WO2014167514A1 - Formulations and methods for control of weedy species - Google Patents

Formulations and methods for control of weedy species Download PDF

Info

Publication number
WO2014167514A1
WO2014167514A1 PCT/IB2014/060565 IB2014060565W WO2014167514A1 WO 2014167514 A1 WO2014167514 A1 WO 2014167514A1 IB 2014060565 W IB2014060565 W IB 2014060565W WO 2014167514 A1 WO2014167514 A1 WO 2014167514A1
Authority
WO
WIPO (PCT)
Prior art keywords
atg
seq
rnai
plant
acg
Prior art date
Application number
PCT/IB2014/060565
Other languages
French (fr)
Inventor
Chris TUTTLE
Layne WOODFIN
Original Assignee
Tuttle Chris
Woodfin Layne
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tuttle Chris, Woodfin Layne filed Critical Tuttle Chris
Priority to AU2014252200A priority Critical patent/AU2014252200A1/en
Priority to CA2896886A priority patent/CA2896886A1/en
Priority to EP14782757.0A priority patent/EP2983476A4/en
Priority to US14/783,341 priority patent/US9909132B2/en
Publication of WO2014167514A1 publication Critical patent/WO2014167514A1/en
Priority to US15/875,965 priority patent/US11377664B2/en
Priority to US15/875,909 priority patent/US11434495B2/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8216Methods for controlling, regulating or enhancing expression of transgenes in plant cells
    • C12N15/8218Antisense, co-suppression, viral induced gene silencing [VIGS], post-transcriptional induced gene silencing [PTGS]
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N61/00Biocides, pest repellants or attractants, or plant growth regulators containing substances of unknown or undetermined composition, e.g. substances characterised only by the mode of action
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8201Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation
    • C12N15/8206Methods for introducing genetic material into plant cells, e.g. DNA, RNA, stable or transient incorporation, tissue culture methods adapted for transformation by physical or chemical, i.e. non-biological, means, e.g. electroporation, PEG mediated
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • C12N15/63Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
    • C12N15/79Vectors or expression systems specially adapted for eukaryotic hosts
    • C12N15/82Vectors or expression systems specially adapted for eukaryotic hosts for plant cells, e.g. plant artificial chromosomes (PACs)
    • C12N15/8241Phenotypically and genetically modified plants via recombinant DNA technology
    • C12N15/8261Phenotypically and genetically modified plants via recombinant DNA technology with agronomic (input) traits, e.g. crop yield
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/146Genetically Modified [GMO] plants, e.g. transgenic plants

Definitions

  • the present technology is directed to a formulation and a method for controlling growth of plant species. More specifically, it is a formulation comprising a targeting construct and RNAi inducer to produce small interfering RNAs for use in non-stable expression in weedy plant species.
  • Targeting constructs are designed to target endogenous genes in the weedy species while having no effect in off-target species.
  • the current strategies for invasive species management consist of the application of different combinations of chemical herbicides and physical removal, coupled with bio- control techniques as available.
  • the available chemicals are often toxic to a wide array of native plants, animals and insects and can have negative consequences for human health. Many cannot be used in riparian or aquatic environments as the compounds would quickly spread. In addition, they have a limited half-life and efficacy and must be reapplied year after year. Bio-control and physical removal are costly and labour intensive requiring large investments and again, often resulting in collateral damage to other organisms.
  • Some invasive pest plants are now so well established that they are widely considered impossible to remove by any available technique, for example, Eurasian Milfoil. Others, having been subjected to years of treatment with chemicals, have developed resistance to them.
  • US Patent No. 7,805,884 discloses an injector system for injecting a dose of weed-killing fluid into the stem of a Japanese knotweed, including a fluid dispenser system with a fluid passage, a collared needle with a fluid delivery aperture in communication with the fluid dispenser system, and an actuator connected to the fluid dispenser system for actuating the transmission of fluid from the fluid dispenser system to the fluid delivery aperture.
  • This employs chemical herbicides. Control of insect pests is largely through the use of chemical insecticides. Some biological control methods also exist, for example, the use of pheromones in insect traps. These are relatively labour intensive as the traps have to be baited, set and removed.
  • Bacillus thuringiensis toxin Another example of biological control is the use of Bacillus thuringiensis toxin. It can be provided as a spray or produced in transgenic plants. In transgenic plants, the gene or genes are expressed in the plant, the plant produces the toxin, the foraging insect ingests the plant material and is killed.
  • transgenic plants the gene or genes are expressed in the plant, the plant produces the toxin, the foraging insect ingests the plant material and is killed.
  • US Patent No. 7,943,819 provides methods for genetic control of insect infestations in plants and compositions thereof by inhibiting one or more biological functions by feeding one or more recombinant double stranded RNA molecules to the insect pest. This reportedly results in a reduction in pest infestation through suppression of gene expression.
  • US Patent No. 8,148,604 discloses methods and materials for conferring insect pest resistance to plants and controlling parasitic plant pests. Plants are stably transformed with a silencing construct homologous to a gene of a plant pest that is essential for the survival, development, or pathogenicity of the pest. This results in the plant producing RNA interference (RNAi), specifically short interfering RNA (siRNA) to the selected gene, which, when ingested by the insect pest results in silencing of the gene and a subsequent reduction of the pest's ability to harm the plant. In other embodiments, the pest's reduced ability to harm the plant is passed on to pest progeny. It is also suggested that parasitic plants pests, for example striga, dodder and mistletoe can also be controlled by stably transforming plants with a silencing construct homologous to a gene of the parasitic plant that is essential for survival or development.
  • RNA interference specifically short interfering RNA
  • RNA interference is considered to be an ancient defense mechanism wherein the host organism recognizes as foreign a double-stranded RNA molecule and hydrolyzes it.
  • the resulting hydrolysis products are small RNA fragments of 21-30 nucleotides in length, called siRNAs.
  • the siRNAs then diffuse or are carried throughout the host, where they hybridize to the complementary Viral RNA or complementary endogenous polynucleotide sequences where they act as guides for RISC mediated hydrolysis and thus knock-down or dysregulation.
  • the different Dicer-Like proteins (DCL) of Arabidopsis cleave dsRNA molecules into different sized (21-25nt) small dsRNA products depending on which DCL is processing them.
  • Arabidopsis encodes 10 Argonaute proteins (AGOl-10) which bind these small RNAs and, as a part of RISC, elicit different effects depending on which AGO the small RNA has been recruited into and the size of the recruited small RNA.
  • AGOl is largely responsible for the miRNA pathway and also post transcriptional gene silencing.
  • RNA-dependent RNA polymerase (RdRP) dependent generation of 2° siRNA products and amplification of the initial signal RNA- dependent RNA polymerase (RdRP) dependent generation of 2° siRNA products and amplification of the initial signal.
  • RdRP RNA- dependent RNA polymerase
  • RNAi Payload A species-specific herbicide that can be used to kill, weaken or impair growth of a weed species is needed. This is accomplished through miRNA, siRNA, DNA, or single- or double- stranded RNA designed to elicit an RNAi response that spreads systemically once inside a plant cell (RNAi Payload).
  • RNAi Payload A region of the RNAi payload contains sequence complementary to endogenous target genes (Targeting construct).
  • siRNAs produced from this region direct the knock-down of those genes leading to cell death. This knock-down is strengthened by RdRP mediated transitivity, phasing, and systemic spread. The result is a herbicide that can be tuned to affect any number of plant species.
  • the present technology provides a non-chemical herbicide that can be used to kill, weaken or impair growth of weedy species.
  • the formulation is for application to a host plant to reduce, inhibit or impair one or more of growth and development of the host plant.
  • the formulation comprises an interfering Ribonucleic Acid (RNAi) payload, and at least one of a liquid carrier, a surfactant, a binder and tackifier, a thickener, a colourant, a spreader, an antifreezing agent, a sticker, an anticaking agent, a stabilizer, a disintegrator, an emulsifier, a synergistic compound, an abrasive, an emulsifier, a penetrating agent and a preservative.
  • the RNAi payload may comprise an at least one sequence specific to the host plant.
  • the RNAi payload comprises at least 20 contiguous nucleotides of at least one sequence selected from the group consisting of SEQ ID NOs 1 to 66.
  • the formulation may comprise an RNAi payload, the liquid carrier and the surfactant. It may further comprise the abrasive and still further comprise a synergistic compound.
  • the formulation is in an exemplary embodiment, for stem injection, and comprises the liquid carrier and the penetrating agent.
  • a method of inhibiting or impairing plant growth and development comprises delivering a formulation to a host plant, by spraying, imbibing, irrigating, or injecting the formulation, the formulation comprising an interfering Ribonucleic Acid
  • RNAi payload an at least one of a liquid carrier, a surfactant, a binder and tackifier, a thickener, a colourant, a spreader, an antifreezing agent, a sticker, an anticaking agent, a stabilizer, a disintegrator, an emulsifier, a synergistic compound, an abrasive, an emulsifier, a penetrating agent and a preservative, thereby inhibiting or impairing growth and development.
  • the method comprises delivering the formulation to at least one of a leaf, a root, a stem, a petiole, a seed and a cotyledon.
  • the RNAi payload may comprise a sequence selected from the group consisting of SEQ ID NOs 1 to 66.
  • the method comprises injecting the stem or petiole or spraying the host plant.
  • the method of claim 12 further comprising inducing expression of any of SEQ ID NOs 7, 8, 9, 10, 11 and 12 thereby producing any of SEQ ID NOs 1, 2, 3, 4, 5, and 6.
  • a method of weed control comprising:
  • the RNAi payload comprises at least 20 contiguous nucleotides from or complementary to one or more of SEQ ID NOs 1 to 66.
  • the method may involve spraying the weed plant species or injecting the weed plant species
  • a method of designing a species-specific construct for RNAi suppression of growth of a target plant species comprising the steps of:
  • identifying an at least one target site accessible to base pairing in the suitable gene identifying an at least one divergent site in the at least one target site;
  • RNAi inducer element added to the construct, thereby designing a species-specific gene construct for siRNA suppression of growth of the target plant species.
  • the method may further comprise adding an at least one helper sequence to the species specific gene construct.
  • the method may further comprise sequencing an at least one gene from the target plant to select the suitable gene.
  • the construct may include any one of SEQ. ID No. 1 to 66 or their complement.
  • a method of inhibiting or impairing plant growth and development of a target plant comprising:
  • identifying an at least one target site accessible to base pairing in the suitable gene identifying an at least one divergent site in the at least one target site;
  • the method may further comprise adding an at least one helper sequence to the species specific gene construct.
  • the method may further comprise sequencing an at least one gene from the target plant to select the suitable gene.
  • the construct may include any one of SEQ ID No. 1 to 66 or their complement.
  • Figure 1 shows a DPC targeting construct for photobleaching-based death in multiple species in accordance with an embodiment of the technology.
  • Ath Arabidopsis thaliana
  • Nto Nicotiana tobacum
  • Bra Brassica napus
  • Zma Zea mays
  • Mtr Medicago truncatula.
  • Figure 2 shows an apoptosis targeting construct for Brassica rapa in accordance with an embodiment of the technology. Inserted into vector for E. coli production or transcribed in vitro. Resultant dsRNA is applied to plants.
  • Figure 3 shows an apoptosis targeting construct 2, for Nicotiana sylvestris in accordance with an embodiment of the technology.
  • sgP subgenomic promoter. Cloned into RNA2- MCS vectors or co-expressed with TRV replicase.
  • Figure 4 shows an apoptosis targeting construct 3, for Nicotiana sylvestris inside TRV RNA2 in accordance with an embodiment of the technology. RNA applied to plants along with TRV RNA1.
  • FIG. 5 shows a T7-driven helper construct in accordance with an embodiment of the technology.
  • RNA is added directly to plants, or cloned into RNA2-MCS or RNAl-MCS vectors .
  • Figure 6 shows an empty VIGS-based vector to produce coated RNA1 and 2 based RNAi inducers in E. coli in accordance with an embodiment of the technology.
  • Targeting constructs such as Figure 3 are cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
  • Figure 7 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in accordance with an embodiment of the technology.
  • Targeting constructs such as Figure 3 are cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
  • Figure 8 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in yeast in accordance with an embodiment of the technology.
  • Targeting construct is cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
  • Figure 9 shows an empty VIGS-based vector to produce naked TRV RNAI and RNA2 based RNAi inducers in accordance with an embodiment of the technology. Functional in E. coli with T7 Polymerase and for in vitro production. Ribozymes cleave the RNA into separate strands.
  • Figure 10 shows a generic model of a DNA construct for an RNAi herbicide. The core of the herbicide is the targeting construct, tuned to affect one or a few plant species. RNAi inducer elements are either inserted into the targeting sequence (introns to make hairpins, direct or inverted repeats with/without base pairing mismatches), or are inserted around the targeting construct (subgenomic, viral, or endogenous RdRP promoters).
  • Figure 11 shows a construct for producing an RNAi herbicide in E. coli, without a target construct.
  • the TRV coat protein is transcribed and translated.
  • Targeting constructs are inserted into the MCS.
  • the TRV RNAI fragments facilitate coating of the RNA.
  • this RNA is transcribed to produce viral replicase, which produces dsRNA from the entire RNA. This induces the RNAi response.
  • SEQ ID NO: 1 is the short interfering sequence Actin 2 siRNA-A used according to the present technology.
  • SEQ ID NO: 2 is the short interfering sequence Actin 2 siRNA-B used according to the present technology.
  • SEQ ID NO: 3 is the short interfering sequence CHLI siRNA-A used according to the present technology.
  • SEQ ID NO: 4 is the short interfering sequence CHLI siRNA-B used according to the present technology.
  • SEQ ID NO: 5 is the short interfering sequence 18S siRNA-A used according to the present technology.
  • SEQ ID NO: 6 is the short interfering sequence 18S siRNA-B used according to the present technology.
  • SEQ ID NO: 7 is the DNA sequence encoding the short interfering sequence Actin 2 siRNA-A used according to the present technology.
  • SEQ ID NO: 8 is the DNA sequence encoding the short interfering sequence Actin 2 si RNA-B used according to the present technology.
  • SEQ ID NO: 9 is the DNA sequence encoding the short interfering sequence CHLI siRNA-A used according to the present technology.
  • SEQ ID NO: 10 is the DNA sequence encoding the short interfering sequence CHLI siRNA-B used according to the present technology.
  • SEQ ID NO: 11 is the DNA sequence encoding the short interfering sequence 18S siRNA-A used according to the present technology.
  • SEQ ID NO: 12 is the DNA sequence encoding the short interfering sequence 18S siRNA-B used according to the present technology.
  • SEQ ID No. 13 Synthetic construct targeting CHLI1 in A. thaliana, B. rapa, M. truncatula, Z. mays, and N. Tobacum.
  • SEQ ID No. 14 Synthetic construct targeting mGFP5er, Acdll, Acd2, Catl, Cat2, and Lsdl in B. rapa pekinensis.
  • SEQ ID No. 15 Synthetic construct targeting Atg5, Catl, Jazh, MC2, and Beclinl in Nicotiana sylvestris.
  • SEQ ID No. 16 Synthetic construct targeting Acd2, BI-1, LIsl, NtTCTP, and Beclinl in Nicotiana sylvestris.
  • SEQ ID No. 17 Synthetic construct consisting of CaMV35s promoter, TRV Ppk20 RNA1, ribozyme sequence and NOS terminator.
  • SEQ ID No. 18 TRV RNA2-MCS for transcription in plant cells.
  • SEQ ID No. 19 Truncated T7 driven Tobacco Rattle Virus RNA1 ( T7-RNA1 inducer).
  • SEQ ID No. 20 Synthetic sequence consisting of optimized TRV coat protein driven by T7 promoter and a strong Ribosome binding site (RBS), and Tobacco rattle virus (TRV) isolate Ppk20 RNA1 and ribozyme sequence driven by T7 promoter. All elements are in the pUC57 vector.
  • SEQ ID No. 21 Synthetic T7-RNA2-MCS inducer sequence.
  • SEQ ID No. 22 Synthetic T7 driven RNA2 with sample construct (C3) in MCS, ribozyme, NOS.
  • SEQ ID No. 23 Synthetic T7-RNA2-sgP-C3 sequence.
  • SEQ ID No. 24 Synthetic sequence consisting of pUC57 MCS flanked by Pea Early Browning virus (PEBV) subgenomic promoters, all of which are flanked by T7 promoters.
  • PEBV Pea Early Browning virus
  • SEQ ID No. 25 Synthetic RNA1 of TRV Ppk20 sequence.
  • SEQ ID No. 26 Synthetic RNA2 of pTRV2 with C3 insert sequence.
  • SEQ ID NO 27 Synthetic sequence consisting of SEQ ID NO 15 flanked by PEBV subgenomic promoters
  • SEQ ID NO 28 Synthetic pRNAi-GG sequence.
  • SEQ ID No. 29 Synthetic pRNAi-GG with SEQID 14 inserts.
  • SEQ ID No. 30 Human cytomegalovirus immediate early enhancer and promoter sequence.
  • SEQ ID No. 31 Synthetic TRV coat protein CDS DNA from pTRV2 sequence.
  • SEQ ID No. 32 Synthetic Tobacco Rattle Virus Codon-optimized Coat Protein mRNA sequence.
  • SEQ ID No. 33 Tomato Bushy Stunt Virus P19 suppressor protein CDS from Tomato Bushy Stunt Virus M21958.1 sequence.
  • SEQ ID No. 34 Papaya Ringspot Virus strain P isolate pFT3-NP HCpro peptide CDS sequence.
  • SEQ ID NO 35 Tobacco Mosaic Virus TMV 30kDa movement protein CDS sequence.
  • SEQ ID No. 36 Arabidopsis thaliana TOR gene CDS (TAIR accession AT1G50030).
  • SEQ ID No. 37 Arabidopsis thaliana ATG5 sequence.
  • SEQ ID NO 38 Arabidopsis thaliana Beclin 1 sequence.
  • SEQ ID No. 39 Nicotiana attenuata ZIM domain protein h mRNA sequence.
  • SEQ ID NO. 40 Nicotiana benthamiana Bax inhibitor 1 mRNA sequence.
  • SEQ ID No. 41 Nicotiana sylvestris Acd2 partial transcript sequence derived from N. sylvestris transcriptome.
  • SEQ ID No. 42 Lycopersicon esculentum lethal leaf spot 1-like protein mRNA sequence.
  • SEQ ID NO 43 Nicotiana tobacum mRNA for catalase 1 (catl gene), cultivar NC89 sequence.
  • SEQ ID NO 44 Arabidopsis thaliana MC2 sequence.
  • SEQ ID No. 45 Nicotiana benthamiana NbTCTP mRNA for translationally controlled tumor protein sequence.
  • SEQ ID No. 46 Arabidopsis thaliana Lsdl sequence.
  • SEQ ID No. 47 Arabidopsis thaliana Acdll sequence.
  • SEQ ID No. 48 Nicotiana sylvestris PDS gene target construct.
  • SEQ ID No. 49 T7 driven RNA2 with NSYL PDS target construct in MCS.
  • SEQ ID No. 50 T7 driven truncated PPK20 RNA1 consisting of 5' sequence, replicase CDS, PUC57 MCS, 3' sequence, ribozyme and NOS terminator.
  • SEQ ID No. 51 TRV PPK20 RNAI replicase CDS.
  • SEQ ID No. 52 TRV PPK20 RNA2 5' replication element containing sequence
  • SEQ ID No. 53 TRV Ppk20 RNA2 3' replication element containing sequence
  • SEQ ID No. 54 Arabidopsis thaliana ESR gene CDS.
  • SEQ ID No. 55 Arabidopsis thaliana SAG12 (senescence associated gene 12) CDS.
  • SEQ ID No. 56 Arabidopsis thaliana PAD4 (phytoalexin deficient 4) gene CDS.
  • SEQ ID No. 57 Arabidopsis thaliana CPR5 (constitutive expression of PR genes 5) gene CDS.
  • SEQ ID No. 58 Arabidopsis thaliana ACD1 (accelerated cell death 1) gene CDS.
  • SEQ ID No. 59 Arabidopsis thaliana ATG18 (homolog of yeast autophagy gene 18 G) gene CDS.
  • SEQ ID No. 62 ICDH (ISOCITRATE DEHYDROGENASE) AT1G54340
  • SEQ ID No. 64 ATG 2 (AUTOPHAGY 2) AT3G19190
  • SEQ ID No. 65 SRI (SIGNAL RESPONSIVE 1) AT2G22300
  • SEQ ID No. 66 APG7 (AUTOPHAGY 7) AT5G45900
  • RNAi Payload means a payload consisting of at least one specific nucleic acid sequence or analogue sequence that, when introduced into the body of a plant, will trigger or initiate an RNAi cascade.
  • Cell or host plant cell means a cell or protoplast of a plant cell and includes isolated cells and cells in a whole plant, plant organ, or fragment of a plant. It also includes non-isolated cells.
  • Double stranded region means a region of a polynucleotide wherein the nucleotides or analogues are capable of hydrogen bonding to each other.
  • Such hydrogen bonding can be intramolecular or intermolecular (e.g. single transcription unit forming a dou ble stranded region with the so-called hairpin or two transcription units that align appropriately for complementary sequences to hydrogen bond).
  • To be a double stranded region it is not necessary for 100% of the nucleotides to be complementary and hydrogen bonded within a region. It is merely necessary for sufficient base pairing to occur to give the RNA a substantial double stranded character (e.g. an indicative melting point).
  • RNAi Inducer means at least one specific nucleic acid sequence or analogue sequence that, when introduced into the body of a plant, will trigger or initiate an RNAi cascade. This can be, for example, but is not limited to DNA, dsRNA, ssRNA, siRNA, and miRNA sequences.
  • RNAi inducers are usually capable of activating RNAi in a number of species. Targeting constructs are added to the RNAi inducer sequence to direct the RNAi response against specific endogenous polynucleotides.
  • Targeting construct means a region of nucleic acid sequence that is complementary to one or more endogenous or exogenous polynucleotides.
  • siRNAs released from the processing of a targeting construct direct RNAi machinery to knock-down endogenous polynucleotides.
  • RdRP means a RNA-dependent RNA polymerase.
  • An RdRP creates a complementary strand of RNA using RNA as a template.
  • Endogenous RdRPs include components of RISC machinery, and DNA-dependent RNA polymerases when recruited by special RNA sequences/structures.
  • Exogenous RdRPs come from virus, retrotransposons, or are harvested from another organism.
  • Exogenous gene means a gene that is not normally present in a given host genome in the present form. In this respect, the gene itself may be native to the host genome, however the exogenous gene will comprise the native gene altered by the addition or deletion of one or more different regulatory elements or additional genes.
  • Gene or genes means nucleic acid sequences (including both RNA or DNA) that encode genetic information for the synthesis of a whole RNA, a whole protein, or any functional portion of such whole RNA or whole protein sufficient to possess a desired characteristic.
  • Marker gene means a gene that, when its activity is altered, imparts a distinct phenotype.
  • Essential gene means a gene that, when inhibited, results in a negative effect on at least one of plant growth and development. They are required for normal plant growth and reproduction.
  • Heterologous polynucleotide means any polynucleotide that is introduced (transiently or stably) into a non-transformed host plant.
  • a polynucleotide is not excluded from being a heterologous polynucleotide by the presence of matching endogenous polynucleotide sequences.
  • Homologous means having sequence similarity sufficient to allow hybridization in vivo, in vitro, and/or ex vivo under low stringency conditions between the antisense sequence and the sense gene mRNA.
  • Inhibition of gene expression means a decrease in the level of protein and/or RNA product from a target gene.
  • the consequences of inhibition can be confirmed by examination of the outward properties of the cell or organism (as presented below in the examples) or by biochemical techniques such as RNA solution hybridization, nuclease protection, Northern hybridization, polymerase chain reaction (PCR), reverse transcription (RT) reverse transcription PCR(RT/PCR), gene expression monitoring with a microarray, antibody binding, enzyme linked immunosorbent assay (ELISA), Western blotting, radioimmunoassay (RIA), other immunoassays, and fluorescence assisted cell sorting(FACS).
  • Substantially complementary, with respect to the sense and antisense sequences means sufficiently complementary to allow for formation of a double stranded molecule.
  • Transcript means RNA encoded by DNA.
  • sense and antisense transcripts of the present invention can be part of the same polynucleotide or they can be 2 separate polynucleotides (i.e., each having its own 5' and 3' end).
  • Treating a weed plant means a method to cause a deleterious effect on the weed, for example, but not limited to, interfering with development, reducing growth, triggering programmed cell death such as apoptosis, senescence, or autophagy, reducing vigour, interfering with reproductive viability, or result in death.
  • hpRNA is hairpin RNA, produced through inverted repeats with or without a single stranded loop region.
  • RISC is an RNA-induced silencing complex.
  • dsRNA is double stranded RNA.
  • siRNA is short interfering RNA.
  • miRNA is microRNA and is a small non-coding RNA molecule (ca. 22 nucleotides) found in plants and animals. They function in transcriptional and post-transcriptional regulation of gene expression.
  • pTRVl and pTRV2 are well proven RNAi inducers.
  • One skilled in the art can use other virus based sequences to create an inducer by placing the virus sequence between a suitable promoter and terminator and incorporating an MCS into it.
  • Weeds mean members of the Amaranthaceae family, such as green pigweed and redroot pigweed, members of the Anacardiaceae family, such as western poison-oak, central poison-ivy, eastern poison-ivy, rydberg's poison-ivy, and poison sumac, members of the Asclepiadaceae family, such as common milkweed, black dog-strangling vine, and dog- strangling vine, members of the Balsaminaceae family such as spotted jewelweed, members of the Berberidaceae family such as common barberry, members of the Boraginaceae family such as blueweed, and stickseed, members of the Caryophyllaceae family such as purple cockle, mouse-eared chickweed, bouncingbet, night-flowering catchfly, white cockle, bladder campion, corn spurry, chickweed, grass-leaved stichwort, and cow cockle, members of the Chenopodiaceae
  • Crassulaceae family such as mossy stonecrop
  • members of the Cruciferae family(Brassicaceae) such as garlic mustard, yellow rocket, hoary alyssum, Indian mustard, bird rape, small-seeded false flax, shepherd's purse, lens-podded hoary cress, hare's-ear mustard, flixweed, wood whitlow-grass, dog mustard, wormseed mustard, tall wormseed mustard, dame's-rocket, field pepper-grass, common pepper-grass, poor-man's pepper- grass, ball mustard, wild radish, creeping yellow cress, wild mustard, tumble mustard, tall hedge mustard, and stinkweed, members of the Cucurbitaceae family such as wild cucumber, members of the Cyperaceae family such as yellow nut sedge, members of the Equisetaceae family such as field horsetail, members of the Euphorbiaceae family such as three-seeded mercury, cypress spurge, leaf
  • Haloragaceae family such as Eurasian water-milfoil, members of the Hydrocharitaceae family such as European frogbit, members of the Labiatae family such as ajuga, American dragonhead, hemp-nettle, ground-ivy, motherwort, catnip, heal-all, andmarsh hedge- nettle, members of the Leguminosae family (Fabaceae) such as hog-peanut, bird's-foot trefoil, black medick, white sweet-clover, yellow sweet-clover, crown vetch, white clover, and tufted vetch, members of the Liliaceae family such as false hellebore, showy false hellebore, smooth camas, and meadow camas, members of the Lythraceae family such as purple loosestrife, members of the Malvaceae family such as velvetleaf, round-leaved mallow, and common mallow, members of the Onagraceae family such as fireweed, and yellow evening
  • Scrophulariaceae family such as dwarf snapdragon, yellow toadflax, Dalmation toadflax, moth mullein, common mullein, and thyme-leaved speedwell, members of the Solanaceae family such as climbing nightshade, and eastern black nightshade, members of the Typhaceae family such as narrow-leaved cattail, and cattail, members of the Umbelliferae (Apiaceae) family such as goutweed, caraway, western water-hemlock, spotted water- hemlock, poison-hemlock, wild carrot, giant hogweed, wild parsnip, and water-parsnip, and members of the Urticaceae family such as stinging nettle.
  • members of the Solanaceae family such as climbing nightshade, and eastern black nightshade
  • members of the Typhaceae family such as narrow-leaved cattail, and cattail
  • members of the Umbelliferae (Apiaceae) family
  • weeds will be controlled, if not already listed above: Abutilon theophrasti (Velvetleaf), Acroptilon repens ( Russian Knapweed), Aegilops cylindrica (Jointed Goatgrass), Agropyron repens (Quackgrass), Alyssum, Hoary (Berteroa incana), Amaranthus retroflexus (Redroot Pigweed), Anchusa officinalis (Common Bugloss), Annual Bluegrass (Poa annua), Annual Sow-thistle (Sonchus oleraceus), Annual Sow-thistle, Spiny (Sonchus asper), Anthriscus sylvestris (Wild Chervil), Arctium spp.
  • Abutilon theophrasti Velvetleaf
  • Acroptilon repens Russian Knapweed
  • Aegilops cylindrica Jointed Goatgrass
  • Knapweed Spotted (Centaurea maculosa), Knapweed, Russian (Acroptilon repens), Knapweed, Diffuse (Centaurea diffusa), Knautia arvensis (Field Scabious), Kochia scoparia (Kochia), Kochia (Kochia scoparia), Lady's-Thumb (Polygonum persicaria), Lamb's-Quarters (Chenopodium album), Lamium amplexicaule (Henbit), Leafy Spurge (Euphorbia esula), Lepidium latifolium (Perennial Pepperweed), Linaria dalmatica (Dalmatian Toadflax), Linaria vulgaris (Yellow Toadflax), Lychnis alba (White Cockle), Lythrum salicaria (Purple Loosestrife), Madia glomerata (Cluster Tarweed) Mallow, Common (Malva neglecta), Malva neglecta
  • the heterologous polynucleotide comprising: 1) an RNAi inducer capable of recruiting RISC machinery to the sequence and 2) a targeting construct comprising (a) an antisense sequence having homology to an essential gene, or a marker gene, or (b) a sense sequence substantially complementary to said antisense sequence; wherein said sense and antisense sequences are capable of hybridizing to each other to form a double-stranded region.
  • a heterologous polynucleotide comprising: 1) an RNAi inducer capable of recruiting RISC machinery to the sequence and 2) a targeting construct comprising (a) an antisense sequence having homology to an essential gene, or a marker gene, or (b) a sense sequence substantially complementary to said antisense sequence; wherein said sense and antisense sequences are capable of hybridizing to each other to form a double-stranded region.
  • RNAi payload is introduced into a host plant, for example, a weed by application of a formulation comprising the payload.
  • Application methods include spraying, irrigating, injecting (extracellular as opposed to microinjection), abrading or otherwise causing entry of the formulation into, for example, but not limited to, a seed, a seedling, a sapling, a mature plant, a reproducing plant or a senescing plant.
  • Application methods do not include stable transformation methods.
  • the RNAi payload comprises one or more RNAi inducer elements encouraging its processing by dicer.
  • the RNAi payload also contains a targeting region complementary to corresponding essential genes, or marker genes or both. When the RNAi payload is processed it releases siRNAs against those genes. The siRNAs direct RISC machinery to knock down those genes.
  • RNA sequences A list of genes used to build targeting constructs is provided. For each gene, one or more of double stranded RNA fragments and the DNA coding sequences or analogues that generate them are provided. These fragments have sequences that allow them to initiate the RNAi cascade, hence the DNA sequences will have, in addition, suitable promoters, for example, but not limited to, constitutive promoters that result in a high level of expression, and a suitable transcriptional stop element.
  • the DNA sequences may be provided as crude viral or bacterial extracts, plasmid or viral DNA with the sequence and regulatory regions inserted therein, or may be synthesized.
  • Each target in the targeting construct comprises at least about 19 nucleotides or at least about 50 nucleotides, or at least about 100 nucleotides, or at least about 150 nucleotides, and all sub ranges therebetween.
  • Du ring the knock-down process RdRPs 'transcribe' the target mRNAs. These transcripts are processed into more siRNAs targeting the whole mRNA. These are transported through the plant where they spread the cascade.
  • the RNAi payload (DNA, RNA, or synthetic oligos) is delivered to the plant or part of the plant.
  • Application methods affect delivery, with stem injection, spray, and vector-aided delivery (without stable transformation) being common techniques.
  • the inducer is introduced to the cytoplasm of the target cells. This may be mediated by, for example, but not limited to, additives, chemical modification of the inducer, or vectors such as viral coat protein, or nano-cages.
  • RNAi inducer elements if exogenous RNA polymerases (such as viral RdRPs) are included as RNAi inducer elements, or if endogenous RNA polymerases (including DNA dependant RNA polymerases) are recruited to replicate the payload. It can also happen during the RNAi response if the inducer triggers RNAi-associated RdRPs. The entire inducer can be replicated, or only specific regions (using internal RNA promoters such as viral subgenomic promoters). Inducers can use one or both of these pathways for replication. Viral RNAi suppressor proteins can be included to increase the amount of RNA present before RNAi is triggered.
  • RNAi inducer elements elicit an RNAi response that targets RISC machinery to degrade critical endogenous RNAs. This is accomplished by complementarity between regions of the inducer and the target RNAs. Once the inducer is processed into siRNAs they are used by RISC to target further RNA. siRNAs produced from the targeting construct are complementary to endogenous target genes. These are knocked down as "Collateral damage" while the plant clears the payload.
  • the payload will include RNA fragments that will silence genes that modulate the RNAi cascade. These will be synthetic or virally derived RNA fragments targeting components of the RNAi pathway. Without being bound by theory, it is believed that the RNA payload used in the present technology will target and silence, knock-down, or dysregulate genes that are necessary for the proper growth and development and optimally, the survival of the weed.
  • RNAi inducers Replicase/promoter pairs; (Viral replicase and promoter/subgenomic promoter pairs; Recruitment and co-option of endogenous RNA polymerases; and Action of endogenous rdRPs [siRNA asymmetries, single base mismatches]); Recruitment of DNA ligases for RNA ligation; and that recruit dicer for RNAi processing (dsRNA regions [Inverted repeats; Hairpins; and Direct repeats]) Functional elements: Promoters; Terminators; Ribosome binding sites; Internal ribosome entry sites; Hammerhead ribozymes; Recruitment and co-option of endogenous DNA ligase to ligate RNA; and Cap stealing or RNA capping sequences.
  • Exogenous helper genes Coat proteins; Movement Proteins; and RNAi suppressor proteins.
  • RNAi cascade The first way knocks down production of essential cellular components. This causes cells to starve, or to structurally degrade.
  • Target genes include EPSP synthese, chalcone synthase, starch synthase, cellulose synthase, acetyl-COA reductase, transaminase,18S rRNA, eEF- ⁇ gamma, SAP130b, TRPT, PAI1, PDS, DGL
  • the second way is to induce apoptotic programmed cell death by knocking out key repressors in the pathway. This results in Hypersensitive response like (HR) and necrotic lesions. It is quicker than starvation but may in some situations be too quick, killing cells before the RNAi cascade can spread. Runaway hypersensitive response can also be elicited in this manner.
  • Target genes include BECLIN1 PI3K/VPS30 ATG3 ATG7 CAT1 ACD2, NbTCTP ,LLS1.
  • Target genes to induce senescence include: APG 9 (Autophagy 9), ATG 2 (Autophagy 2), SRI (Signal responsive 1, APG7 (Autophagy 7)
  • Autophagy can be triggered along with any of these responses.
  • autophagy plant cells engulf and digest their organelles.
  • Helper genes include the following:
  • Viral movement proteins that interact with coat protein VGS based inducer
  • RNA is achieved through transcription of a DNA template, either in a cell such as E.coli or in vitro. DNA is produced in cells, or through PCR. Promoter-polymerase combinations such at the T7 system can be used for tight control of transcription and high yield. Eukaryotic expression systems such as yeast are also viable production factories. Viral coat proteins or other protective structures may be produced in the same cells or added later to purified RNA.
  • RNAi inducers are siRNAs. They are recognised by RISC machinery and used directly to guide knockdown of endogenous polynucleotides. If properly formatted they also encourage endogenous RdRPs to amplify the silencing signal and cause transitivity.
  • the siRNA sequence is also the simplest targeting construct. Longer targeting constructs can be grouped together on an RNA. Using secondary structure such as hairpins, or by transcribing both DNA strands into RNA, large dsRNA regions are created. These are recognised and processed by RISC machinery.
  • the dsRNA replication intermediate of many virus is a trigger for RNAi, allowing many virus to act as RNAi inducers.
  • RNAi herbicide results in a functional RNAi herbicide.
  • single stranded RNA or DNA transcribed in plant cells can trigger RNAi if the RNAis replicated. This is achieved by including coding sequences for exogenous RdRPs, or through RNA sequences that recruit endogenous RdRPs.
  • RNAi payloads used in the present technology follow and were designed to target the sequences as shown:
  • SEQ ID NO: 1 Actin 2 siRNA-A(target sequence: 5'- GGCATCACACTTTCTACAA-3');
  • SEQ ID NO:2 Actin 2 siRNA-B (target sequence: 5'- CGAGAAGAACTATGAATTA-3');
  • SEQ ID NO: 3 CHLI siRNA-A (target sequence: 5'- GGAGATAGAGGAACTGGAA-3');
  • RNAi payloads used in the present technology were designed to target the sequences as shown:
  • SEQ ID NO: 7 Actin 2 siRNA-A (target sequence: 5'- GGCATCACACTTTCTACAA-3');
  • SEQ ID NO:8 Actin 2 siRNA-B (target sequence: 5'- CGAGAAGAACTATGAATTA-3');
  • SEQ ID NO: 11 18S siRNA-A target sequence: 5'-GGGAGGTAGTGACAATAAA-3';
  • SEQ ID NO: 12 18S siRNA-B target sequence: 5'-GGACGCATTTATTAGATAA-3'.
  • siRNAs were designed with reference to the literature, the target site accessibility web tool, RNAxs (http://rna.tbi, unjvie.ac.at/cgi-bin/ !SjAxs?hakim-l) and BLAST searches.
  • genes chosen were essential genes or marker genes, which, when knocked down would be expected to provide an easily identifiable phenotype.
  • the first siRNAs were designed to be incorporated into Argonaute protein (AGOl). They were 21nt in length with a UU, 3' overhang on each end and a 5' terminal U. A 5' phosphate was added to the guide strand of the siRNA.
  • AGOl Argonaute protein
  • Other designs include one or more of targeting different AGO complexes, using a different 5' nucleotide, using chemically modified siRNA to increase stability, using different 3' overhang nucleotides, and including a 5' phosphate on both strands.
  • the RNAxs webserver was used to search through a given mRNA sequence and identify those sites based on the 2° structure of the mRNA and thermodynamic asymmetry and folding energies associated with the siRNAs themselves.
  • RNAxs When available, homologous mRNA sequences from other Nicotiana (or Solanacea or Arabidopsis thaliana) were also run through RNAxs and have their highest 20-25 hits mapped.
  • N. sylvestris was used as the reference sequence for all targets, therefore the whole construct had perfect sequence identity to N. sylvestris.
  • RNAi inducer elements to induce the processing of the payload into siRNAs. These mostly involve the production of a dsRNA region in the RNAi payload.
  • siRNAs For using siRNAs directly as RNAi payloads the selected siRNAs were synthesized chemically. A 5' phosphate was added to the guide strand of the siRNA.
  • RNAi payloads are transcribed from DNA, either in vitro, in plantae, or in another organism such as E. coli.
  • the DNA sequences encoding longer RNAi payloads may also be synthesized or produced using standard cloning techniques and PCR, or a combination of both.
  • the resulting plasmid was used for transformation into E. coli.
  • the E. coli cells were cultivated in a suitable nutrient medium, then harvested, lysed and optionally lyophilyze and used directly, or the plasmid was recovered and used as such, or the specific sequence and the promoter and the transcription stop were recovered and used.
  • Plant promoters include but are not limited to ribulose-l,6-bisphosphate (RUBP) carboxylase small subunit (ssu), beta- conglycinin promoter, beta-phaseolin promoter, ADH promoter, heat-shock promoters, the enhanced CaMV 35S promoter and tissue specific promoters.
  • RUBP ribulose-l,6-bisphosphate carboxylase small subunit
  • beta- conglycinin promoter beta- conglycinin promoter
  • beta-phaseolin promoter beta-phaseolin promoter
  • ADH promoter beta-phaseolin promoter
  • heat-shock promoters the enhanced CaMV 35S promoter and tissue specific promoters.
  • Transcription stops include but are not limited to nopaline synthase (NOS) gene transcription stop, the Cauliflower mosaic virus (CaMV) 35S gene transcription stop, and the
  • Rubisco small subunit (SSU) gene transcription stop Those skilled in the art will be aware of additional promoter sequences and terminator sequences suitable for use in performing the invention. Such sequences may readily be used without any undue experimentation.
  • Embodiments of the present invention are taught herein where it is desirable to have more than one terminator. Examples of such are embodiments are where the sense and antisense sequences are to be contained on separate transcripts (i.e. each having its own 3' and 5' end).
