Heteroaroyl-substituted alanines with a herbicidal action
GB0614471D0 (en) 2006-07-20 2006-08-30 Syngenta Ltd Herbicidal Compounds
JP2008074840A (en) 2006-08-23 2008-04-03 Nippon Nohyaku Co Ltd Novel haloalkylsulfonanilide derivative, herbicide, and method of using the same
JP2008074841A (en) 2006-08-23 2008-04-03 Nippon Nohyaku Co Ltd Novel haloalkylsulfonanilide derivative, herbicide and method of using the same
GB0617575D0 (en) 2006-09-06 2006-10-18 Syngenta Ltd Herbicidal compounds and compositions
TW200829171A (en) 2006-11-17 2008-07-16 Nihon Nohyaku Co Ltd Haloalkyl sulfonanilide derivatives or salts thereof, herbicide using it as effective constituent and use-method thereof
JP2008133218A (en) 2006-11-28 2008-06-12 Hokko Chem Ind Co Ltd Phenoxy butyric acid amide derivative and herbicide
JP2008133207A (en) 2006-11-28 2008-06-12 Hokko Chem Ind Co Ltd Oxazolinone derivative, method for producing the same and herbicide
GB0624760D0 (en) 2006-12-12 2007-01-17 Syngenta Ltd Herbicidal compounds
GB0625598D0 (en) 2006-12-21 2007-01-31 Syngenta Ltd Novel herbicides
JP2008169121A (en) 2007-01-09 2008-07-24 Bayer Cropscience Ag Jasmonic acid derivative, herbicide and herbicidal effect-reinforcing agent
US8133851B2 (en) 2007-01-11 2012-03-13 Basf Se Heteroaroyl-substituted serine amides
CL2008000376A1 (en) 2007-02-09 2008-08-18 Du Pont COMPOUNDS DERIVED FROM PIRIDINE N-OXIDES; HERBICIDE COMPOSITION; AND METHOD TO CONTROL THE GROWTH OF INDESEATED VEGETATION.
JPWO2008102908A1 (en) 2007-02-23 2010-05-27 日産化学工業株式会社 Haloalkylsulfonanilide derivatives
DE102007012168A1 (en) 2007-03-12 2008-09-18 Bayer Cropscience Ag New thiazole derivatives useful as herbicides and plant growth regulators
CN101279951B (en) 2007-04-06 2010-09-01 中国中化股份有限公司 2-pyrimindinyloxy (pyrimindinylthio) benzoxy enoates compound and application thereof
CN101279950B (en) 2007-04-06 2010-08-11 中国中化股份有限公司 2-pyrimindinyloxy (pyrimindinylthio) benzoxy acetamide compound and application thereof
EP1997381A1 (en) 2007-06-01 2008-12-03 Commissariat à l'Energie Atomique Use of a compound having a monogalactosyldiacylglycerol synthase inhibitory activity as herbicide or algaecide, herbicide and algaecide compositions
EP2181193B1 (en) * 2007-06-07 2017-10-25 Agriculture And Agri-food Canada Plant transformation with cell penetrating peptides
CN101679316A (en) 2007-06-12 2010-03-24 巴斯夫欧洲公司 Piperazine compounds with a herbicidal action
JP2010529169A (en) 2007-06-12 2010-08-26 ビーエーエスエフ ソシエタス・ヨーロピア Piperazine compounds with herbicidal action
TW200906807A (en) 2007-06-22 2009-02-16 Basf Se Piperazine compounds having herbicidal action
KR100884933B1 (en) 2007-07-03 2009-02-23 주식회사경농 Optically active r-aryloxypropionic acid amides and herbicidal compositions comprising same
JP2009067739A (en) 2007-09-14 2009-04-02 Sumitomo Chemical Co Ltd Herbicidal composition
CL2008002703A1 (en) 2007-09-14 2009-11-20 Sumitomo Chemical Co Compounds derived from 1,4-dihydro-2h-pyridazin-3-one; herbicidal composition comprising said compounds; weed control method; use of said compounds for weed control; and intermediate compounds.
AU2008324066A1 (en) 2007-11-05 2009-05-14 Baltic Technology Development, Ltd. Use of oligonucleotides with modified bases as antiviral agents
JP2009114128A (en) 2007-11-07 2009-05-28 Hokko Chem Ind Co Ltd Amide derivative of amino acid and herbicide
GB0722472D0 (en) 2007-11-15 2007-12-27 Syngenta Ltd Herbicidal compounds
JP2009126792A (en) 2007-11-20 2009-06-11 Sagami Chem Res Center 5-substituted phenyl-2-trifluoromethylpyrimidin-6(1h)-one derivative, method for producing the same and herbicide containing the derivative as active ingredient
EP2065373A1 (en) 2007-11-30 2009-06-03 Bayer CropScience AG Chiral 3-(benzylsulfinyl)-5,5-dimethyl-4,5-dihydroisoxazole and 5,5-dimethyl-3-[(1H-pyrazol-4-ylmethyl) sulfinyl]-4,5-dihydroisoxazole derivatives, methods for their preparation and their use as herbicides and plant growth regulators
EP2065374A1 (en) 2007-11-30 2009-06-03 Bayer CropScience AG 2-(benzyl- and 1H-pyrazol-4-ylmethyl)sulfinyl-thiazol-derivatives as herbicides and plant growth regulators
JP2009137851A (en) 2007-12-04 2009-06-25 Sagami Chem Res Center 2-trifluoromethylpyrimidin-6(1h)-one derivative, method for producing the same, and herbicide comprising the derivative as active ingredient
CL2008003785A1 (en) 2007-12-21 2009-10-09 Du Pont Pyridazine derived compounds; herbicidal compositions comprising said compounds; and method of controlling the growth of unwanted vegetation.