  • RNAi payloads are delivered to the weed as a formulation by spraying, irrigating, injecting, or abrading a seedling, a sapling, a mature plant, a reproducing plant or a senescing plant. Both the stem and the petiole will be injected. Leaves will be specifically targeted in addition to delivering the formulation to the entire plant. Seeds will also treated by dipping or imbibition. Roots will be treated by irrigation.
  • the formulations include any or all of a liquid carrier, a surfactant, a binder and tackifier, a thickener, a colourant, a spreader, an antifreezing agent, a sticker, an anticaking agent, a stabilizer, a disintegrator, an emulsifier, a synergistic compound, an abrasive, an emulsifier, a penetrating agent and a preservative.
  • the liquid carrier includes, for example, alcohols including monohydric alcohols such as methanol, ethanol, propanol, isopropanol, butanol and the like and polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, poly(ethylene glycol), poly(propylene glycol), glycerol and the like; polyhydric alcohol-based compounds such as propylene glycol ether and the like; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone and the like; ethers such as ethyl ether, dioxane, ethyleneglycol monoethyl ether, dipropyl ether, tetrahydrofuran and the like; aliphatic hydrocarbons such as normal paraffins, naphthenes, isoparaffins, kerosenes, minerals oil and
  • gamma. -butyrolactone and the like amides such as dimethylformamide, diethylformamide, dimethylacetamide, N-alkylpyrrolidinone and the like; nitriles such as acetonitrile and the like; sulfur compounds such as dimethyl sulfoxide and the like; vegetable oils such as soybean oil, rapeseed oil, cottonseed oil, castor oil and the like; water; and so on. These can be used singly or can be used as a combination of two kinds or more.
  • the penetrating agents include dimethyl sulphoxide (DMSO), Azone (1- dodecylazacycloheptan-2-one or laurocapran), N-methyl-2-pyrolidone, glycols (diethylene glycol and tetraethyleneglycol), fatty acids (lauric acid, myristic acid, oleic acid and capric acid), terpenes such as the essential oils of eucalyptus, chenopodium and ylang-ylang, sesquiterpenes, polyethylene glycol (PEG) and L-menthol.
  • DMSO dimethyl sulphoxide
  • Azone 1- dodecylazacycloheptan-2-one or laurocapran
  • N-methyl-2-pyrolidone N-methyl-2-pyrolidone
  • glycols diethylene glycol and tetraethyleneglycol
  • fatty acids lauric acid, myristic acid, oleic acid and capric acid
  • the surfactant includes, for example, nonionic surfactants such as sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, sucrose fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene resinate esters, polyoxyethylene fatty acid diesters, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene dialkyl phenyl ethers, polyoxyethylene alkyl phenyl ether-formalin condensate products, polyoxyethylene-polyoxypropylene block copolymers, alkyl polyoxyethylene-polypropylene block polymer ethers, polyoxyethylenealkylamines, polyoxyethylene fatty acid amides, polyoxyethylene fatty acid bisphenyl ethers, polyalkylene benzyl phenyl ethers, polyoxyalkylene styrylphenyl ethers, acetylene diols, polyoxyalkylene-added
  • the binder and tackifier include, for example, carboxymethylcellulose and a salt thereof, dextrin, water-soluble starch, xanthan gum, guar gum, sucrose, poly(vinylpyrrolidone), gum arabic, polyvinyl alcohol), polyvinyl acetate), sodium polyacrylate, poly(ethylene glycol) with an average molecular weight of 6000 to 20000, polyethylene oxide with an average molecular weight of 100000 to 5000000, phospholipid (for example, cephalin, lecithin and the like) and so on.
  • the thickener includes, for example, water-soluble polymers such as xanthan gum, guar gum, carboxymethylcellulose, poly(vinylpyrrolidone), carboxyvinyl polymers, acrylic polymers, starch-based compounds and polysaccharides; inorganic fine powders such as high-purity bentonite and fumed silica (white carbon); and the like.
  • water-soluble polymers such as xanthan gum, guar gum, carboxymethylcellulose, poly(vinylpyrrolidone), carboxyvinyl polymers, acrylic polymers, starch-based compounds and polysaccharides
  • inorganic fine powders such as high-purity bentonite and fumed silica (white carbon); and the like.
  • the colourant includes, for example, inorganic pigments such as iron oxide, titanium oxide, and Prussian blue; organic dyes such as an alizarin dye, azo dye, and metal phthalocyanine dye; and the like.
  • the spreader includes, for example, silicone-based surfactants, cellulose powders, dextrin, modified starch, a polyaminocarboxylic acid chelate compound, crosslinked poly(vinylpyrrolidone), a copolymer of maleic acid with a styrene compound, a (meth)acrylic acid copolymer, a half ester of a polymer composed of polyhydric alcohol with dicarboxylic anhydride, a water-soluble salt of polystyrenesulfonic acid and the like.
  • the sticker includes, for example, paraffin, terpene, a polyamide resin, polyacrylate, polyoxyethylene, wax, polyvinyl alkyl ether, an alkylphenol-formalin condensate product, a synthetic resin emulsion and the like.
  • the antifreezing agent includes, for example, polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerol and the like, and so on.
  • the anticaking agent includes, for example, polysaccharides such as starch, alginic acid, mannose, galactose and the like; poly(vinylpyrrolidone), fumed silica (white carbon), ester gum, a petroleum resin and the like.
  • the disintegrator includes, for example, sodium tripolyphosphate, sodium hexametaphosphate, metal stearates, a cellulose powder, dextrin, a methacrylate copolymer, poly(vinylpyrrolidone), a polyaminocarboxylic acid chelate compound, a sulfonated styrene-isobutylene-maleic anhydride copolymer, a starch-polyacrylonitrile graft copolymer and the like.
  • the stabilizer includes, for example, desiccants such as zeolite, calcined lime, magnesium oxide and the like; antioxidants such as phenol compounds, amine compounds, sulfur compounds, phosphoric acid compounds and the like; ultraviolet absorbers such as salicylic acid compounds, benzophenone compounds and the like; and so on.
  • desiccants such as zeolite, calcined lime, magnesium oxide and the like
  • antioxidants such as phenol compounds, amine compounds, sulfur compounds, phosphoric acid compounds and the like
  • ultraviolet absorbers such as salicylic acid compounds, benzophenone compounds and the like
  • the preservative includes, for example, potassium sorbate, l,2-benzthiazolin-3-one and the like.
  • the abrasives include carborundum, silica, calcium oxalate, microbeads, nanobeads, nanoparticles and the like.
  • emulsifiers encompasses non-ionic surfactants such as, for example: products of the addition of 2 to 30 mol ethylene oxide and/or 0 to 5 mol propylene oxide onto linear or branched, saturated or unsaturated C. sub.8-22 fatty alcohols, onto C. sub.12- 22 fatty acids and onto alkyl phenols containing 8 to 15 carbon atoms in the alkyl group;
  • Mixtures of compounds from several of these classes are also suitable; addition products of 2 to 15 mol ethylene oxide onto castor oil and/or hydrogenated castor oil and/or other vegetable oils; partial esters based on linear, branched, unsaturated or saturated C. sub.6/22 fatty acids, ricinoleic acid and 12- hydroxystearic acid and glycerol, polyglycerol, pentaerythritol, dipentaerythritol, sugar alcohols (for example sorbitol), alkyl glucosides (for example methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (for example cellulose); mono-, di and trialkyl phosphates and mono-, di- and/or tri-PEG-alkyl phosphates and salts thereof; wool wax alcohols; polysiloxane/polyalkyl polyether copolymers and corresponding derivatives; mixed esters of pentaerythr
  • the formulation may be prepared as a mixture with components other than those listed above, such as, for example, another herbicide, a plant growth regulator, a fertilizer and the like. It is proposed that these adjuvants would increase the efficacy of the treatment or would have a synergistic effect.
  • a content thereof is selected in the range of, on a mass basis, usually 5 to 95% or, preferably, 20 to 90% as a carrier, usually 0.1 to 30% or, preferably, 0.5 to 10% as a surfactant, and 0.1 to 30% or, preferably, 0.5 to 10% as other additional ingredients.
  • the formulation can be employed as prepared in any desired formulations including liquid formulations, emulsifiable concentrates, wettable powders, dust formulations, oil solutions, water dispersible granules, flowable, emulsion waters, granules, jumbo formulations, suspended-emulsions, microcapsules and others.
  • Figure 1 shows a DPC targeting construct for photobleaching-based death in multiple species in accordance with an embodiment of the technology.
  • Ath Arabidopsis thaliana
  • Nto Nicotiana tobacum
  • Bra Brassica napus
  • Zma Zea mays
  • Mtr Medicago truncatula.
  • Figure 2 shows an apoptosis targeting construct for Brassica rapa in accordance with an embodiment of the technology. Inserted into vector for E. coli production or transcribed in vitro. Resultant dsRNA is applied to plants.
  • Figure 3 shows an apoptosis targeting construct 2, for Nicotiana sylvestris in accordance with an embodiment of the technology.
  • sgP subgenomic promoter. Cloned into RNA2- MCS vectors or co-expressed with TRV replicase.
  • Figure 4 shows an apoptosis targeting construct 3, for Nicotiana sylvestris inside TRV RNA2 in accordance with an embodiment of the technology. RNA applied to plants along with TRV RNA1.
  • Figure 5 shows a T7-driven helper construct in accordance with an embodiment of the technology.
  • RNA added directly to plants, or cloned into RNA2-MCS or RNA1-MCS vectors.
  • Figure 6 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in E. coli in accordance with an embodiment of the technology.
  • Targeting constructs such as Figure 3 are cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
  • Figure 7 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in accordance with an embodiment of the technology.
  • Targeting constructs such as Figure 3 are cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
  • Figure 8 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in yeast in accordance with an embodiment of the technology.
  • a targeting construct is cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
  • Figure 9 shows an empty VIGS-based vector to produce naked TRV RNAI and RNA2 based RNAi inducers in accordance with an embodiment of the technology. Functional in E. coli with T7 Polymerase and for in vitro production. Ribozymes cleave the RNA into separate strands.
  • FIG 10 shows a generic model of a DNA construct for an RNAi herbicide.
  • the core of the herbicide is the targeting construct, tuned to affect one or a few plant species.
  • RNAi inducer elements are either inserted into the targeting sequence (introns to make hairpins, direct or inverted repeats with/without base pairing mismatches), or are inserted around the targeting construct (subgenomic, viral, or endogenous RdRP promoters). This is all driven by either single or flanking promoters for RNA production in the chosen production species, and a circular or linear backbone for maintaining the construct in the production species.
  • Figure 11 shows a construct for producing an RNAi herbicide in E. coli, without a target construct. In bacteria the TRV coat protein is transcribed and translated.
  • Targeting constructs are inserted into the MCS.
  • the TRV RNAI fragments facilitate coating of the RNA.
  • this RNA is transcribed to produce viral replicase, which produces dsRNA from the entire RNA. This induces the RNAi response.
  • Treatment By way of example, suitable exemplary treatments are outlined as follows:
  • Example 1 SEQ ID NO: 3 will be used to treat Medicago truncatula seeds by imbibition. This sequence targets the gene for the CHLI subunit of magnesium chelatase (SULFUR gene). Seeds will be imbibed in a solution containing SEQ ID NO: 3 andsiRNA targeting AG06. . The results will show that the seedlings, and more specifically, the cotyledons will be chlorotic in comparison to the controls.
  • SULFUR gene CHLI subunit of magnesium chelatase
  • SEQ ID NO: 1 will be used to treat Arabidopsis thaliana plants, by abrading the leaves and delivering a solution of SEQ ID NO: 1, a surfactant, and siRNA targeting AG06..
  • Example 3 SEQ ID NO: 1 will be used to treat Arabidopsis thaliana plants, by abrading the leaves and applying a solution of SEQ ID NO: 1 and a surfactant. This sequence targets the Actin 2 gene. The results will show that the leaves senesce more rapidly than those of the controls.
  • Example 4 SEQ ID NO: 2 will be used to treat Arabidopsis thaliana plants, by spraying the leaves with a solution of SEQ ID NO: 2, an abrasive and a surfactant. This sequence targets the Actin 2 gene. The results will show that the leaves senesce more rapidly than those of the controls.
  • Example 5 SEQ ID NO: 4 will be used to treat Medicago truncatula plants, by injecting the stem or petiole with a solution of SEQ ID NO: 2, 2,4-Dichlorophenoxyacetic acid (2,4-D) DMSO and siRNA targeting AG06..
  • SEQ ID NO: 4 targets the gene for the CHLI subunit of magnesium chelatase.
  • SEQ ID NO: 2 will be used to treat Physcomitrella patens, by spraying the moss with a solution of SEQ ID NO: 2 and a surfactant.
  • SEQ ID NO: 4 targets the Actin 2 gene.
  • Example 7 SEQ ID NO: 5 will be used to treat Medicago truncatula plants by irrigating the roots with a solution of SEQ ID NO: 5.
  • SEQ ID NO: 5 targets the 18S ribosomal RNA gene. The results will show that the plants senesce more rapidly than the controls.
  • Example 8 SEQ ID NO: 8 will be used to treat Arabidopsis thaliana seeds by coating the seeds prior to imbibition. The formulation will include a sticker such as a terpene or wax or a tackifier such as xanthan gum.
  • SEQ ID NO: 8 targets the 18S ribosomal RNA gene. The results will show that the seedlings senesce, whereas the controls do not.
  • Example 9 Other sequences will be synthesized and tested. The following functions and genes will be targeted:
  • Starch synthesis genes and Repressors of starch breakdown genes (repressors of amylases).
  • Example 11 Gene targets that will limit the effectiveness of the RNAi cascade.
  • DCLs DCLs, AGOs, other RISC components etc.
  • sRNA processing is ablated altering regulation across the plant and increasing the relative number of available intracellular RISC components.
  • Example 12 Limit ability of plasmodesmata to close (lock them open via an effector or an element from a component of the blue light response pathway).
  • Effectors that close plasmodesmata, or repressors of effectors that open plasmodesmata Gene Cadmium-ion induced glycine rich protein cdiGRP homologues, an effector that closes plasmodesmata.
  • plasmodesmata will tend to be open thus maximizing the ability of the RNAi cascade to spread through the plant.
  • Example 13 Deregulate cell wall modifying enzymes
  • Targets Repressors of cell wall modifying enzymes - specifically enzymes that break down main, load bearing and protective components of the cell wall (expansins, cellulases, proteases, glycoside hydrolases etc.).
  • Gene DREB binding factor homologues: an effector that negatively regulates leaf elongation.
  • Example 15 SEQ ID No. 13 is cloned into SEQ ID No. 28. DNA is grown in E. coli and then purified. Arabidopsis thaliana, Brassica rapa, Medicago truncatula, Zea mays, and Nicotiana leaves are treated with the resultant DNA. In all plants the result will be death through loss of chlorophyll production and chlorophyll degredation (photobleaching).
  • Example 16 SEQ ID No. 14 is cloned in between T7 promoters in a standard vector. DNA is grown in E.coli expressing T7 polymerase or transcribed in vitro. The resulting dsRNA is purified and applied directly to Brassica rapa subsp. pekinensis. Treated plants will undergo systemically spreading hypersensitive-response like cell death.
  • Example 17 SEQ ID No. 15 DNA is cloned into the MCS of the T7-RNA2-MCS inducer as shown in sequence ID No 26.
  • the resultant DNA along with the T7-RNA1 inducer are transcribed in vitro.
  • the resulting naked RNAs are applied directly to Nicotiana sylvestris.
  • Viral replicase increases the amount of RNAi inducer and targeting construct present. Viral coat proteins and movement proteins initiate the systemic spread of the targeting construct before the RNAi response begins. Treated plants die from necrotic/HR-like lesions.
  • Example 18 T7 promoter driven RNA2 containing Seq ID NO 15 flanked by sgPs and T7 promoter driven RNAI are prepared and used on Nicotiana sylvestris as above.
  • the subgenomic promoter sequences flanking the targeting construct cause it to be replicated by itself, further increasing the amount of targeting construct present before the RNAi response.
  • Example 19 A targeting construct flanked with sgPs is cloned into the MCS in Figure 7. The resulting DNA is then cloned into a standard vector and grown in E. coli. Transcription results in production of coat protein mRNA and RNAI containing a targeting construct. Translation of the coat protein in E. coli results in monomers that recognise elements of the TRV RNAI sequences, coating the entire RNA. This adds stability and increases ease of transmission to target plants. Once inside the target plant, replicase is produced from the TRV RNAI fragment, replicating the entire fragment as well as producing dsRNA of the targeting construct.
  • Example 20 SEQ ID No. 13 is flanked by subgenomic promoters and cloned into the TRV1 RNAI fragment MCS of an RNAi inducer construct. Treatment of the above plants with the RNA produced will result in photobleaching of chloroplasts and resultant plant death through energy starvation.
  • Example 21 SEQ ID No. 14 is cloned in original and inverted orientation into an RNAi GG vector. This results in a hairpin with the two sequences separated by an intron. Treatment of plants with this DNA vector produces the hairpin RNA which is processed into siRNAs targeting the 5 endogenous genes. Treated plants die from spreading necrotic lesions as runaway apoptosis is initiated.
  • Example 22 SEQ ID No. 15 was cloned into the MCS of SEQ ID 18. The resulting DNA is delivered directly to plants along with a helper construct encoding a replicase (SEQ ID No. 17) Endogenous promoters transcribe the initial RNA, replicase is translated, and the construct RNA is replicated. Treated Nicotiana sylvestris die from runaway HR-associated apoptotic cell death.
  • Example 23 SEQ ID No. 16 was cloned into the MCS of SEQ ID 18. The resulting DNA is delivered directly to plants along with a helper construct encoding a replicase (SEQ ID No. 17) Endogenous promoters transcribe the initial RNA, replicase is translated, and the construct RNA is replicated. Treated Nicotiana sylvestris die from runaway HR-associated apoptotic cell death.
  • SEQ ID No. 17 is a helper construct. Plants are treated with this helper construct DNA (linear or in a vector) in addition to a RNA2-MCS RNAi inducer containing a targeting construct (SEQ ID No. 13). Treated plants undergo photobleaching and death through energy starvation. SEQ id 17 contains elements such as replicase to produce dsRNA in plant cells.
  • Example 25 SEQ ID No. 18 is used to clone targeting construct (SEQ ID No. 16) directly. The resulting DNA is delivered directly to plants along with a helper construct encoding a replicase (SEQ ID No. 17) Endogenous promoters transcribe the initial RNA, replicase is translated, and the construct RNA is replicated. Treated Nicotiana sylvestris die from runaway HR-associated apoptotic cell death.
  • Example 26 SEQ ID No. 19 and SEQ ID No. 23 are transcribed in vitro (this DNA is used to produce TRV RNAI RNA in E.coli or in vitro). The resulting RNAs are delivered directly to plants with carborundum abrasive. Treated plants die from runaway HR like apoptotic cell death.
  • Example 27 SEQ ID No. 20 is co-transformed into E.coli containing inducible T7 polymerase along with a plasmid containing a targeting construct flanked with RNAI or 2 3' and 5' sequences and driven by T7 promoter(SEQ ID No. 21 containing SEQ ID No. 16 in the MCS). Upon induction the coat protein is translated and coats the two RNAs when they are transcribed. The resulting coated RNAs are delivered directly to plants. Treated plants exhibit a runaway HR-like apoptotic cell death phenotype.
  • Example 28 SEQ ID 16 is cloned into the MCS of SEQ ID No. 21. The product thereof is co- transformed into E.coli containing inducible T7 polymerase along with SEQ ID No. 20. Upon induction the coat protein is translated and coats the two RNAs when they are transcribed. The resulting coated RNAs are delivered directly to plants. Treated plants exhibit a runaway HR-like apoptotic cell death phenotype.
  • Example 29 SEQ ID No. 22 and SEQ ID 20 are transcribed in vitro using the T7 polymerase system. Coat protein from SEQ ID No. 20 isn't produced. The two RNAs that are produced are applied directly to N. sylvestris. Treated plants die from runaway HR like necrotic cell death.
  • Example 30 SEQ ID No. 23 and SEQ ID No. 20 are transcribed in vitro. Coat protein is not produced in vitro. Plants treated with the two RNAs die from runaway HR like necrotic cell death. The addition of the subgenomic promoter increases the amount of RNA produced in plant cells. This strengthens the RNAi signal.
  • Example 31 SEQ ID No. 15 is cloned into SEQ ID No. 24.
  • the resultant sequence and SEQ ID 20 are transcribed in vitro.
  • Coat protein is not produced in vitro. Plants treated with the two RNAs die from runaway HR like necrotic cell death.
  • the addition of flanking subgenomic promoters results in the production of dsRNA of just the targeting construct region in addition to replication of the entire RNA. This strengthens the RNAi signal.
  • Example 32 SEQ ID No. 26 along with RNA produced from SEQ ID No. 23 is delivered directly to N. sylvestris with carborundum abrasive. Treated plants die from runaway HR like apoptotic cell death.
  • Example 33 SEQ ID No. 27 is cloned into the MCS of SEQ ID No. 24.
  • the resultant sequence and SEQ ID No. 20 are transcribed in vitro.
  • Coat protein is not produced in vitro.
  • Plants treated with the two RNAs die from runaway HR like necrotic cell death.
  • the addition of flanking subgenomic promoters results in the production of dsRNA of just the targeting construct region in addition to replication of the entire RNA. This strengthens the RNAi signal.
  • Example 34 SEQ ID No. 15 is cloned into SEQ ID No. 28 using Bsal sites. Plants treated with the resultant DNA transcribe a large hairpin RNA from it. This is processed into siRNAs that induce runaway HR like necrotic cell death.
  • Example 35 SEQ ID No. 29 is used to treat plants. Plants treated with this DNA transcribe a large hairpin RNA from it. This is processed into siRNAs that induce runaway HR like necrotic cell death.
  • Example 36 SEQ ID No. 30 will be used to drive transcription of RNAi herbicide components in eukaryotic platforms.
  • Example 37 SEQ ID No. 31 will be used in conjunction with full length TRV derived RNAs or RNA flanked with TRV RNA 3' and 5' ends.
  • the protein produced coats such RNAs, protecting them and increasing the likelihood of them reaching plant tissues.
  • Example 38 SEQ ID No. 32 will be used in conjunction with full length TRV derived RNAs or RNA flanked with TRV RNA 3' and 5' ends.
  • the protein produced coats such RNAs, protecting them and increasing the likelihood of them reaching plant tissues. Codon optimization has been used to create a sequence for optimal translation in E.coli.
  • Example 39 SEQ ID No. 33 will be used in helper constructs.
  • the protein produced suppresses RNAi temporarily in planta. This allows initial RNA elements time to replicate and reach a higher concentration before being processed by RNAi machinery.
  • Example 40 SEQ ID No. 34 will be incorporated in a plant expressible helper construct and DNA or RNA delivered directly to plants. It will lessen and slow the spread of the RNAi cascade.
  • Example 41 SEQ ID No. 35 will be incorporated into a plant-expressible helper construct and DNA or RNA applied directly to plant. It will aid in the spread of RNAs before RNAi is activated.
  • Example 42 SEQ ID No. 36 will be used to find homologues in other species. It is also a target gene used to build target constructs. Knockdown of this gene will result in autophagy.
  • Example 43 SEQ ID No. 37 will be used to find homologues in other species. It is also a target gene used to build target constructs. Knockdown of this gene will cause apoptosis.
  • Example 44 SEQ ID No. 38 will cause apoptosis. It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 45 SEQ ID No. 39 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 46 SEQ ID No. 40 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 47 SEQ ID No. 41 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 48 SEQ ID No. 42 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 49 SEQ ID No. 43 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 50 SEQ ID No. 44 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 51 SEQ ID No. 45 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 52 SEQ ID No. 46 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 53 SEQ ID No. 47 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
  • Example 54 Nicotiana sylvestris was chosen as the target weed. Medicago truncatula was chosen as the non-target plant. The sequences for both species are publically available. Genes from the target list that act as negative regulators of apoptosis were selected and the Nicotiana sylvestris homologues were run through RNAxs. The most accessible sequence regions were compared to homologous stretches of Medicago truncatula genes to confirm divergence. Suitable sequences were incorporated into SEQ ID No.15.
  • This construct was then cloned into the MCS of SEQ ID No. 21 in an E. coli backbone (pUC57).
  • SEQ ID No. 20 was also cloned into the E. coli backbone.
  • E coli containing inducible T7 polymerase was transformed with this construct.
  • Transformed E. coli were grown up, spun down, lysed, and the lysate rubbed onto plants with carborundum.
  • the lysate contains RNA1 and 2 from TRV, with the targeting construct inside the MCS of RNA2. These RNAs are coated with viral coat protein. Treated plants undergo spreading apoptotic cell death similar to a runaway hypersensitive response.
  • siRNAS produced from the targeting construct induce the knock-down of Atg5, Catl, Jazh, MC2, and Beclinl. This tips the plant cell's regulatory machinery toward hypersensitive response.
  • siRNAS produced from the targeting construct, as well as phased siRNAs produced from RdRP replication of target mRNAs by RISC machinery are transported throughout the plant, spreading the phenotype. Treating Medicago truncatula did not affect the plant because processing of the targeting construct does not result in siRNAs targeting endogenous genes.
  • SEQ ID No. 13 is a target construct generated as follows: The CHLI1 gene in Arabidopsis was used to find homologues in Brassica rapa, Medicago truncatula, Zea mays, and Nicotiana tobacum. These sequences were searched for regions accessible by RISC machinery using RNAxs. The best regions from each homologue were incorporated into the target construct. This construct was then cloned into the MCS of SEQ ID No. 21 in an E. coli backbone (pUC57). SEQ ID No. 20 was also cloned into the E. coli backbone. E coli containing inducible T7 polymerase was transformed with this construct. Transformed E.
  • coli were grown up, spun down, lysed, and the lysate rubbed onto plants with carborundum.
  • the lysate contains RNA1 and 2 from TRV, with the target construct inside the MCS of RNA2. These RNAs are coated with viral coat protein.
  • Replicase is produced from the TRV RNA1, which replicates both RNAs. Without being bound to theory, this increases RNA concentration. Viral movement proteins aid in the spread of intact RNAs.
  • RISC machinery recognizes by RISC machinery and processed into siRNAs.
  • the siRNAs produced from the targeting construct induce the knock-down of CHLI1. Plant growth is retarded, sometimes fatally, as damaged photosystems are not repaired. Off target plants are unaffected.
  • Example 56 A helper construct is constructed from SEQ IDs 33, 34 and 35. Sequences are driven by the T7 promoter producing polycistronic RNA. IRES elements are used to ensure translation in plant tissues. This is inserted into the MCS of SEQ ID No. 18. This along with SEQ ID No. 22 is transcribed in vitro. The resulting RNAs are applied directly to plants. Treated plants exhibit runaway HR-like apoptotic cell death. The 30kda movement protein and the HCpro proteins aid in the movement of the unprocessed RNAs. The P19 protein suppresses the RNAi response until the RNAs have moved further from the application site.
  • Example 57 A targeting construct was designed to induce senescence in Nicotiana silvestrys. Genes from the senescence gene list were used to identify homologues of APG-9, ATG 2, SRI, and APG7 in N. sylvestrys. These were run through RNAxs to identify RISC accessible regions. Sequences complementary to the most accessible regions were strung together to make the targeting construct RNA. DNA encoding this RNA is cloned into the MCS of SEQ ID No. 18. This and SEQ ID No. 17 are cloned into a binary vector maintained in plants and E. coli. The resulting construct is replicated and purified from E. coli, and the DNA applied directly to plants. In the plant the DNA is transcribed.
  • RNAs are directly replicated after replicase is translated from RNAI. Treated plants undergo spreading senescence which eventually overwhelms them. As senescence takes a while to develop after induction, the signal has time to spread through the plant.
  • Example 58 A targeting construct was designed to starve cells of amino acids. Genes from the starvation list were used to identify homologues of HDH, AthMee2, and ICDH in N . sylvestris. These were run through RNAxs to identify RISC accessible regions. Sequences complementary to the most accessible regions were strung together to make the targeting construct RNA. DNA encoding this RNA is cloned into the MCS of SEQ ID No. 18. This and SEQ ID No.
  • RNA 17 are cloned into a binary vector maintained in plants and E. coli.
  • the resulting construct is replicated and purified from E. coli, and the DNA deliverd directly to plants.
  • the DNA is transcribed.
  • the resultant RNAs are directly replicated after replicase is translated from RNA1. Processing of these RNAs by RISC machinery leads to loss of production of a number of amino acids. Plants die due to being unable to replace degraded or damaged proteins.
  • SEQ ID No. 48 is a target construct generated as follows: The PDS gene in Arabidopsis was used to find the homologue in Nicotiana sylvestris. These sequences were searched for regions accessible by RISC machinery using RNAxs. The best regions containing no perfect matches to Medicago truncatula were incorporated into the target construct. DNA encoding this RNA is cloned into the MCS of SEQ ID 18. This and SEQ ID No. 17 are cloned into a binary vector maintained in plants and E. coli. The resulting construct is replicated and purified from E. coli and the DNA applied directly to plants. In the plant the DNA is transcribed.
  • RNAs are directly replicated after replicase is translated from RNA1. Processing of the targeting construct results in siRNAs that knock down Phytoene desaturase. Plants turn white and plant growth is retarded, sometimes fatally, as damaged photosystems are not repaired. Off target plants such as Medicago truncatula, Arabidopsis thaliana and Beta vulgaris are unaffected.
  • SEQ ID No. 49 is DNA containing TRV RNA2 loaded with the Nicotiana silvestrys anti-PDS targeting construct. This, along with SEQ ID No. 19 are used to produce RNAs in Vitro with T7 polymerase. The resulting RNAs are applied directly to plants. The RNAs are directly replicated after replicase is translated from RNA1. Processing of the targeting construct results in siRNAs that knock down Phytoene desaturase. Plants turn white and plant growth is retarded, sometimes fatally, as damaged photosystems are not repaired. Off target plants such as Medicago truncatula, Arabidopsis thaliana and Beta vulgaris are unaffected.
  • Example 61 SEQ ID No. 32 is used in conjunction with full length TRV derived RNAs or RNA flanked with TRV RNA 3' and 5' ends.
  • the protein produced coats such RNAs, protecting them and increasing the likelihood of them reaching plant tissues. Codon optimization has been used to create a sequence for optimal translation in E. coli.
  • Example 62 The generalized steps for controlling a weed species are as follows:
  • Example 63 SEQ ID No. 48 was examined and found to have 0 off-target perfect matches in Medicago truncatula, Brassica napus, Arabidopsis thaliana, Beta vulgaris, Gossypium spp. and Oryza sativa.
  • Example 64 An accessory targeting construct was built targeting AB1, ADP-glucose pyrophosphorylase, AG06, cdiGRP, and DREB binding factor homologues in Nicotiana sylvestris. These were run through RNAxs to identify RISC accessible regions. Sequences complementary to the most accessible regions were strung together to make the targeting construct RNA. DNA encoding this RNA is cloned into the MCS of SEQ ID No.
  • T7 RNA1 and applied in conjunction with SEQ ID No. 49: (T7 driven RNA2 with Nsyl PDS targeting construct in MCS).
  • RNA from these sequences was produced in vitro using the T7 system.
  • Treated plants turn white and plant growth is retarded, sometimes fatally, as damaged photosystems are not repaired.
  • ABI1 knock-down will cause stomata to stay closed contributing to the overall damage to the plant and forcing it to retain water.
  • ADP-glucose pyrophosphorylase knock-down will cause increased concentration of simple sugars which will affect the energy state of the plant, alter the direction and volume of phloem transport, and make it more accessible to saprotrophs and other organisms.
  • AG06 knockdown will ablate a subset of small RNA processing, freeing RISC machinery to process endogenous gene targets.
  • cdiGRP knock-down will keep plasmodesmata open even during conditions of stress, increasing the rate of spread of the RNAi cascade.
  • Knock-down of homologues of DREB binding factor caused unregulated leaf elongation, including increasing production of cell-wall degrading enzymes such as expansins. This contributes to the overall damage of the plant.
  • RNAi herbicide against a specific species The process for creating a RNAi herbicide against a specific species is as follows.
  • prokaryotic promoters one or flanking promoters
  • RNAi requires at least 18nt of sequence complementarity (usually 21nt) it is relatively easy to find stretches of RNA that are different in the target species and its neighbors. A single mismatch is usually sufficient to prevent knock-down in off-target plants. Sequences with 2 or more mismatches to off-target plants are sought to ensure knock-down does not occur. Plants can develop resistance to a specific targeting construct through mutation. The likelihood of developing enough spontaneous mutations in all the target genes simultaneously however is low. Even if resistance emerges those individuals can be sequenced and used to produce a new targeting construct.
  • RNAi is critical for defense against virus and pathogenic sequence elements. In order to develop resistance to this process a plant would have to shut down this response. Those plants would be highly susceptible to disease preventing them from gaining a foothold in the population.
  • BCAT1 Branched chain amino acid transaminase 1
  • BCAT2 Branched chain amino acid transaminase 2
  • TRPT ⁇ 2' tRNA phosphotransferase
  • Phosphoribosylanthranilate isomerase 1 (PAI1) AT1G07780
  • Apoptosis gene targets ⁇ Beclin 1 (BECLIN1) AT3G61710
  • NbTCTP Translationally controlled tumor protein
  • SEQ ID NO 1 Actin 2 siRNA-A
  • SEQ ID NO 2 Actin 2 siRNA-B
  • SEQ ID NO 7 Actin 2 DNA encoding siRNA-A
  • SEQ ID NO 8 Actin 2 DNA encoding siRNA-B
  • SEQ ID NO 9 CHLI DNA encoding siRNA-A
  • SEQ ID NO 10 CHLI DNA encoding siRNA-B
  • SEQ ID NO 13 Synthetic construct targeting CHLIl in A. thaliana, B. rapa, M. truncatula, Z. mays, N. tobacum
  • SEQ ID NO 14 Synthetic construct targeting mGFP5er, Acdll, Acd2, Catl, Cat2, and Lsdl in B. rapa pekinensis.
  • SEQ ID NO 15 Synthetic construct targetingAtg5, Catl, Jazh, MC2, Beclinl in Nicotiana sylvestris.
  • SEQ I D NO 16 Synthetic construct targeting Acd2, BI-1, LIsl, NtTCTP, Beclinl in Nicotiana sylvestris.
  • SEQ ID NO 17 Synthetic construct consisting of CaMV35s promoter, TRV Ppk20 RNAl, ribozyme sequence and NOS terminator
  • AAG ATAC AGTCTC AG A AG ACC AG AG G G CTATTG AG ACTTTTC A AC A A AG G GTA ATATCG G G A A
  • AAAG ATAGTAG GTGTACAACTAGTTGTA ACATCACATCTACCTG CAG ATACG CCTG G GTTCATT
  • SEQ ID NO 18 TRV RNA2-MCS for transcription in plant cells
  • ATAC ATTTA ATACG CG ATAG A A A ACA A A ATATAG CG CG C A A ACTAG G ATA A ATTATCG CG CG CG
  • AAACCTA AG AG AAA AG AG AG CGTTTATTAG A ATAACG G ATATTTAAA AGG G CGTGAAAAG GTTTA
  • SEQ ID NO 19 Truncated T7 driven Tobacco Rattle Virus RNA1( T7-RNA1 inducer).
  • GTTTGTAG AG AAACAATTCATG G ACAAGTGTTTG G ATTACATAG CTAG GTTATCTG ACCAG CAG
  • AAG CA AAG AG ATCAG G G AA AGTG CCGCG CTTACG A AG G CG G CTTTGGCAAGA I I I I I I GTTAC
  • GTATTTGTAC A AG GTG ATTCTGTTC ATG CG CTTTGTG CG CTATG G A AG C ATATTA AG AGTTTTA CAGCTCTGTGTACATTATTCCGAGACGAAAAAACGATAAGGAATTGAACCCGGCTAAGGTTGATTG
  • SEQ ID NO 20 Synthetic sequence consisting of optimized TRV coat protein driven by T7 promoter and a strong RBS and TRV Ppk20 RNAl and ribozyme sequence driven by T7 promoter. All elements are in the pUC57 vector .
  • GTTCTTTCTC AG A AG G A AC AG A AC A AGTTG ATG G A A ATTTATCCTG A ATTC A ATATCGTGTTTA A
  • SEQ ID NO 21 Synthetic T7-RNA2-MCS inducer sequence.
  • a ACTTCTCCTACG C A AG CGTCTA A ACG G ACGTTG G G GTTTTG CTAGTTT nTAG AG A A A ACTAG
  • SEQ ID NO 22 Synthetic T7 driven RNA2 with sample construct (C3) in MCS, ribozyme, NOS
  • AGTACCGTACG G G AAAGTG ACTGGTGTG CTTATCTTTG A AATGTTACTTTG G GTTTCGGTTCTTT AG GTTAGTA AG A A AG C ACTTGTCTTCTC ATAC A A AG G A A A AC TG AG ACGTATCG CTTACG AAA GTAGCAATGAAAGAAAGGTGGTGGTTTTAATCGCTACCGCAAAAACGATGGGGTCGTTTTAATT A ACTTCTCCTACG C A AG CGTCTA A ACG G ACGTTG G G GTTTTG CTAGTTTCTTTAG AG A A A ACTAG CTAAGTCTTTAATGTTATCATTAGAGATGGCATAAATATAATACTTGTGTCTGCTGATAAGATCA TTTTA ATTTG G ACG ATTAG ACTTGTTG A ACTAC AG GTTACTG A ATC ACTTG CG CTA ATC A AC ATG GGAGATATGTACGATGAATCATTTGACAAGTCGGGCGGTCCTGCTGACTTGATGGACGATTCTT
  • SEQ ID NO 23 Synthetic T7-RNA2-sgP-C3 sequence.
  • SEQ I D NO 24 Synthetic sequence consisting of pUC57 MCS flanked by PEBV subgenomic promoters, all of which are flanked by T7 promoters
  • AGTTA ATTA AGTTATCTTA ATT A AG AG C ATA ATTATA TG ATTTGTCTCTCGTTG ATAG AGTCTAT
  • SEQ ID NO 25 Synthetic RNA1 of TRV Ppk20 sequence.
  • GAAGCAGAAAU UGACGAGGUUGUUCCAGCCUUU UCAGCUGAAUGUGAAAGAGGGGAAAC

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Molecular Biology (AREA)
  • General Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Chemical & Material Sciences (AREA)
  • Plant Pathology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Cell Biology (AREA)
  • Biophysics (AREA)
  • Microbiology (AREA)
  • Physics & Mathematics (AREA)
  • Virology (AREA)
  • Agronomy & Crop Science (AREA)
  • Pest Control & Pesticides (AREA)
  • Dentistry (AREA)
  • Environmental Sciences (AREA)
  • Breeding Of Plants And Reproduction By Means Of Culturing (AREA)

Abstract

A formulation is provided for application to a host plant to reduce, inhibit or impair one or more of growth and development of the host plant. A method of inhibiting growth plant growth and development is also provided as a means of controlling weedy species. The method comprises: selecting a suitable gene for growth suppression in a target plant; identifying an at least one target site accessible to base pairing in the suitable gene; identifying an at least one divergent site in the at least one target site; designing a construct complementary to the at least one divergent site; adding an at least one RNAi inducer to the construct; and delivering the construct to the target plant.

Description

FORMULATIONS AND METHODS FOR CONTROL OF WEEDY SPECIES
BACKGROUND OF THE INVENTION
Field of the Invention
The present technology is directed to a formulation and a method for controlling growth of plant species. More specifically, it is a formulation comprising a targeting construct and RNAi inducer to produce small interfering RNAs for use in non-stable expression in weedy plant species. Targeting constructs are designed to target endogenous genes in the weedy species while having no effect in off-target species.
Description of the Related Art
The impact of invasive and pest plant species has been called an "invisible tax" on our environment and economy. With ever increasing global transportation and travel has come an unprecedented spread of invasive and noxious plant species throughout the world. These weeds adapt quickly to new environments and go largely unchallenged by local flora and fauna. Many are unreachable by or have developed resistance to conventional control techniques. Invasive species cause direct economic losses in sectors such as forestry, ranching, and agriculture.
The current strategies for invasive species management consist of the application of different combinations of chemical herbicides and physical removal, coupled with bio- control techniques as available. The available chemicals are often toxic to a wide array of native plants, animals and insects and can have negative consequences for human health. Many cannot be used in riparian or aquatic environments as the compounds would quickly spread. In addition, they have a limited half-life and efficacy and must be reapplied year after year. Bio-control and physical removal are costly and labour intensive requiring large investments and again, often resulting in collateral damage to other organisms. Some invasive pest plants are now so well established that they are widely considered impossible to remove by any available technique, for example, Eurasian Milfoil. Others, having been subjected to years of treatment with chemicals, have developed resistance to them.