GB0800855D0 (en) 2008-01-17 2008-02-27 Syngenta Ltd Herbicidal compounds
GB0800856D0 (en) 2008-01-17 2008-02-27 Syngenta Ltd Herbicidal compounds
WO2009110924A1 (en) 2008-03-03 2009-09-11 Ms Technologies Llc Antibodies immunoreactive with mutant 5-enolpyruvlshikimate-3-phosphate synthase
WO2009116151A1 (en) 2008-03-19 2009-09-24 アグロカネショウ株式会社 1-phenyl-5-difluoromethylpyrazole-4-carboxamide derivatives and herbicides containing the derivatives as the active ingredient
GB0805318D0 (en) 2008-03-20 2008-04-30 Syngenta Ltd Herbicidal compounds
EP2135865A1 (en) 2008-06-17 2009-12-23 Bayer CropScience AG Substituted 1-(diazinyl)pyrazol-4-yl acetic acids, method for their production and their use as herbicides and plant growth regulators
WO2009158258A1 (en) 2008-06-25 2009-12-30 E. I. Du Pont De Nemours And Company Herbicidal dihydro oxo six-membered azinyl isoxazolines
TWI455944B (en) 2008-07-01 2014-10-11 Daiichi Sankyo Co Ltd Double-stranded polynucleotides
EP2320925B1 (en) 2008-07-10 2015-12-23 Regenesance B.V. Complement antagonists and uses thereof
EP2147919A1 (en) 2008-07-24 2010-01-27 Bayer CropScience Aktiengesellschaft Heterocyclic substituted amides, method for their manufacture and their use as herbicides
BRPI0916684A2 (en) 2008-07-29 2015-08-04 Basf Se Piperazine Compounds, Composition, and Process for Fighting Unwanted Vegetation
BRPI0917411A2 (en) 2008-08-15 2015-12-01 Univ Georgetown dansyl carbazole compound, method for treating cancer in a subject, method for reducing dna menthyltransferase activity in a cell, method for increasing expression of family domain 1a (rassf1a) association in a cell, cell identification methods Method of determining whether one or more cells of a subject are cancer cells, pharmaceutical composition and kit.
JP5549592B2 (en) 2008-09-02 2014-07-16 日産化学工業株式会社 Ortho-substituted haloalkylsulfonanilide derivatives and herbicides
WO2010034153A1 (en) 2008-09-25 2010-04-01 沈阳化工研究院 New 2-pyrimidinyloxy (sulfo) benzoxy olefin acid ester compounds and uses thereof
US20100099561A1 (en) 2008-10-15 2010-04-22 E.I. Du Pont De Nemours And Company Heterobicyclic alkylthio-bridged isoxazolines
JP2012506885A (en) 2008-10-29 2012-03-22 ビーエーエスエフ ソシエタス・ヨーロピア Substituted pyridines with herbicidal action
US20110318470A1 (en) 2008-10-31 2011-12-29 Klaus Grossmann Method For Improving Plant Health
CN102203114A (en) 2008-10-31 2011-09-28 巴斯夫欧洲公司 Piperazine compounds with herbicidal effect
RU2011121521A (en) 2008-10-31 2012-12-10 Басф Се METHOD FOR IMPROVING PLANT VIABILITY
EP2194052A1 (en) 2008-12-06 2010-06-09 Bayer CropScience AG Substituted 1.(1-thiazolyl)- and 1-(isothiazolyl)pyrazol-4-yl acetic acids, method for their production and their use as herbicides and plant growth regulators
JP2012512821A (en) 2008-12-18 2012-06-07 ビーエーエスエフ ソシエタス・ヨーロピア Heterocyclic diketone derivatives with herbicidal action
DE102008063561A1 (en) 2008-12-18 2010-08-19 Bayer Cropscience Ag Hydrazides, process for their preparation and their use as herbicides and insecticides
EP2204366A1 (en) 2008-12-19 2010-07-07 Bayer CropScience AG Herbicidal and insecticidal phenyl-substituted pyridazinones
JP2010235603A (en) 2009-03-13 2010-10-21 Sumitomo Chemical Co Ltd Pyridazinone compound and use thereof
EP2229813A1 (en) 2009-03-21 2010-09-22 Bayer CropScience AG Pyrimidine-4-ylpropandinitrile derivatives, method for their manufacture and their use as herbicides and plant growth regulators
GB0905441D0 (en) 2009-03-30 2009-05-13 Syngenta Ltd Herbicidal compounds
CN102369203B (en) 2009-04-06 2014-08-20 辛根塔有限公司 Herbicidal compounds
EP2420493A4 (en) 2009-04-14 2012-09-05 Nissan Chemical Ind Ltd Haloalkylsulfonanilide derivative
GB0908293D0 (en) 2009-05-14 2009-06-24 Syngenta Ltd Herbicidal compounds
WO2011003776A2 (en) 2009-07-09 2011-01-13 Basf Se Substituted cyanobutyrates having a herbicidal effect
IN2012DN03057A (en) 2009-09-25 2015-07-31 Bayer Cropscience Ag
DE102010042864A1 (en) 2009-10-30 2011-06-01 Basf Se Substituted thioamides with herbicidal activity
US8329619B2 (en) 2009-11-03 2012-12-11 Basf Se Substituted quinolinones having herbicidal action
US9145562B2 (en) * 2009-11-20 2015-09-29 Alberta Innovates—Technology Futures Variegation in plants
JP2011195561A (en) 2009-11-24 2011-10-06 Sumitomo Chemical Co Ltd Ketone compound, and herbicide comprising the same
AU2010334808B2 (en) 2009-12-23 2015-07-09 Bayer Intellectual Property Gmbh Plants tolerant to HPPD inhibitor herbicides
WO2011112570A1 (en) * 2010-03-08 2011-09-15 Monsanto Technology Llc Polynucleotide molecules for gene regulation in plants