In an attempt to target the species of interest and reduce the damage done by spraying with broad spectrum herbicides, US Patent No. 7,805,884 discloses an injector system for injecting a dose of weed-killing fluid into the stem of a Japanese knotweed, including a fluid dispenser system with a fluid passage, a collared needle with a fluid delivery aperture in communication with the fluid dispenser system, and an actuator connected to the fluid dispenser system for actuating the transmission of fluid from the fluid dispenser system to the fluid delivery aperture. This employs chemical herbicides. Control of insect pests is largely through the use of chemical insecticides. Some biological control methods also exist, for example, the use of pheromones in insect traps. These are relatively labour intensive as the traps have to be baited, set and removed.
Another example of biological control is the use of Bacillus thuringiensis toxin. It can be provided as a spray or produced in transgenic plants. In transgenic plants, the gene or genes are expressed in the plant, the plant produces the toxin, the foraging insect ingests the plant material and is killed. One could argue that these are quasi-chemical control methods, as toxic chemicals are still being produced and used to kill the insect pests.
Rather than using toxins, US Patent No. 7,943,819 provides methods for genetic control of insect infestations in plants and compositions thereof by inhibiting one or more biological functions by feeding one or more recombinant double stranded RNA molecules to the insect pest. This reportedly results in a reduction in pest infestation through suppression of gene expression.
US Patent No. 8,148,604 discloses methods and materials for conferring insect pest resistance to plants and controlling parasitic plant pests. Plants are stably transformed with a silencing construct homologous to a gene of a plant pest that is essential for the survival, development, or pathogenicity of the pest. This results in the plant producing RNA interference (RNAi), specifically short interfering RNA (siRNA) to the selected gene, which, when ingested by the insect pest results in silencing of the gene and a subsequent reduction of the pest's ability to harm the plant. In other embodiments, the pest's reduced ability to harm the plant is passed on to pest progeny. It is also suggested that parasitic plants pests, for example striga, dodder and mistletoe can also be controlled by stably transforming plants with a silencing construct homologous to a gene of the parasitic plant that is essential for survival or development.
Without being bound by theory, RNA interference (RNAi) is considered to be an ancient defense mechanism wherein the host organism recognizes as foreign a double-stranded RNA molecule and hydrolyzes it. The resulting hydrolysis products are small RNA fragments of 21-30 nucleotides in length, called siRNAs. The siRNAs then diffuse or are carried throughout the host, where they hybridize to the complementary Viral RNA or complementary endogenous polynucleotide sequences where they act as guides for RISC mediated hydrolysis and thus knock-down or dysregulation.
For example, the different Dicer-Like proteins (DCL) of Arabidopsis cleave dsRNA molecules into different sized (21-25nt) small dsRNA products depending on which DCL is processing them. Arabidopsis encodes 10 Argonaute proteins (AGOl-10) which bind these small RNAs and, as a part of RISC, elicit different effects depending on which AGO the small RNA has been recruited into and the size of the recruited small RNA. AGOl is largely responsible for the miRNA pathway and also post transcriptional gene silencing. The pathway it is involved in has been shown to result in both targeted degradation of mRNAs and transitivity (RNA- dependent RNA polymerase (RdRP) dependent generation of 2° siRNA products and amplification of the initial signal). It has previously been found that AGOl prefers to recruit small dsRNAs that are 21nt in length with a 2nt, 3' overhang on each end and will prefer sequences with a 5' terminal U as the guide strand (the strand that is responsible for guiding complementary base pairing to a target mRNA sequence) (Mi et al. 2008. Sorting of
Small RNAs into Arabidopsis Argonaute Complexes Is Directed by the 5' Terminal Nucleotide. DOI 10.1016/j.cell.2008.02.034.) A species-specific herbicide that can be used to kill, weaken or impair growth of a weed species is needed. This is accomplished through miRNA, siRNA, DNA, or single- or double- stranded RNA designed to elicit an RNAi response that spreads systemically once inside a plant cell (RNAi Payload). The RNAi inducer elements cause the payload to be processed producing siRNAs. A region of the RNAi payload contains sequence complementary to endogenous target genes (Targeting construct). siRNAs produced from this region direct the knock-down of those genes leading to cell death.This knock-down is strengthened by RdRP mediated transitivity, phasing, and systemic spread. The result is a herbicide that can be tuned to affect any number of plant species. SUMMARY OF THE INVENTION
The present technology provides a non-chemical herbicide that can be used to kill, weaken or impair growth of weedy species. In general, the formulation is for application to a host plant to reduce, inhibit or impair one or more of growth and development of the host plant. The formulation comprises an interfering Ribonucleic Acid (RNAi) payload, and at least one of a liquid carrier, a surfactant, a binder and tackifier, a thickener, a colourant, a spreader, an antifreezing agent, a sticker, an anticaking agent, a stabilizer, a disintegrator, an emulsifier, a synergistic compound, an abrasive, an emulsifier, a penetrating agent and a preservative. In the formulation, the RNAi payload may comprise an at least one sequence specific to the host plant.
The RNAi payload comprises at least 20 contiguous nucleotides of at least one sequence selected from the group consisting of SEQ ID NOs 1 to 66.
The formulation may comprise an RNAi payload, the liquid carrier and the surfactant. It may further comprise the abrasive and still further comprise a synergistic compound. The formulation is in an exemplary embodiment, for stem injection, and comprises the liquid carrier and the penetrating agent.
A method of inhibiting or impairing plant growth and development is also provided. The method comprises delivering a formulation to a host plant, by spraying, imbibing, irrigating, or injecting the formulation, the formulation comprising an interfering Ribonucleic Acid
(RNAi) payload, an at least one of a liquid carrier, a surfactant, a binder and tackifier, a thickener, a colourant, a spreader, an antifreezing agent, a sticker, an anticaking agent, a stabilizer, a disintegrator, an emulsifier, a synergistic compound, an abrasive, an emulsifier, a penetrating agent and a preservative, thereby inhibiting or impairing growth and development. The method comprises delivering the formulation to at least one of a leaf, a root, a stem, a petiole, a seed and a cotyledon. The RNAi payload may comprise a sequence selected from the group consisting of SEQ ID NOs 1 to 66.
The method comprises injecting the stem or petiole or spraying the host plant.
The method of claim 12 further comprising inducing expression of any of SEQ ID NOs 7, 8, 9, 10, 11 and 12 thereby producing any of SEQ ID NOs 1, 2, 3, 4, 5, and 6.
A method of weed control is also provided, the method comprising:
-selecting a weed plant species to be controlled;
-synthesizing or obtaining at least one RNAi or RNAi encoding sequence;
-formulating a species-specific RNAi payload; and -delivering the species-specific RNAi payload to the weed plant species while minimally impacting an at least one other plant species.
The RNAi payload comprises at least 20 contiguous nucleotides from or complementary to one or more of SEQ ID NOs 1 to 66. The method may involve spraying the weed plant species or injecting the weed plant species
A method of designing a species-specific construct for RNAi suppression of growth of a target plant species is also provided, the method comprising the steps of:
selecting a suitable gene for growth suppression;
identifying an at least one target site accessible to base pairing in the suitable gene; identifying an at least one divergent site in the at least one target site;
designing a construct complementary to the at least one divergent site; and
adding an at least one RNAi inducer element to the construct, thereby designing a species-specific gene construct for siRNA suppression of growth of the target plant species.
The method may further comprise adding an at least one helper sequence to the species specific gene construct.
The method may further comprise sequencing an at least one gene from the target plant to select the suitable gene.
In the method, the construct may include any one of SEQ. ID No. 1 to 66 or their complement.
A method of inhibiting or impairing plant growth and development of a target plant is also provided, the method comprising:
selecting a suitable gene for growth suppression;
identifying an at least one target site accessible to base pairing in the suitable gene; identifying an at least one divergent site in the at least one target site;
designing a construct complementary to the at least one divergent site;
adding an at least one RNAi inducer element to the construct; and
delivering the construct to the target plant. The method may further comprise adding an at least one helper sequence to the species specific gene construct. The method may further comprise sequencing an at least one gene from the target plant to select the suitable gene.
In the method, the construct may include any one of SEQ ID No. 1 to 66 or their complement.
BRIEF DESCRIPTION OF THE DRAWINGS
Figure 1 shows a DPC targeting construct for photobleaching-based death in multiple species in accordance with an embodiment of the technology. Ath = Arabidopsis thaliana, Nto = Nicotiana tobacum, Bra = Brassica napus, Zma = Zea mays, Mtr = Medicago truncatula.
Figure 2 shows an apoptosis targeting construct for Brassica rapa in accordance with an embodiment of the technology. Inserted into vector for E. coli production or transcribed in vitro. Resultant dsRNA is applied to plants.
Figure 3 shows an apoptosis targeting construct 2, for Nicotiana sylvestris in accordance with an embodiment of the technology. sgP = subgenomic promoter. Cloned into RNA2- MCS vectors or co-expressed with TRV replicase. Figure 4 shows an apoptosis targeting construct 3, for Nicotiana sylvestris inside TRV RNA2 in accordance with an embodiment of the technology. RNA applied to plants along with TRV RNA1.
Figure 5 shows a T7-driven helper construct in accordance with an embodiment of the technology. RNA is added directly to plants, or cloned into RNA2-MCS or RNAl-MCS vectors .
Figure 6 shows an empty VIGS-based vector to produce coated RNA1 and 2 based RNAi inducers in E. coli in accordance with an embodiment of the technology. Targeting constructs such as Figure 3 are cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
Figure 7 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in accordance with an embodiment of the technology. Targeting constructs such as Figure 3 are cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
Figure 8 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in yeast in accordance with an embodiment of the technology. Targeting construct is cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
Figure 9 shows an empty VIGS-based vector to produce naked TRV RNAI and RNA2 based RNAi inducers in accordance with an embodiment of the technology. Functional in E. coli with T7 Polymerase and for in vitro production. Ribozymes cleave the RNA into separate strands. Figure 10 shows a generic model of a DNA construct for an RNAi herbicide. The core of the herbicide is the targeting construct, tuned to affect one or a few plant species. RNAi inducer elements are either inserted into the targeting sequence (introns to make hairpins, direct or inverted repeats with/without base pairing mismatches), or are inserted around the targeting construct (subgenomic, viral, or endogenous RdRP promoters). This is all driven by either single or flanking promoters for RNA production in the chosen production species, and a circular or linear backbone for maintaining the construct in the production species. Figure 11 shows a construct for producing an RNAi herbicide in E. coli, without a target construct. In bacteria the TRV coat protein is transcribed and translated. Targeting constructs are inserted into the MCS. The TRV RNAI fragments facilitate coating of the RNA. In target plants this RNA is transcribed to produce viral replicase, which produces dsRNA from the entire RNA. This induces the RNAi response. DESCRIPTIONS OF THE PREFERRED EMBODIMENTS
Brief Description of the Sequences
SEQ ID NO: 1 is the short interfering sequence Actin 2 siRNA-A used according to the present technology.
SEQ ID NO: 2 is the short interfering sequence Actin 2 siRNA-B used according to the present technology.
SEQ ID NO: 3 is the short interfering sequence CHLI siRNA-A used according to the present technology.
SEQ ID NO: 4 is the short interfering sequence CHLI siRNA-B used according to the present technology. SEQ ID NO: 5 is the short interfering sequence 18S siRNA-A used according to the present technology.
SEQ ID NO: 6 is the short interfering sequence 18S siRNA-B used according to the present technology. SEQ ID NO: 7 is the DNA sequence encoding the short interfering sequence Actin 2 siRNA-A used according to the present technology.
SEQ ID NO: 8 is the DNA sequence encoding the short interfering sequence Actin 2 si RNA-B used according to the present technology.
SEQ ID NO: 9 is the DNA sequence encoding the short interfering sequence CHLI siRNA-A used according to the present technology.
SEQ ID NO: 10 is the DNA sequence encoding the short interfering sequence CHLI siRNA-B used according to the present technology.
SEQ ID NO: 11 is the DNA sequence encoding the short interfering sequence 18S siRNA-A used according to the present technology. SEQ ID NO: 12 is the DNA sequence encoding the short interfering sequence 18S siRNA-B used according to the present technology.
SEQ ID No. 13: Synthetic construct targeting CHLI1 in A. thaliana, B. rapa, M. truncatula, Z. mays, and N. Tobacum.
SEQ ID No. 14: Synthetic construct targeting mGFP5er, Acdll, Acd2, Catl, Cat2, and Lsdl in B. rapa pekinensis.
SEQ ID No. 15: Synthetic construct targeting Atg5, Catl, Jazh, MC2, and Beclinl in Nicotiana sylvestris. SEQ ID No. 16: Synthetic construct targeting Acd2, BI-1, LIsl, NtTCTP, and Beclinl in Nicotiana sylvestris.
SEQ ID No. 17: Synthetic construct consisting of CaMV35s promoter, TRV Ppk20 RNA1, ribozyme sequence and NOS terminator. SEQ ID No. 18: TRV RNA2-MCS for transcription in plant cells.
SEQ ID No. 19: Truncated T7 driven Tobacco Rattle Virus RNA1 ( T7-RNA1 inducer).
SEQ ID No. 20: Synthetic sequence consisting of optimized TRV coat protein driven by T7 promoter and a strong Ribosome binding site (RBS), and Tobacco rattle virus (TRV) isolate Ppk20 RNA1 and ribozyme sequence driven by T7 promoter. All elements are in the pUC57 vector.
SEQ ID No. 21: Synthetic T7-RNA2-MCS inducer sequence.
SEQ ID No. 22: Synthetic T7 driven RNA2 with sample construct (C3) in MCS, ribozyme, NOS. SEQ ID No. 23: Synthetic T7-RNA2-sgP-C3 sequence.
SEQ ID No. 24: Synthetic sequence consisting of pUC57 MCS flanked by Pea Early Browning virus (PEBV) subgenomic promoters, all of which are flanked by T7 promoters.
SEQ ID No. 25: Synthetic RNA1 of TRV Ppk20 sequence.
SEQ ID No. 26: Synthetic RNA2 of pTRV2 with C3 insert sequence.
SEQ ID NO 27: Synthetic sequence consisting of SEQ ID NO 15 flanked by PEBV subgenomic promoters SEQ ID NO 28: Synthetic pRNAi-GG sequence.
SEQ ID No. 29: Synthetic pRNAi-GG with SEQID 14 inserts. SEQ ID No. 30: Human cytomegalovirus immediate early enhancer and promoter sequence.
SEQ ID No. 31: Synthetic TRV coat protein CDS DNA from pTRV2 sequence.
SEQ ID No. 32: Synthetic Tobacco Rattle Virus Codon-optimized Coat Protein mRNA sequence.
SEQ ID No. 33: Tomato Bushy Stunt Virus P19 suppressor protein CDS from Tomato Bushy Stunt Virus M21958.1 sequence.
SEQ ID No. 34: Papaya Ringspot Virus strain P isolate pFT3-NP HCpro peptide CDS sequence.
SEQ ID NO 35: Tobacco Mosaic Virus TMV 30kDa movement protein CDS sequence.
SEQ ID No. 36: Arabidopsis thaliana TOR gene CDS (TAIR accession AT1G50030).
SEQ ID No. 37: Arabidopsis thaliana ATG5 sequence.
SEQ ID NO 38: Arabidopsis thaliana Beclin 1 sequence.
SEQ ID No. 39: Nicotiana attenuata ZIM domain protein h mRNA sequence.
SEQ ID NO. 40: Nicotiana benthamiana Bax inhibitor 1 mRNA sequence.
SEQ ID No. 41: Nicotiana sylvestris Acd2 partial transcript sequence derived from N. sylvestris transcriptome.
SEQ ID No. 42: Lycopersicon esculentum lethal leaf spot 1-like protein mRNA sequence.
SEQ ID NO 43: Nicotiana tobacum mRNA for catalase 1 (catl gene), cultivar NC89 sequence. SEQ ID NO 44: Arabidopsis thaliana MC2 sequence.
SEQ ID No. 45: Nicotiana benthamiana NbTCTP mRNA for translationally controlled tumor protein sequence.
SEQ ID No. 46: Arabidopsis thaliana Lsdl sequence.
SEQ ID No. 47: Arabidopsis thaliana Acdll sequence.
SEQ ID No. 48: Nicotiana sylvestris PDS gene target construct.
SEQ ID No. 49: T7 driven RNA2 with NSYL PDS target construct in MCS.
SEQ ID No. 50: T7 driven truncated PPK20 RNA1 consisting of 5' sequence, replicase CDS, PUC57 MCS, 3' sequence, ribozyme and NOS terminator. SEQ ID No. 51: TRV PPK20 RNAI replicase CDS.
SEQ ID No. 52: TRV PPK20 RNA2 5' replication element containing sequence
SEQ ID No. 53: TRV Ppk20 RNA2 3' replication element containing sequence
SEQ ID No. 54: Arabidopsis thaliana ESR gene CDS.
SEQ ID No. 55: Arabidopsis thaliana SAG12 (senescence associated gene 12) CDS.
SEQ ID No. 56: Arabidopsis thaliana PAD4 (phytoalexin deficient 4) gene CDS.
SEQ ID No. 57: Arabidopsis thaliana CPR5 (constitutive expression of PR genes 5) gene CDS. SEQ ID No. 58: Arabidopsis thaliana ACD1 (accelerated cell death 1) gene CDS.
SEQ ID No. 59: Arabidopsis thaliana ATG18 (homolog of yeast autophagy gene 18 G) gene CDS.
Additional sequences included in this application are from Arabidopsis. Each line provides the gene symbol, genes name and Arabidopsis accession number.
STARVATION:
SEQ ID No. 60: HDH (HISTIDINOL DEHYDROGENASE) AT5G63890
SEQ ID No. 61: ATHMEE2 (MATERNAL EFFECT EMBRYO ARREST 2/ =SHI KIMATE DEHYDROGENASE) AT3G06350
SEQ ID No. 62: ICDH (ISOCITRATE DEHYDROGENASE) AT1G54340
EARLY SENESCENCE:
SEQ ID No. 63: APG 9 (AUTOPHAGY 9) AT2G31260
SEQ ID No. 64: ATG 2 (AUTOPHAGY 2) AT3G19190
SEQ ID No. 65: SRI (SIGNAL RESPONSIVE 1) AT2G22300
SEQ ID No. 66: APG7 (AUTOPHAGY 7) AT5G45900
Definitions:
RNAi Payload means a payload consisting of at least one specific nucleic acid sequence or analogue sequence that, when introduced into the body of a plant, will trigger or initiate an RNAi cascade. Cell (or host plant cell) means a cell or protoplast of a plant cell and includes isolated cells and cells in a whole plant, plant organ, or fragment of a plant. It also includes non-isolated cells.
Double stranded region means a region of a polynucleotide wherein the nucleotides or analogues are capable of hydrogen bonding to each other. Such hydrogen bonding can be intramolecular or intermolecular (e.g. single transcription unit forming a dou ble stranded region with the so-called hairpin or two transcription units that align appropriately for complementary sequences to hydrogen bond). To be a double stranded region, according to the present invention, it is not necessary for 100% of the nucleotides to be complementary and hydrogen bonded within a region. It is merely necessary for sufficient base pairing to occur to give the RNA a substantial double stranded character (e.g. an indicative melting point).
RNAi Inducer means at least one specific nucleic acid sequence or analogue sequence that, when introduced into the body of a plant, will trigger or initiate an RNAi cascade. This can be, for example, but is not limited to DNA, dsRNA, ssRNA, siRNA, and miRNA sequences.
RNAi inducers are usually capable of activating RNAi in a number of species. Targeting constructs are added to the RNAi inducer sequence to direct the RNAi response against specific endogenous polynucleotides.
Targeting construct means a region of nucleic acid sequence that is complementary to one or more endogenous or exogenous polynucleotides. siRNAs released from the processing of a targeting construct direct RNAi machinery to knock-down endogenous polynucleotides.
RdRP means a RNA-dependent RNA polymerase. An RdRP creates a complementary strand of RNA using RNA as a template. Endogenous RdRPs include components of RISC machinery, and DNA-dependent RNA polymerases when recruited by special RNA sequences/structures. Exogenous RdRPs come from virus, retrotransposons, or are harvested from another organism. Exogenous gene means a gene that is not normally present in a given host genome in the present form. In this respect, the gene itself may be native to the host genome, however the exogenous gene will comprise the native gene altered by the addition or deletion of one or more different regulatory elements or additional genes.
Gene or genes means nucleic acid sequences (including both RNA or DNA) that encode genetic information for the synthesis of a whole RNA, a whole protein, or any functional portion of such whole RNA or whole protein sufficient to possess a desired characteristic.
Marker gene means a gene that, when its activity is altered, imparts a distinct phenotype.
Essential gene means a gene that, when inhibited, results in a negative effect on at least one of plant growth and development. They are required for normal plant growth and reproduction.
Heterologous polynucleotide means any polynucleotide that is introduced (transiently or stably) into a non-transformed host plant. A polynucleotide is not excluded from being a heterologous polynucleotide by the presence of matching endogenous polynucleotide sequences.
Homologous means having sequence similarity sufficient to allow hybridization in vivo, in vitro, and/or ex vivo under low stringency conditions between the antisense sequence and the sense gene mRNA.
Inhibition of gene expression means a decrease in the level of protein and/or RNA product from a target gene. The consequences of inhibition can be confirmed by examination of the outward properties of the cell or organism (as presented below in the examples) or by biochemical techniques such as RNA solution hybridization, nuclease protection, Northern hybridization, polymerase chain reaction (PCR), reverse transcription (RT) reverse transcription PCR(RT/PCR), gene expression monitoring with a microarray, antibody binding, enzyme linked immunosorbent assay (ELISA), Western blotting, radioimmunoassay (RIA), other immunoassays, and fluorescence assisted cell sorting(FACS). Substantially complementary, with respect to the sense and antisense sequences means sufficiently complementary to allow for formation of a double stranded molecule.
Transcript means RNA encoded by DNA. In the context of sense and antisense transcripts of the present invention, such sense and antisense transcripts can be part of the same polynucleotide or they can be 2 separate polynucleotides (i.e., each having its own 5' and 3' end).
Treating a weed plant means a method to cause a deleterious effect on the weed, for example, but not limited to, interfering with development, reducing growth, triggering programmed cell death such as apoptosis, senescence, or autophagy, reducing vigour, interfering with reproductive viability, or result in death. hpRNA is hairpin RNA, produced through inverted repeats with or without a single stranded loop region.
RISC is an RNA-induced silencing complex. dsRNA is double stranded RNA. siRNA is short interfering RNA. miRNA is microRNA and is a small non-coding RNA molecule (ca. 22 nucleotides) found in plants and animals. They function in transcriptional and post-transcriptional regulation of gene expression. pTRVl and pTRV2 are well proven RNAi inducers. One skilled in the art can use other virus based sequences to create an inducer by placing the virus sequence between a suitable promoter and terminator and incorporating an MCS into it.
Weeds mean members of the Amaranthaceae family, such as green pigweed and redroot pigweed, members of the Anacardiaceae family, such as western poison-oak, central poison-ivy, eastern poison-ivy, rydberg's poison-ivy, and poison sumac, members of the Asclepiadaceae family, such as common milkweed, black dog-strangling vine, and dog- strangling vine, members of the Balsaminaceae family such as spotted jewelweed, members of the Berberidaceae family such as common barberry, members of the Boraginaceae family such as blueweed, and stickseed, members of the Caryophyllaceae family such as purple cockle, mouse-eared chickweed, bouncingbet, night-flowering catchfly, white cockle, bladder campion, corn spurry, chickweed, grass-leaved stichwort, and cow cockle, members of the Chenopodiaceae family such as Russian pigweed, lamb's quarters, Kochia, and Russian thistle, members of the Compositae family (Asteraceae) such as common yarrow, Russian knapweed, common ragweed, perennial ragweed, giant ragweed, stinking mayweed, common burdock, woolly burdock, absinth, biennial wormwood, mugwort, New
England aster, nodding beggarticks, tall beggarticks, plumeless thistle, nodding thistle, diffuse knapweed, brown knapweed, spotted knapweed, black knapweed, chicory, Canada thistle, bull thistle, Canada fleabane,; smooth hawk's-beard, narrow-leaved hawk's-beard, Philadelphia fleabane, rough fleabane, spotted Joe-Pye weed, hairy galinsoga, orange hawkweed, mouse-eared hawkweed, king devil hawkweed, spotted cat's-ear, elecampane, poverty weed, false ragweed, prickly lettuce, blue lettuce, nipplewort, fall hawkbit, ox-eye daisy, pineapple weed, scentless chamomile, black-eyed Susan, tansy ragwort, Canada goldenrod, perennial sow-thistle, spiny annual sow-thistle, annual sow-thistle, tansy, dandelion, goat's-beard, meadow goat's-beard, colt's-foot, and cocklebur, members of the Convolvulaceae family such as field bindweed, and field dodder, members of the
Crassulaceae family such as mossy stonecrop, members of the Cruciferae family(Brassicaceae) such as garlic mustard, yellow rocket, hoary alyssum, Indian mustard, bird rape, small-seeded false flax, shepherd's purse, lens-podded hoary cress, hare's-ear mustard, flixweed, wood whitlow-grass, dog mustard, wormseed mustard, tall wormseed mustard, dame's-rocket, field pepper-grass, common pepper-grass, poor-man's pepper- grass, ball mustard, wild radish, creeping yellow cress, wild mustard, tumble mustard, tall hedge mustard, and stinkweed, members of the Cucurbitaceae family such as wild cucumber, members of the Cyperaceae family such as yellow nut sedge, members of the Equisetaceae family such as field horsetail, members of the Euphorbiaceae family such as three-seeded mercury, cypress spurge, leafy spurge, and hairy-stemmed spurge, members of Gramineae family (Poaceae) such as wild oats, smooth brome, downy brome, smooth crab grass, large crab grass, barnyard grass, quack grass, foxtail barley, Persian darnel, witch grass, common reed, annual blue grass, Kentucky blue grass, green foxtail, and yellow foxtail, members of the Guttiferae family such as St. John's-wort, member of the
Haloragaceae family such as Eurasian water-milfoil, members of the Hydrocharitaceae family such as European frogbit, members of the Labiatae family such as ajuga, American dragonhead, hemp-nettle, ground-ivy, motherwort, catnip, heal-all, andmarsh hedge- nettle, members of the Leguminosae family (Fabaceae) such as hog-peanut, bird's-foot trefoil, black medick, white sweet-clover, yellow sweet-clover, crown vetch, white clover, and tufted vetch, members of the Liliaceae family such as false hellebore, showy false hellebore, smooth camas, and meadow camas, members of the Lythraceae family such as purple loosestrife, members of the Malvaceae family such as velvetleaf, round-leaved mallow, and common mallow, members of the Onagraceae family such as fireweed, and yellow evening-primrose, members of the Oxalidaceae family such as European wood- sorrel, members of the Plantaginaceae family including narrow-leaved plantain, broad- leaved plantain, hoary plantain, and Rugel's plantain, members of the Polygonaceae family such as Tartary buckwheat, striate knotweed, prostrate knotweed, wild buckwheat, pale smartweed, lady's-thumb, green smartweed, sheep sorrel, curled dock, long-leaved dock, field dock, serrate-valved dock, and broad-leaved dock, members of the Pteridaceae family such as bracken, members of the Portulacaceae family such as purslane, members of the Ranunculaceae family such as tall buttercup, and creeping buttercup, members of the Rhamnaceae family such as European buckthorn, members of the Rosaceae such as silvery cinquefoil, rough cinquefoil, sulfur cinquefoil, narrow-leaved meadowsweet, and hardhack, members of the Rubiaceae family such as smooth bedstraw, members of the
Scrophulariaceae family such as dwarf snapdragon, yellow toadflax, Dalmation toadflax, moth mullein, common mullein, and thyme-leaved speedwell, members of the Solanaceae family such as climbing nightshade, and eastern black nightshade, members of the Typhaceae family such as narrow-leaved cattail, and cattail, members of the Umbelliferae (Apiaceae) family such as goutweed, caraway, western water-hemlock, spotted water- hemlock, poison-hemlock, wild carrot, giant hogweed, wild parsnip, and water-parsnip, and members of the Urticaceae family such as stinging nettle.
In addition, the following weeds will be controlled, if not already listed above: Abutilon theophrasti (Velvetleaf), Acroptilon repens (Russian Knapweed), Aegilops cylindrica (Jointed Goatgrass), Agropyron repens (Quackgrass), Alyssum, Hoary (Berteroa incana), Amaranthus retroflexus (Redroot Pigweed), Anchusa officinalis (Common Bugloss), Annual Bluegrass (Poa annua), Annual Sow-thistle (Sonchus oleraceus), Annual Sow-thistle, Spiny (Sonchus asper), Anthriscus sylvestris (Wild Chervil), Arctium spp. (Burdock), Asclepias speciosa (Showy Milkweed), Avena fatua (Wild Oats), Baby's-Breath (Gypsophila paniculata), Barley, Foxtail (Hordeum jubatum), Barnyardgrass (Echinochloa crusgalli), Beggar-Ticks, Nodding (Bidens cernua), Berteroa incana (Hoary Alyssum), Bidens cernua (Nodding Beggar-Ticks), Bindweed, Field (Convolvulus arvensis), Bladder Campion (Silene cucubalus), Bluegrass, Annual (Poa annua), Blueweed (Echium vulgare), Bog Rush (Juncus effusus), Broad-Leaved Plantain (Plantago major), Buckwheat, Tartary (Fagopyrum tataricum), Buckwheat, Wild (Polygonum convolvulus), Bugloss, Common (Anchusa officinalis), Bull Thistle (Cirsium vulgare), Burdock (Arctium spp.), Buttercup, Creeping (Ranunculus repens), Canada Thistle (Cirsium arvense), Capsella bursa-pastoris (Shepherd's- Purse), Cardaria spp. (Hoary Cress), Carduus nutans (Nodding Thistle, a.k.a. Musk Thistle), Carduus acanthoides (Plumeless Thistle), Centaurea diffusa (Diffuse Knapweed), Centaurea pratensis (Meadow Knapweed), Centaurea solstitialis (Yellow Starthistle), Centaurea maculosa (Spotted Knapweed), Chamomile, Scentless (Matricaria maritima), Chenopodium album (Lamb's-Quarters), Cichorium intybus (Chicory), Cirsium palustre (Marsh Plume Thistle), Chervil, Wild (Anthriscus sylvestris), Chicory (Cichorium intybus), Chondrilla juncea (Rush Skeletonweed), Chrysanthemum leucanthemum (Oxeye Daisy), Cicuta douglasii
(Water Hemlock), Cinquefoil, Sulphur (Potentilla recta), Cirsium arvense (Canada Thistle), Cirsium vulgare (Bull Thistle), Cleavers (Galium aparine), Cluster Tarweed (Madia glomerata), Common Bugloss (Anchusa officinalis), Common Tansy (Tanacetum vulgare), Common Mallow (Malva neglecta), Common Chickweed (Stellaria media), Convolvulus arvensis (Field Bindweed), Corn Spurry (Spergula arvensis), Creeping Buttercup (Ranunculus repens), Crupina vulgaris (Crupina), Crupina (Crupina vulgaris), Cudweed (Gnaphalium uliginosum), Curled Dock (Rumex crispus), Cytisus scoparius (Scotch Broom), Dalmatian Toadflax (Linaria dalmatica), Diffuse Knapweed (Centaurea diffusa), Dodder, (Cuscuta species), Field Bindweed (Convolvulus arvensis), Field Scabious (Knautia arvensis), Foxtail Barley (Hordeum jubatum), Giant Hogweed (Heracleum mantegazzianum), Gorse (Tragopogon dubius), Green Foxtail (Setaria viridis), Groundsel (Senecio vulgaris), Gypsophila paniculata (Baby's-Breath), Hemp-Nettle (Galeopsis tetrahit), Henbit (Lamium amplexicaule), Heracleum mantegazzianum (Giant Hogweed), Himalayan Balsam (Impatiens glandulifera), Hoary Alyssum (Berteroa incana), Hoary Cress (Cardaria spp.), Hordeum jubatum (Foxtail Barley), Horsetail, Field (Equisetum arvense), Hound's-tongue (Cynoglossum officinale), Hypericum perforatum (St. John's-Wort), Impatiens glandulifera (Himalayan Balsam), Japanese Knotweed (Polygonum cuspidatum), Jointed Goatgrass (Aegilops cylindrica), Juncus effusus (Bog Rush), Knapweed, Meadow (Centaurea pratensis),
Knapweed, Spotted (Centaurea maculosa), Knapweed, Russian (Acroptilon repens), Knapweed, Diffuse (Centaurea diffusa), Knautia arvensis (Field Scabious), Kochia scoparia (Kochia), Kochia (Kochia scoparia), Lady's-Thumb (Polygonum persicaria), Lamb's-Quarters (Chenopodium album), Lamium amplexicaule (Henbit), Leafy Spurge (Euphorbia esula), Lepidium latifolium (Perennial Pepperweed), Linaria dalmatica (Dalmatian Toadflax), Linaria vulgaris (Yellow Toadflax), Lychnis alba (White Cockle), Lythrum salicaria (Purple Loosestrife), Madia glomerata (Cluster Tarweed) Mallow, Common (Malva neglecta), Malva neglecta (Common Mallow), Marsh Plume Thistle (Cirsium palustre), Matricaria maritima (Scentless Chamomile), Matricaria matricariodes (Pineappleweed), Meadow Knapweed (Centaurea pratensis), Meadow Hawkweed (Hieracium pilosella), Milkweed, Showy
(Asclepias speciosa), Mullein (Verbascum thapsus), Mustard, Wild (Sinapsis arvensis), Narrow-Leaved Plantain (Plantago lanceolata), Night-Flowering Catchfly (Silene noctiflora), Nightshade (Solanum species), Nodding Thistle, a.k.a. Musk Thistle (Carduus nutans), Nodding Beggar-Ticks (Bidens cernua), Nutsedge, Purple (Cyperus rotundus), Nutsedge, Yellow (Cyperus esculentus), Onopordum acanthium (Scotch Thistle), Orange Hawkweed (Hieracium aurantiacum), Oxeye Daisy (Chrysanthemum leucanthemum), Panicum capillare (Witchgrass), Perennial Pepperweed (Lepidium latifolium), Perennial Sowthistle (Sonchus arvensis), Pigweed, Redroot (Amaranthus retroflexus), Pineappleweed (Matricaria matricariodes), Plantago lanceolata (Narrow-Leaved Plantain), Plantago major (Broad-
Leaved Plantain), Plumeless Thistle (Carduus acanthoides), Poa annua (Annual Bluegrass), Polygonum convolvulus (Wild Buckwheat), Polygonum cuspidatum (Japanese Knotweed), Polygonum persicaria (Lady's-Thumb), Potentilla recta (Sulphur Cinquefoil), Puncturevine (Tribulus terrestris), Purple Nutsedge (Cyperus rotundus), Purple Loosestrife (Lythrum salicaria), Quackgrass (Agropyron repens), Ranunculus repens (Creeping Buttercup), Rumex acetosella (Sheep Sorrel), Rumex crispus (Curled Dock), Rush Skeletonweed (Chondrilla juncea), Russian Knapweed (Acroptilon repens), Russian Thistle (Salsola kali), Scentless Chamomile (Matricaria maritima), Scotch Broom (Cytisus scoparius), Scotch Thistle (Onopordum acanthium), Senecio jacobaea (Tansy Ragwort), Sheep Sorrel (Rumex acetosella), Shepherd's-Purse (Capsella bursa-pastoris), Sulphur Cinquefoil (Potentilla recta),
Spotted Knapweed (Centaurea maculosa), St. John's-Wort (Hypericum perforatum), Stinkweed (Thlapsi arvense), Tansy Ragwort (Senecio jacobaea), Tartary Buckwheat (Fagopyrum tataricum), Tarweed, Cluster (Madia glomerata), Thistle, Bull (Cirsium vulgare), Thistle, Canada (Cirsium arvense), Thistle, Nodding, a.k.a. Musk Thistle (Carduus nutans), Thistle, Plumeless (Carduus acanthoides), Thistle, Russian (Salsola kali), Thistle, Scotch
(Onopordum acanthium), Thlapsi arvense (Stinkweed), Toadflax, Dalmatian (Linaria dalmatica), Toadflax, Yellow (Linaria vulgaris), Tragopogon dubius (Western Goat's-Beard), Tribulus terrestris (Puncturevine), Ulex europaeus (Gorse), Velvetleaf (Abutilon theophrasti), Verbascum thapsus (Mullein), Water Hemlock (Cicuta douglasii), Western Goat's-Beard (Tragopogon dubius), White Cockle (Lychnis alba), Wild Chervil (Anthriscus sylvestris), Wild Mustard (Sinapsis arvensis), Wild Buckwheat (Polygonum convolvulus), Wild Oats (Avena fatua), Witchgrass (Panicum capillare), Yellow Hawkweed (Hieracium pratense), Yellow Starthistle (Centaurea solstitialis), Yellow Toadflax (Linaria vulgaris), Kudzu (Pueraria lobata), Japanese dodder (Cuscuta japonica), water hyacinth (Eichhornia sp) and Yellow Nutsedge (Cyperus esculentus).
Underlying the various embodiments of the present invention is treating a weed by introducing a heterologous polynucleotide or analogue into the weed plant, the heterologous polynucleotide comprising: 1) an RNAi inducer capable of recruiting RISC machinery to the sequence and 2) a targeting construct comprising (a) an antisense sequence having homology to an essential gene, or a marker gene, or (b) a sense sequence substantially complementary to said antisense sequence; wherein said sense and antisense sequences are capable of hybridizing to each other to form a double-stranded region. Description:
Except as otherwise expressly provided, the following rules of interpretation apply to this specification (written description, claims and drawings): (a) all words used herein shall be construed to be of such gender or number (singular or plural) as the circumstances require; (b) the singular terms "a", "an", and "the", as used in the specification and the appended claims include plural references unless the context clearly dictates otherwise; (c) the antecedent term "about" applied to a recited range or value denotes an approximation within the deviation in the range or value known or expected in the art from the measurements method; (d) the words "herein", "hereby", "hereof", "hereto", "hereinbefore", and "hereinafter", and words of similar import, refer to this specification in its entirety and not to any particular paragraph, claim or other subdivision, unless otherwise specified; (e) descriptive headings are for convenience only and shall not control or affect the meaning or construction of any part of the specification; and (f) "or" and "any" are not exclusive and "include" and "including" are not limiting. Further, The terms "comprising," "having," "including," and "containing" are to be construed as open-ended terms (i.e., meaning "including, but not limited to,") unless otherwise noted.
To the extent necessary to provide descriptive support, the subject matter and/or text of the appended claims is incorporated herein by reference in their entirety. Recitation of ranges of values herein are merely intended to serve as a shorthand method of referring individually to each separate value falling within the range, unless otherwise indicated herein, and each separate value is incorporated into the specification as if it were individually recited herein. Where a specific range of values is provided, it is understood that each intervening value, to the tenth of the unit of the lower limit unless the context clearly dictates otherwise, between the upper and lower limit of that range and any other stated or intervening value in that stated range, is included therein. All smaller sub ranges are also included. The upper and lower limits of these smaller ranges are also included therein, subject to any specifically excluded limit in the stated range. Unless defined otherwise, all technical and scientific terms used herein have the same meaning as commonly understood by one of ordinary skill in the relevant art. Although any methods and materials similar or equivalent to those described herein can also be used, the acceptable methods and materials are now described.
Overview: An RNAi payload is introduced into a host plant, for example, a weed by application of a formulation comprising the payload. Application methods include spraying, irrigating, injecting (extracellular as opposed to microinjection), abrading or otherwise causing entry of the formulation into, for example, but not limited to, a seed, a seedling, a sapling, a mature plant, a reproducing plant or a senescing plant. Application methods do not include stable transformation methods. The RNAi payload comprises one or more RNAi inducer elements encouraging its processing by dicer. The RNAi payload also contains a targeting region complementary to corresponding essential genes, or marker genes or both. When the RNAi payload is processed it releases siRNAs against those genes. The siRNAs direct RISC machinery to knock down those genes.
A list of genes used to build targeting constructs is provided. For each gene, one or more of double stranded RNA fragments and the DNA coding sequences or analogues that generate them are provided. These fragments have sequences that allow them to initiate the RNAi cascade, hence the DNA sequences will have, in addition, suitable promoters, for example, but not limited to, constitutive promoters that result in a high level of expression, and a suitable transcriptional stop element. The DNA sequences may be provided as crude viral or bacterial extracts, plasmid or viral DNA with the sequence and regulatory regions inserted therein, or may be synthesized. Each target in the targeting construct comprises at least about 19 nucleotides or at least about 50 nucleotides, or at least about 100 nucleotides, or at least about 150 nucleotides, and all sub ranges therebetween. Du ring the knock-down process RdRPs 'transcribe' the target mRNAs. These transcripts are processed into more siRNAs targeting the whole mRNA. These are transported through the plant where they spread the cascade. In the context of the present invention, there are three important steps to an effective RNAi herbicide. Firstly, the RNAi payload (DNA, RNA, or synthetic oligos) is delivered to the plant or part of the plant. Application methods affect delivery, with stem injection, spray, and vector-aided delivery (without stable transformation) being common techniques. Once applied, the inducer is introduced to the cytoplasm of the target cells. This may be mediated by, for example, but not limited to, additives, chemical modification of the inducer, or vectors such as viral coat protein, or nano-cages.