Also Published As

Publication number Publication date
EP2755987A4 (en) 2015-04-01
CN103958539B (en) 2019-12-17
UY34333A (en) 2013-04-30
AU2012308660A1 (en) 2014-04-03
BR112014005954A2 (en) 2020-12-01
UA116092C2 (en) 2018-02-12
AU2012308660B2 (en) 2017-05-25
EP3434779A1 (en) 2019-01-30
WO2013040117A1 (en) 2013-03-21
AR087862A1 (en) 2014-04-23
EP2755987B1 (en) 2018-06-06
US20130326731A1 (en) 2013-12-05
MX2014003077A (en) 2014-07-28
CN103958539A (en) 2014-07-30
MX348495B (en) 2017-06-14
WO2013040117A9 (en) 2013-06-06
EP2755987A1 (en) 2014-07-23

Similar Documents

Publication Publication Date Title
AU2012308660B2 (en) Methods and compositions for weed control
AU2012308737B2 (en) Methods and compositions for weed control
AU2012308659B2 (en) Methods and compositions for weed control
AU2012308818B2 (en) Methods and compositions for weed control
EP2756083B1 (en) Methods and compositions for weed control
US10808249B2 (en) Methods and compositions for weed control
EP3296402B1 (en) Methods and compositions for weed control
CA2848680A1 (en) Methods and compositions for weed control
US10760086B2 (en) Methods and compositions for weed control
US10806146B2 (en) Methods and compositions for weed control
AU2015206585A9 (en) Methods and compositions for weed control using EPSPS polynucleotides

Legal Events

Date Code Title Description
EEER Examination request

Effective date: 20170913

FZDE Discontinued

Effective date: 20220719

FZDE Discontinued

Effective date: 20220719

FZDE Discontinued

Effective date: 20220719