Secondly, a build-up of RNA occurs that can spread from cell to cell. This can happen prior to the RNAi response if exogenous RNA polymerases (such as viral RdRPs) are included as RNAi inducer elements, or if endogenous RNA polymerases (including DNA dependant RNA polymerases) are recruited to replicate the payload. It can also happen during the RNAi response if the inducer triggers RNAi-associated RdRPs. The entire inducer can be replicated, or only specific regions (using internal RNA promoters such as viral subgenomic promoters). Inducers can use one or both of these pathways for replication. Viral RNAi suppressor proteins can be included to increase the amount of RNA present before RNAi is triggered. Cell-to-cell spread can be accelerated using viral movement proteins and by targeting key plant genes. Finally, the RNAi inducer elements elicit an RNAi response that targets RISC machinery to degrade critical endogenous RNAs. This is accomplished by complementarity between regions of the inducer and the target RNAs. Once the inducer is processed into siRNAs they are used by RISC to target further RNA. siRNAs produced from the targeting construct are complementary to endogenous target genes. These are knocked down as "Collateral damage" while the plant clears the payload.
In addition to the sequences for essential genes, the payload will include RNA fragments that will silence genes that modulate the RNAi cascade. These will be synthetic or virally derived RNA fragments targeting components of the RNAi pathway. Without being bound by theory, it is believed that the RNA payload used in the present technology will target and silence, knock-down, or dysregulate genes that are necessary for the proper growth and development and optimally, the survival of the weed.
Elements
Target genes: Apoptosis; Autophagy; Senescence; Starvation; Accessory (RISC components) RNAi inducers: Replicase/promoter pairs; (Viral replicase and promoter/subgenomic promoter pairs; Recruitment and co-option of endogenous RNA polymerases; and Action of endogenous rdRPs [siRNA asymmetries, single base mismatches]); Recruitment of DNA ligases for RNA ligation; and that recruit dicer for RNAi processing (dsRNA regions [Inverted repeats; Hairpins; and Direct repeats]) Functional elements: Promoters; Terminators; Ribosome binding sites; Internal ribosome entry sites; Hammerhead ribozymes; Recruitment and co-option of endogenous DNA ligase to ligate RNA; and Cap stealing or RNA capping sequences.
Exogenous helper genes: Coat proteins; Movement Proteins; and RNAi suppressor proteins. Without being bound to theory, there are three primary ways to kill plants using an RNAi cascade. The first way knocks down production of essential cellular components. This causes cells to starve, or to structurally degrade. Target genes include EPSP synthese, chalcone synthase, starch synthase, cellulose synthase, acetyl-COA reductase, transaminase,18S rRNA, eEF-ΙΒ gamma, SAP130b, TRPT, PAI1, PDS, DGL
The second way is to induce apoptotic programmed cell death by knocking out key repressors in the pathway. This results in Hypersensitive response like (HR) and necrotic lesions. It is quicker than starvation but may in some situations be too quick, killing cells before the RNAi cascade can spread. Runaway hypersensitive response can also be elicited in this manner. Target genes include BECLIN1 PI3K/VPS30 ATG3 ATG7 CAT1 ACD2, NbTCTP ,LLS1.
The final way is by inducing senescence, again by knocking out key repressors of that pathway. Once senescence is triggered cells undergo a slower, more regulated cell death. Target genes to induce senescence include: APG 9 (Autophagy 9), ATG 2 (Autophagy 2), SRI (Signal responsive 1, APG7 (Autophagy 7)
Autophagy can be triggered along with any of these responses. During autophagy plant cells engulf and digest their organelles.
Helper genes include the following:
Protein coding sequences for: Viral movement proteins that interact with coat protein (VIGS based inducer)
Viral movement proteins that do not require coat protein Viral coat proteins
Production of RNA is achieved through transcription of a DNA template, either in a cell such as E.coli or in vitro. DNA is produced in cells, or through PCR. Promoter-polymerase combinations such at the T7 system can be used for tight control of transcription and high yield. Eukaryotic expression systems such as yeast are also viable production factories. Viral coat proteins or other protective structures may be produced in the same cells or added later to purified RNA.
The simplest RNAi inducers are siRNAs. They are recognised by RISC machinery and used directly to guide knockdown of endogenous polynucleotides. If properly formatted they also encourage endogenous RdRPs to amplify the silencing signal and cause transitivity. The siRNA sequence is also the simplest targeting construct. Longer targeting constructs can be grouped together on an RNA. Using secondary structure such as hairpins, or by transcribing both DNA strands into RNA, large dsRNA regions are created. These are recognised and processed by RISC machinery. The dsRNA replication intermediate of many virus is a trigger for RNAi, allowing many virus to act as RNAi inducers. Incorporating a targeting construct into such a virus results in a functional RNAi herbicide. Finally, single stranded RNA or DNA transcribed in plant cells can trigger RNAi if the RNAis replicated. This is achieved by including coding sequences for exogenous RdRPs, or through RNA sequences that recruit endogenous RdRPs.
Examples of the RNAi payloads used in the present technology follow and were designed to target the sequences as shown:
SEQ ID NO: 1 Actin 2 siRNA-A(target sequence: 5'- GGCATCACACTTTCTACAA-3'); SEQ ID NO:2 Actin 2 siRNA-B (target sequence: 5'- CGAGAAGAACTATGAATTA-3'); SEQ ID NO: 3 CHLI siRNA-A (target sequence: 5'- GGAGATAGAGGAACTGGAA-3');
SEQ ID NO: 4 CHLI siRNA-B (target sequence: 5'-GGAACATCTTCTTCTGCAA-3'); SEQ ID NO: 5 18S siRNA-A (target sequence: 5'-GGGAGGTAGTG AC A ATA A A- 3' ) ; and SEQ ID NO: 6 18S siRNA-B (target sequence: 5'-GGACGCATTTATTAGATAA-3'). The RNAi payloads used in the present technology were designed to target the sequences as shown:
SEQ ID NO: 7 Actin 2 siRNA-A (target sequence: 5'- GGCATCACACTTTCTACAA-3');
SEQ ID NO:8 Actin 2 siRNA-B (target sequence: 5'- CGAGAAGAACTATGAATTA-3');
SEQ ID NO: 9 CHLI siRNA-A (target sequence: 5'- GGAGATAGAGGAACTGGAA-3');
SEQ ID NO: 10 CHLI siRNA-B (target sequence: 5'-GGAACATCTTCTTCTGCAA-3');
SEQ ID NO: 11 18S siRNA-A (target sequence: 5'-GGGAGGTAGTGACAATAAA-3'); and
SEQ ID NO: 12 18S siRNA-B (target sequence: 5'-GGACGCATTTATTAGATAA-3').
Design: For the target genes, siRNAs were designed with reference to the literature, the target site accessibility web tool, RNAxs (http://rna.tbi, unjvie.ac.at/cgi-bin/ !SjAxs?hakim-l) and BLAST searches.
The genes chosen were essential genes or marker genes, which, when knocked down would be expected to provide an easily identifiable phenotype.
The first siRNAs were designed to be incorporated into Argonaute protein (AGOl). They were 21nt in length with a UU, 3' overhang on each end and a 5' terminal U. A 5' phosphate was added to the guide strand of the siRNA.
Other designs include one or more of targeting different AGO complexes, using a different 5' nucleotide, using chemically modified siRNA to increase stability, using different 3' overhang nucleotides, and including a 5' phosphate on both strands.
As the mRNA target site should be accessible, the RNAxs webserver was used to search through a given mRNA sequence and identify those sites based on the 2° structure of the mRNA and thermodynamic asymmetry and folding energies associated with the siRNAs themselves. siRNA is
Details of the process used to produce targeting constructs in Nicotiana were as follows (this process applies to designing targeting constructs for any plant): Target gene mRNAs were run through the RNAxs program using standard settings.
- The top 20-25 hits (lowest "worst rank") were mapped to the original mRNA sequence
- When available, homologous mRNA sequences from other Nicotiana (or Solanacea or Arabidopsis thaliana) were also run through RNAxs and have their highest 20-25 hits mapped.
- The homologues were then aligned to compare the regions of highest effective siRNA target concentration.
- For the present technology, regions with numerous "good" targets that also have perfect (or at most 2 mismatches in a stretch of 21nt) sequence identity to the N. sylvestris sequence were sought.
- N. sylvestris was used as the reference sequence for all targets, therefore the whole construct had perfect sequence identity to N. sylvestris.
- Regions of effective targets were cut from the original mRNA sequence to make smaller target regions of various lengths (21-120 nt). The 18-24nt regions can be used directly as siRNA constructs (which have both RNAi inducer and targeting construct activity). Otherwise, the process to build longer, multi-gene targeting constructs is as follows:
- Sequences complementary to the most accessible mRNA regions were pulled out were trimmed to remove intervening sequences where no effective siRNAs are predicted.
- Multiple trimmed segments were joined together to make an approx. 120nt targeting cluster that consist of 10s of predicted high-effectiveness siRNAs targeting a gene of interest.
Other considerations included that the target sites should not cover splice junctions or start or stop codons and should avoid sites of single nucleotide polymorphisms between sequenced transcript variants. Longer RNAi payloads require RNAi inducer elements to induce the processing of the payload into siRNAs. These mostly involve the production of a dsRNA region in the RNAi payload.
Synthesis: For using siRNAs directly as RNAi payloads the selected siRNAs were synthesized chemically. A 5' phosphate was added to the guide strand of the siRNA.
Longer RNAi payloads are transcribed from DNA, either in vitro, in plantae, or in another organism such as E. coli. The DNA sequences encoding longer RNAi payloads may also be synthesized or produced using standard cloning techniques and PCR, or a combination of both. DNA production: The selected DNA encoding the RNAi payloads were cloned using standard cloning techniques, in, for example, but not limited to a replication system in E. coli, using vectors that comprise, for example, but are not limited to, pBR322, pUC series, M13 mp series, pACYC184, etc., and pCAMBIA 1201. The DNA sequence was inserted into the vector at a suitable restriction site. The resulting plasmid was used for transformation into E. coli. The E. coli cells were cultivated in a suitable nutrient medium, then harvested, lysed and optionally lyophilyze and used directly, or the plasmid was recovered and used as such, or the specific sequence and the promoter and the transcription stop were recovered and used.
There are a wide number of promoters that can be employed, including constitutive inducible, and tissue or temporally specific promoters. Plant promoters include but are not limited to ribulose-l,6-bisphosphate (RUBP) carboxylase small subunit (ssu), beta- conglycinin promoter, beta-phaseolin promoter, ADH promoter, heat-shock promoters, the enhanced CaMV 35S promoter and tissue specific promoters.
Transcription stops include but are not limited to nopaline synthase (NOS) gene transcription stop, the Cauliflower mosaic virus (CaMV) 35S gene transcription stop, and the
Rubisco small subunit (SSU) gene transcription stop. Those skilled in the art will be aware of additional promoter sequences and terminator sequences suitable for use in performing the invention. Such sequences may readily be used without any undue experimentation.
Embodiments of the present invention are taught herein where it is desirable to have more than one terminator. Examples of such are embodiments are where the sense and antisense sequences are to be contained on separate transcripts (i.e. each having its own 3' and 5' end).
Delivery: The RNAi payloads are delivered to the weed as a formulation by spraying, irrigating, injecting, or abrading a seedling, a sapling, a mature plant, a reproducing plant or a senescing plant. Both the stem and the petiole will be injected. Leaves will be specifically targeted in addition to delivering the formulation to the entire plant. Seeds will also treated by dipping or imbibition. Roots will be treated by irrigation. In addition to the RNAi payload, accessory targeting constructs, and helper genes, the formulations include any or all of a liquid carrier, a surfactant, a binder and tackifier, a thickener, a colourant, a spreader, an antifreezing agent, a sticker, an anticaking agent, a stabilizer, a disintegrator, an emulsifier, a synergistic compound, an abrasive, an emulsifier, a penetrating agent and a preservative.
The liquid carrier includes, for example, alcohols including monohydric alcohols such as methanol, ethanol, propanol, isopropanol, butanol and the like and polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, hexylene glycol, poly(ethylene glycol), poly(propylene glycol), glycerol and the like; polyhydric alcohol-based compounds such as propylene glycol ether and the like; ketones such as acetone, methyl ethyl ketone, methyl isobutyl ketone, diisobutyl ketone, cyclohexanone and the like; ethers such as ethyl ether, dioxane, ethyleneglycol monoethyl ether, dipropyl ether, tetrahydrofuran and the like; aliphatic hydrocarbons such as normal paraffins, naphthenes, isoparaffins, kerosenes, minerals oil and the like; aromatic hydrocarbons such as benzene, toluene, xylene, solvent naphtha, alkylnaphthalenes and the like; halogenated hydrocarbons such as dichloroethane, chloroform, carbon tetrachloride and the like; esters such as ethyl acetate, diisopropyl phthalate, dibutyl phthalate, dioctyl phthalate, dimethyl adipate and the like; lactones such as . gamma. -butyrolactone and the like; amides such as dimethylformamide, diethylformamide, dimethylacetamide, N-alkylpyrrolidinone and the like; nitriles such as acetonitrile and the like; sulfur compounds such as dimethyl sulfoxide and the like; vegetable oils such as soybean oil, rapeseed oil, cottonseed oil, castor oil and the like; water; and so on. These can be used singly or can be used as a combination of two kinds or more.
The penetrating agents include dimethyl sulphoxide (DMSO), Azone (1- dodecylazacycloheptan-2-one or laurocapran), N-methyl-2-pyrolidone, glycols (diethylene glycol and tetraethyleneglycol), fatty acids (lauric acid, myristic acid, oleic acid and capric acid), terpenes such as the essential oils of eucalyptus, chenopodium and ylang-ylang, sesquiterpenes, polyethylene glycol (PEG) and L-menthol.
The surfactant includes, for example, nonionic surfactants such as sorbitan fatty acid esters, polyoxyethylene sorbitan fatty acid esters, sucrose fatty acid esters, polyoxyethylene fatty acid esters, polyoxyethylene resinate esters, polyoxyethylene fatty acid diesters, polyoxyethylene alkyl ethers, polyoxyethylene alkylphenyl ethers, polyoxyethylene dialkyl phenyl ethers, polyoxyethylene alkyl phenyl ether-formalin condensate products, polyoxyethylene-polyoxypropylene block copolymers, alkyl polyoxyethylene-polypropylene block polymer ethers, polyoxyethylenealkylamines, polyoxyethylene fatty acid amides, polyoxyethylene fatty acid bisphenyl ethers, polyalkylene benzyl phenyl ethers, polyoxyalkylene styrylphenyl ethers, acetylene diols, polyoxyalkylene-added acetylene diols, polyoxyethylene ether-type silicones, ester-type silicones, fluorine surfactants, polyoxyethylene castor oils, hydrogenated polyoxyethylene castor oils and the like; anionic surfactants such as alkyl sulfate salts, polyoxyethylene alkyl ether sulfate salts, polyoxyethylene alkyl phenyl ether sulfate salts, polyoxyethylene styryl phenyl ether sulfate salts, alkylbenzenesulfonate salts, lignin sulfonate salts, alkylsulfosuccinate salts, naphthalenesulfonate salts, alkylnaphthalene sulfonate salts, salts of formalin condensate products of naphthalene sulfonic acid, salts of formalin condensate products of alkylnaphthalene sulfonic acid, fatty acid salts, polycarboxylate salts, N-methyl-fatty acid sarcosinate, resinates, polyoxyethylene alkyl ether phosphate salts, polyoxyethylene alkyl phenyl ether phosphate salts and the like; cationic surfactants such as laurylamine hydrochloride salts, stearylamine hydrochloride salts, oleylamine hydrochloride salts, stearylamine acetate salts, stearylaminopropylamine acetate salts, alkylamine salts including alkyltrimethylammonium chloride and alkyldimethylbenzalkonium chloride and the like; ampholytic surfactants such as amino acid type- or betaine type-surfactants and the like; and so on. These surfactants can be used singly or can be used as a combination of two kinds or more.
The binder and tackifier include, for example, carboxymethylcellulose and a salt thereof, dextrin, water-soluble starch, xanthan gum, guar gum, sucrose, poly(vinylpyrrolidone), gum arabic, polyvinyl alcohol), polyvinyl acetate), sodium polyacrylate, poly(ethylene glycol) with an average molecular weight of 6000 to 20000, polyethylene oxide with an average molecular weight of 100000 to 5000000, phospholipid (for example, cephalin, lecithin and the like) and so on.
The thickener includes, for example, water-soluble polymers such as xanthan gum, guar gum, carboxymethylcellulose, poly(vinylpyrrolidone), carboxyvinyl polymers, acrylic polymers, starch-based compounds and polysaccharides; inorganic fine powders such as high-purity bentonite and fumed silica (white carbon); and the like.
The colourant includes, for example, inorganic pigments such as iron oxide, titanium oxide, and Prussian blue; organic dyes such as an alizarin dye, azo dye, and metal phthalocyanine dye; and the like. The spreader includes, for example, silicone-based surfactants, cellulose powders, dextrin, modified starch, a polyaminocarboxylic acid chelate compound, crosslinked poly(vinylpyrrolidone), a copolymer of maleic acid with a styrene compound, a (meth)acrylic acid copolymer, a half ester of a polymer composed of polyhydric alcohol with dicarboxylic anhydride, a water-soluble salt of polystyrenesulfonic acid and the like.
The sticker includes, for example, paraffin, terpene, a polyamide resin, polyacrylate, polyoxyethylene, wax, polyvinyl alkyl ether, an alkylphenol-formalin condensate product, a synthetic resin emulsion and the like.
The antifreezing agent includes, for example, polyhydric alcohols such as ethylene glycol, diethylene glycol, propylene glycol, glycerol and the like, and so on.
The anticaking agent includes, for example, polysaccharides such as starch, alginic acid, mannose, galactose and the like; poly(vinylpyrrolidone), fumed silica (white carbon), ester gum, a petroleum resin and the like.
The disintegrator includes, for example, sodium tripolyphosphate, sodium hexametaphosphate, metal stearates, a cellulose powder, dextrin, a methacrylate copolymer, poly(vinylpyrrolidone), a polyaminocarboxylic acid chelate compound, a sulfonated styrene-isobutylene-maleic anhydride copolymer, a starch-polyacrylonitrile graft copolymer and the like.
The stabilizer includes, for example, desiccants such as zeolite, calcined lime, magnesium oxide and the like; antioxidants such as phenol compounds, amine compounds, sulfur compounds, phosphoric acid compounds and the like; ultraviolet absorbers such as salicylic acid compounds, benzophenone compounds and the like; and so on.
The preservative includes, for example, potassium sorbate, l,2-benzthiazolin-3-one and the like.
The abrasives include carborundum, silica, calcium oxalate, microbeads, nanobeads, nanoparticles and the like. In a number of cases it is advantageous to add emulsifiers to the formulation. A first preferred group of emulsifiers encompasses non-ionic surfactants such as, for example: products of the addition of 2 to 30 mol ethylene oxide and/or 0 to 5 mol propylene oxide onto linear or branched, saturated or unsaturated C. sub.8-22 fatty alcohols, onto C. sub.12- 22 fatty acids and onto alkyl phenols containing 8 to 15 carbon atoms in the alkyl group;
C. sub.12/18 fatty acid monoesters and diesters of addition products of 1 to 30 mol ethylene oxide onto glycerol; glycerol mono- and diesters and sorbitan mono- and diesters of saturated and unsaturated fatty acids containing 6 to 22 carbon atoms and ethylene oxide addition products thereof; addition products of 15 to 60 mol ethylene oxide onto castor oil and/or hydrogenated castor oil; polyol esters and, in particular, polyglycerol esters such as, for example, polyglycerol polyricinoleate, polyglycerol poly-12-hydroxystearate or polyglycerol dimerate isostearate. Mixtures of compounds from several of these classes are also suitable; addition products of 2 to 15 mol ethylene oxide onto castor oil and/or hydrogenated castor oil and/or other vegetable oils; partial esters based on linear, branched, unsaturated or saturated C. sub.6/22 fatty acids, ricinoleic acid and 12- hydroxystearic acid and glycerol, polyglycerol, pentaerythritol, dipentaerythritol, sugar alcohols (for example sorbitol), alkyl glucosides (for example methyl glucoside, butyl glucoside, lauryl glucoside) and polyglucosides (for example cellulose); mono-, di and trialkyl phosphates and mono-, di- and/or tri-PEG-alkyl phosphates and salts thereof; wool wax alcohols; polysiloxane/polyalkyl polyether copolymers and corresponding derivatives; mixed esters of pentaerythritol, fatty acids, citric acid and fatty alcohol and/or mixed esters of C. sub.6-22 fatty acids, methyl glucose and polyols, preferably glycerol or polyglycerol, polyalkylene glycols and alkyl and glycerol carbonates.
The formulation may be prepared as a mixture with components other than those listed above, such as, for example, another herbicide, a plant growth regulator, a fertilizer and the like. It is proposed that these adjuvants would increase the efficacy of the treatment or would have a synergistic effect. When the aforementioned additional ingredient is contained in the formulation, a content thereof is selected in the range of, on a mass basis, usually 5 to 95% or, preferably, 20 to 90% as a carrier, usually 0.1 to 30% or, preferably, 0.5 to 10% as a surfactant, and 0.1 to 30% or, preferably, 0.5 to 10% as other additional ingredients.
The formulation can be employed as prepared in any desired formulations including liquid formulations, emulsifiable concentrates, wettable powders, dust formulations, oil solutions, water dispersible granules, flowable, emulsion waters, granules, jumbo formulations, suspended-emulsions, microcapsules and others.
Figure 1 shows a DPC targeting construct for photobleaching-based death in multiple species in accordance with an embodiment of the technology. Ath = Arabidopsis thaliana, Nto = Nicotiana tobacum, Bra = Brassica napus, Zma = Zea mays, Mtr = Medicago truncatula.
Figure 2 shows an apoptosis targeting construct for Brassica rapa in accordance with an embodiment of the technology. Inserted into vector for E. coli production or transcribed in vitro. Resultant dsRNA is applied to plants.
Figure 3 shows an apoptosis targeting construct 2, for Nicotiana sylvestris in accordance with an embodiment of the technology. sgP = subgenomic promoter. Cloned into RNA2- MCS vectors or co-expressed with TRV replicase.
Figure 4 shows an apoptosis targeting construct 3, for Nicotiana sylvestris inside TRV RNA2 in accordance with an embodiment of the technology. RNA applied to plants along with TRV RNA1.
Figure 5 shows a T7-driven helper construct in accordance with an embodiment of the technology. RNA added directly to plants, or cloned into RNA2-MCS or RNA1-MCS vectors. Figure 6 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in E. coli in accordance with an embodiment of the technology. Targeting constructs such as Figure 3 are cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
Figure 7 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in accordance with an embodiment of the technology. Targeting constructs such as Figure 3 are cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
Figure 8 shows an empty VIGS-based vector to produce coated RNAI and 2 based RNAi inducers in yeast in accordance with an embodiment of the technology. A targeting construct is cloned into the MCS contained in RNA2, usually with flanking subgenomic promoters.
Figure 9 shows an empty VIGS-based vector to produce naked TRV RNAI and RNA2 based RNAi inducers in accordance with an embodiment of the technology. Functional in E. coli with T7 Polymerase and for in vitro production. Ribozymes cleave the RNA into separate strands.
Figure 10 shows a generic model of a DNA construct for an RNAi herbicide. The core of the herbicide is the targeting construct, tuned to affect one or a few plant species. RNAi inducer elements are either inserted into the targeting sequence (introns to make hairpins, direct or inverted repeats with/without base pairing mismatches), or are inserted around the targeting construct (subgenomic, viral, or endogenous RdRP promoters). This is all driven by either single or flanking promoters for RNA production in the chosen production species, and a circular or linear backbone for maintaining the construct in the production species. Figure 11 shows a construct for producing an RNAi herbicide in E. coli, without a target construct. In bacteria the TRV coat protein is transcribed and translated. Targeting constructs are inserted into the MCS. The TRV RNAI fragments facilitate coating of the RNA. In target plants this RNA is transcribed to produce viral replicase, which produces dsRNA from the entire RNA. This induces the RNAi response.
Treatment: By way of example, suitable exemplary treatments are outlined as follows:
Example 1: SEQ ID NO: 3 will be used to treat Medicago truncatula seeds by imbibition. This sequence targets the gene for the CHLI subunit of magnesium chelatase (SULFUR gene). Seeds will be imbibed in a solution containing SEQ ID NO: 3 andsiRNA targeting AG06. . The results will show that the seedlings, and more specifically, the cotyledons will be chlorotic in comparison to the controls.
Example 2: SEQ ID NO: 1 will be used to treat Arabidopsis thaliana plants, by abrading the leaves and delivering a solution of SEQ ID NO: 1, a surfactant, and siRNA targeting AG06..
This sequence targets the Actin 2 gene. The results will show that the leaves senesce more rapidly than those of the controls.
Example 3: SEQ ID NO: 1 will be used to treat Arabidopsis thaliana plants, by abrading the leaves and applying a solution of SEQ ID NO: 1 and a surfactant. This sequence targets the Actin 2 gene. The results will show that the leaves senesce more rapidly than those of the controls.
Example 4: SEQ ID NO: 2 will be used to treat Arabidopsis thaliana plants, by spraying the leaves with a solution of SEQ ID NO: 2, an abrasive and a surfactant. This sequence targets the Actin 2 gene. The results will show that the leaves senesce more rapidly than those of the controls. Example 5: SEQ ID NO: 4 will be used to treat Medicago truncatula plants, by injecting the stem or petiole with a solution of SEQ ID NO: 2, 2,4-Dichlorophenoxyacetic acid (2,4-D) DMSO and siRNA targeting AG06.. SEQ ID NO: 4 targets the gene for the CHLI subunit of magnesium chelatase. The results will show that the leaves become chlorotic more rapidly and to a greater extent than those of the controls. Similarly, the leaves will become chlorotic more rapidly and to a greater extent than those treated with the formulation of Example 1. Without being bound to theory, it is expected that there is a synergistic effect caused by the combination of the siRNA and the 2,4-D.
Example 6: SEQ ID NO: 2 will be used to treat Physcomitrella patens, by spraying the moss with a solution of SEQ ID NO: 2 and a surfactant. SEQ ID NO: 4 targets the Actin 2 gene.
The results will show that the moss senesces more rapidly than those of the controls.
Example 7: SEQ ID NO: 5 will be used to treat Medicago truncatula plants by irrigating the roots with a solution of SEQ ID NO: 5. SEQ ID NO: 5 targets the 18S ribosomal RNA gene. The results will show that the plants senesce more rapidly than the controls. Example 8: SEQ ID NO: 8 will be used to treat Arabidopsis thaliana seeds by coating the seeds prior to imbibition. The formulation will include a sticker such as a terpene or wax or a tackifier such as xanthan gum. SEQ ID NO: 8 targets the 18S ribosomal RNA gene. The results will show that the seedlings senesce, whereas the controls do not.
Example 9: Other sequences will be synthesized and tested. The following functions and genes will be targeted:
Regulating water content (Lock stomata open or closed)
Targets: Effectors that open stomata, Regulators of effectors that open/close stomata .
Gene: ABI1 (AT4G26080) (component of negative feedback loop in abscisic acid (ABA) signalling). Result: Without being bound to theory, stomata stay closed contributing to the overall damage to the plant and forcing it to retain water.
Example 10: Deregulate starch breakdown
Targets: Starch synthesis genes and Repressors of starch breakdown genes (repressors of amylases).
Gene: ADP-glucose pyrophosphorylase (At5g48300).
Result: Without being bound to theory, increased concentration of simple sugars which will affect the energy state of the plant, alter the direction and volume of phloem transport, and make it more accessible to saprotrophs and other organisms. Example 11: Gene targets that will limit the effectiveness of the RNAi cascade.
Targets: DCLs, AGOs, other RISC components etc.
Gene: AG06 (AT2G32940)
Result: Without being bound to theory, a subset of sRNA processing is ablated altering regulation across the plant and increasing the relative number of available intracellular RISC components.
Example 12: Limit ability of plasmodesmata to close (lock them open via an effector or an element from a component of the blue light response pathway).
Targets: Effectors that close plasmodesmata, or repressors of effectors that open plasmodesmata Gene: Cadmium-ion induced glycine rich protein cdiGRP homologues, an effector that closes plasmodesmata.
Result: Without being bound to theory, plasmodesmata will tend to be open thus maximizing the ability of the RNAi cascade to spread through the plant. Example 13: Deregulate cell wall modifying enzymes
Targets: Repressors of cell wall modifying enzymes - specifically enzymes that break down main, load bearing and protective components of the cell wall (expansins, cellulases, proteases, glycoside hydrolases etc.). Gene: DREB binding factor homologues: an effector that negatively regulates leaf elongation.
Result: Without being bound to theory, in addition to contributing to the overall damage (lethality) to the plant, this will also make the plant matter easier to degrade by saprotrophs and other organisms. Example 15: SEQ ID No. 13 is cloned into SEQ ID No. 28. DNA is grown in E. coli and then purified. Arabidopsis thaliana, Brassica rapa, Medicago truncatula, Zea mays, and Nicotiana leaves are treated with the resultant DNA. In all plants the result will be death through loss of chlorophyll production and chlorophyll degredation (photobleaching).
Example 16 SEQ ID No. 14 is cloned in between T7 promoters in a standard vector. DNA is grown in E.coli expressing T7 polymerase or transcribed in vitro. The resulting dsRNA is purified and applied directly to Brassica rapa subsp. pekinensis. Treated plants will undergo systemically spreading hypersensitive-response like cell death.
Example 17 SEQ ID No. 15 DNA is cloned into the MCS of the T7-RNA2-MCS inducer as shown in sequence ID No 26. The resultant DNA along with the T7-RNA1 inducer are transcribed in vitro. The resulting naked RNAs are applied directly to Nicotiana sylvestris.
Viral replicase increases the amount of RNAi inducer and targeting construct present. Viral coat proteins and movement proteins initiate the systemic spread of the targeting construct before the RNAi response begins. Treated plants die from necrotic/HR-like lesions.
Example 18 T7 promoter driven RNA2 containing Seq ID NO 15 flanked by sgPs and T7 promoter driven RNAI are prepared and used on Nicotiana sylvestris as above. The subgenomic promoter sequences flanking the targeting construct cause it to be replicated by itself, further increasing the amount of targeting construct present before the RNAi response.
Example 19 A targeting construct flanked with sgPs is cloned into the MCS in Figure 7. The resulting DNA is then cloned into a standard vector and grown in E. coli. Transcription results in production of coat protein mRNA and RNAI containing a targeting construct. Translation of the coat protein in E. coli results in monomers that recognise elements of the TRV RNAI sequences, coating the entire RNA. This adds stability and increases ease of transmission to target plants. Once inside the target plant, replicase is produced from the TRV RNAI fragment, replicating the entire fragment as well as producing dsRNA of the targeting construct.
Example 20: SEQ ID No. 13 is flanked by subgenomic promoters and cloned into the TRV1 RNAI fragment MCS of an RNAi inducer construct. Treatment of the above plants with the RNA produced will result in photobleaching of chloroplasts and resultant plant death through energy starvation.
Example 21: SEQ ID No. 14 is cloned in original and inverted orientation into an RNAi GG vector. This results in a hairpin with the two sequences separated by an intron. Treatment of plants with this DNA vector produces the hairpin RNA which is processed into siRNAs targeting the 5 endogenous genes. Treated plants die from spreading necrotic lesions as runaway apoptosis is initiated.
Example 22: SEQ ID No. 15 was cloned into the MCS of SEQ ID 18. The resulting DNA is delivered directly to plants along with a helper construct encoding a replicase (SEQ ID No. 17) Endogenous promoters transcribe the initial RNA, replicase is translated, and the construct RNA is replicated. Treated Nicotiana sylvestris die from runaway HR-associated apoptotic cell death. Example 23: SEQ ID No. 16 was cloned into the MCS of SEQ ID 18. The resulting DNA is delivered directly to plants along with a helper construct encoding a replicase (SEQ ID No. 17) Endogenous promoters transcribe the initial RNA, replicase is translated, and the construct RNA is replicated. Treated Nicotiana sylvestris die from runaway HR-associated apoptotic cell death.
Example 24: SEQ ID No. 17 is a helper construct. Plants are treated with this helper construct DNA (linear or in a vector) in addition to a RNA2-MCS RNAi inducer containing a targeting construct (SEQ ID No. 13). Treated plants undergo photobleaching and death through energy starvation. SEQ id 17 contains elements such as replicase to produce dsRNA in plant cells.
Example 25: SEQ ID No. 18 is used to clone targeting construct (SEQ ID No. 16) directly. The resulting DNA is delivered directly to plants along with a helper construct encoding a replicase (SEQ ID No. 17) Endogenous promoters transcribe the initial RNA, replicase is translated, and the construct RNA is replicated. Treated Nicotiana sylvestris die from runaway HR-associated apoptotic cell death.
Example 26: SEQ ID No. 19 and SEQ ID No. 23 are transcribed in vitro (this DNA is used to produce TRV RNAI RNA in E.coli or in vitro). The resulting RNAs are delivered directly to plants with carborundum abrasive. Treated plants die from runaway HR like apoptotic cell death. Example 27: SEQ ID No. 20 is co-transformed into E.coli containing inducible T7 polymerase along with a plasmid containing a targeting construct flanked with RNAI or 2 3' and 5' sequences and driven by T7 promoter(SEQ ID No. 21 containing SEQ ID No. 16 in the MCS). Upon induction the coat protein is translated and coats the two RNAs when they are transcribed. The resulting coated RNAs are delivered directly to plants. Treated plants exhibit a runaway HR-like apoptotic cell death phenotype.
Example 28: SEQ ID 16 is cloned into the MCS of SEQ ID No. 21. The product thereof is co- transformed into E.coli containing inducible T7 polymerase along with SEQ ID No. 20. Upon induction the coat protein is translated and coats the two RNAs when they are transcribed. The resulting coated RNAs are delivered directly to plants. Treated plants exhibit a runaway HR-like apoptotic cell death phenotype. Example 29: SEQ ID No. 22 and SEQ ID 20 are transcribed in vitro using the T7 polymerase system. Coat protein from SEQ ID No. 20 isn't produced. The two RNAs that are produced are applied directly to N. sylvestris. Treated plants die from runaway HR like necrotic cell death.
Example 30: SEQ ID No. 23 and SEQ ID No. 20 are transcribed in vitro. Coat protein is not produced in vitro. Plants treated with the two RNAs die from runaway HR like necrotic cell death. The addition of the subgenomic promoter increases the amount of RNA produced in plant cells. This strengthens the RNAi signal.
Example 31: SEQ ID No. 15 is cloned into SEQ ID No. 24. The resultant sequence and SEQ ID 20 are transcribed in vitro. Coat protein is not produced in vitro. Plants treated with the two RNAs die from runaway HR like necrotic cell death. The addition of flanking subgenomic promoters results in the production of dsRNA of just the targeting construct region in addition to replication of the entire RNA. This strengthens the RNAi signal.
Example 32: SEQ ID No. 26 along with RNA produced from SEQ ID No. 23 is delivered directly to N. sylvestris with carborundum abrasive. Treated plants die from runaway HR like apoptotic cell death.
Example 33: SEQ ID No. 27 is cloned into the MCS of SEQ ID No. 24. The resultant sequence and SEQ ID No. 20 are transcribed in vitro. Coat protein is not produced in vitro. Plants treated with the two RNAs die from runaway HR like necrotic cell death. The addition of flanking subgenomic promoters results in the production of dsRNA of just the targeting construct region in addition to replication of the entire RNA. This strengthens the RNAi signal.
Example 34: SEQ ID No. 15 is cloned into SEQ ID No. 28 using Bsal sites. Plants treated with the resultant DNA transcribe a large hairpin RNA from it. This is processed into siRNAs that induce runaway HR like necrotic cell death. Example 35: SEQ ID No. 29 is used to treat plants. Plants treated with this DNA transcribe a large hairpin RNA from it. This is processed into siRNAs that induce runaway HR like necrotic cell death.
Example 36: SEQ ID No. 30 will be used to drive transcription of RNAi herbicide components in eukaryotic platforms.
Example 37: SEQ ID No. 31 will be used in conjunction with full length TRV derived RNAs or RNA flanked with TRV RNA 3' and 5' ends. The protein produced coats such RNAs, protecting them and increasing the likelihood of them reaching plant tissues.
Example 38: SEQ ID No. 32 will be used in conjunction with full length TRV derived RNAs or RNA flanked with TRV RNA 3' and 5' ends. The protein produced coats such RNAs, protecting them and increasing the likelihood of them reaching plant tissues. Codon optimization has been used to create a sequence for optimal translation in E.coli.
Example 39: SEQ ID No. 33 will be used in helper constructs. The protein produced suppresses RNAi temporarily in planta. This allows initial RNA elements time to replicate and reach a higher concentration before being processed by RNAi machinery.
Example 40: SEQ ID No. 34 will be incorporated in a plant expressible helper construct and DNA or RNA delivered directly to plants. It will lessen and slow the spread of the RNAi cascade.
Example 41: SEQ ID No. 35 will be incorporated into a plant-expressible helper construct and DNA or RNA applied directly to plant. It will aid in the spread of RNAs before RNAi is activated. Example 42: SEQ ID No. 36 will be used to find homologues in other species. It is also a target gene used to build target constructs. Knockdown of this gene will result in autophagy.
Example 43: SEQ ID No. 37 will be used to find homologues in other species. It is also a target gene used to build target constructs. Knockdown of this gene will cause apoptosis. Example 44: SEQ ID No. 38 will cause apoptosis. It is a target gene used to build target constructs. It will also be used to find homologues in other species.
Example 45: SEQ ID No. 39 It is a target gene used to build target constructs. It will also be used to find homologues in other species. Example 46: SEQ ID No. 40 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
Example 47: SEQ ID No. 41 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
Example 48: SEQ ID No. 42 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
Example 49: SEQ ID No. 43 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
Example 50: SEQ ID No. 44 It is a target gene used to build target constructs. It will also be used to find homologues in other species. Example 51: SEQ ID No. 45 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
Example 52: SEQ ID No. 46 It is a target gene used to build target constructs. It will also be used to find homologues in other species.
Example 53: SEQ ID No. 47 It is a target gene used to build target constructs. It will also be used to find homologues in other species. Example 54: Nicotiana sylvestris was chosen as the target weed. Medicago truncatula was chosen as the non-target plant. The sequences for both species are publically available. Genes from the target list that act as negative regulators of apoptosis were selected and the Nicotiana sylvestris homologues were run through RNAxs. The most accessible sequence regions were compared to homologous stretches of Medicago truncatula genes to confirm divergence. Suitable sequences were incorporated into SEQ ID No.15. This construct was then cloned into the MCS of SEQ ID No. 21 in an E. coli backbone (pUC57). SEQ ID No. 20 was also cloned into the E. coli backbone. E coli containing inducible T7 polymerase was transformed with this construct. Transformed E. coli were grown up, spun down, lysed, and the lysate rubbed onto plants with carborundum. The lysate contains RNA1 and 2 from TRV, with the targeting construct inside the MCS of RNA2. These RNAs are coated with viral coat protein. Treated plants undergo spreading apoptotic cell death similar to a runaway hypersensitive response. Without being bound to theory, this is because replicase is produced from the TRV RNA1, which replicates both RNAs. This increases RNA concentration. Viral movement proteins aid in the spread of intact RNAs. Eventually the dsRNA replication intermediaries are recognized by RISC machinery and processed into siRNAs. The siRNAs produced from the targeting construct induce the knock-down of Atg5, Catl, Jazh, MC2, and Beclinl. This tips the plant cell's regulatory machinery toward hypersensitive response. siRNAS produced from the targeting construct, as well as phased siRNAs produced from RdRP replication of target mRNAs by RISC machinery, are transported throughout the plant, spreading the phenotype. Treating Medicago truncatula did not affect the plant because processing of the targeting construct does not result in siRNAs targeting endogenous genes.
Example 55: SEQ ID No. 13 is a target construct generated as follows: The CHLI1 gene in Arabidopsis was used to find homologues in Brassica rapa, Medicago truncatula, Zea mays, and Nicotiana tobacum. These sequences were searched for regions accessible by RISC machinery using RNAxs. The best regions from each homologue were incorporated into the target construct. This construct was then cloned into the MCS of SEQ ID No. 21 in an E. coli backbone (pUC57). SEQ ID No. 20 was also cloned into the E. coli backbone. E coli containing inducible T7 polymerase was transformed with this construct. Transformed E. coli were grown up, spun down, lysed, and the lysate rubbed onto plants with carborundum. The lysate contains RNA1 and 2 from TRV, with the target construct inside the MCS of RNA2. These RNAs are coated with viral coat protein. Replicase is produced from the TRV RNA1, which replicates both RNAs. Without being bound to theory, this increases RNA concentration. Viral movement proteins aid in the spread of intact RNAs. Eventually the dsRNA replication intermediaries are recognizes by RISC machinery and processed into siRNAs. The siRNAs produced from the targeting construct induce the knock-down of CHLI1. Plant growth is retarded, sometimes fatally, as damaged photosystems are not repaired. Off target plants are unaffected.
Example 56: A helper construct is constructed from SEQ IDs 33, 34 and 35. Sequences are driven by the T7 promoter producing polycistronic RNA. IRES elements are used to ensure translation in plant tissues. This is inserted into the MCS of SEQ ID No. 18. This along with SEQ ID No. 22 is transcribed in vitro. The resulting RNAs are applied directly to plants. Treated plants exhibit runaway HR-like apoptotic cell death. The 30kda movement protein and the HCpro proteins aid in the movement of the unprocessed RNAs. The P19 protein suppresses the RNAi response until the RNAs have moved further from the application site.
Example 57: A targeting construct was designed to induce senescence in Nicotiana silvestrys. Genes from the senescence gene list were used to identify homologues of APG-9, ATG 2, SRI, and APG7 in N. sylvestrys. These were run through RNAxs to identify RISC accessible regions. Sequences complementary to the most accessible regions were strung together to make the targeting construct RNA. DNA encoding this RNA is cloned into the MCS of SEQ ID No. 18. This and SEQ ID No. 17 are cloned into a binary vector maintained in plants and E. coli. The resulting construct is replicated and purified from E. coli, and the DNA applied directly to plants. In the plant the DNA is transcribed. The resultant RNAs are directly replicated after replicase is translated from RNAI. Treated plants undergo spreading senescence which eventually overwhelms them. As senescence takes a while to develop after induction, the signal has time to spread through the plant. Example 58: A targeting construct was designed to starve cells of amino acids. Genes from the starvation list were used to identify homologues of HDH, AthMee2, and ICDH in N . sylvestris. These were run through RNAxs to identify RISC accessible regions. Sequences complementary to the most accessible regions were strung together to make the targeting construct RNA. DNA encoding this RNA is cloned into the MCS of SEQ ID No. 18. This and SEQ ID No. 17 are cloned into a binary vector maintained in plants and E. coli. The resulting construct is replicated and purified from E. coli, and the DNA deliverd directly to plants. In the plant the DNA is transcribed. The resultant RNAs are directly replicated after replicase is translated from RNA1. Processing of these RNAs by RISC machinery leads to loss of production of a number of amino acids. Plants die due to being unable to replace degraded or damaged proteins.
Example 59: SEQ ID No. 48 is a target construct generated as follows: The PDS gene in Arabidopsis was used to find the homologue in Nicotiana sylvestris. These sequences were searched for regions accessible by RISC machinery using RNAxs. The best regions containing no perfect matches to Medicago truncatula were incorporated into the target construct. DNA encoding this RNA is cloned into the MCS of SEQ ID 18. This and SEQ ID No. 17 are cloned into a binary vector maintained in plants and E. coli. The resulting construct is replicated and purified from E. coli and the DNA applied directly to plants. In the plant the DNA is transcribed. The resultant RNAs are directly replicated after replicase is translated from RNA1. Processing of the targeting construct results in siRNAs that knock down Phytoene desaturase. Plants turn white and plant growth is retarded, sometimes fatally, as damaged photosystems are not repaired. Off target plants such as Medicago truncatula, Arabidopsis thaliana and Beta vulgaris are unaffected.
Example 60: SEQ ID No. 49 is DNA containing TRV RNA2 loaded with the Nicotiana silvestrys anti-PDS targeting construct. This, along with SEQ ID No. 19 are used to produce RNAs in Vitro with T7 polymerase. The resulting RNAs are applied directly to plants. The RNAs are directly replicated after replicase is translated from RNA1. Processing of the targeting construct results in siRNAs that knock down Phytoene desaturase. Plants turn white and plant growth is retarded, sometimes fatally, as damaged photosystems are not repaired. Off target plants such as Medicago truncatula, Arabidopsis thaliana and Beta vulgaris are unaffected.
Example 61: SEQ ID No. 32 is used in conjunction with full length TRV derived RNAs or RNA flanked with TRV RNA 3' and 5' ends. The protein produced coats such RNAs, protecting them and increasing the likelihood of them reaching plant tissues. Codon optimization has been used to create a sequence for optimal translation in E. coli.
Example 62: The generalized steps for controlling a weed species are as follows:
• Selecting a weed plant species to be controlled;
• Sequencing genes from the target list in the weed and in non-target neighbor plants; · Designing a targeting construct complementary to accessible regions of target genes that are divergent in off-target plants;
• Incorporating the target construct into an effective RNAi inducer;
• Adding helper components as required to increase silencing efficiency and spread;
• Producing the DNA or RNA to apply to plants; · Formulating the DNA or RNA for optimum penetration into plant tissues; and
• Delivering the formulated DNA or RNA to plants.
Example 63: SEQ ID No. 48 was examined and found to have 0 off-target perfect matches in Medicago truncatula, Brassica napus, Arabidopsis thaliana, Beta vulgaris, Gossypium spp. and Oryza sativa. Example 64: An accessory targeting construct was built targeting AB1, ADP-glucose pyrophosphorylase, AG06, cdiGRP, and DREB binding factor homologues in Nicotiana sylvestris. These were run through RNAxs to identify RISC accessible regions. Sequences complementary to the most accessible regions were strung together to make the targeting construct RNA. DNA encoding this RNA is cloned into the MCS of SEQ ID No. 19 (T7 RNA1) and applied in conjunction with SEQ ID No. 49: (T7 driven RNA2 with Nsyl PDS targeting construct in MCS). RNA from these sequences was produced in vitro using the T7 system. Treated plants turn white and plant growth is retarded, sometimes fatally, as damaged photosystems are not repaired. ABI1 knock-down will cause stomata to stay closed contributing to the overall damage to the plant and forcing it to retain water. ADP-glucose pyrophosphorylase knock-down will cause increased concentration of simple sugars which will affect the energy state of the plant, alter the direction and volume of phloem transport, and make it more accessible to saprotrophs and other organisms. AG06 knockdown will ablate a subset of small RNA processing, freeing RISC machinery to process endogenous gene targets. cdiGRP knock-down will keep plasmodesmata open even during conditions of stress, increasing the rate of spread of the RNAi cascade. Knock-down of homologues of DREB binding factor caused unregulated leaf elongation, including increasing production of cell-wall degrading enzymes such as expansins. This contributes to the overall damage of the plant.
Example 65
The process for creating a RNAi herbicide against a specific species is as follows.
1 Obtain sequence data for target spec
a. Publically available
b. If no sequence data is available use PCR to amplify regions corresponding to
genes in target list. Have those PCR fragments sequenced
2 Select target regions based on RNA accessibility
3 Obtain sequence data for other plants in area where herbicide will be applied
a. Use public data where available otherwise PCR and sequence as in 1 4. Search for target region sequences with no more than 18nt sequential complementarity to non-target plants.
a. And preferably less than 18nt complementarity or none.
5. Assemble 2 or more (usually at least 5) target regions into a targeting construct
6. Add an RNAi inducer to the targeting construct
a. Replicase/promoter pairs
b. Secondary structure elements (bulges, single base mismatches outside of core region, hairpins and inverted repeats)
7. Chose the most appropriate RNA production method
a. In planta
i. Construct flanked with plant expression promoters (CaMV35 for
example) DNA added to plants.
b. In prokaryotes
i. Add prokaryotic promoters (one or flanking promoters) to produce single or double stranded RNA.
ii. Add coating elements from virus (such as TRV) and co-express construct with bacterially translated coat protein.
c. In other eukaryotes
i. Same as i for prokaryotes
ii. Express VIGS based RNAs along with viral replicase
1. Results in production of coated RNAs containing construct d. In vitro
Certain elements enhance the systemic spread of RNAi. Mismatched base pairs in the stem region of a dsRNA are a powerful way to ensure the derived siRNAs trigger RdRP activity at their targets. Mismatches at the 5" end of the siRNA are not tolerated. Moving from the 5' to the 3' end, mismatches become better tolerated. Using endogenous miRNA generating sequences such as tasi-RNA as backbones also aids in systemic spread. Without being bound to theory, there are two reasons why the process described in this patent is generalizable to all known plant species. First, due to the degenerate nature of the genetic code there are many sequence level differences between species in genes that code for identical proteins. Because RNAi requires at least 18nt of sequence complementarity (usually 21nt) it is relatively easy to find stretches of RNA that are different in the target species and its neighbors. A single mismatch is usually sufficient to prevent knock-down in off-target plants. Sequences with 2 or more mismatches to off-target plants are sought to ensure knock-down does not occur. Plants can develop resistance to a specific targeting construct through mutation. The likelihood of developing enough spontaneous mutations in all the target genes simultaneously however is low. Even if resistance emerges those individuals can be sequenced and used to produce a new targeting construct.
Secondly, the core RISC machinery is highly conserved and RNAi is critical for defense against virus and pathogenic sequence elements. In order to develop resistance to this process a plant would have to shut down this response. Those plants would be highly susceptible to disease preventing them from gaining a foothold in the population.
List of potential genes of interest for use in this technology:
Essential gene targets
• 3-phosphoshikimate 1-carboxyvinyltransferase (EPSP synthase) AT2G45300
• Chalcone synthase (CHS) AT5G13930
· Starch synthase (SSI) AT5G24300
• Starch synthase 3 (SS3) AT1G11720
• Cellulose synthase 1 (CESA1) AT4G32410
• Cellulose synthase 8 (CESA8) AT4G18780
• Histidinol dehydrogenase (HDH) AT5G63890
· Maternal effect embryo arrest 2/Shikimate dehydrogenase (AthMEE2) AT3G06350
• Isocitrate dehydrogenase (ICDH) AT1G54340
• Hydroxyl methylglutaryl coA reductase 1 (HMG1) AT1G76490
• Pyruvate dehydrogenase El alpha subunit (PDH-E1 ALPHA) AT1G01090
• Branched chain amino acid transaminase 1 (BCAT1) AT1G10060 • Branched chain amino acid transaminase 2 (BCAT2) AT1G10070
• 18s ribosomal RNA (18S rRNA) 1005246134
• Eukaryotic elongation factor (eEF-ΙΒ beta) AT1G30230
• Spliceosome associated protein 130b (SAP130b) AT3G55220
· 2' tRNA phosphotransferase (TRPT) AT2G45330
• Phosphoribosylanthranilate isomerase 1 (PAI1) AT1G07780
• Phytoene desaturase (PDS) AT4G14210
• Dongle (DGL) AT1G05800
Apoptosis gene targets · Beclin 1 (BECLIN1) AT3G61710
• Bax inhibitor 1 (Bl-l) JX481914
• Phosphatidylinositol 3-kinase (PI3K/VPS30) AT1G60490
• Lesion simulating disease 1 (LSD1) AT4G20380
• Accelerated cell death 1 (ACD1) AT3G44880
· Autophagy related protein 3 (ATG3) AT5G61500
• Autophagy related protein 7 (ATG7) AT5G45900
• Accelerated cell death 11 (ACD11) AT2G34690
• Catalase 1 (CAT1) HF564631.1
• Accelerated cell death 2/ Putative red chlorophyll catabolite reductase (ACD2) EU294213.1
• Translationally controlled tumor protein (NbTCTP) AB780363.1
• Jasmonate ZIM domain protein h (JazH) JQ172766.1
• Lethal leaf spot 1-like (LLS1) AF321984.1
• Metacaspase 2 (MCS) AT4G25110 Senescence and Autophagy
• Target of rapamycin (TOR) AT1G50030
• Autophagy 9 (APG9) AT2G31260
• Autophagy 2 (ATG2) AT3G19190
• Autophagy 5 (ATG5) AT5G17290
· Signal responsive 1 (SRI) AT2G22300
• Autophagy 7 (APG7) AT5G45900
• Senescence associated gene (SAG12) AT5G45890
• Phytoalexin deficient (PAD4) AT3G52430
• Constitutive expression of PR genes 5 (CPR5) AT5G64930
· Homologue of yeast autophagy gene 18 (ATG18) AT1G03380 Helper elements
• Tobacco mosaic virus 30kDa movement protein, V01408.1
· Papaya Ringspot virus HCpro peptide, JX448373.1
• Tomato bushy stunt virus P19 suppressor, AJ288943.1
Inducers
• pTRV2, AF406991.1
• pRNAi-GG, JQ085427.1
· TRV Ppk20 RNA1, AF314165.1
All methods described herein can be performed in any suitable order unless otherwise indicated herein or otherwise clearly contradicted by context. The use of any and all examples, or exemplary language (e.g., "such as") provided herein, is intended merely to better illuminate the example embodiments and does not pose a limitation on the scope of the claimed invention unless otherwise claimed. No language in the specification should be construed as indicating any non-claimed element as essential.
Advantages of the exemplary embodiments described herein may be realized and attained by means of the instrumentalities and combinations particularly pointed out in this written description. It is to be understood that the foregoing general description and the following detailed description are exemplary and explanatory only and are not restrictive of the claims below. While example embodiments have been described in detail, the foregoing description is in all aspects illustrative and not restrictive. It is understood that numerous other modifications and variations can be devised without departing from the scope of the example embodiment. For example, other genes may be targeted, such as chloroplast and mitochondrial nuclear encoded genes, trafficking and translocation signal sequences, energy metabolism genes, high level regulatory sequences, regulators of cellulases and cell-wall remodelling enzymes and regulators of apoptosis. The Sequence Listings are incorporated herein by refe
Sequence Listing
SEQ ID NO 1: Actin 2 siRNA-A
5' p-UUGUAGAAAGUGUGAUGCCUU-3' 3'-UUAACAUCUUUCACACUACGG-5'
SEQ ID NO 2: Actin 2 siRNA-B
5' -p-UAAUUCAUAGUUCUUCUCGUU-3' 3'-UUAUUAAGUAUCAAGAAGAGC-5'
SEQIDN03:CHLI siRNA-A
5' -p-UUCCAGUUCCUCUAUCUCCUU-3' 3'-UUAAGGUCAAGGAGAUAGAGG-5'
SEQ ID NO 4: CHLI siRNA-B
5' -p-UUGCAGAAGAAGAUGUUCCUU-3' 3'-UUAACGUCUUCUUCUACAAGG-5'
SEQ ID NO 5: 18SsiRNA-A
5' -p-UUUAUUGUCACUACCUCCCUU-3' 3'-UUAAAUAACAGUGAUGGAGGG-5' SEQ ID NO 6: 18S siRNA-B
5' -p-UUAUCUAAUAAAUGCGUCCUU-3' 3'-U UAAUAGAUUAUUUACGCAGG-5'
SEQ ID NO 7: Actin 2 DNA encoding siRNA-A
5'-AATTGTAGAAAGTGTGATGCCTT-3' 3'-TTAACATCTTTCACACTACGGAA-5'
SEQ ID NO 8: Actin 2 DNA encoding siRNA-B
5'-AATAATTCATAGTTCTTCTCGTT-3' 3'-TTATTAAGTATCAAGAAGAGCAA-5'
SEQ ID NO 9: CHLI DNA encoding siRNA-A
5'-AATTCCAGTTCCTCTATCTCCTT-3' 3'-TTAAGGTCAAGGAGATAGAGGAA-5'
SEQ ID NO 10: CHLI DNA encoding siRNA-B
5'-AATTGCAGAAGAAGATGTTCCTT-3' 3'-TTAACGTCTTCTTCTACAAGGAA-5' SEQ ID NO 11: 18S DNA encoding siRNA-A
5'-AATTTATTGTCACTACCTCCCTT-3' 3'-TTAAATAACAGTGATGGAGGGAA-5'
SEQ ID NO 12: 18S DNA encoding siRNA-B
5'-AATTATCTAATAAATGCGTCCTT-3' 3'-TTAATAGATTATTTACGC AGGAA-5'
SEQ ID NO 13: Synthetic construct targeting CHLIl in A. thaliana, B. rapa, M. truncatula, Z. mays, N. tobacum
ATTCCAACCAGAAGCAGCTGAATCCAAAAGAACATCAACCAAATGATCATCCAAGAGATTAACT TCATCAACATAAAGAATCCCTCTATTAGCTTTAGCCTCGTAACTCAGCATCCCTAACCGTCCCTAC TTGCGCGTGGCCCTGAGGTTAAAGAGAGTGTGTGAATGGAAGGGTTGGAAGAAGGAGAAGAA AG GTA ACGTG A AG G A AG A A ATG C A ATG G A AG A AG G ATA A ACTG G CCTCG C ACTCTTCTTTG A A TCAAACTTCCCTACAGTTGTAGATTTTCCAGTTCCTCTATCTCCCATAATCATAAAAACGAGCTCT TTCCTCAACTATCTTCACTCTCAGCTCTGCATCTCTCACGGTCCCCACTTAGTGAAGCCATTTTGTT TAGAATTTTTCAGTGAAGAAGAAGAAGAAGAATTTTGGGGCAAATGGGGGAGGAGGAAGGTT TTGAGGAAGGAGAAGAGAGTGAAGGAGAAGCCCAGATTGCAG
SEQ ID NO 14: Synthetic construct targeting mGFP5er, Acdll, Acd2, Catl, Cat2, and Lsdl in B. rapa pekinensis.
GTG C A ACTCG CTG ATC ATTATC A AC A A A ATACTCCA ATTG G CG ATG GCCCCGCAGAGAGGCCGC TTCGTA A A ATCTC A ACTG CTTTC A A AG A ACTAG C AG CC ACCGTG AG CTCG CCG AGTCCTG A AGT CTCCGTG G CTC AGTTCTCTC ACG CTTG CTCTCTCGTCTCG C TCT TTTG GTTG CCTCG G G ATCG C CTTC A AG ATATTG AG G CA A ACTGTGTA AG G A A AG CTG GTAGTC ATACTAG A A ACCTTTTG AG G G TAGAGCTAATGGTTGATCTCATGTCGACGCTGGAGGATCGCCTCCACTCTCAAAGAGAGTGGTG GGAGAAGAAGAGAAACTGGAGCTGGAAAGAAGAGATAAAAGCTTCAGAAGGAAGAGCATCA CCACCAACTCTG GTG CTCCTGTATG G AACA ACAACTCCTCCATG ACCGTTG G ACCCAG AG GTCC
CCACGCGCTTAAACCAAACCCTAAATCTCACATTCAAGAAAACTGAACCTCACTTGTGCTGACTT CCTCAGAGCTCCAGGTGTTCAAACTCCGGTCATTCCTGTCCGCTGCGCCGAGAAAGTTCCTATCC CTACCAAATCCTACACTG G A ATAAG AACAAATGTATCCTAG AG G AG CAACCAATGTG CGTTGTG CGTTATGTCACATTGTCAACATGGTTCCTCTTCATCCTACCCTTACGGTGCATCATCTGTTAAATG CGCTGTTTGCCAGTTTGTTACTAACGTTAACAAAA ITACCCTTAAATTTATTTGCACTACTGGAA AACTACCTGTTCCATGGCCAACACTTGTCACTACTTTCTCTTATG
SEQ ID NO 15: Synthetic construct targetingAtg5, Catl, Jazh, MC2, Beclinl in Nicotiana sylvestris.
TCTGACCAGGTCTCATCGTGTCGACGGAGGAAGTGAAGCACAGAAATGGAACAAAAATAAAAC CTTG G G GTACTCTTTG ATCTTCTTTG CA AG A ATGTA ATG A ATATCCCTG ATTACTTTCTTC ATATA
CCGTCCGTCAAGTG CCTTCAATTG CTG AAG CCAAATCCTA AATCCCATACCACAAG ATTACAGG C ATAGAGTCTCGAAGCATTATTAATAACTCATTGGCGATCAAATTAAGATGAATGTCAGTTTATTA AAGGAAAAAGTAAAGAACAAGAACAAAATCATTTGGCACTTTTCATACTACAACCATCGACAAA ATTAGCTGCTGCCACTGCTTCTTTGACATGTAATACGGGAGACTCACTGCTATTTCATTATTTGGC TCAAGGCAAAGGAATTAGGAGATGAAGTGGATGGATATGATGAAAGCTCCTCCGCCACCACCT AATCAATACAATAG CAG CAGTAGTACTAATAACCTTAG CCA AAG CA AAG AAATCAG AG AAG AA G AAG AG CGAAAAAG CTTG CCTTCTTCTCCATACAATCCG GCCAAAGTTTCAATATCCG G ATCAT G G AC ACCA ATA AC A ATACTTATAG G ATC ACTATAC AG C A A ACG AG ATG C A ATTTTAG CTA AG AC AGAAGTTTCACAAGCTCATTTAGAGCTGTTAAAGAAGACTAATGAAGCAGCAATAGAAGAAAC AGAGAAGCAATCTCGAGCTCCTGAGACCTGGTCCTC
SEQ I D NO 16: Synthetic construct targeting Acd2, BI-1, LIsl, NtTCTP, Beclinl in Nicotiana sylvestris. TCTGACCAGGTCTCATCGTGTCGACATGGTTGAACTTATATCGACTGTGGAGGAAACACAATTA GACGAACAGAG AC A AUG AC AG AG G ATG A A AGTTG G CA A AG AG G G ATA A A ATA ATTA AG A AT A AG AC A ATTG AG ATAG AATG G AGTCTTG CAC ATCGTTCTTC A ATTTG G AGTTACG ATTCTCTTA A G AACTTCCG CCAG ATCTCTCCCTTTGTTCAAACTCATCTCAAAA ATCTG GTATCTCTATCCTTTTG C TCAATTTCATCACATTACCCAATGGCTTCTTCTCTATTATACTCCACCACCAACTCCTCAAATTCTT TCACTTTTCATTCTTCTCTCCCTACTAAAACCCAATTTGGGTGCTGATGAAGATGAAGGTGGAGA AGCCCAAGAAGCATTTAAAAAGAACATTGAATCAGCAACTAAGTTCCTCATAGTACTTCCTGAA CTGTTTCTTA ATGTTATAAG CAG CAGTAGTACTAATAACCTTAG CCA AAG CAA AG A AATCAG AG A AG A AG A AG AG CG A A A A AG CTTG CCTTCTTCTCC ATAC A ATCCG G CC A A AGTTTC A ATATCCG G ATCATGGACACCAATAACAATACTTATAGGATCACTATACAGCAAACTGTCTGATAAACTTGATA AGGACATACAAGCCTACGAAGGAGAAATTG AAG ATAG AACGGAACG ATT AACAACTTTGCCGA CTTTGCAAATTCAACTCGAGCTCCTGAGACCTGGTCCTC
SEQ ID NO 17: Synthetic construct consisting of CaMV35s promoter, TRV Ppk20 RNAl, ribozyme sequence and NOS terminator
AAG CTTG CATG CCTG CAGGTCAACATG GTG G AGCACG ACACTCTCGTCTACTCCA AG AATATCA
AAG ATAC AGTCTC AG A AG ACC AG AG G G CTATTG AG ACTTTTC A AC A A AG G GTA ATATCG G G A A
ACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTCATCGAAAGGACAGTAGAAAAGGAAGA
TG G CTTCTAC A A ATG CC ATC ATTG CG ATA A AG G A A AG G CTATCGTTC A AG ATG CCTCTACCG AC
AGTGGTCCCAAAGATGGACCCCCACCCACGAGGAACATCGTGGAAAAAGAAGACGTTCCAACC
ACGTCTTCAAAGCAAGTGG ATTG ATGTGATGGTCAACATGGTGG AGCACG ACACTCTCGTCTAC
TCCAAGAATATCAAAGATACAGTCTCAGAAGACCAGAGGGCTATTGAGACTTTTCAACAAAGG
GTAATATCGGGAAACCTCCTCGGATTCCATTGCCCAGCTATCTGTCACTTCATCGAAAGGACAGT
AGAAAAGGAAGATGGCTTCTACAAATGCCATCATTGCGATAAAGGAAAGGCTATCGTTCAAGA
TGCCTCTACCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAACATCGTGGAAAAAGA
AGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGAT
GACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGA
G AG G ATA A A AC ATTTC A ATCCTTTG AACGCGGTAGAACGTG CTA ATTG G ATTTTG GTG AG A ACG
CG GTAG AACGTACTTATCACCTACAGTmATmGTTmCTTTTTG GTTTAATCTATCCAG CTTA GTACCGAGTGGGGGAAAGTGACTGGTGTGCCTAAAACCTTTTCTTTGATACTTTGTAAAAATAC
ATACAGATACAATGGCGAACGGTAACTTCAAGTTGTCTCAATTGCTCAATGTGGACGAGATGTC
TGCTGAGCAGAGGAGTCATTTCTTTGACTTGATGCTGACTAAACCTGATTGTGAGATCGGGCAA
ATGATGCAAAGAGTTGTTGTTGATAAAGTCGATGACATGATTAGAGAAAGAAAGACTAAAGAT
CCAGTGATTGTTCATGAAGTTCTTTCTCAGAAGGAACAGAACAAGTTGATGGAAATTTATCCTG
AATTCAATATCGTGTTTAAAGACGACAAAAACATGGTTCATGGGTTTGCGGCTGCTGAGCGAAA
ACTACAAGCTTTATTGCTTTTAGATAGAGTTCCTGCTCTGCAAGAGGTGGATGACATCGGTGGT
CAATGGTCGTTTTGGGTAACTAGAGGTGAGAAAAGGATTCATTCCTGTTGTCCAAATCTAGATA
TTCG G G ATG ATC AG AG AG A A ATTTCTCG AC AG ATATTTCTTACTG CTATTG GTG ATC A AG CTAG
AAGTGGTAAGAGACAGATGTCGGAGAATGAGCTGTGGATGTATGACCAATTTCGTGAAAATAT
TG CTGCG CCTAACG CGGTTAG GTG CAATAATACATATCAG G GTTGTACATGTAGG GGTTTTTCT
GATGGTAAGAAGAAAGGCGCGCAGTATGCGATAGCTCTTCACAGCCTGTATGACTTCAAGTTG
A A AG ACTTG ATG G CTACTATG GTTG AG A AG A A A ACTA A AGTG GTTC ATG CTG T ATG TTTTTG
CTCCTGAAAGTATGTTAGTGGACGAAGGTCCATTACCTTCTGTTGACGGTTACTACATGAAGAA
GAACGGGAAGATCTATTTCGGTTTTGAGAAAGATCCTTCCTTTTCTTACATTCATGACTGGGAAG
AGTACAAGAAGTATCTACTGGGGAAGCCAGTGAGTTACCAAGGGAATGTGTTCTACTTCGAAC
CGTGGCAGGTGAGAGGAGACACAATGC I I I I I I CGATCTACAGGATAGCTGGAGTTCCGAGGA
GGTCTCTATCATCGCAAGAGTACTACCGAAGAATATATATCAGTAGATGGGAAAACATGGTTGT
TGTCCCAATTTTCGATCTGGTCGAATCAACGCGAGAGTTGGTCAAGAAAGACCTGTTTGTAGAG
A A AC A ATTC ATG G AC A AGTGTTTG G ATTAC ATAG CTAG GTTATCTG ACC AG C AG CTG ACC ATA A
G C A ATGTTA A ATC ATACTTG AGTTC A A ATA ATTG G GTCTTATTC ATA A ACG GGGCGGCCGTGAA
GAACAAGCAAAGTGTAGATTCTCGAGATTTACAGTTGTTGGCTCAAACTTTGCTAGTGAAGGAA
CAAGTGGCGAGACCTGTCATGAGGGAGTTGCGTGAAGCAATTCTGACTGAGACGAAACCTATC
ACGTCATTGACTGATGTGCTGGGTTTAATATCAAGAAAACTGTGGAAGCAGTTTGCTAACAAGA
TCGCAGTCGGCGGATTCGTTGGCATGGTTGGTACTCTAATTGGATTCTATCCAAAGAAGGTACT
AACCTGGGCGAAGGACACACCAAATGGTCCAGAACTATGTTACGAGAACTCGCACAAAACCAA
GGTGATAGTATTTCTGAGTGTTGTGTATGCCATTGGAGGAATCACGCTTATGCGTCGAGACATC
CGAGATGGACTGGTGAAAAAACTATGTGATATGTTTGATATCAAACGGGGGGCCCATGTCTTA
GACGTTGAGAATCCGTGCCGCTATTATGAAATCAACGATTTCTTTAGCAGTCTGTATTCGGCATC TGAGTCCGGTGAGACCGTTTTACCAGATTTATCCGAGGTAAAAGCCAAGTCTGATAAGCTATTG
CAGCAGAAGAAAGAAATCGCTGACGAGTTTCTAAGTGCAAAATTCTCTAACTATTCTGGCAGTT
CGGTGAGAACTTCTCCACCATCGGTGGTCGGTTCATCTCGAAGCGGACTGGGTCTGTTGTTGGA
AGACAGTAACGTGCTGACCCAAGCTAGAGTTGGAGTTTCAAGAAAGGTAGACGATGAGGAGAT
CATGGAGCAGTTTCTGAGTGGTCTTATTGACACTGAAGCAGAAATTGACGAGGTTGTTCCAGCC
TTTTCAGCTGAATGTGAAAGAGGGGAAACAAGCGGTACAAAGGTGTTGTGTAAACCTTTAACG
CCACCAGGATTTGAGAACGTGTTGCCAGCTGTCAAACCTTTGGTCAGCAAAGGAAAAACGGTCA
AACGTGTCGATTACTTCCAAGTGATGGGAGGTGAGAGATTACCAAAAAGGCCGGTTGTCAGTG
GAGACGATTCTGTGGACGCTAGAAGAGAGTTTCTGTACTACTTAGATGCGGAGAGAGTCGCTC
A A A ATG ATG A A ATTATGT TCTGTATCGTG ACTATTCG AG AG G AGTTATTCG A ACTG G AG GTC A
GAATTACCCGCACGGACTGGGAGTGTGGGATGTGGAGATGAAGAACTGGTGCATACGTCCAGT
GGTCACTGAACATGCTTATGTGTTCCAACCAGACAAACGTATGGATGATTGGTCGGGATACTTA
GAAGTGGCTGTTTGGGAACGAGGTATGTTGGTCAACGACTTCGCGGTCGAAAGGATGAGTGAT
TATGTCATAGTTTGCGATCAGACGTATCTTTGCAATAACAGGTTGATCTTGGACAATTTAAGTGC
CCTGGATCTAGGACCAGTTAACTGTTCTTTTGAATTAGTTGACGGTGTACCTGGTTGTGGTAAGT
CGACAATGATTGTCAACTCAGCTAATCCTTGTGTCGATGTGGTTCTCTCTACTGGGAGAGCAGC
A ACCG ACG ACTTG ATCG AG AG ATTCG CG AG C A A AG GTTTTCC ATG CA A ATTG A A A AG G AG AGT
GAAGACG GTTGATTC I I I I I I GATG CATTGTGTTG ATG GTTCTTTAACCG G AG ACGTGTTG CATT
TCG ATG A AG CTCTC ATG G CCCATG CTG GTATG GTGTACTTTTG CG CTCAGATAG CTGGTG CTAA
ACGATGTATCTGTCAAGGAGATCAGAATCAAATTTCTTTCAAGCCTAGGGTATCTCAAGTTGATT
TG AG GTTTTCTAGTCTG GTCG G A A AGTTTG ACATTGTTAC AG A A A A A AG AG A AACTTAC AG A AG
TCCAGCAGATGTGGCTGCCGTATTGAACAAGTACTATACTGGAGATGTCAGAACACATAACGCG
ACTGCTAATTCGATGACGGTGAGGAAGATTGTGTCTAAAGAACAGGTTTCTTTGAAGCCTGGTG TC AGTAC ATA ACTTTC TTC AGTCTG AG A AG A AG G AGTTG GTA A ATTTGTTG G C ATTG AG G A A
AGTGGCAGCTAAAGTGAGTACAGTACACGAGTCGCAAGGAGAGACATTCAAAGATGTAGTCCT
AGTCAGGACGAAACCTACGGATGACTCAATCGCTAGAGGTCGGGAGTACTTAATCGTGGCGTT
GTCGCGTCACACACAATCACTTGTGTATGAAACTGTGAAAGAGGACGATGTAAGCAAAGAGAT
CAGGGAAAGTGCCGCGCTTACGAAGGCGGCTTTGGCAAGA I I I I I I GTTACTGAGACCGTCTTA
TG ACG GTTTCG GTCTAG GTTTG ATGTCTTTAG AC ATC ATG A AG G G CCTTG CG CCGTTCC AG ATTC AG GTACG ATTACG G ACTTG GAG ATGTG GTACG ACG CTTTGTTTCCG G G A A ATTCGTTA AG AG AC
TCAAGCCTAGACGGGTATTTGGTGGCAACGACTGATTGCAATTTGCGATTAGACAATGTTACGA
TC A A A AGTG G A A ACTG G A A AG AC A AGTTTG CTG A A A A AG A A ACGTTTCTG A A ACCG GTTATTC
GTACTGCTATGCCTGACAAAAGGAAGACTACTCAGTTGGAGAGTTTGTTAGCATTGCAGAAAA
GGAACCAAGCGGCACCCGATCTACAAGAAAATGTGCACGCAACAGTTCTAATCGAAGAGACGA
TGAAGAAGTTGAAATCTGTTGTCTACGATGTGGGAAAAATTCGGGCTGATCCTATTGTCAATAG
AGCTCAAATGGAGAGATGGTGGAGAAATCAAAGCACAGCGGTACAGGCTAAGGTAGTAGCAG
ATGTG AGAGAGTTACATGAAATAG ACT ATTCGTCTTACATGTATATGATCAAATCTGACGTGAA
ACCTAAGACTGATTTAACACCGCAATTTGAATACTCAGCTCTACAGACTGTTGTGTATCACGAGA
AGTTGATCAACTCGTTGTTCGGTCCAATTTTCAAAGAAATTAATGAACGCAAGTTGGATGCTATG
CAACCACATTTTGTGTTCAACACGAGAATGACATCGAGTGATTTAAACGATCGAGTGAAGTTCT
TAAATACGGAAGCGGCTTACGACTTTGTTGAGATAGACATGTCTAAATTCGACAAGTCGGCAAA
TCG CTTCC ATTTAC A ACTG C AG CTG G AG ATTTAC AG GTTATTTG G G CTAG ATG AGTGGGCGGCC
TTCCTTTGGGAGGTGTCGCACACTCAAACTACTGTGAGAGATATTCAAAATGGTATGATGGCGC
ATATTTG GTACCA AC A A A AG AGTG G AG ATG CTG ATACTTATA ATG CA A ATTC AG ATAG A AC ACT
GTGTGCACTCTTGTCTGAATTACCATTGGAGAAAGCAGTCATGGTTACATATGGAGGAGATGAC
TCACTGATTGCGTTTCCTAGAGGAACGCAGTTTGTTGATCCGTGTCCAAAGTTGGCTACTAAGTG
GAATTTCGAGTGCAAGATTTTTAAGTACGATGTCCCAATGTTTTGTGGGAAGTTCTTGCTTAAGA
CGTCATCGTGTTACG AGTTCGTG CCAGATCCG GTAAAAGTTCTG ACG AAGTTG GG G A AAAAG A
GTATAAAG G ATGTG CAACATTTAG CCG AG ATCTACATCTCG CTG AATG ATTCCAATAG AG CTCTT
GGGAACTACATGGTGGTATCCAAACTGTCCGAGTCTGTTTCAGACCGGTATTTGTACAAAGGTG
ATTCTGTTCATGCG CTTTGTG CGCTATG G AAG CATATTAAG AGTTTTACAG CTCTGTGTACATTA
TTCCG AG ACG A A A ACG ATA AG G A ATTG A ACCCG G CTA AG GTTG ATTG G A AG A AG G C AC AG AG
AGCTGTGTCAAACTTTTACGACTGGTAATATGGAAGACAAGTCATTGGTCACCTTGAAGAAGAA
G ACTTTCG A AGTCTC A A AATTCTCA A ATCTAG G G G CC ATTG A ATTGTTTGTG GACGGTAGGAGG
AAGAGACCGAAGTATTTTCACAGAAGAAGAGAAACTGTCCTAAATCATGTTGGTGGGAAGAAG
AGTGAACACAAGTTAGACGTTTTTGACCAAAGGGATTACAAAATGATTAAATCTTACGCGTTTCT
AAAG ATAGTAG GTGTACAACTAGTTGTA ACATCACATCTACCTG CAG ATACG CCTG G GTTCATT
CAAATCGATCTGTTGGATTCGAGACTTACTGAGAAAAGAAAGAGAGGAAAGACTATTCAGAGA TTCAAAGCTCGAGCTTGCGATAACTGTTCAGTTGCGCAGTACAAGGTTGAATACAGTATTTCCAC
ACAGGAGAACGTACTTGATGTCTGGAAGGTGGGTTGTATTTCTGAGGGCGTTCCGGTCTGTGA
CG GTACATACCCTTTCAGTATCG AAGTGTCG CTAATATG G GTTGCTACTG ATTCG ACTAG G CG CC
TCAATGTGGAAGAACTGAACAGTTCGGATTACATTGAAGGCGATTTTACCGATCAAGAGGTTTT
CGGTGAGTTCATGTCTTTGAAACAAGTGGAGATGAAGACGATTGAGGCGAAGTACGATGGTCC
TTACAGACCAGCTACTACTAGACCTAAGTCATTATTGTCAAGTGAAGATGTTAAGAGAGCGTCT
AATAAGAAAAACTCGTCTTAATGCATAAAGAAATTTATTGTCAATATGACGTGTGTACTCAAGG
GTTGTGTGAATGAAGTCACTGTTCTTGGTCACGAGACGTGTAGTATCGGTCATGCTAACAAATT
GCGAAAGCAAGTTGCTGACATGGTTGGTGTCACACGTAGGTGTGCGGAAAATAATTGTGGATG
GTTTGTCTGTGTTGTTATCAATGATTTTACTTTTGATGTGTATAATTGTTGTGGCCGTAGTCACCT
TGAAAAGTGTCGTAAACGTGTTGAAACAAGAAATCGAGAAATTTGGAAACAAATTCGACGAAA
TCAAGCTGAAAACATGTCTGCGACAGCTAAAAAGTCTCATAATTCGAAGACCTCTAAGAAGAAA
TTCAAAGAGGACAGAGAATTTGGGACACCAAAAAGATTTTTAAGAGATGATGTTCCTTTCGGGA
TTGATCGTTTGTTTGCTTTTTGATTTTATTTTATATTGTTATCTGTTTC
GATTGGCGCTTGGCCGACTCATTGTCTTACCATAGGGGAACGGACTTTGTTTGTGTTGTTATTTT ATTTGTATTTTATTAAAATTCTCAATG ATCTG AAAAGGCCTCG AG G CTAAG AG ATTATTG GG G G GTGAGTAAGTACTTTTAAAGTGATGATGGTTACAAAGGCAAAAGGGGTAAAACCCCTCGCCTAC GTAAGCGTTATTACGCCCGTCTGTACTTATATCAGTACACTGACGAGTCCCTAAAGGACGAAAC GGGCCCCTCGAATTTCCCCGATGGGCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATC CTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTA AC ATGTA ATG CATG ACGTTATTTATG AG ATG G GTTTTTATG ATTAG AGTCCCG C A ATTATAC ATT TAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCA TCTATGTTACTAG ATCG G G
SEQ ID NO 18: TRV RNA2-MCS for transcription in plant cells
ATA A A AC ATTG CACCTATG GTGTTG CCCTGGCTGGG GTATGTC AGTG ATCG C AGTAG A ATGTAC TAATTGACAAGTTGGAGAATACGGTAGAACGTCCTTATCCAACACAGCCTTTATCCCTCTCCCTG ACGAGGTTTTTGTCAGTGTAATATTTCTTTTTGAACTATCCAGCTTAGTACCGTACGGGAAAGTG ACTGGTGTGCTTATCTTTGAAATGTTACTTTGGGTTTCGGTTCTTTAGGTTAGTAAGAAAGCACT TGTCTTCTCATACAAAGGAAAACCTGAGACGTATCGCTTACGAAAGTAGCAATGAAAGAAAGGT
GGTGGTTTTAATCGCTACCGCAAAAACGATGGGGTCGTTTTAATTAACTTCTCCTACGCAAGCGT TA A ACG G ACGTTG G G GTTTTG TAGTTTCTTTAG AG A A A ACTAG CTA AGTCTTTA ATGTTATC A
TTAG AG ATG G C ATA A ATATA ATACTTGTGTCTG CTG ATA AG ATC ΑΤΠΤΑ ATTTG G ACG ATTAG A
CTTGTTGAACTACAGGTTACTGAATCACTTGCGCTAATCAACATGGGAGATATGTACGATGAAT
CATTTGACAAGTCGGGCGGTCCTGCTGACTTGATGGACGATTCTTGGGTGGAATCAGTTTCGTG
GAAAGATCTGTTGAAGAAGTTACACAGCATAAAATTTGCACTACAGTCTGGTAGAGATGAGATC
ACTG G GTTACTAG CG G C ACTG A ATAG AC AGTGTC TTATTC ACC ATATG AG C AGTTTCC AG ATA
AGAAGGTGTATTTCCTTTTAGACTCACGGGCTAACAGTGCTCTTGGTGTGATTCAGAACGCTTCA
GCGTTCAAGAGACGAGCTGATGAGAAGAATGCAGTGGCGGGTGTTACAAATATTCCTGCGAAT
CCAAACACAACGGTTACGACGAACCAAGGGAGTACTACTACTACCAAGGCGAACACTGGCTCG
ACTTTGGAAGAAGACTTGTACACTTATTACAAATTCGATGATGCCTCTACAGCTTTCCACAAATC
TCTAACTTCGTTAGAGAACATGGAGTTGAAGAGTTATTACCGAAGGAACTTTGAGAAAGTATTC
GGGATTAAGTTTGGTGGAGCAGCTGCTAGTTCATCTGCACCGCCTCCAGCGAGTGGAGGTCCG
ATACGTC TA ATCCCTAG G G ATTTA AG G ACGTG A ACTCTGTTG AG ATCTCTGTG A A ATTC AG AG
GGTGGGTGATACCATATTCACTGATGCCATTAGCGACATCTAAATAGGGCTAATTGTGACTAAT
TTGAGGGAATTTCCTTTACCATTGACGTCAGTGTCGTTGGTAGCATTTGAGTTTCGCAATGCACG
AATTACTTAGGAAGTGGCTTGACGACACTAATGTGTTATTGTTAGATAATGGTTTGGTGGTCAA
GGTACGTAGTAGAGTCCCACATATTCGCACGTATGAAGTAATTGGAAAGTTGTCAGTTTTTGAT
A ATTCA TG G G AG ATG ATACG TGTTTG AG G G A A A AGTAG AG A ACGTATTTGTTTTTATGTTC A
GGCGGTTCTTGTGTGTCAACAAAGATGGACATTGTTACTCAAGGAAGCACGATGAGCTTTATTA
TTACGGACGAGTGGACTTAGATTCTGTGAGTAAGGTTACCGAATTCTCTAGAAGGCCTCCATGG
GGATCCGGTACCGAGCTCACGCGTCTCGAGGCCCGGGCATGTCCCGAAGACATTAAACTACGG
TTCTTTAAGTAGATCCGTGTCTGAAGTTTTAGGTTCAATTTAAACCTACGAGATTGACATTCTCG
ACTGATCTTGATTGATCGGTAAGTCTTTTGTAATTTAATTTTC
AT TGTTTCTGTGTATAGACTGTTTGAGATCGGCGTTTGGCCGA TCATTGTCTTACCATAGGGG AACGGACTTTGTTTGTGTTGTTATTTTATTTGTATTTTATTAAAATTCTCAACGATCTGAAAAAGC CTCGCGGCTAAGAGATTGTTGGGGGGTGAGTAAGTACTTTTAAAGTGATGATGGTTACAAAGG CAAAAGGGGTAAAACCCCTCGCCTACGTAAGCGTTATTACGCCCGTCTGTACTTATATCAGTACA CTGACGAGTCCCTAAAGGACGAAACGGGAGAACGCTAGCCACCACCACCACCACCACGTGTGA
ATTACAGGTGACCAGCTCGAATTTCCCCGATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGAT
TGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTA
ATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATT
ATAC ATTTA ATACG CG ATAG A A A ACA A A ATATAG CG CG C A A ACTAG G ATA A ATTATCG CG CG CG
GTGTCATCTATGTTACTAGATCGGGAATTAAACTATCAGTGTTTGACAGGATATATTGGCGGGT
AAACCTA AG AG AAA AG AG CGTTTATTAG A ATAACG G ATATTTAAA AGG G CGTGAAAAG GTTTA
TCCGTTCGTCCATTTGTATGTGCATGCCAACCACAGGGTTCCCCTCGGGATCAAAGTACTTTGAT
CCAACCCCTCCG CTG CTATAGTG CAGTCGG CTTCTG ACGTTCAGTG CAG CCGTCTTCTG A AAACG
ACATGTCGCACAAGTCCTAAGTTACG CG ACAG G CTG CCG CCCTG CCCTTTTCCTG G CGTTTTCTT
GTCGCGTGTTTTAGTCGCATAAAGTAGAATACTTGCGACTAGAACCGGAGACATTACGCCATGA
AC A AG AGCGCCGCCG CTG G CCTG CTG G G CTATG CCCG CGTC AG CACCGACGACCAGG ACTTG A
CC A ACC A ACG G G CCG A ACTG CACGCGGCCGG CTG C ACC A AG CTGTTTTCCG AG A AG ATC ACCG
GCACCAGGCGCGACCGCCCGGAGCTGGCCAGGATGCTTGACCACCTACGCCCTGGCGACGTTG
TGACAGTGACCAGGCTAGACCGCCTGGCCCGCAGCACCCGCGACCTACTGGACATTGCCGAGC
GCATCCAGGAGGCCGGCGCGGGCCTGCGTAGCCTGGCAGAGCCGTGGGCCGACACCACCACG
CCG GCCG G CCG CATG GTGTTG ACCGTGTTCG CCG G CATTG CCG AGTTCG AGCGTTCCCTAATCA
TCGACCGCACCCGGAGCGGGCGCGAGGCCGCCAAGGCCCGAGGCGTGAAGTTTGGCCCCCGC
CCTACCCTCACCCCGGCACAGATCGCGCACGCCCGCGAGCTGATCGACCAGGAAGGCCGCACC
GTG A A AG AG G CG G CTG C ACTG CTTG G CGTG C ATCG CTCG ACCCTGTACCG CG C ACTTG AG CG C
AGCGAGGAAGTGACGCCCACCGAGGCCAGGCGGCGCGGTGCCTTCCGTGAGGACGCATTGAC
CGAGGCCGACGCCCTGGCGGCCGCCGAGAATGAACGCCAAGAGGAACAAGCATGAAACCGCA
CCAGGACGGCCAGGACGAACCGTTTTTCATTACCGAAGAGATCGAGGCGGAGATGATCGCGGC
CGGGTACGTGTTCGAGCCGCCCGCGCACGTCTCAACCGTGCGGCTGCATGAAATCCTGGCCGG
TTTGTCTG ATG CCA AG CTG G CG G CCTG G CCG G CC AG CTTG GCCG CTG A AG A A ACCG AG CG CCG
CCGTCTAAAAAGGTGATGTGTATTTGAGTAAAACAGCTTGCGTCATGCGGTCGCTGCGTATATG
ATGCGATGAGTAAATAAACAAATACGCAAGGGGAACGCATGAAGGTTATCGCTGTACTTAACC
AGAAAGGCG G GTC AG G C A AG ACG ACC ATCG C A ACCC ATCTAG CCCG CG CCCTG C A ACTCG CCG
G G G CCG ATGTTCTGTTAGTCG ATTCCG ATCCCC AG G G C AGTG CCCG CG ATTG GGCGGCCGTGC GGGAAGATCAACCGCTAACCGTTGTCGGCATCGACCGCCCGACGATTGACCGCGACGTGAAGG CCATCGGCCGGCGCGACTTCGTAGTGATCGACGGAGCGCCCCAGGCGGCGGACTTGGCTGTGT CCG CG ATC A AG G CAG CCG ACTTCGTG CTG ATTCCG GTG C AG CCA AG CCCTTACG AC ATATG G G C CACCGCCGACCTGGTGGAGCTGGTTAAGCAGCGCATTGAGGTCACGGATGGAAGGCTACAAGC G G CCTTTGTCGTGTCG CG G G CG ATC A A AG G CACG CG CATCG G CG GTG AG GTTG CCG AG G CG CT GGCCGGGTACGAG CTG CCC ATTCTTG AGTCCCGTATC ACG CAGCGCGTGAG CTACCC AG G C ACT GCCGCCGCCGGCACAACCGTTCTTGAATCAGAACCCGAGGGCGACGCTGCCCGCGAGGTCCAG G CG CTG G CCG CTG A A ATTA A ATC A A A ACTC ATTTG AGTTA ATG AG GTA A AG AG A A A ATG AG C A A A AG CAC A A AC ACG CTA AGTG CCG G CCGTCCG AG CG CACG CAG CAG C A AG G CTG CA ACGTTG G CCAGCCTGGCAGACACGCCAGCCATGAAGCGGGTCAACTTTCAGTTGCCGGCGGAGGATCACA CCAAGCTGAAGATGTACGCGGTACGCCAAGGCAAGACCATTACCGAGCTGCTATCTGAATACAT CG CGCAG CTACCAG AGTAAATG AG C A A ATG A ATA AATG AGTAG ATG A ATTTTAG CG G CTA AAG G AG G CG G CATG G AAAATCAAG AACA ACCAG G CACCG ACG CCGTG G AATG CCCCATGTGTG G A G G A ACG G G CG GTTG GCCAGGCGTAAGCGG CTG G GTTGTCTG CCG G CCCTG C A ATG G C ACTG G AACCCCCAAGCCCGAGGAATCGGCGTGACGGTCGCAAACCATCCGGCCCGGTACAAATCGGCG CGGCGCTGGGTGATGACCTGGTGGAGAAGTTGAAGGCCGCGCAGGCCGCCCAGCGGCAACGC ATCG AG G C AG A AG C ACG CCCCG GTG A ATCGTG GCAAGCGGCCG CTG ATCG A ATCCG C A A AG A ATCCCGGCAACCGCCGGCAGCCGGTGCGCCGTCGATTAGGAAGCCGCCCAAGGGCGACGAGC AACCAGA I I I I I I CGTTCCGATG CTCTATG ACGTG GG CACCCG CG ATAGTCG CAG CATCATG G A CGTGGCCGTTTTCCGTCTGTCGAAGCGTGACCGACGAGCTGGCGAGGTGATCCGCTACGAGCTT CCAGACGGGCACGTAGAGGTTTCCGCAGGGCCGGCCGGCATGGCCAGTGTGTGGGATTACGA CCTG GTACTG ATG G CG GTTTCCC ATCTA ACCG A ATCC ATG A ACCG ATACCG GGAAGGGAAGGG AGACAAGCCCGGCCGCGTGTTCCGTCCACACGTTGCGGACGTACTCAAGTTCTGCCGGCGAGCC G ATG G CG G AAAG CAG AA AG ACG ACCTGGTAG AAACCTG CATTCGGTTAA ACACCACG CACGTT G CC ATG C AG CGTACG A AG A AG G CCA AG A ACG G CCG CCTG GTG ACG GTATCCG AG G GTG AAG C CTTG ATTAG CCG CTAC A AG ATCGTA A AG AG CG A A ACCG GGCGGCCGG AGTAC ATCG AG ATCG A G CTAG CTG ATTG G ATGTACCG CG AG ATCACAG A AG G C A AG AACCCGG ACGTG CTG ACG GTTC A CCCCG ATTACTTTTTG ATCG ATCCCGG CATCG G CCGTTTTCTCTACCG CCTG GCACG CCG CGCCG CAG G C A AG G C AG A AG CC AG ATG GTTGTTC A AG ACG ATCTACG A ACG C AGTG G C AG CG CCG G A GAGTTCAAGAAGTTCTGTTTCACCGTGCGCAAGCTGATCGGGTCAAATGACCTGCCGGAGTACG ATTTG AAGGAGGAGGCGGGGCAGG CTG G CCCG ATC TAGTC ATG CG CTACCG C A ACCTG ATCG AG G G CG A AG C ATCCG CCG GTTCCTA ATGTACG G AG C AG ATG CTAG G G CA A ATTG CC TAG C AG GGGAAAAAGGTCGAAAAGGTCTCTTTCCTGTGGATAGCACGTACATTGGGAACCCAAAGCCGT ACATTG G G AACCG G A ACCCGTACATTG G G A ACCCA AAGCCGTACATTG G G A ACCG GTCACACA TGTAAGTGACTGATATAAAAGAGAAAAAAGGCGATTTTTCCGCCTAAAACTCTTTAAAACTTATT A A A ACTCTTA A A ACCCG C TG G C TGTG C ATA ACTGTCTG GCCAGCGCACAGCCGAAGAG CTG C A A A A AG CG CCTACCCTTCG GTCG CTG CG CTCCCTACG CCCCG CCG CTTCG CGTCGG CCTATCG C G G CCG CTG G CCG CTC A A A A ATG G CTG G CCTACG G CC AG G C A ATCTACC AG GGCGCGGACAAGC CGCGCCGTCGCCACTCGACCGCCGGCGCCCACATCAAGGCACCCTGCCTCGCGCGTTTCGGTGA TG ACG GTG A A A ACCTCTG AC AC ATG C AG CTCCCG GAG ACG GTC AC AG CTTGTCTGTA AG CG G A TGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGCGGGTGTCGGGGCGCAG CCATGACCCAGTCACGTAGCGATAGCGGAGTGTATACTGGCTTAACTATGCGGCATCAGAGCA G ATTGTACTG AG AGTG CACCATATG CG GTGTG AAATACCG CACAG ATG CGTA AG G AG A AAATA CCG CATC AG G CG CTCTTCCG CTTCCTCG CTC ACTG ACTCG CTG CG CTCG GTCGTTCG G CTG CG G C GAGCGGTATCAGCTCACTCAAAGGCGGTAATACGGTTATCCACAGAATCAGGGGATAACGCAG GAAAGAACATGTGAGCAAAAGGCCAGCAAAAGGCCAGGAACCGTAAAAAGGCCGCGTTGCTG GCGTTTTTCCATAGGCTCCGCCCCCCTGACGAGCATCACAAAAATCGACGCTCAAGTCAGAGGT GGCGAA ACCCG AC AG G ACTATA A AG ATACCAG G CGTTTCCCCCTG G A AG CTCCCTCGTG CG CTC TCCTGTTCCG ACCCTG CCG CTTACCG G ATACCTGTCCG CCTTTCTCCCTTCG G G A AG CGTG G CG C TTTCTCATAG CTCACG CTGTAG GTATCTCAGTTCG GTGTAG GTCGTTCG CTCC A AG CTG GGCTGT GTG C ACG A ACCCCCCGTTC AG CCCG ACCG CTG CG CCTT ATCCG GTA ACT ATCGTCTTG AGTCC A A CCCGGTAAGACACGACTTATCGCCACTGGCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAG GTATGTAGGCGGTGCTACAGAGTTCTTGAAGTGGTGGCCTAACTACGGCTACACTAGAAGGAC AGTATTTG GTATCTG CG CTCTG CTG A AG CC AGTTACCTTCG G A A A A AG AGTTG GTAG CTCTTG A TCCG G C A A AC A A ACCACCG CTG GTAG CG GTG GTTTTTTTGTTTG CA AG C AG C AG ATTACG CG CA G A A A A A A AG G ATCTC A AG A AG ATCCTTTG ATCTTTTCTACG G G GTCTG ACG CTC AGTG G A ACG A AAACTCACGTTAAGGGATTTTGGTCATGCATTCTAGGTACTAAAACAATTCATCCAGTAAAATAT AATATTTTATTTTCTCCCAATCAGGCTTGATCCCCAGTAAGTCAAAAAATAGCTCGACATACTGTT CTTCCCCG ATATCCTCCCTG ATCG ACCGGACGCAGAAGG C A ATGTC ATACC ACTTGTCCG CC TG CCGCTTCTCCCAAGATCAATAAAGCCACTTACTTTGCCATCTTTCACAAAGATGTTGCTGTCTCCC AGGTCGCCGTGGGAAAAGACAAGTTCCTCTTCGGGCTTTTCCGTCTTTAAAAAATCATACAGCTC GCG CG G ATCTTTAAATG G AGTGTCTTCTTCCCAGTTTTCG CAATCCACATCG GCCAG ATCGTTAT TCAGTAAGTAATCCAATTCGGCTAAGCGGCTGTCTAAGCTATTCGTATAGGGACAATCCGATAT GTCG ATG G AGTG A A AG AG CCTG ATG C ACTCCG C ATAC AG CTCG ATA ATCTTTTCAG G G CTTTGT TC ATCTTC ATACTCTTCCG AGCAAAGGACG CCATCG G CCTC ACTC ATG AG C AG ATTG CTCC AG CC ATCATG CCGTTC A A AGTG C AG G ACCTTTG G A AC AG G C AG CTTTCCTTCC AG CC ATAG C ATC ATGT CCTTTTCCCGTTCCACATCATAG GTG GTCCCTTTATACCG GCTGTCCGTCATTTTTAA ATATAG GT TTTCATTTTCTCCCACCAG CTTATATACCTTAG CAG G AG ACATTCCTTCCGTATCTTTTACG CAGC GGTATTTTTCGATCAG I I I I I I C A ATTCCG GTG ATATTCTCATTTTAG CC ATTTATTATTTCCTTCCT CTTTTCTAC AGTATTTA A AG ATACCCC A AG A AG CTA ATTATA AC A AG ACG A ACTCC A ATTC ACTG TTCCTTGCATTCTAAAACCTTAAATACCAGAAAACAGCTTTTTCAAAGTTGTTTTCAAAGTTGGCG TATAACATAGTATCGACGGAGCCGATTTTGAAACCGCGGTGATCACAGGCAGCAACGCTCTGTC ATCGTTACAATCAACATGCTACCCTCCGCGAGATCATCCGTGTTTCAAACCCGGCAGCTTAGTTG CCGTTCTTCCGAATAGCATCGGTAACATGAGCAAAGTCTGCCGCCTTACAACGGCTCTCCCGCTG ACGCCGTCCCGGACTGATGGGCTGCCTGTATCGAGTGGTGATTTTGTGCCGAGCTGCCGGTCG G G G AG CTGTTG G CTG G CTG GTG G CAG G ATATATTGTG GTG TA A AC A A ATTG ACG CTTAG AC A A CTTAATAACACATTG CG G ACGTTTTTAATGTACTG AATTAACGCCG AATTAATTCCTAG G CCACC ATGTTG GGCCCGGCGCG CC A AG CTTG C ATG CCTG C AG GTC A AC ATG GTG GAG C ACG AC ACTCT CGTCTACTCC A AG A AT ATC A A AG ATAC AGTCTC AG AAGACCAGAGGG CTATTG AG ACTTTTC A A CA A AG G GTA ATATCG G G A A ACCTCCTCG G ATTCC ATTG CCC AG CTATCTGTC ACTTC ATCG AAA GGACAGTAGAAAAGGAAGATGGCTTCTACAAATGCCATCATTGCGATAAAGGAAAGGCTATCG TTCAAGATGCCTCTACCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAGGAACATCGTGGA AAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATGGTCAACATGGTGG AGCACGACACTCTCGTCTACTCCAAGAATATCAAAGATACAGTCTCAGAAGACCAGAGGGCTAT TG AG ACTTTTC A AC A A AG G GTA ATATCG G G A A ACCTCCTCG GATTCCATTG CCC AG CTATCTGTC ACTTCATCGAAAGGACAGTAGAAAAGGAAGATGGCTTCTACAAATGCCATCATTGCGATAAAG GAAAGGCTATCGTTCAAGATGCCTCTACCGACAGTGGTCCCAAAGATGGACCCCCACCCACGAG GAACATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAAGTGGATTGATGTGATATC TCCACTGACGTAAGGGATGACGCACAATCCCACTATCCTTCGCAAGACCCTTCCTCTATATAAGG A AGTTC ATTTC ATTTG G AG AG G
SEQ ID NO 19: Truncated T7 driven Tobacco Rattle Virus RNA1( T7-RNA1 inducer).
TAATACGACTCACTATAGATAAAACATTTCAATCCTTTGAACGCGGTAGAACGTGCTAATTGGAT TTTGGTGAGAACGCGGTAGAACGTACTTATCACCTACAGTT^
ATCTATCCAGCTTAGTACCGAGTGGGGGAAAGTGACTGGTGTGCCTAAAACCTTTTCTTTGATA TTTGTA A A A ATAC ATAC AG ATAC A ATG G CG A ACG GTA ACTTC A AGTTGTCTC A ATTG CTC A ATG
TGGACGAGATGTCTGCTGAGCAGAGGAGTCATTTCTTTGACTTGATGCTGACTAAACCTGATTG
TGAGATCGGGCAAATGATGCAAAGAGTTGTTGTTGATAAAGTCGATGACATGATTAGAGAAAG
AAAGACTAAAGATCCAGTGATTGTTCATGAAGTTCTTTCTCAGAAGGAACAGAACAAGTTGATG
GAAATTTATCCTGAATTCAATATCGTGTTTAAAGACGACAAAAACATGGTTCATGGGTTTGCGG
CTGCTGAGCGAAAACTACAAGCTTTATTGCTTTTAGATAGAGTTCCTGCTCTGCAAGAGGTGGA
TGACATCGGTGGTCAATGGTCGTTTTGGGTAACTAGAGGTGAGAAAAGGATTCATTCCTGTTGT
CC A A ATCTAG ATATTCG G G ATG ATCAG AG AG A A ATTTCTCG ACAG ATATTTCTTACTG CTATTG G
TGATCAAGCTAGAAGTGGTAAGAGACAGATGTCGGAGAATGAGCTGTGGATGTATGACCAATT
TCGTG AAA ATATTG CTGCG CCTAACG CGGTTAGGTG CAATAATACATATCAG G GTTGTACATGT
AGG G GTTTTTCTG ATG GTAAG A AG AA AGG CG CG CAGTATG CG ATAGCTCTTCACAG CCTGTAT
GACTTCAAGTTGAAAGACTTGATGGCTACTATGGTTGAGAAGAAAACTAAAGTGGTTCATGCTG
CTATGCTTTTTGCTCCTGAAAGTATGTTAGTGGACGAAGGTCCATTACCTTCTGTTGACGGTTAC
TAC ATG AAGAAGAACGGGAAG ATCTATTTCG GTTTTG AG A A AG ATCCTTCCTTTTCTTAC ATTC A
TGACTGGGAAGAGTACAAGAAGTATCTACTGGGGAAGCCAGTGAGTTACCAAGGGAATGTGTT
CTACTTCG AACCGTG G CAG GTG AG AG G AG ACACAATG CTTTTTTCG ATCTACAG G ATAG CTGGA
GTTCCGAGGAGGTCTCTATCATCGCAAGAGTACTACCGAAGAATATATATCAGTAGATGGGAAA
ACATGGTTGTTGTCCCAATTTTCGATCTGGTCGAATCAACGCGAGAGTTGGTCAAGAAAGACCT
GTTTGTAG AG AAACAATTCATG G ACAAGTGTTTG G ATTACATAG CTAG GTTATCTG ACCAG CAG
CTG ACC ATA AG CA ATGTTA A ATC ATACTTG AGTTC A A ATA ATTG G GTCTTATTC ATA A ACG G G G C
GGCCGTGAAGAACAAGCAAAGTGTAGATTCTCGAGATTTACAGTTGTTGGCTCAAACTTTGCTA GTGAAGGAACAAGTGGCGAGACCTGTCATGAGGGAGTTGCGTGAAGCAATTCTGACTGAGAC
GAAACCTATCACGTCATTGACTGATGTGCTGGGTTTAATATCAAGAAAACTGTGGAAGCAGTTT
G CTA AC A AG ATCG C AGTCG G CG G ATTCGTTG G C ATG GTTG GTACT TA ATTG G ATT TATCC A A
AGAAGGTACTAACCTGGGCGAAGGACACACCAAATGGTCCAGAACTATGTTACGAGAACTCGC
ACAAAACCAAGGTGATAGTATTTCTGAGTGTTGTGTATGCCATTGGAGGAATCACGCTTATGCG
TCG AG AC ATCCG AG ATG G ACTG GTG A A A A A ACT ATGTG ATATGTTTG ATATC AA ACG G G G G G C
CCATGTCTTAGACGTTGAGAATCCGTGCCGCTATTATGAAATCAACGATTTCTTTAGCAGTCTGT
ATTCGGCATCTGAGTCCGGTGAGACCGTTTTACCAGATTTATCCGAGGTAAAAGCCAAGTCTGA
TAAGCTATTGCAGCAGAAGAAAGAAATCGCTGACGAGTTTCTAAGTGCAAAATTCTCTAACTAT
TCTG GCAGTTCG GTG AG AACTTCTCCACCATCG GTG GTCG GTTCATCTCG A AGCG G ACTG G GTC
TGTTGTTGGAAGACAGTAACGTGCTGACCCAAGCTAGAGTTGGAGTTTCAAGAAAGGTAGACG
ATGAGGAGATCATGGAGCAGTTTCTGAGTGGTCTTATTGACACTGAAGCAGAAATTGACGAGG
TTGTTCCAGCCTTTTCAGCTGAATGTGAAAGAGGGGAAACAAGCGGTACAAAGGTGTTGTGTA
AACCTTTAACGCCACCAGGATTTGAGAACGTGTTGCCAGCTGTCAAACCTTTGGTCAGCAAAGG
AAAAACGGTCAAACGTGTCGATTACTTCCAAGTGATGGGAGGTGAGAGATTACCAAAAAGGCC
GGTTGTCAGTGGAGACGATTCTGTGGACGCTAGAAGAGAGTTTCTGTACTACTTAGATGCGGA
GAGAGTCGCTCAAAATGATGAAATTATGTCTCTGTATCGTGACTATTCGAGAGGAGTTATTCGA
ACTGGAGGTCAGAATTACCCGCACGGACTGGGAGTGTGGGATGTGGAGATGAAGAACTGGTG
CATACGTCCAGTGGTCACTGAACATGCTTATGTGTTCCAACCAGACAAACGTATGGATGATTGG
TCGGGATACTTAGAAGTGGCTGTTTGGGAACGAGGTATGTTGGTCAACGACTTCGCGGTCGAA
AG G ATG AGTG ATTATGTC AT AGTTTG CG ATC AG ACGTATCTTTG C A ATA AC AG GTTG ATCTTG G
ACAATTTAAGTGCCCTGGATCTAGGACCAGTTAACTGTTCTTTTGAATTAGTTGACGGTGTACCT
GGTTGTGGTAAGTCGACAATGATTGTCAACTCAGCTAATCCTTGTGTCGATGTGGTTCTCTCTAC
TGGGAGAGCAGCAACCGACGACTTGATCGAGAGATTCGCGAGCAAAGGTTTTCCATGCAAATT
GAAAAGGAGAGTGAAGACGGTTGATTC I I I I I I GATGCATTGTGTTGATGGTTCTTTAACCGGA
G ACGTGTTGCATTTCG ATG A AG CTCTCATG G CCCATG CTGGTATG GTGTACTTTTG CG CTCAG AT
AGCTGGTGCTAAACGATGTATCTGTCAAGGAGATCAGAATCAAATTTCTTTCAAGCCTAGGGTA
TCTCAAGTTGATTTGAGGTTTTCTAGTCTGGTCGGAAAGTTTGACATTGTTACAGAAAAAAGAG
AAACTTACAGAAGTCCAGCAGATGTGGCTGCCGTATTGAACAAGTACTATACTGGAGATGTCAG AACACATAACGCGACTGCTAATTCGATGACGGTGAGGAAGATTGTGTCTAAAGAACAGGTTTCT
TTGAAGCCTGGTGCTCAGTACATAACTTTCCTTCAGTCTGAGAAGAAGGAGTTGGTAAATTTGTT
GGCATTGAGGAAAGTGGCAGCTAAAGTGAGTACAGTACACGAGTCGCAAGGAGAGACATTCA
AAGATGTAGTCCTAGTCAGGACGAAACCTACGGATGACTCAATCGCTAGAGGTCGGGAGTACT
TAATCGTGGCGTTGTCGCGTCACACACAATCACTTGTGTATGAAACTGTGAAAGAGGACGATGT
AAG CA AAG AG ATCAG G G AA AGTG CCGCG CTTACG A AG G CG G CTTTGGCAAGA I I I I I I GTTAC
TGAGACCGTCTTATGACGGTTTCGGTCTAGGTTTGATGTCTTTAGACATCATGAAGGGCCTTGC
GCCGTTCCAGATTCAGGTACGATTACGGACTTGGAGATGTGGTACGACGCTTTGTTTCCGGGAA
ATTCGTTAAGAGACTCAAGCCTAGACGGGTATTTGGTGGCAACGACTGATTGCAATTTGCGATT
AGACAATGTTACGATCAAAAGTGGAAACTGGAAAGACAAGTTTGCTGAAAAAGAAACGTTTCT
GAAACCGGTTATTCGTACTGCTATGCCTGACAAAAGGAAGACTACTCAGTTGGAGAGTTTGTTA
G C ATTG C AG A A AAG G A ACCA AG CG G CACCCG ATCTAC A AG A A A ATGTG C ACG C A AC AGTTCTA
ATCGAAGAGACGATGAAGAAGTTGAAATCTGTTGTCTACGATGTGGGAAAAATTCGGGCTGAT
CCTATTGTCAATAGAGCTCAAATGGAGAGATGGTGGAGAAATCAAAGCACAGCGGTACAGGCT
AAGGTAGTAGCAG ATGTG AG AGAGTTACATGAAATAG ACT ATTCGTCTTACATGTATATGATCA
A ATCTG ACGTG A A ACCTA AG ACTG ATTTA AC ACCG C A ATTTG A ATACTC AG CTCTAC AG ACTGTT
GTGTATCACGAGAAGTTGATCAACTCGTTGTTCGGTCCAATTTTCAAAGAAATTAATGAACGCA
AGTTGGATGCTATGCAACCACATTTTGTGTTCAACACGAGAATGACATCGAGTGATTTAAACGA
TCGAGTGAAGTTCTTAAATACGGAAGCGGCTTACGACTTTGTTGAGATAGACATGTCTAAATTC
G AC A AGTCG G C A A ATCG CTTCC ATTTAC A ACTG CAG CTG GAG ATTTAC AG GTTATTTG G G CTAG
ATGAGTGGGCGGCCTTCCTTTGGGAGGTGTCGCACACTCAAACTACTGTGAGAGATATTCAAAA
TG GTATG ATG G CG CAT ATTTG GTACC A AC A A A AG AGTG G AG ATG CTG ATACTTATA ATG C A A AT
TC AG ATAG A AC ACTGTGTG C ACTCTTGTCTG A ATTACC ATTG GAG A A AG C AGTC ATG GTTAC AT
ATGGAGGAGATGACTCACTGATTGCGTTTCCTAGAGGAACGCAGTTTGTTGATCCGTGTCCAAA
GTTGGCTACTAAGTGGAATTTCGAGTGCAAGATTTTTAAGTACGATGTCCCAATGTTTTGTGGG
AAGTTCTTGCTTAAGACGTCATCGTGTTACGAGTTCGTGCCAGATCCGGTAAAAGTTCTGACGA
AGTTGGGGAAAAAGAGTATAAAGGATGTGCAACATTTAGCCGAGATCTACATCTCGCTGAATG
ATTCCAATAGAGCTCTTGGGAACTACATGGTGGTATCCAAACTGTCCGAGTCTGTTTCAGACCG
GTATTTGTAC A A AG GTG ATTCTGTTC ATG CG CTTTGTG CG CTATG G A AG C ATATTA AG AGTTTTA CAGCTCTGTGTACATTATTCCGAGACGAAAACGATAAGGAATTGAACCCGGCTAAGGTTGATTG
GAAGAAGGCACAGAGAGCTGTGTCAAACTTTTACGACTGGTAATATGGAAGACAAGTCATTGG
TC ACCTTG A AG A AG A AG ACTTTCG A AGTCTC A A A ATTCTC A A ATCTAG G G G CC ATTG A ATTGTTT
GTGGACGGTAGGAGGAAGAGACCG A AGTATTTTCAC AG A AG A AG AG A A ACTGTCCTA A ATC AT
GTTGGTGGGAAGAAGAGTGAACACAAGTTAGACGTTTTTGACCAAAGGGATTACAAAATGATT
AAATCTTACG CGTTTCTAAAG ATAGTAG GTGTACAACTAGTTGTAACATCACATCTACCTG CAG A
TACG CCTG G GTTC ATTC A A ATCG ATCTGTTG G ATTCG AG ACTTACTG AG A A A AG A A AG AG AG G
AAAGACTATTCAGAGATTCAAAGCTCGAGCTTGCGATAACTGTTCAGTTGCGCAGTACAAGGTT
GAATACAGTATTTCCACACAGGAGAACGTACTTGATGTCTGGAAGGTGGGTTGTATTTCTGAGG
GCGTTCCGGTCTGTGACGGTACATACCCTTTCAGTATCGAAGTGTCGCTAATATGGGTTGCTACT
GATTCGACTAGGCGCCTCAATGTGGAAGAACTGAACAGTTCGGATTACATTGAAGGCGATTTTA
CCGATCAAGAGGTTTTCGGTGAGTTCATGTCTTTGAAACAAGTGGAGATGAAGACGATTGAGG
CGAAGTACGATGGTCCTTACAGACCAGCTACTACTAGACCTAAGTCATTATTGTCAAGTGAAGA
TGTTAAGAGAGCGTCTAATAAGAAAAACTCGTCTTAATGCATAAAGAAATTTATTGTCAATATG
ACGTGTGTACTCAAGGGTTGTGTGAATGAAGTCACTGTTCTTGGTCACGAGACGTGTAGTATCG
GTC ATG CTA AC A A ATTG CG AAAGCAAGTTGCTG ACATG GTTG GTGTCACACGTAG GTGTG CG G
AAAATAATTGTGGATGGTTTGTCTGTGTTGTTATCAATGATTTTACTTTTGATGTGTATAATTGTT
GTGGCCGTAGTCACCTTGAAAAGTGTCGTAAACGTGTTGAAACAAGAAATCGAGAAATTTGGA
AACAAATTCGACGAAATCAAGCTGAAAACATGTCTGCGACAGCTAAAAAGTCTCATAATTCGAA
GACCT TAAGAAGAAATTCAAAGAGGACAGAGAATTTGGGACACCAAAAAGATTTTTAAGAGA
TG ATGTTCCTTTCG G G ATTG ATCGTTTGTTTG CTTTTTG ATTTTATTTTATATTGTTATCTGTTTCT
GTGTATAGACTGTTTGAGATTGGCGCTTGGCCGACTCATTGTCTTACCATAGGGGAACGGACTT
TGTTTGTGTTGTTATTTTATTTGTATTTTATTAAAATTCTCAATGATCTGAAAAGGCCTCGAGGCT
AAGAGATTATTGGGGGGTGAGTAAGTACTTTTAAAGTGATGATGGTTACAAAGGCAAAAGGG
GTAAAACCCCTCGCCTACGTAAGCGTTATTACGCCCGTCTGTACTTATATCAGTACACTGACGAG
TCCCTA AAG G ACG AAACG G G CCCG GG CGTTCAAACATTTG G CAATAAAGTTTCTTAAG ATTG AA
TCCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAAT
TAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACA TTTA ATACG CG ATAG A A A AC A A A ATATAG CG CG C A A ACTAG G ATA A ATTATCG CGCGCGGTGTC ATCTATGTTACTAG ATCG G G
SEQ ID NO 20: Synthetic sequence consisting of optimized TRV coat protein driven by T7 promoter and a strong RBS and TRV Ppk20 RNAl and ribozyme sequence driven by T7 promoter. All elements are in the pUC57 vector .
GACGAAAGGGCCTCGTGATACGCCTATTTTTATAGGTTAATGTCATGATAATAATGGTTTCTTAG ACGTC AG GTG G C ACTTTTCG G G G A A ATGTG CG CG G A ACCCCTATTTGTTTATTTTTCTA A ATAC A TTCAAATATGTATCCGCTCATGAGACAATAACCCTGATAAATGCTTCAATAATATTGAAAAAGGA AGAGTATGAGTATTCAACATTTCCGTGTCGCCCTTATTCCC I I I I I I G CG G CATTTTG CCTTCCTG TTTTTGCTCACCCAGAAACGCTGGTGAAAGTAAAAGATGCTGAAGATCAGTTGGGTGCACGAG TGGGTTACATCGAACTGGATCTCAACAGCGGTAAGATCCTTGAGAGTTTTCGCCCCGAAGAACG TTTTCCAATGATGAGCACTTTTAAAGTTCTGCTATGTGGCGCGGTATTATCCCGTATTGACGCCG G G C A AG AG C A ACTCG GTCG CCG C ATAC ACTATTCTC AG A ATG ACTTG GTTG AGTACTC ACC AGT CAC AG A A A AG C ATCTTACG G ATG G C ATG AC AGTA AG AG A ATTATG C AGTG CTG CC ATA ACC AT GAGTGATAACACTGCGGCCAACTTACTTCTGACAACGATCGGAGGACCGAAGGAGCTAACCGC I I I I I I GCACAACATGGGGGATCATGTAACTCGCCTTGATCGTTGGGAACCGGAGCTGAATGAA GCCATACCAAACGACGAGCGTGACACCACGATGCCTGTAGCAATGGCAACAACGTTGCGCAAA CTATTA ACTG G CG A ACTACTTACTCTAG CTTCCCG G C A AC A ATTA ATAG ACTG G ATG G AG G CG G ATA A AGTTG C AG G ACC ACTTCTG CG CTCG G CCCTTCCG G CTG G CTG GTTTATTG CTG ATA A ATCT GGAGCCGGTGAGCGTGG GTCTCG CG GTATC ATTG CAG CACTG G G G CCAG ATG GTA AG CCCTCC CGTATCGTAGTTATCTACACGACGGGGAGTCAGGCAACTATGGATGAACGAAATAGACAGATC GCTGAGATAGGTGCCTCACTGATTAAGCATTGGTAACTGTCAGACCAAGTTTACTCATATATACT TTAGATTGATTTAAAACTTCATTTTTAATTTAAAAGGATCTAGGTG
CATGACCAAAATCCCTTAACGTGAGTTTTCGTTCCACTGAGCGTCAGACCCCGTAGAAAAGATC A A AG G ATCTTCTTG AG ATCCTTTTTTTCTG CG CGTA ATCTG CTG CTTG CA A AC A A A A A A ACC ACC GCTACCAGCGGTGGTTTGTTTGCCGGATCAAGAGCTACCAACTCTTTTTCCGAAGGTAACTGGC TTCAG CAG AG CG CAG ATACCAAATACTGTTCTTCTAGTGTAG CCGTAGTTAG G CCACCACTTCAA GAACTCTGTAG CACCG CCTACATACCTCG CTCTG CTAATCCTGTTACCAGTGG CTG CTG CCAGTG GCGATAAGTCGTGTCTTACCGGGTTGGACTCAAGACGATAGTTACCGGATAAGGCGCAGCGGT
CGGGCTGAACGGGGGGTTCGTGCACACAGCCCAGCTTGGAGCGAACGACCTACACCGAACTGA
GATACCTACAGCGTGAGCTATGAGAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGG
TATCCGGTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACG
CCTGGTATCTTTATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCT
CGTC AG GGGGGCGGAG CCTATG G A A A A ACG CC AG C A ACG CG G CCTTTTTACG GTTCCTG G CCT
TTTG CTG GCCTTTTG CTCACATGTTCTTTCCTG CGTTATCCCCTG ATTCTGTG G ATA ACCGTATTA
CCGCCTTTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGA
GCGAGGAAGCGGAAGAGCG CCCA ATACG C A A ACCG CCTCTCCCCG CG CGTTG G CCG ATTC ATT
AATGCAGCTGGCACGACTAATACGACTCACTATAGGGAGACCACAACGGTTTCCCTCTAGAAAT
AATTTTGTTTAACTTTAAGAAGGAGATATACCATGGCGGACATGTACGACGAGTCGTTCGATAA
GTCCGGTGGCCCGG CCG A TTG ATG G ACG AC AG CTG G GTG G A ATCCGTC AG CTG G A A AG ATTT
G CTG A A A A AG CTCC ATTCTATC A AGTTTG CGTTAC A ATCCG GTCGTG ATG AG ATTACCG G CCTG
CTGGCGGCCCTGAACCGCCAGTGCCCGTACAGCCCGTATGAGCAATTCCCAGACAAAAAAGTCT
ATTTCCTG CTG G ATAG CCGTG CTA ATAG CG CCCTG G G CGTTATTC AG A ATG CGTCTG CGTTTA A
GCGCCGCGCGGACGAGAAGAACGCGGTGGCGGGCGTTACCAATATCCCGGCTAACCCGAACA
CCACGGTTACGACCAATCAAGGTAGCACTACCACCACCAAGGCTAACACCGGCTCGACCCTGGA
AGAGGACTTGTACACTTACTATAAATTTGACGACGCGTCGACCGCATTCCACAAATCGCTGACCT
CCTTGGAAAATATGGAACTGAAGTCTTATTACCGCCGTAACTTCGAGAAAGTGTTTGGTATTAA
ATTTG GTGGCGCAGCCG C ATCC AG CTCG GCGCCGCCACCGGCGAGCGGTGGCCCG ATTCGTCC
G A ATCCTTA A ATGTC AG G CTCCCTTATAC AC AG G GTCTC ACTCCG AG CTCG A ATTTCCCCG ATCG
TTC A A AC ATTTG G C A ATA A AGTTTCTTA AG ATTG A ATCCTGTTG CCG GTCTTG CG ATG ATTATC A
TATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGA
G ATG G GTTTTTATG ATTAG AGTCCCG C A ATTATAC ATTTA ATACG CG ATAG A A A AC A A A ATATA
G CG CG C A A ACTAG G ATA A ATTATCG CG CG CG GTGTC ATCTATGTTACTAG ATCG GAG GTTTCCC
GACTGGAAAGCGGGCAGTGAGCGCAACGCAATTAATACGACTCACTATAGATAAAACATTTCA
ATCCTTTGAACGCGGTAGAACGTGCTAATTGGATTTTGGTGAGAACGCGGTAGAACGTACTTAT
CACCTACAGTTTTATTTTGTTTTTCTTTTTGGTTTAATCTATCCAGCT^
AGTGACTGGTGTGCCTAAAACCTTTTCTTTGATACTTTGTAAAAATACATACAGATACAATGGCG AACGGTAACTTCAAGTTGTCTCAATTGCTCAATGTGGACGAGATGTCTGCTGAGCAGAGGAGTC
ATTTCTTTGACTTGATGCTGACTAAACCTGATTGTGAGATCGGGCAAATGATGCAAAGAGTTGT
TGTTGATAAAGTCGATGACATGATTAGAGAAAGAAAGACTAAAGATCCAGTGATTGTTCATGAA
GTTCTTTCTC AG A AG G A AC AG A AC A AGTTG ATG G A A ATTTATCCTG A ATTC A ATATCGTGTTTA A
AGACGACAAAAACATGGTTCATGGGTTTGCGGCTGCTGAGCGAAAACTACAAGCTTTATTGCTT
TTAGATAGAGTTCCTGCTCTGCAAGAGGTGGATGACATCGGTGGTCAATGGTCGTTTTGGGTAA
CTAGAGGTGAGAAAAGGATTCATTCCTGTTGTCCAAATCTAGATATTCGGGATGATCAGAGAGA
A ATTTCTCG AC AG ATATTTCTTACTG CTATTG GTG ATC A AG CTAG A AGTG GTA AG AG AC AG ATG
TCGGAGAATGAGCTGTGGATGTATGACCAATTTCGTGAAAATATTGCTGCGCCTAACGCGGTTA
GGTGCAATAATACATATCAGGGTTGTACATGTAGGGGTTTTTCTGATGGTAAGAAGAAAGGCG
CG CAGTATG CG ATAG CTCTTCACAG CCTGTATG ACTTCAAGTTG AAAG ACTTG ATGG CTACTAT
GGTTGAGAAGAAAACTAAAGTGGTTCATGCTGCTATGCTTTTTGCTCCTGAAAGTATGTTAGTG
GACGAAGGTCCATTACCTTCTGTTGACGGTTACTACATGAAGAAGAACGGGAAGATCTATTTCG
GTTTTGAGAAAGATCCTTCCTTTTCTTACATTCATGACTGGGAAGAGTACAAGAAGTATCTACTG
GGGAAGCCAGTGAGTTACCAAGGGAATGTGTTCTACTTCGAACCGTGGCAGGTGAGAGGAGA
CACAATGC I I I I I I CG ATCTACAG G ATAG CTG G AGTTCCG AG G AG GTCTCTATCATCG CA AG AG
TACTACCGAAGAATATATATCAGTAGATGGGAAAACATGGTTGTTGTCCCAATTTTCGATCTGGT
CGAATCAACGCGAGAGTTGGTCAAGAAAGACCTGTTTGTAGAGAAACAATTCATGGACAAGTG
TTTGGATTACATAGCTAGGTTATCTGACCAGCAGCTGACCATAAGCAATGTTAAATCATACTTGA
GTTCAAATAATTG G GTCTTATTC ATA A ACG G G G CG G CCGTG A AG A ACAAG CAAAGTGTAG ATT
CTCGAGATTTACAGTTGTTGGCTCAAACTTTGCTAGTGAAGGAACAAGTGGCGAGACCTGTCAT
GAGGGAGTTGCGTGAAGCAATTCTGACTGAGACGAAACCTATCACGTCATTGACTGATGTGCT
GGGTTTAATATCAAGAAAACTGTGGAAGCAGTTTGCTAACAAGATCGCAGTCGGCGGATTCGTT
GGCATGGTTGGTACTCTAATTGGATTCTATCCAAAGAAGGTACTAACCTGGGCGAAGGACACAC
CAAATGGTCCAGAACTATGTTACGAGAACTCGCACAAAACCAAGGTGATAGTATTTCTGAGTGT
TGTGTATGCCATTGGAGGAATCACGCTTATGCGTCGAGACATCCGAGATGGACTGGTGAAAAA
ACTATGTG ATATGTTTG ATATCAA ACG G GG G GCCCATGTCTTAG ACGTTG AG AATCCGTG CCG C
TATTATG AA ATCA ACG ATTTCTTTAG CAGTCTGTATTCG G C ATCTG AGTCCG GTG AG ACCGTTTT
ACCAG ATTTATCCG AG GTA A A AG CC A AGTCTG ATA AG CTATTG C AG CAG A AG A A AG A A ATCG C TGACGAGTTTCTAAGTGCAAAATTCTCTAACTATTCTGGCAGTTCGGTGAGAACTTCTCCACCAT
CGGTGGTCGGTTCATCTCGAAGCGGACTGGGTCTGTTGTTGGAAGACAGTAACGTGCTGACCC
AAGCTAGAGTTGGAGTTTCAAGAAAGGTAGACGATGAGGAGATCATGGAGCAGTTTCTGAGTG
GTCTTATTGACACTGAAGCAGAAATTGACGAGGTTGTTCCAGCCTTTTCAGCTGAATGTGAAAG
AGGGGAAACAAGCGGTACAAAGGTGTTGTGTAAACCTTTAACGCCACCAGGATTTGAGAACGT
GTTGCCAGCTGTCAAACCTTTGGTCAGCAAAGGAAAAACGGTCAAACGTGTCGATTACTTCCAA
GTGATGGGAGGTGAGAGATTACCAAAAAGGCCGGTTGTCAGTGGAGACGATTCTGTGGACGC
TAGAAGAGAGTTTCTGTACTACTTAGATGCGGAGAGAGTCGCTCAAAATGATGAAATTATGTCT
CTGTATCGTGACTATTCGAGAGGAGTTATTCGAACTGGAGGTCAGAATTACCCGCACGGACTGG
GAGTGTGGGATGTGGAGATGAAGAACTGGTGCATACGTCCAGTGGTCACTGAACATGCTTATG
TGTTCCAACCAGACAAACGTATGGATGATTGGTCGGGATACTTAGAAGTGGCTGTTTGGGAAC
GAGGTATGTTGGTCAACGACTTCGCGGTCGAAAGGATGAGTGATTATGTCATAGTTTGCGATCA
GACGTATCTTTGCAATAACAGGTTGATCTTGGACAATTTAAGTGCCCTGGATCTAGGACCAGTT
AACTGTTCTTTTGAATTAGTTGACGGTGTACCTGGTTGTGGTAAGTCGACAATGATTGTCAACTC
AGCTAATCCTTGTGTCGATGTGGTTCTCTCTACTGGGAGAGCAGCAACCGACGACTTGATCGAG
AGATTCGCGAGCAAAGGTTTTCCATGCAAATTGAAAAGGAGAGTGAAGACGGTTGATTCTTTTT
TGATGCATTGTGTTGATGGTTCTTTAACCGGAGACGTGTTGCATTTCGATGAAGCTCTCATGGCC
CATGCTGGTATGGTGTACTTTTGCGCTCAGATAGCTGGTGCTAAACGATGTATCTGTCAAGGAG
ATCAGAATCAAATTTCTTTCAAGCCTAGGGTATCTCAAGTTGATTTGAGGTTTTCTAGTCTGGTC
G G A A AGTTTG AC ATTGTTAC AG A A A A A AG AG A A ACTTAC AG A AGTCCAG C AG ATGTG G CTG CC
GTATTGAACAAGTACTATACTGGAGATGTCAGAACACATAACGCGACTGCTAATTCGATGACGG
TG AG G AAG ATTGTGTCTAAAG AACAG GTTTCTTTG AAG CCTG GTG CTCAGTACATAACTTTCCTT
CAGTCTGAGAAGAAGGAGTTGGTAAATTTGTTGGCATTGAGGAAAGTGGCAGCTAAAGTGAGT
ACAGTACACGAGTCGCAAGGAGAGACATTCAAAGATGTAGTCCTAGTCAGGACGAAACCTACG
GATGACTCAATCGCTAGAGGTCGGGAGTACTTAATCGTGGCGTTGTCGCGTCACACACAATCAC
TTGTGTATGAAACTGTGAAAGAGGACGATGTAAGCAAAGAGATCAGGGAAAGTGCCGCGCTTA
CG AAG G CG G CTTTGG CAAG ATTTTTTGTTACTG AG ACCGTCTTATG ACG GTTTCG GTCTAG GTTT
GATGTCTTTAGACATCATGAAGGGCCTTGCGCCGTTCCAGATTCAGGTACGATTACGGACTTGG
AGATGTGGTACGACGCTTTGTTTCCGGGAAATTCGTTAAGAGACTCAAGCCTAGACGGGTATTT GGTGGCAACGACTGATTGCAATTTGCGATTAGACAATGTTACGATCAAAAGTGGAAACTGGAA
AGACAAGTTTGCTGAAAAAGAAACGTTTCTGAAACCGGTTATTCGTACTGCTATGCCTGACAAA
AGGAAGACTACTCAGTTGGAGAGTTTGTTAGCATTGCAGAAAAGGAACCAAGCGGCACCCGAT
CTACAAGAAAATGTGCACGCAACAGTTCTAATCGAAGAGACGATGAAGAAGTTGAAATCTGTT
GTCTACGATGTGGGAAAAATTCGGGCTGATCCTATTGTCAATAGAGCTCAAATGGAGAGATGG
TGGAGAAATCAAAGCACAGCGGTACAGGCTAAGGTAGTAGCAGATGTGAGAGAGTTACATGA
A ATAG ACTATTCGTCTTAC ATGTATATG ATC A A ATCTG ACGTG A A ACCTA AG ACTG ATTTA AC AC
CGCAATTTGAATACTCAGCTCTACAGACTGTTGTGTATCACGAGAAGTTGATCAACTCGTTGTTC
GGTCCAATTTTCAAAGAAATTAATGAACGCAAGTTGGATGCTATGCAACCACATTTTGTGTTCAA
CACGAGAATGACATCGAGTGATTTAAACGATCGAGTGAAGTTCTTAAATACGGAAGCGGCTTAC
GACTTTGTTGAGATAGACATGTCTAAATTCGACAAGTCGGCAAATCGCTTCCATTTACAACTGCA
G CTG GAG ATTTAC AG GTTATTTG G G CTAG ATG AGTG G G CG G CCTTCCTTTG G G AG GTGTCG CA
CACTCAAACTACTGTGAGAGATATTCAAAATGGTATGATGGCGCATATTTGGTACCAACAAAAG
AGTGGAGATGCTGATACTTATAATGCAAATTCAGATAGAACACTGTGTGCACTCTTGTCTGAATT
ACCATTGGAGAAAGCAGTCATGGTTACATATGGAGGAGATGACTCACTGATTGCGTTTCCTAGA
GGAACGCAGTTTGTTGATCCGTGTCCAAAGTTGGCTACTAAGTGGAATTTCGAGTGCAAGATTT
TTAAGTACGATGTCCCAATGTTTTGTGGGAAGTTCTTGCTTAAGACGTCATCGTGTTACGAGTTC
GTGCCAGATCCGGTAAAAGTTCTGACGAAGTTGGGGAAAAAGAGTATAAAGGATGTGCAACAT
TTAG CCG AG ATCTACATCTCG CTG AATG ATTCCAATAG AGCTCTTG G G AACTACATG GTG GTAT
CCAAACTGTCCG AGTCTGTTTCAG ACCG GTATTTGTACAAAG GTG ATTCTGTTCATG CG CTTTGT
GCGCTATGGAAGCATATTAAGAGTTTTACAGCTCTGTGTACATTATTCCGAGACGAAAACGATA
AGGAATTGAACCCGGCTAAGGTTGATTGGAAGAAGGCACAGAGAGCTGTGTCAAACTTTTACG
ACTG GTA AT ATG G A AG ACA AGTC ATTG GTC ACCTTG A AG A AG A AG ACTTTCG AAGTCTCA A A AT
TCTCAAATCTAGGGGCCATTGAATTGTTTGTGGACGGTAGGAGGAAGAGACCGAAGTATTTTCA
CAGAAGAAGAGAAACTGTCCTAAATCATGTTGGTGGGAAGAAGAGTGAACACAAGTTAGACGT
TTTTGACCAAAGGGATTACAAAATGATTAAATCTTACGCGTTTCTAAAGATAGTAGGTGTACAA
CTAGTTGTA AC ATC AC ATCTACCTG C AG ATACG CCTG G GTTC ATTC A A ATCG ATCTGTTG G ATTC
GAGACTTACTGAGAAAAGAAAGAGAGGAAAGACTATTCAGAGATTCAAAGCTCGAGCTTGCGA
TAACTGTTCAGTTGCGCAGTACAAGGTTGAATACAGTATTTCCACACAGGAGAACGTACTTGAT GTCTG G A AG GTG G GTTGTATTTCTG AG G G CGTTCCG GTCTGTG ACG GTAC ATACCCTTTC AGTA
TCGAAGTGTCGCTAATATGGGTTGCTACTGATTCGACTAGGCGCCTCAATGTGGAAGAACTGAA
CAGTTCGGATTACATTGAAGGCGATTTTACCGATCAAGAGGTTTTCGGTGAGTTCATGTCTTTGA
AACAAGTGGAGATGAAGACGATTGAGGCGAAGTACGATGGTCCTTACAGACCAGCTACTACTA
GACCTAAGTCATTATTGTCAAGTGAAGATGTTAAGAGAGCGTCTAATAAGAAAAACTCGTCTTA
ATGCATAAAGAAATTTATTGTCAATATGACGTGTGTACTCAAGGGTTGTGTGAATGAAGTCACT
GTTCTTGGTCACGAGACGTGTAGTATCGGTCATGCTAACAAATTGCGAAAGCAAGTTGCTGACA
TGGTTGGTGTCACACGTAGGTGTGCGGAAAATAATTGTGGATGGTTTGTCTGTGTTGTTATCAA
TGATTTTACTTTTGATGTGTATAATTGTTGTGGCCGTAGTCACCTTGAAAAGTGTCGTAAACGTG
TTG A A AC A AG A A ATCG AG A A ATTTG G A A AC A A ATTCG ACG A A ATCA AG CTG A A A ACATGTCTG
CGACAGCTAAAAAGTCTCATAATTCGAAGACCTCTAAGAAGAAATTCAAAGAGGACAGAGAAT
TTGGGACACCAAAAAGATTTTTAAGAGATGATGTTCCTTTCGGGATTGATCGTTTGTTTGCTTTT
TG ATTTTATTTTATATTGTTATCTGTTTCTGTGTATAG ACTGTTTG AG ATTG G CG CTTG G CCG ACT
CATTGTCTTACCATAGGGGAACGGACmGTTTGTGTTGTTATTTTATTTGTATTTT
CTCAATGATCTGAAAAGGCCTCGAGGCTAAGAGATTATTGGGGGGTGAGTAAGTACTTTTAAA
GTGATGATGGTTACAAAGGCAAAAGGGGTAAAACCCCTCGCCTACGTAAGCGTTATTACGCCC
GTCTGTACTTATATC AGTAC ACTG ACG AGTCCCTA A AG GACGAAACGGGCCCGGG CGTTC A A AC
ATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGATTATCATATAATTT
CTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGT
TTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATAGCGCGCAA
ACTAG G ATA A ATT ATCG CGCG CGGTGTCATCTATGTTACTAG ATCG GG GTCG G G ATCCG ATATC
TAG ATG CATTCG CG AG GTACCG AG CTCG A ATTC ACTG G CCGTCGTTTTACAACGTCGTG ACTG G
G A A A ACCCTG G CGTTACCC A ACTTA ATCG CCTTG C AG C AC ATCCCCCTTTCG CC AG CTG G CGTAA
TAGCGAAGAGGCCCGCACCG ATCG CCCTTCCC A AC AGTTG CG C AG CCTG A ATG G CG A ATG G CG
CCTG ATG CG GTATTTTCTCCTTACG C ATCTGTG CG GTATTTC AC ACCG CAT ATG GTG C ACTCTCA
GTAC A ATCTG CTCTG ATG CCG C ATAGTTA AG CC AG CCCCGACACCCGCCAACACCCG CTG ACG C
GCCCTGACGGGCTTGTCTGCTCCCGGCATCCGCTTACAGACAAGCTGTGACCGTCTCCGGGAGC
TG CATGTGTCAG AG GTTTTCACCGTCATCACCG A AACG CGCG A
SEQ ID NO 21: Synthetic T7-RNA2-MCS inducer sequence. TAATACG ACTCACTATAG G ATAAAACATTG CACCTATG GTGTTGCCCTG G CTG G GGTATGTCAG
TGATCGCAGTAGAATGTACTAATTGACAAGTTGGAGAATACGGTAGAACGTCCTTATCCAACAC
AG CCTTTATCCCTCTCCCTG ACG AG GTTTTTGTC AGTGTA ATATTTCTTTTTG A ACTATCC AG CTT
AGTACCGTACGGGAAAGTGACTGGTGTGCTTATCTTTGAAATGTTACTTTGGGTTTCGGTTCTTT
AG GTTAGTA AG A A AG C ACTTGTCTTCTC ATAC A A AG G A A A AC TG AG ACGTATCG CTTACG AAA
GTAGCAATGAAAGAAAGGTGGTGGTTTTAATCGCTACCGCAAAAACGATGGGGTCGTTTTAATT
A ACTTCTCCTACG C A AG CGTCTA A ACG G ACGTTG G G GTTTTG CTAGTTT nTAG AG A A A ACTAG
CTAAGTCTTTAATGTTATCATTAGAGATGGCATAAATATAATACTTGTGTCTGCTGATAAGATCA
ΤΠΤΑ ATTTG G ACG ATTAG ACTTGTTG A ACTAC AG GTTACTG A ATC ACTTG CG CTA ATC A AC ATG
GGAGATATGTACGATGAATCATTTGACAAGTCGGGCGGTCCTGCTGACTTGATGGACGATTCTT
GGGTGGAATCAGTTTCGTGGAAAGATCTGTTGAAGAAGTTACACAGCATAAAATTTGCACTACA
GTCTGGTAGAGATGAGATCACTGGGTTACTAGCGGCACTGAATAGACAGTGTCCTTATTCACCA
TATG AG C AGTTTCCAG ATA AG A AG GTGTATTTCCTTTTAG ACTC ACG G G CTA AC AGTG CTCTTG G
TGTGATTCAGAACGCTTCAGCGTTCAAGAGACGAGCTGATGAGAAGAATGCAGTGGCGGGTGT
TACAAATATTCCTGCGAATCCAAACACAACGGTTACGACGAACCAAGGGAGTACTACTACTACC
A AG G CG A AC ACTG G CTCG ACTTTG G A AG A AG ACTTGTACACTTATTAC A A ATTCG ATG ATG CCT
CTACAGCTTTCCACAAATCTCTAACTTCGTTAGAGAACATGGAGTTGAAGAGTTATTACCGAAG
G AACTTTG AG AAAGTATTCG GG ATTAAGTTTG GTGG AG CAG CTG CTAGTTCATCTG CACCG CCT
CCAG CG AGTG GAG GTCCG ATACGTCCTAATCCCTAG G G ATTTA AG G ACGTG AACTCTGTTG AG
ATCTCTGTG A A ATTC AG AG G GTG G GTG ATACC ATATTC ACTG ATG CC ATTAG CG AC ATCTA A AT
AGG G CTAATTGTG ACTAATTTG AG G G AATTTCCTTTACCATTG ACGTCAGTGTCGTTG GTAG CAT
TTG AGTTTCG C A ATG C ACG A ATTACTTAG G A AGTG G CTTG ACG AC ACTA ATGTGTTATTGTTAG
ATAATGGTTTGGTGGTCAAGGTACGTAGTAGAGTCCCACATATTCGCACGTATGAAGTAATTGG
AAAGTTGTCAGTTTTTGATAATTCACTGGGAGATGATACGCTGTTTGAGGGAAAAGTAGAGAAC
GTATTTGTTTTTATGTTCAG G CG GTTCTTGTGTGTCAACAAAG ATG G ACATTGTTACTCA AG G AA
GCACGATGAGCTTTATTATTACGGACGAGTGGACTTAGATTCTGTGAGTAAGGTTACCGAATTC
TCTAGAAGGCCTCCATGGGGATCCGGTACCGAGCTCACGCGTCTCGAGGCCCGGGCATGTCCC
GAAGACATTAAACTACGGTTCTTTAAGTAGATCCGTGTCTGAAGTTTTAGGTTCAATTTAAACCT
ACGAGATTGACATTCTCGACTGATCTTGATTGATCGGTAAGTCTTTTGTAATTTAATTTTCTTTTT GATTTTATTTTAAATTGTTATCTGTTTCTGTGTATAGACTGTTTGAGATCGGCGTTTGGCCGACTC ATTGTCTTACCATAGGGGAACGGACTTTGTTTGTGTTGTTATTTTATTTGTATTTTATTAAAATTC TCAACGATCTGAAAAAGCCTCGCGGCTAAGAGATTGTTGGGGGGTGAGTAAGTACTTTTAAAG TGATGATGGTTACAAAGGCAAAAGGGGTAAAACCCCTCGCCTACGTAAGCGTTATTACGCCCGT CTGTACTTATATCAGTACACTGACGAGTCCCTAAAGGACGAAACGGGAGAACGCTAGCCACCAC CACCACCACCACGTGTGAATTACAGGTGACCAGCTCGAATTTCCCCGATCGTTCAAACATTTGGC A ATA A AGTTTCTTA AG ATTG A ATC TGTTG CCG GTCTTG CG ATG ATTATC ATATA ATTTCTGTTG A ATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGAGATGGGTTTTTATG ATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATAGCGCGCAAACTAGG ATA A ATTATCG CGCGCGGTG TC ATCTATGTTACTAG ATC
SEQ ID NO 22: Synthetic T7 driven RNA2 with sample construct (C3) in MCS, ribozyme, NOS
TAATACG ACTCACTATAG G ATAAAACATTG CACCTATG GTGTTGCCCTG G CTG GGGTATGTCAG TGATCGCAGTAGAATGTACTAATTGACAAGTTGGAGAATACGGTAGAACGTCCTTATCCAACAC AG CCTTTATCCCTCTCCCTG ACG AG GTTTTTGTC AGTGTA ATATTTCTTTTTG A ACTATCC AG CTT
AGTACCGTACG G G AAAGTG ACTGGTGTG CTTATCTTTG A AATGTTACTTTG G GTTTCGGTTCTTT AG GTTAGTA AG A A AG C ACTTGTCTTCTC ATAC A A AG G A A A AC TG AG ACGTATCG CTTACG AAA GTAGCAATGAAAGAAAGGTGGTGGTTTTAATCGCTACCGCAAAAACGATGGGGTCGTTTTAATT A ACTTCTCCTACG C A AG CGTCTA A ACG G ACGTTG G G GTTTTG CTAGTTTCTTTAG AG A A A ACTAG CTAAGTCTTTAATGTTATCATTAGAGATGGCATAAATATAATACTTGTGTCTGCTGATAAGATCA TTTTA ATTTG G ACG ATTAG ACTTGTTG A ACTAC AG GTTACTG A ATC ACTTG CG CTA ATC A AC ATG GGAGATATGTACGATGAATCATTTGACAAGTCGGGCGGTCCTGCTGACTTGATGGACGATTCTT GGGTGGAATCAGTTTCGTGGAAAGATCTGTTGAAGAAGTTACACAGCATAAAATTTGCACTACA GTCTGGTAGAGATGAGATCACTGGGTTACTAGCGGCACTGAATAGACAGTGTCCTTATTCACCA TATG AG C AGTTTCCAG ATA AG A AG GTGTATTTCCTTTTAG ACTC ACG G G CTA AC AGTG CTCTTG G
TGTGATTCAGAACGCTTCAGCGTTCAAGAGACGAGCTGATGAGAAGAATGCAGTGGCGGGTGT TACAAATATTCCTGCGAATCCAAACACAACGGTTACGACGAACCAAGGGAGTACTACTACTACC A AG G CG A AC ACTG G CTCG ACTTTG G A AG A AG ACTTGTAC ACTTATTAC A A ATTCG ATG ATG CCT
CTACAGCTTTCCACAAATCTCTAACTTCGTTAGAGAACATGGAGTTGAAGAGTTATTACCGAAG
G AACTTTG AG AAAGTATTCG GG ATTAAGTTTG GTGG AG CAG CTG CTAGTTCATCTG CACCG CCT
CCAG CG AGTG G AG GTCCG ATACGTCCTAATCCCTAG G G ATTTA AG G ACGTG AACTCTGTTG AG
ATCTCTGTGAAATTCAGAGGGTGGGTGATACCATATTCACTGATGCCATTAGCGACATCTAAAT
AGG G CTAATTGTG ACTAATTTG AG G G AATTTCCTTTACCATTG ACGTCAGTGTCGTTG GTAG CAT
TTG AGTTTCG C A ATG C ACG A ATTACTTAG G A AGTG G CTTG ACG AC ACTA ATGTGTTATTGTTAG
ATAATGGTTTGGTGGTCAAGGTACGTAGTAGAGTCCCACATATTCGCACGTATGAAGTAATTGG
AAAGTTGTCAGTTTTTGATAATTCACTGGGAGATGATACGCTGTTTGAGGGAAAAGTAGAGAAC
GTATTTGTTTTTATGTTCAG G CG GTTCTTGTGTGTCAACAAAG ATG G ACATTGTTACTCA AG G AA
GCACGATGAGCTTTATTATTACGGACGAGTGGACTTAGATTCTGTGAGTAATCTGACCAGGTCT
CATCGTGTCGACGGAGGAAGTGAAGCACAGAAATGGAACAAAAATAAAACCTTGGGGTACTCT
TTGATCTTCTTTGCAAGAATGTAATGAATATCCCTGATTACTTTCTTCATATACCGTCCGTCAAGT
G CCTTC A ATTG CTG A AG CCA A ATCCTA A ATCCC ATACC AC A AG ATTAC AG G C ATAG AGTCTCG A
AGCATTATTAATAACTCATTGGCGATCAAATTAAGATGAATGTCAGTTTATTAAAGGAAAAAGT
A A AG A AC A AG A AC A A A ATC ATTTG G C ACTTTTC ATACTAC A ACC ATCG ACA A A ATTAG CTG CTG C
CACTG CTTCTTTG AC ATGTA ATACG G G AG ACTCACTG CTATTTC ATTATTTG G CTCA AG G CA A AG
GAATTAGGAGATGAAGTGGATGGATATGATGAAAGCTCCTCCGCCACCACCTAATCAATACAAT
AGCAGCAGTAGTACTAATAACCTTAGCCAAAGCAAAGAAATCAGAGAAGAAGAAGAGCGAAA
AAG CTTG CCTTCTTCTCCATACA ATCCG GCCAAAGTTTCA ATATCCG G ATCATG G ACACCAATA A
CAATACTTATAGGATCACTATACAGCAAACGAGATGCAATTTTAGCTAAGACAGAAGTTTCACA
AGCTCATTTAGAGCTGTTAAAGAAGACTAATGAAGCAGCAATAGAAGAAACAGAGAAGCAATC
TCGAGCTCCTGAGACCTGGTCCTCATGTCCCGAAGACATTAAACTACGGTTCTTTAAGTAGATCC
GTGTCTGAAGTTTTAGGTTCAATTTAAACCTACGAGATTGACATTCTCGACTGATCTTGATTGAT
CGGTAAGTCTTTTGTAATTTAATTTTCTTTTTGATTTTATTTTAAAT^
GACTGTTTGAGATCGGCGTTTGGCCGACTCATTGTCTTACCATAGGGGAACGGACTTTGTTTGT GTTGTTATTTTATTTGTATTTTATTA A A ATTCTC A ACG ATCTG A A A A AG CCTCG CG G CTA AG AG AT TGTTGGGGGGTGAGTAAGTACTTTTAAAGTGATGATGGTTACAAAGGCAAAAGGGGTAAAACC CCTCGCCTACGTAAGCGTTATTACGCCCGTCTGTACTTATATCAGTACACTGACGAGTCCCTAAA GGACGAAACGGGAGAACGCTAGCCACCACCACCACCACCACGTGTGAATTACAGGTGACCAGC TCG A ATTTCCCCG ATCGTTC A A AC ATTTG G C A ATA A AGTTTCTTA AG ATTG A ATCCTGTTG CCG G TCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATG CATG ACGTTATTTATG AG ATG G GTTTTTATG ATTAG AGTCCCG C A ATTATAC ATTTA ATACG CG A TAGAAAACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACT AGATC
SEQ ID NO 23: Synthetic T7-RNA2-sgP-C3 sequence.
TAATACG ACTCACTATAG G ATAAAACATTG CACCTATG GTGTTGCCCTG G CTG GGGTATGTCAG TGATCGCAGTAGAATGTACTAATTGACAAGTTGGAGAATACGGTAGAACGTCCTTATCCAACAC AG CCTTTATCCCTCTCCCTG ACG AG GTTTTTGTC AGTGTA ATATTTCTTTTTG A ACTATCC AG CTT AGTACCGTACGGGAAAGTGACTGGTGTGCTTATCTTTGAAATGTTACTTTGGGTTTCGGTTCTTT AG GTTAGTA AG A A AG C ACTTGTCTTCTC ATAC A A AG G A A A ACCTG AG ACGTATCG CTTACG AAA GTAG CAATG A AAG A AAGGTG GTG GTTTTA ATCG CTACCG CAA AAACG ATGG G GTCGTTTTAATT A ACTTCTCCTACG C A AG CGTCTA A ACG G ACGTTG G G GTTTTG CTAGTTTCTTTAG AG A A A ACTAG CTAAGTCTTTAATGTTATCATTAGAGATGGCATAAATATAATACTTGTGTCTGCTGATAAGATCA ΤΠΤΑ ATTTG G ACG ATTAG ACTTGTTG A ACTAC AG GTTACTG A ATC ACTTG CG CTA ATC A AC ATG GGAGATATGTACGATGAATCATTTGACAAGTCGGGCGGTCCTGCTGACTTGATGGACGATTCTT GGGTGGAATCAGTTTCGTGGAAAGATCTGTTGAAGAAGTTACACAGCATAAAATTTGCACTACA GTCTGGTAGAGATGAGATCACTGGGTTACTAGCGGCACTGAATAGACAGTGTCCTTATTCACCA TATG AG C AGTTTCCAG ATA AG A AG GTGTATTTCCTTTTAG ACTC ACG G G CTA AC AGTG CTCTTG G TGTGATTCAGAACGCTTCAGCGTTCAAGAGACGAGCTGATGAGAAGAATGCAGTGGCGGGTGT TACAAATATTCCTGCGAATCCAAACACAACGGTTACGACGAACCAAGGGAGTACTACTACTACC A AG G CG A AC ACTG G CTCG ACTTTG G A AG A AG ACTTGTACACTTATTAC A A ATTCG ATG ATG CCT CTACAGCTTTCCACAAATCTCTAACTTCGTTAGAGAACATGGAGTTGAAGAGTTATTACCGAAG GAACTTTGAGAAAGTATTCGGGATTAAGTTTGGTGGAGCAGCTGCTAGTTCATCTGCACCGCCT CCAG CG AGTG GAG GTCCG ATACGTCCTAATCCCTAG G G ATTTA AG G ACGTG AACTCTGTTG AG ATCTCTGTG A A ATTC AG AG G GTG G GTG ATACC ATATTC ACTG ATG CC ATTAG CG AC ATCTA A AT AGG G CTAATTGTG ACTAATTTG AG G G AATTTCCTTTACCATTG ACGTCAGTGTCGTTG GTAG CAT TTGAGTTTCGGAGCATCTTGTTCTGGGGTTTCACACTATCTTTAGAGAAAGTGTTAAGTTAATTA
AGTTATCTTAATTAAGAGCATAATTATACTGATTTGTCTCTCGTTGATAGAGTCTATCATTCTGTT
ACTAAAAATTTGACAACTCGGTTTGCTGACCTACTGGTTACTGTATCA TTACCCGAGTTAACGA
G G G AG G A AGTG A AG C AC AG A A ATG G A AC A A A A ATA A A ACCTTG G G GTACTCTTTG ATCTTCTTT
GCAAGAATGTAATGAATATCCCTGATTACTTTCTTCATATACCGTCCGTCAAGTGCCTTCAATTGC
TGAAGCCAAATCCTAAATCCCATACCACAAGATTACAGGCATAGAGTCTCGAAGCATTATTAAT
A ACTC ATTG G CG ATC A A ATTA AG ATG A ATGTCAGTTTATTA A AG G A A A A AGTA A AG A AC A AG A
ACAAAATCATTTG G CACTTTTCATACTACAACCATCG ACA AAATTAGCTG CTG CCACTG CTTCTTT
G AC ATGTA ATACG G G AG ACTC ACTG CTATTTCATTATTTG G CTC A AG G CA A AG G A ATTAG GAGA
TGAAGTGGATGGATATGATGAAAGCTCCTCCGCCACCACCTAATCAATACAATAGCAGCAGTAG
TACTAATAACCTTAGCCAAAGCAAAGAAATCAGAGAAGAAGAAGAGCGAAAAAGCTTGCCTTC
TTCTCCATACAATCCGGCCAAAGTTTCAATATCCGGATCATGGACACCAATAACAATACTTATAG
GATCACTATACAGCAAACGAGATGCAATTTTAGCTAAGACAGAAGTTTCACAAGCTCATTTAGA
G CTGTTA A AG A AG ACTA ATG A AG C AG C A ATAG A AG A A AC AG AG A AG CA ATCTCG AG CTCCTG A
GACCTGGTCCTCCTCGTTAACTCGGGTAAGTGATACAGTAACCAGTAGGTCAGCAAACCGAGTT
GTCAAATTTTTAGTAACAGAATGATAGACTCTATCAACGAGAGACAAATCAGTATAATTATGCTC
TTA ATTA AG ATA ACTTA ATTA ACTTA AC ACTTTCTCTA A AG ATAGTGTG A AACCCC AG A AC A AG A
TGCTCATGTCCCGAAGACATTAAACTACGGTTCTTTAAGTAGATCCGTGTCTGAAGTTTTAGGTT
CAAmAAACCTACGAGATTGACATTCTCGACTGATCTTGATTGATCGGTAAGTCTTTTGTAATTT
AATTTTCTTTTTGATTTTATTTTAAATTGTTATC
TTGGCCGACTCATTGTCTTACCATAGGGGAACGGACTTTGTTTGTGTTGTTATTTTATTTGTATTT TATTA A A ATTCTC A ACG ATCTG A A A A AG CCTCG CG G CTA AG AG ATTGTTG G G G G GTG AGTA AG TACTTTTAAAGTGATGATGGTTACAAAGGCAAAAGGGGTAAAACCCCTCGCCTACGTAAGCGTT ATTACGCCCGTCTGTACTTATATCAGTACACTGACGAGTCCCTAAAGGACGAAACGGGAGAACG CTAGCCACCACCACCACCACCACGTGTGAATTACAGGTGACCAGCTCGAATTTCCCCGATCGTTC AAACATTTG G CA ATAAAGTTTCTTA AG ATTG AATCCTGTTG CCG GTCTTG CG ATG ATTATCATAT AATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATGAGA TG G GTTTTT ATG ATTAG AGTCCCG C A ATTATAC ATTTA AT ACG CG ATAG A A A AC A A A AT ATAG C GCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATCGGGAATTAAACTA TCAGTGTT
SEQ I D NO 24: Synthetic sequence consisting of pUC57 MCS flanked by PEBV subgenomic promoters, all of which are flanked by T7 promoters
TCGCGCGTTTCGGTGATGACGGTGAAAACCTCTGACACATGCAGCTCCCGGAGACGGTCACAG
CTTGTCTGTAAGCGGATGCCGGGAGCAGACAAGCCCGTCAGGGCGCGTCAGCGGGTGTTGGC
GGGTGTCGGGGCTGGCTTAATAATACGACTCACTATAGGGAGATACCATTGACGTCAGTGTCGT
TGGTAGCATTTGAGTTTCGGAGCATCTTGTTCTGGGGTTTCACACTATCTTTAGAGAAAGTGTTA
AGTTA ATTA AGTTATCTTA ATT A AG AG C ATA ATTATA TG ATTTGTCTCTCGTTG ATAG AGTCTAT
CATTCTGTTACTAAAAATTTGACAACTCGGTTTGCTGACCTACTGGTTA TGTATCACTTACCCGA
GTTAACGAGGTGAATTCGAGCTCGGTACCTCGCGAATGCATCTAGATATCGGATCCCGGGCCCG
TCG ACTG C AG AG G CCTG C ATG C A AG CTTG CTCGTTA ACTCG G GTA AGTG ATAC AGTA ACC AGTA
GGTCAGCAAACCGAGTTGTCAAATTTTTAGTAACAGAATGATAGACTCTATCAACGAGAGACAA
ATCAGTATAATTATGCTCTTAATTAAGATAACTTAATTAACTTAACACTTTCTCTAAAGATAGTGT
GAAACCCCAGAACAAGATGCTCCGAAACTCAAATGCTACCAACGACACTGACGTCAATGGTATC
TCCCTATAGTGAGTCGTATTATCACTGCCCGCTTTCCAGTCGGGAAACCTGTCGTGCCAGCTGCA
TTAATG AATCG G CCAACG CG CGG G G AG AG G CGGTTTG CGTATTG GGCG CTCTTCCG CTTCCTCG
CTCACTG ACTCG CTG CG CTCGGTCGTTCG G CTG CG G CG AG CGGTATCAG CTCACTC A A AG G CG G
TAATACGGTTATCCACAGAATCAGGGGATAACGCAGGAAAGAACATGTGAGCAAAAGGCCAGC
A A A AG G CC AG G A ACCGTA A A A AG G CCG CGTTG CTG G CGTTTTTCCATAG G CTCCG CCCCCCTG A
CGAGCATCACAAAAATCGACGCTCAAGTCAGAGGTGGCGAAACCCGACAGGACTATAAAGATA
CCAG G CGTTTCCCCCTG G AAGCTCCCTCGTG CG CTCTCCTGTTCCG ACCCTG CCG CTTACCGG AT
ACCTGTCCG CCTTTCTCCCTTCG GGAAGCGTGGCG CTTTCTC ATAG CTCACG CTGTAG GTATCTC
AGTTCGGTGTAG GTCGTTCG CTCCAAG CTG G G CTGTGTG CACG AACCCCCCGTTCAG CCCG ACC
GCTGCGCCTTATCCGGTAACTATCGTCTTGAGTCCAACCCGGTAAGACACGACTTATCGCCACTG
GCAGCAGCCACTGGTAACAGGATTAGCAGAGCGAGGTATGTAGGCGGTGCTACAGAGTTCTTG
AAGTGGTG G CCTAACTACG GCTACACTAG A AG A ACAGTATTTG GTATCTG CG CTCTG CTG A AGC
CAGTTACCTTCGGAAAAAGAGTTGGTAGCTCTTGATCCGGCAAACAAACCACCGCTGGTAGCG GTGG I I I I I I I GTTTG C A AG C AG C AG ATTACG CG C AG A A A A A A AG G ATCTC A AG A AG ATCCTTT
GATCTTTTCTACGGGGTCTGACGCTCAGTGGAACGAAAACTCACGTTAAGGGATTTTGGTCATG
AGATTATCAAAAAGGATCTTCACCTAGATCCTTTTAAATTAAAAATGAAGTTTTAAATCAATCTA
AAGTATATATGAGTAAACTTGGTCTGACAGTTACCAATGCTTAATCAGTGAGGCACCTATCTCA
GCGATCTGTCTATTTCGTTCATCCATAGTTGCCTGACTCCCCGTCGTGTAGATAACTACGATACG
G G AG G G CTTACC ATCTG G CCCCAGTGCTG CAATG ATACCG CG AG ACCCACG CTCACCG G CTCCA
GATTTATCAGCAATAAACCAGCCAGCCGGAAGGGCCGAGCGCAGAAGTGGTCCTGCAACTTTA
TCCGCCTCCATCCAGTCTATTAATTGTTGCCGGGAAGCTAGAGTAAGTAGTTCGCCAGTTAATAG
TTTG CG CAACGTTGTTG CCATTGCTACAG GCATCGTG GTGTCACG CTCGTCGTTTG GTATG GCTT
CATTCAGCTCCGGTTCCCAACGATCAAGGCGAGTTACATGATCCCCCATGTTGTGCAAAAAAGC
GGTTAGCTCCTTCGGTCCTCCGATCGTTGTCAGAAGTAAGTTGGCCGCAGTGTTATCACTCATGG
TTATG GCAG CACTG CATAATTCTCTTACTGTCATG CCATCCGTAAG ATG CTTTTCTGTG ACTG GT
GAGTACTCAACCAAGTCATTCTGAGAATAGTGTATGCGGCGACCGAGTTGCTCTTGCCCGGCGT
CAATACGGGATAATACCGCGCCACATAGCAGAACTTTAAAAGTGCTCATCATTGGAAAACGTTC
TTCGGGG CG AAAACTCTCA AG G ATCTTACCG CTGTTG AG ATCCAGTTCG ATGTAACCCACTCGT
GCACCCAACTGATCTTCAGCATCTTTTACTTTCACCAGCGTTTCTGGGTGAGCAAAAACAGGAAG
G C A A A ATG CCG C A A A A A AG G G A ATA AG G G CG AC ACG G A A ATGTTG A ATACTC ATACTCTTCCTT
TTTC A AT ATT ATTG A AG C ATTT ATC AG G G TT ATTG TCTC ATG AG CG G ATA C ATATTTG A ATG TATT
TAGAAAAATAAACAAATAGGGGTTCCGCGCACATTTCCCCGAAAAGTGCCACCTGACGTCTAAG
AAACCATTATTATCATG ACATTAACCTATAA AAATAG G CGTATCACG AG G CCCTTTCGTC
SEQ ID NO 25: Synthetic RNA1 of TRV Ppk20 sequence.
AAGCUUGCAUGCCUGCAGGUCAACAUGGUGGAGCACGACACUCUCGUCUACUCCAAGAAU
A U C A A AG AUACAGUCUCAGAAGACCAGAGGGCUAUUGAGACUUUU C A AC A A AG G G U A A U A
UCGGGAAACCUCCUCGGAUUCCAU UGCCCAGCUAUCUGUCACU UCAUCGAAAGGACAGUA
GAAAAGGAAGAUGGCU UCUACAAAUGCCAUCAU UGCGAUAAAGGAAAGGCUAUCGUUCAA
GAUGCCUCUACCGACAGUGGUCCCAAAGAUGGACCCCCACCCACGAGGAACAUCGUGGAAA
AAGAAGACGUUCCAACCACGUCUUCAAAGCAAGUGGAUUGAUGUGAUGGUCAACAUGGUG
GAGCACGACACUCUCGUCUACUCCAAGAAUAUCAAAGAUACAGUCUCAGAAGACCAGAGGG CUAUUGAGACUU UUCAACAAAGGGUAAUAUCGGGAAACCUCCUCGGAUUCCAUUGCCCAG
CUAUCUGUCACUUCAUCGAAAGGACAGUAGAAAAGGAAGAUGGCUUCUACAAAUGCCAUC
AUUGCGAUAAAGGAAAGGCUAUCGUUCAAGAUGCCUCUACCGACAGUGGUCCCAAAGAUG
GACCCCCACCCACGAGGAACAUCGUGGAAAAAGAAGACGUUCCAACCACGUCUUCAAAGCA
AGUGGAUUGAUGUGAUAUCUCCACUGACGUAAGGGAUGACGCACAAUCCCACUAUCCUUC
GCAAGACCCUUCCUCUAUAUAAGGAAGUUCAUU UCAUUUGGAGAGGAUAAAACAUU UCAA
UCCUU UGAACGCGGUAGAACGUGCUAAUUGGAU UUUGGUGAGAACGCGGUAGAACGUAC
UUAUCACCUACAGUUUUAUUU UGUU UUUCUUUU UGGUU UAAUCUAUCCAGCU UAGUACC
GAGUGGGGGAAAGUGACUGGUGUGCCUAAAACCUUUUCUU UGAUACUUUGUAAAAAUAC
AUACAGAUACAAUGGCGAACGGUAACUUCAAGUUGUCUCAAUUGCUCAAUGUGGACGAGA
UGUCUGCUGAGCAGAGGAGUCAUUUCU UUGACUUGAUGCUGACUAAACCUGAU UGUGAG
AUCGGGCAAAUGAUGCAAAGAGUUGUUGUUGAUAAAGUCGAUGACAUGAU UAGAGAAAG
AAAGACUAAAGAUCCAGUGAUUGUUCAUGAAGUUCUUUCUCAGAAGGAACAGAACAAGUU
GAUGGAAAUU UAUCCUGAAUUCAAUAUCGUGU UUAAAGACGACAAAAACAUGGUUCAUG
GGUUUGCGGCUGCUGAGCGAAAACUACAAGCU UUAU UGCUUUUAGAUAGAGUUCCUGCU
CUGCAAGAGGUGGAUGACAUCGGUGGUCAAUGGUCGUUUUGGGUAACUAGAGGUGAGAA
AAGGAU UCAUUCCUGUUGUCCAAAUCUAGAUAUUCGGGAUGAUCAGAGAGAAAU UUCUC
GACAGAUAU UUCUUACUGCUAUUGGUGAUCAAGCUAGAAGUGGUAAGAGACAGAUGUCG
GAGAAUGAGCUGUGGAUGUAUGACCAAU UUCGUGAAAAUAUUGCUGCGCCUAACGCGGU
UAGGUGCAAUAAUACAUAUCAGGGUUGUACAUGUAGGGGUUUUUCUGAUGGUAAGAAGA
AAGGCGCGCAGUAUGCGAUAGCUCUUCACAGCCUGUAUGACUUCAAGUUGAAAGACU UGA
UGGCUACUAUGGUUGAGAAGAAAACUAAAGUGGUUCAUGCUGCUAUGCUU UUUGCUCCU
GAAAGUAUGU UAGUGGACGAAGGUCCAU UACCUUCUGUUGACGGUUACUACAUGAAGAA
GAACGGGAAGAUCUAUUUCGGUU UUGAGAAAGAUCCUUCCUUU UCUUACAUUCAUGACU
GGGAAGAGUACAAGAAGUAUCUACUGGGGAAGCCAGUGAGU UACCAAGGGAAUGUGUUC
UACUUCGAACCGUGGCAGGUGAGAGGAGACACAAUGCUUUUU UCGAUCUACAGGAUAGC
UGGAGUUCCGAGGAGGUCUCUAUCAUCGCAAGAGUACUACCGAAGAAUAUAUAUCAGUAG
AUGGGAAAACAUGGUUGUUGUCCCAAUU UUCGAUCUGGUCGAAUCAACGCGAGAGUUGG
UCAAGAAAGACCUGUUUGUAGAGAAACAAUUCAUGGACAAGUGUUUGGAUUACAUAGCU AGGUUAUCUGACCAGCAGCUGACCAUAAGCAAUGUUAAAUCAUACUUGAGU UCAAAUAAU
UGGGUCUUAUUCAUAAACGGGGCGGCCGUGAAGAACAAGCAAAGUGUAGAUUCUCGAGA
UUUACAGUUGUUGGCUCAAACUUUGCUAGUGAAGGAACAAGUGGCGAGACCUGUCAUGA
GGGAGUUGCGUGAAGCAAUUCUGACUGAGACGAAACCUAUCACGUCAUUGACUGAUGUG
CUGGGUU UAAUAUCAAGAAAACUGUGGAAGCAG UUUGCUAACAAGAUCGCAGUCGGCGG
AUUCGUUGGCAUGGUUGGUACUCUAAUUGGAUUCUAUCCAAAGAAGGUACUAACCUGGG
CGAAGGACACACCAAAUGGUCCAGAACUAUGUUACGAGAACUCGCACAAAACCAAGGUGAU
AGUAUUUCUGAGUGU UGUGUAUGCCAUUGGAGGAAUCACGCUUAUGCGUCGAGACAUCC
GAGAUGGACUGGUGAAAAAACUAUGUGAUAUGUUUGAUAUCAAACGGGGGGCCCAUGUC
UUAGACGUUGAGAAUCCGUGCCGCUAUUAUGAAAUCAACGAUU UCU UUAGCAGUCUGUA
UUCGGCAUCUGAGUCCGGUGAGACCGUUUUACCAGAUUUAUCCGAGGUAAAAGCCAAGUC
UGAUAAGCUAUUGCAGCAGAAGAAAGAAAUCGCUGACGAGUUUCUAAGUGCAAAAU UCUC
UAACUAUUCUGGCAGU UCGGUGAGAACUUCUCCACCAUCGGUGGUCGGUUCAUCUCGAAG
CGGACUGGGUCUGUUGUUGGAAGACAGUAACGUGCUGACCCAAGCUAGAGUUGGAGUU U
CAAGAAAGGUAGACGAUGAGGAGAUCAUGGAGCAGU UUCUGAGUGGUCUUAUUGACACU
GAAGCAGAAAU UGACGAGGUUGUUCCAGCCUUU UCAGCUGAAUGUGAAAGAGGGGAAAC
AAGCGGUACAAAGGUGUUGUGUAAACCUUUAACGCCACCAGGAUUUGAGAACGUGU UGCC
AG C U G U C A A ACC U U U G G U C AG C A A AG G A A A A ACG G U C A A ACG UGUCGAU UACUU CCA AG U
GAUGGGAGGUGAGAGAU UACCAAAAAGGCCGGUUGUCAGUGGAGACGAUUCUGUGGACG
CUAGAAGAGAGUUUCUGUACUACUUAGAUGCGGAGAGAGUCGCUCAAAAUGAUGAAAUU
AUGUCUCUGUAUCGUGACUAUUCGAGAGGAGUUAU UCGAACUGGAGGUCAGAAUUACCC
GCACGGACUGGGAGUGUGGGAUGUGGAGAUGAAGAACUGGUGCAUACGUCCAGUGGUCA
CUGAACAUGCUUAUGUGUUCCAACCAGACAAACGUAUGGAUGAUUGGUCGGGAUACUUA
GAAGUGGCUGUUUGGGAACGAGGUAUGUUGGUCAACGACUUCGCGGUCGAAAGGAUGAG
UGAU UAUGUCAUAGUUUGCGAUCAGACGUAUCUUUGCAAUAACAGGUUGAUCU UGGACA
AUUUAAGUGCCCUGGAUCUAGGACCAGUUAACUGUUCUUUUGAAU UAGUUGACGGUGUA
CCUGGUUGUGGUAAGUCGACAAUGAUUGUCAACUCAGCUAAUCCUUGUGUCGAUGUGGU
UCUCUCUACUGGGAGAGCAGCAACCGACGACUUGAUCGAGAGAUUCGCGAGCAAAGGUUU
UCCAUGCAAAU UGAAAAGGAGAGUGAAGACGGUUGAUUCUUU UUUGAUGCAUUGUGUU GAUGGUUCUUUAACCGGAGACGUGU UGCAU UUCGAUGAAGCUCUCAUGGCCCAUGCUGG
UAUGGUGUACUUU UGCGCUCAGAUAGCUGGUGCUAAACGAUGUAUCUGUCAAGGAGAUC
AGAAUCAAAUUUCU UUCAAGCCUAGGGUAUCUCAAGUUGAUUUGAGGUU UUCUAGUCUG
GUCGGAAAGU UUGACAUUGUUACAGAAAAAAGAGAAACUUACAGAAGUCCAGCAGAUGUG
GCUGCCGUAUUGAACAAGUACUAUACUGGAGAUGUCAGAACACAUAACGCGACUGCUAAU
UCGAUGACGGUGAGGAAGAUUGUGUCUAAAGAACAGGUUUCUU UGAAGCCUGGUGCUCA
GUACAUAACUUUCCUUCAGUCUGAGAAGAAGGAGU UGGUAAAUUUGUUGGCAU UGAGGA
AAGUGGCAGCUAAAGUGAGUACAGUACACGAGUCGCAAGGAGAGACAU UCAAAGAUGUAG
UCCUAGUCAGGACGAAACCUACGGAUGACUCAAUCGCUAGAGGUCGGGAGUACU UAAUCG
UGGCGUUGUCGCGUCACACACAAUCACUUGUGUAUGAAACUGUGAAAGAGGACGAUGUAA
GCAAAGAGAUCAGGGAAAGUGCCGCGCUUACGAAGGCGGCUUUGGCAAGAUUU UUUGUU
ACUGAGACCGUCUUAUGACGGUUUCGG UCUAGGU UUGAUGUCU UUAGACAUCAUGAAGG
GCCUUGCGCCGUUCCAGAUUCAGGUACGAUUACGGACUUGGAGAUGUGGUACGACGCUU
UGU UUCCGGGAAAUUCGUUAAGAGACUCAAGCCUAGACGGGUAU UUGGUGGCAACGACU
GAU UGCAAUU UGCGAUUAGACAAUGUUACGAUCAAAAGUGGAAACUGGAAAGACAAGUU
UGCUGAAAAAGAAACGUUUCUGAAACCGGUUAU UCGUACUGCUAUGCCUGACAAAAGGAA
GACUACUCAGUUGGAGAGUUUGUUAGCAUUGCAGAAAAGGAACCAAGCGGCACCCGAUCU
ACAAGAAAAUGUGCACGCAACAGU UCUAAUCGAAGAGACGAUGAAGAAGU UGAAAUCUGU
UGUCUACGAUGUGGGAAAAAUUCGGGCUGAUCCUAUUGUCAAUAGAGCUCAAAUGGAGA
GAUGGUGGAGAAAUCAAAGCACAGCGGUACAGGCUAAGGUAGUAGCAGAUGUGAGAGAG
UUACAUGAAAUAGACUAUUCGUCUUACAUGUAUAUGAUCAAAUCUGACGUGAAACCUAAG
ACUGAU UUAACACCGCAAUU UGAAUACUCAGCUCUACAGACUGUUGUGUAUCACGAGAAG
UUGAUCAACUCGUUGU UCGGUCCAAU UUUCAAAGAAAUUAAUGAACGCAAGUUGGAUGC
UAUGCAACCACAU UUUGUGUUCAACACGAGAAUGACAUCGAGUGAUUUAAACGAUCGAGU
GAAGUUCUUAAAUACGGAAGCGGCUUACGACUU UGU UGAGAUAGACAUGUCUAAAUUCG
ACAAGUCGGCAAAUCGCUUCCAUU UACAACUGCAGCUGGAGAUUUACAGGU UAUUUGGGC
UAGAUGAGUGGGCGGCCUUCCU UUGGGAGGUGUCGCACACUCAAACUACUGUGAGAGAU
AUUCAAAAUGGUAUGAUGGCGCAUAUUUGGUACCAACAAAAGAGUGGAGAUGCUGAUAC
UUAUAAUGCAAAUUCAGAUAGAACACUGUGUGCACUCUUGUCUGAAUUACCAUUGGAGA AAGCAGUCAUGGUUACAUAUGGAGGAGAUGACUCACUGAUUGCGU UUCCUAGAGGAACG
CAGUUUGUUGAUCCGUGUCCAAAGUUGGCUACUAAGUGGAAUU UCGAGUGCAAGAUUUU
UAAGUACGAUGUCCCAAUGU UUUGUGGGAAGUUCUUGCUUAAGACGUCAUCGUGUUACG
AGU UCGUGCCAGAUCCGGUAAAAGUUCUGACGAAGUUGGGGAAAAAGAGUAUAAAGGAU
GUGCAACAUUUAGCCGAGAUCUACAUCUCGCUGAAUGAUUCCAAUAGAGCUCUUGGGAAC
UACAUGGUGGUAUCCAAACUGUCCGAGUCUGUU UCAGACCGGUAUU UGUACAAAGGUGA
UUCUGUUCAUGCGCUU UGUGCGCUAUGGAAGCAUAUUAAGAGUUUUACAGCUCUGUGUA
CAUUAUUCCGAGACGAAAACGAUAAGGAAUUGAACCCGGCUAAGGUUGAUUGGAAGAAGG
CACAGAGAGCUGUGUCAAACU UUUACGACUGGUAAUAUGGAAGACAAGUCAUUGGUCACC
UUGAAGAAGAAGACU UUCGAAGUCUCAAAAUUCUCAAAUCUAGGGGCCAU UGAAUUGUU
UGUGGACGGUAGGAGGAAGAGACCGAAGUAUUU UCACAGAAGAAGAGAAACUGUCCUAAA
UCAUGUUGGUGGGAAGAAGAGUGAACACAAGUUAGACGUUUUUGACCAAAGGGAUUACA
AAAUGAUUAAAUCUUACGCGUUUCUAAAGAUAG UAGGUGUACAACUAGU UGUAACAUCA
CAUCUACCUGCAGAUACGCCUGGGU UCAUUCAAAUCGAUCUGU UGGAU UCGAGACUUACU
GAGAAAAGAAAGAGAGGAAAGACUAUUCAGAGAUUCAAAGCUCGAGCUUGCGAUAACUGU
UCAGUUGCGCAGUACAAGGUUGAAUACAGUAUU UCCACACAGGAGAACGUACUUGAUGUC
UGGAAGGUGGGUUGUAUUUCUGAGGGCGUUCCGGUCUGUGACGGUACAUACCCU UUCAG
UAUCGAAGUGUCGCUAAUAUGGGUUGCUACUGAUUCGACUAGGCGCCUCAAUGUGGAAG
AACUGAACAGUUCGGAUUACAUUGAAGGCGAUU UUACCGAUCAAGAGGUUU UCGGUGAG
UUCAUGUCUUUGAAACAAGUGGAGAUGAAGACGAUUGAGGCGAAGUACGAUGGUCCUUA
CAGACCAGCUACUACUAGACCUAAGUCAU UAUUGUCAAGUGAAGAUGUUAAGAGAGCGUC
UAAUAAGAAAAACUCGUCUUAAUGCAUAAAGAAAUUUAUUGUCAAUAUGACGUGUGUAC
UCAAGGGUUGUGUGAAUGAAGUCACUGU UCUUGGUCACGAGACGUGUAGUAUCGGUCAU
GCUAACAAAUUGCGAAAGCAAGUUGCUGACAUGGUUGGUGUCACACGUAGGUGUGCGGA
AAAUAAUUGUGGAUGGUU UGUCUGUGUUGUUAUCAAUGAUU UUACUU UUGAUGUGUAU
AAUUGUUGUGGCCGUAGUCACCUUGAAAAGUGUCGUAAACGUGUUGAAACAAGAAAUCG
AGAAAUUUGG A A AC A A A U U CG ACG AAA UCAAGCUGAAAACAUGUCUGCGACAGCU A A A A A
GUCUCAUAAUUCGAAGACCUCUAAGAAGAAAUUCAAAGAGGACAGAGAAUU UGGGACACC
AAAAAGAUU UUUAAGAGAUGAUGUUCCUUUCGGGAUUGAUCGUUUGUUUGCUUUUUGA UUUUAUU UUAUAUUGU UAUCUGUUUCUGUGUAUAGACUGU UUGAGAUUGGCGCUUGGC CGACUCAUUGUCUUACCAUAGGGGAACGGACUUUGUUUGUGUUGUUAUUUUAUUUGUA UUUUAUUAAAAUUCUCAAUGAUCUGAAAAGGCCUCGAGGCUAAGAGAUUAU UGGGGGGU GAGUAAGUACUUU UAAAGUGAUGAUGGUUACAAAGGCAAAAGGGGUAAAACCCCUCGCCU ACGUAAGCG U U AU U ACGCCC
SEQ ID NO 26: Synthetic RNA2 of pTRV2 with C3 insert sequence.
AUAAAACAUUGCACCUAUGGUGUUGCCCUGGCUGGGGUAUGUCAGUGAUCGCAGUAGAA
UGUACUAAUUGACAAGUUGGAGAAUACGGUAGAACGUCCUUAUCCAACACAGCCUUUAUC
CCUCUCCCUGACGAGGU UUUUGUCAGUGUAAUAUUUCUUUU UGAACUAUCCAGCUUAGU
ACCGUACGGGAAAGUGACUGGUGUGCUUAUCUU UGAAAUGUUACUU UGGGUUUCGGUU
CUU UAGGUUAGUAAGAAAGCACUUGUCUUCUCAUACAAAGGAAAACCUGAGACGUAUCGC
UUACGAAAGUAGCAAUGAAAGAAAGGUGGUGGUUUUAAUCGCUACCGCAAAAACGAUGG
GGUCGU UUUAAUUAACU UCUCCUACGCAAGCGUCUAAACGGACGUUGGGGUUUUGCUAG
UUUCUUUAGAGAAAACUAGCUAAGUCU UUAAUGUUAUCAUUAGAGAUGGCAUAAAUAUA
AUACUUGUGUCUGCUGAUAAGAUCAUU UUAAU UUGGACGAUUAGACUUGUUGAACUACA
GGUUACUGAAUCACU UGCGCUAAUCAACAUGGGAGAUAUGUACGAUGAAUCAUUUGACA
AGUCGGGCGGUCCUGCUGACUUGAUGGACGAUUCUUGGGUGGAAUCAGU UUCGUGGAAA
GAUCUGUUGAAGAAGUUACACAGCAUAAAAUU UGCACUACAGUCUGGUAGAGAUGAGAU
CACUGGGUUACUAGCGGCACUGAAUAGACAGUGUCCUUAU UCACCAUAUGAGCAGUUUCC
AGAUAAGAAGGUGUAU UUCCU UUUAGACUCACGGGCUAACAGUGCUCUUGGUGUGAUUC
AGAACGCUUCAGCGUUCAAGAGACGAGCUGAUGAGAAGAAUGCAGUGGCGGGUGUUACA
AAUAUUCCUGCGAAUCCAAACACAACGGUUACGACGAACCAAGGGAGUACUACUACUACCA
AGGCGAACACUGGCUCGACUU UGGAAGAAGACUUGUACACUUAUUACAAAUUCGAUGAUG
CCUCUACAGCUUUCCACAAAUCUCUAACUUCGUUAGAGAACAUGGAGUUGAAGAGUUAUU
ACCGAAGGAACUUUGAGAAAGUAU UCGGGAUUAAGU UUGGUGGAGCAGCUGCUAGUUCA
UCUGCACCGCCUCCAGCGAGUGGAGGUCCGAUACGUCCUAAUCCCUAGGGAUUUAAGGAC
GUGAACUCUGUUGAGAUCUCUGUGAAAUUCAGAGGGUGGGUGAUACCAUAUUCACUGAU
GCCAUUAGCGACAUCUAAAUAGGGCUAAUUGUGACUAAUUUGAGGGAAUUUCCUUUACC AUUGACGUCAGUGUCGUUGGUAGCAUUUGAGUU UCGCAAUGCACGAAUUACUUAGGAAG
UGGCUUGACGACACUAAUGUGUUAUUGUUAGAUAAUGGUUUGGUGGUCAAGGUACGUA
GUAGAGUCCCACAUAUUCGCACGUAUGAAGUAAU UGGAAAGUUGUCAGUU UUUGAUAAU
UCACUGGGAGAUGAUACGCUGUUUGAGGGAAAAGUAGAGAACGUAUUUGU UUUUAUGU
UCAGGCGGUUCUUGUGUGUCAACAAAGAUGGACAUUGUUACUCAAGGAAGCACGAUGAG
CUU UAUUAUUACGGACGAGUGGACUUAGAUUCUGUGAGUAAUCUGACCAGGUCUCAUCG
UGUCGACGGAGGAAGUGAAGCACAGAAAU G G A AC A A A A A U A A A ACC UUGGGGUACUCUUU
GAUCUUCUU UGCAAGAAUGUAAUGAAUAUCCCUGAUUACUU UCU UCAUAUACCGUCCGUC
AAGUGCCUUCAAUUGCUGAAGCCAAAUCCUAAAUCCCAUACCACAAGAUUACAGGCAUAGA
GUCUCGAAGCAUUAU UAAUAACUCAUUGGCGAUCAAAUUAAGAUGAAUGUCAGUUUAUU
A A AG G A A A A AG U A A AG A AC A AG A AC A A A A UCAUUUGGCACUUUUCAUACU AC A ACC A U CG A
CAAAAUUAGCUGCUGCCACUGCUUCUUUGACAUGUAAUACGGGAGACUCACUGCUAU UUC
AUUAUU UGGCUCAAGGCAAAGGAAUUAGGAGAUGAAGUGGAUGGAUAUGAUGAAAGCUC
CUCCGCCACCACCUAAUCAAUACAAUAGCAGCAGUAGUACUAAUAACCUUAGCCAAAGCAA
AGAAAUCAGAGAAGAAGAAGAGCGAAAAAGCUUGCCUUCUUCUCCAUACAAUCCGGCCAAA
GUU UCAAUAUCCGGAUCAUGGACACCAAUAACAAUACUUAUAGGAUCACUAUACAGCAAA
CGAGAUGCAAUUUUAGCUAAGACAGAAGU UUCACAAGCUCAUUUAGAGCUGUUAAAGAAG
ACUAAUGAAGCAGCAAUAGAAGAAACAGAGAAGCAAUCUCGAGCUCCUGAGACCUGGUCC
UCAUGUCCCGAAGACAU UAAACUACGGUUCUUUAAGUAGAUCCGUGUCUGAAGUUUUAG
GUUCAAU UUAAACCUACGAGAUUGACAUUCUCGACUGAUCUUGAUUGAUCGGUAAGUCU
UUUGUAAUUUAAUUUUCUU UUUGAUU UUAUUU UAAAU UGU UAUCUGUUUCUGUGUAU
AGACUGUUUGAGAUCGGCGUU UGGCCGACUCAUUGUCUUACCAUAGGGGAACGGACUU U
GUU UGUGUUGUUAUUUUAUUUGUAUUU UAUUAAAAUUCUCAACGAUCUGAAAAAGCCU
CGCGGCUAAGAGAUUGUUGGGGGGUGAGUAAGUACU UUUAAAGUGAUGAUGGUUACAA
AGGCAAAAGGGGUAAAACCCCUCGCCUACGUAAGCGUUAUUACGCCC
SEQ I D NO 27: Synthetic sequence consisting of SEQ ID NO 15 flanked by PEBV subgenomic promoters GAGCAUCUUGUUCUGGGGUU UCACACUAUCUU UAGAGAAAGUGUUAAGUUAAU UAAGUU
AUCUUAAUUAAGAGCAUAAUUAUACUGAUUUGUCUCUCGUUGAUAGAGUCUAUCAU UCU
GUUACUAAAAAU UUGACAACUCGGUU UGCUGACCUACUGGUUACUGUAUCACUUACCCGA
GUUAACGAGGGAGGAAGUGAAGCACAGAAAUGGAACAAAAAUAAAACCUUGGGGUACUCU
UUGAUCU UCUUUGCAAGAAUGUAAUGAAUAUCCCUGAUUACU UUCUUCAUAUACCGUCC
GUCAAGUGCCU UCAAUUGCUGAAGCCAAAUCCUAAAUCCCAUACCACAAGAUUACAGGCAU
AGAGUCUCGAAGCAU UAU UAAUAACUCAUUGGCGAUCAAAUUAAGAUGAAUGUCAGUUU
AUUAAAGGAAAAAGUAAAGAACAAGAACAAAAUCAU UUGGCACUU UUCAUACUACAACCA
UCGACAAAAUUAGCUGCUGCCACUGCUUCUU UGACAUGUAAUACGGGAGACUCACUGCUA
UUUCAUUAUU UGGCUCAAGGCAAAGGAAUUAGGAGAUGAAGUGGAUGGAUAUGAUGAAA
GCUCCUCCGCCACCACCUAAUCAAUACAAUAGCAGCAGUAGUACUAAUAACCUUAGCCAAA
GCAAAGAAAUCAGAGAAGAAGAAGAGCGAAAAAGCUUGCCUUCUUCUCCAUACAAUCCGGC
CAAAGUUUCAAUAUCCGGAUCAUGGACACCAAUAACAAUACUUAUAGGAUCACUAUACAG
CAAACG AG AU GCAAU U U U AGCU AAG ACAG AAG U U U CACAAGCUCAU U U AG AGCUG U U AAA
GAAGACUAAUGAAGCAGCAAUAGAAGAAACAGAGAAGCAAUCUCGAGCUCCUGAGACCUG
GUCCUCCUCGU UAACUCGGGU AAG UGAU ACAG UAACCAGUAGGUCAGCAAACCGAGUUGU
CAAAUUUUUAGUAACAGAAUGAUAGACUCUAUCAACGAGAGACAAAUCAGUAUAAUUAUG
CUCUUAAUUAAGAUAACUUAAU UAACUUAACACU UUCUCUAAAGAUAGUGUGAAACCCCA
GAACAAGAUGCUC
SEQ ID NO 28: Synthetic pRNAi-GG sequence.
AAG CTTTCAACATGTG G AG CACG ACACACTTGTCTACTCCAAA AATATCAAAG ATACAGTCTCA G A AG ACC A A AG G G C A AUG AG ACTTTTC A AC A A AG G GTA ATATCCG G A A ACCTCCTCG G ATTCC ATTGCCCAGCTATCTGTCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCCTACAAATG CC ATC ATTG CG ATA AAG G A A AG G CC ATCGTTG AAG ATG CCTCTG CCG AC AGTG GTCCC A A AG AT GGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAA GTGGATTGATGTGATAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAAAGATA CAGTCTCAG AAG ACC A AAG G G CA ATTG AG ACTTTTCA AC A A AG G GTA ATATCCG G A A ACCTCCT CGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCC TACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCCGACAGTGGTC CCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTT CAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCC TTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACGTCGAGAGTTCTCA AC ACA AC ATATAC A A A AC A A ACG A ATCTC A AG C A ATC A AG C ATTCTACTTCTATTG C AG CAATTT AAATCATTTCTTTTAAAG CAAAAG CAATTTTCTG AAAATTTTCACCATTTACG AACG ATAG CCAG GGCCCGGAGTG AG ACC A ATTCTCG ACTA AGTTG G C AG C ATC ACCCG ACG C ACTTTG CG CCG A AT AAATACCTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTGATACCGG GAAGCCCTGGGCCAACTTTTGGCGAAAATGAGACGTTGATCGGCACGTAAGAGGTTCCAACTTT CACCATAATGAAATAAGATCACTACCGGGCGTA I I I I I I GAGTTATCGAGATTTTCAGGAGCTAA G G A AG CTA A ACTTTTG CTG ACG AG A AC AG G G ACTG GTG A A ATG C AGTTTA AG GTTTAC ACCTAT AAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACACGCCTGGGC GACGGATGGTGATCCCCCTGGCCAGTGCACGTCTGCTGTCAGATAAAGTCTCCCGTGAACTTTA CCCG GTG GTG CATATCG G G G ATG A A AG CTG G CG C ATG ATG ACCACCG AT ATG G CC AGTGTG CC GGTATCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACATCAAAAACGC CATTAACCTG ATGTTCTGG G G AATATAAATGTCAGG CTCCCTTATACACAG GTCG ACG GTCTCA ACGAGCCCTTGGTAAGGAAATAATTATTTTC I I I I I I CCTTTTAGTATAAAATAGTTAAGTGATGT TAATTAGTATGATTATAATAATATAGTTGTTATAATTGTGAAAAAATAATTTATAAATATATTGTT TACATAAACAACATAGTAATGTAAAAAAATATGACAAGTGATGTGTAAGACGAAGAAGATAAA AGTTG AGAGTAAGTAT ATT ATTTTTAATGAATTTGATCGAACATGTAAGATGATATACGGCCGG TAAGAGGTTCCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTA I I I I I I GAGTTATCG AG ATTTTC AG GAG CTA AG G A AG CTA A A ATG GAG A A A A A A ATC ACTG G ATATACC ACCGTTG AT ATATCCCAATGGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAA CCAGACCGTTCAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTT TATCCG G CCTTTATTC ACATTCTTG CCCG CCTG ATG A ATG CTCATCCG G A ATTCCGTATG G CA AT GAAAGACGGTGAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAA ACTG AAACGTTTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACAT ATA TTCG CA AG ATGTGG CGTGTTACGGTG AA AACCTG G CCTATTTCCCTAAAG G GTTTATTG AG A AT ATGTTTTTCGTCTCAGCCAATCCCTGGGTGAGTTTCACCAGTTTTGATTTAAACGTGGCCAATAT G G AC A ACTTCTTCG CCCCCGTTTTCACC ATG G G C A A ATATTATACG C A AG G CG AC A AG GTG CTG ATG CCG CTG G CG ATTC AG GTTCATC ATG CCGTCTGTG ATG G CTTCC ATGTCG G C AG A ATG CTTA ATGAATTACAACAGTACTGCGATGAGTGGCAGGGCGGGGCGTAATCGCGTGGATCCGGCTTAC TAAAAG CCAG ATAACAGTATGCGTATTTG CG CGCTG ATTTTTG CG GTATAAG AATATATACTG A TATGTCGGTCCCATAATAGTAATTCTAGCTGGTTTGATGAATTAAATATCAATGATAAAATACTA TAGTAAAAATAAGAATAAATAAATTAAAATAATA I I I I I I I ATGATTAATAGTTTATTATATAATT AAATATCTATACCATTACTAAATATTTTAGTTTAAAAGTTAATAAATATTTTGTTAGAAATTCCAA TCTGCTTGTAATTTATCAATAAACAAAATATTAAATAACAAGCTAAAGTAACAAATAATATCAAA CTA ATAG A A AC AGTA ATCTA ATGTA AC A A A AC ATA ATCTA ATG CTA ATATA AC A A AG CG C A AG A TCTATCATmATATAGTATTATTTTCAATCAACATTCTTATTAAmCTAAATAATACTTGTAGm TATTAACTTCTAAATGGATTGACTATTAATTAAATGAATTAGTCGAACATGAATAAACAAGGTAA CATG ATAG ATC ATGTC ATTGTGTTATC ATTG ATCTTACATTTG G ATTG ATTAC AGTTG GTCTAG A GATTTCGTCTAGATCGTTGAGACCAATTCTCGACTAAGTTGGCAGCATCACCCGACGCACTTTGC GCCGAATAAATACCTGTGACGGAAGATCACTTCGCAGAATAAATAAATCCTGGTGTCCCTGTTG ATACCG G G AAGCCCTG G G CCAACTTTTGG CG AA AATG AG ACGTTG ATCG GCACGTAAG AG GTT CCAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTA I I I I I I GAGTTATCGAGATTTTCA GGAGCTAAGGAAGCTAAACTTTTGCTGACGAGAACAGGGACTGGTGAAATGCAGTTTAAGGTT TACACCTATAAAAGAGAGAGCCGTTATCGTCTGTTTGTGGATGTACAGAGTGATATTATTGACA CG CCTG G G CG ACG G ATG GTG ATCCCCCTG G CC AGTG CACGTCTG CTGTC AG ATA A AGTCTCCCG TG A ACTTTACCCG GTG GTG CAT ATCG G G G ATG A A AG CTG G CG CATG ATG ACC ACCG AT ATG G C CAGTGTGCCGGTATCCGTTATCGGGGAAGAAGTGGCTGATCTCAGCCACCGCGAAAATGACAT CAAAAACG CCATTAACCTG ATGTTCTG G G G A ATATA A ATGTCAG G CTCCCTTATAC AC AG GGTC TC ACTCCG AG CTCG A ATTTCCCCG ATCGTTC A A AC ATTTG G C A ATA A AGTTTCTTA AG ATTG A AT CCTGTTGCCGGTCTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATT A AC ATGTA ATG C ATG ACGTTATTTATG AG ATG G GTTTTTATG ATTAG AGTCCCG C A ATTATAC AT TTAATACG CG ATAG A A A AC A A A ATATAG CG CG CA A ACTAG G ATA A ATTATCG CGCGCGGTGTC ATCTATGTTACTAG ATCG G G A ATTC ACTG G CCGTCGTTTTACA ACGTCGTG ACTG G G A A A ACCCT G G CGTTACCCA ACTTA ATCG CCTTG CAG C AC ATCCCCCTTTCG CCAG CTG G CGTA ATAG CG A AG AGGCCCGCACCG ATCG CCCTTCCC A ACAGTTG CG CAG CCTG AATG G CG CCCG CTCCTTTCG CTTT CTTCCCTTCCTTTCTCG CC ACGTTCG CCG G CTTTCCCCGTC A AG CTCTA A ATCG G G G G CTCCCTTT AGGGTTCCGATTTAGTGCTTTACGGCAC rCGACCCCAAAAAA TTGATTTGGGTGATGGTTCA CGTAGTGGGCCATCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAA TAGTG G ACTCTTGTTCCAAACTG G A ACA ACACTCAACCCTATCTCG GG CTATTCTTTTG ATTTATA AG G G ATTTTG CCG ATTTCG G A ACC ACC ATC A A AC AG G ATTTTCG C TG TG G G G C A A ACC AG CG TGGACCG CTTG CTG CAACTCTCTCAGG G CCAG G CG GTG AAG GG CAATCAGCTGTTG CCCGTCTC ACTGGTGAAAAGAAAAACCACCCCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCT AAGCGTCAATTTGTTTACACCACAATATATCCTGCCACCAGCCAGCCAACAGCTCCCCGACCGGC AG CTCG G C AC A A A ATC ACC ACTCG ATAC AG G C AG CCC ATC AGTCCG G G ACG G CGTC AG CG G G A GAG CCGTTGTA AG G CG G C AG ACTTTG CTCATGTTACCG ATG CTATTCG G A AG A ACG G C A ACTA A GCTGCCGGGTTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAACGATGACAG AG CGTTG CTG CCTGTG ATCA A ATATC ATCTCCCTCG C AG AG ATCCG A ATT ATC AG CCTTCTTATTC ATTTCTCGCTTAACCGTGACAGGCTGTCGATCTTGAGAACTATGCCGACATAATAGGAAATCGC TG G ATA A AG CCG CTG AG G A AG CTG AGTG G CG CTATTTCTTTAG AAGTG A ACGTTG ACG ATATC AACTCCCCTATCCATTGCTCACCGAATGGTACAGGTCGGGGACCCGAAGTTCCGACTGTCGGCC TG ATG CATCCCCG G CTG ATCG ACCCC AG ATCTG G G G CTG AG A A AG CCC AGTA AG G A A AC A ACT GTAGGTTCGAGTCGCGAGATCCCCCGGAACCAAAGGAAGTAGGTTAAACCCGCTCCGATCAGG CCG AG CC ACG CCAGGCCGAG A AC ATTG GTTCCTGTAG G CATCG G G ATTG G CG G ATC A A AC ACT AAAG CTACTG G AACG AG CAG AAGTCCTCCG G CCGCCAGTTG CCAG GCG GTAA AG GTG AG CAG AGGCACGGGAG GTTG CC ACTTG CG G GTC AG CACG GTTCCG A ACG CCATG G A A ACCG CCCCCG C CAGGCCCGCTGCGACGCCGACAGGATCTAGCGCTGCGTTTGGTGTCAACACCAACAGCGCCAC G CCCG C AGTTCCG C A A ATAG CCCCCAGGACCG CC ATC A ATCGTATCG G G CTACCTAG C AG AG CG GCAGAGATGAACACGACCATCAGCGGCTGCACAGCGCCTACCGTCGCCGCGACCCCGCCCGGC AGGCGGTAGACCG A A ATA A AC A AC A AG CTCC AG A ATAG CG A A AT ATT A AGTG CG CCG AG G ATG AAGATGCGCATCCACCAGATTCCCGTTGGAATCTGTCGGACGATCATCACGAGCAATAAACCCG CCG G C A ACG CCCG CAG C AG C ATACCG GCGACCCCTCGG CCTCG CTGTTCG G G CTCC ACG A A A A CGCCGGACAGATGCGCCTTGTGAGCGTCCTTGGGGCCGTCCTCCTGTTTGAAGACCGACAGCCC A ATG ATCTCG CCGTCG ATGTAG GCG CCG A ATG CC ACG G C ATCTCG C A ACCGTTC AG CG A ACG CC TCC ATG G G CTTTTTCTCCTCGTG CTCGTA A ACG G ACCCG A AC ATCTCTG G AG CTTTCTTC AG G G C CG AC A ATCG G ATCTCG CG G A A ATCCTG CACGTCGGCCG CTCCA AG CCGTCG A ATCTG AG CCTTA ATCACAATTGTCA ATTTTAATCCTCTGTTTATCG GCAGTTCGTAG AG CG CG CCGTG CGTCCCG AG CGATACTGAGCGAAGCAAGTGCGTCGAGCAGTGCCCGCTTGTTCCTGAAATGCCAGTAAAGCG CTG G CTG CTG A ACCCCCAG CCG G A ACTG ACCCC AC A AG G CCCTAG CGTTTG CAATG C ACC AG GT CATC ATTG ACCC AG G CGTGTTCC ACC AG G CCG CTG CCTCG C A ACTCTTCG C AG G CTTCG CCG ACC TG CTCG CG CC ACTTCTTC ACG CG G GTG G A ATCCG ATCCG C ACATG AG G CG G A AG GTTTCC AG CT TGAGCGGGTACGGCTCCCGGTGCGAGCTGAAATAGTCGAACATCCGTCGGGCCGTCGGCGACA G CTTG CG GTACTTCTCCC ATATG A ATTTCGTGTAGTG GTCG CC AG C A A AC AG CACG ACG ATTTCC TCGTCGATCAGGACCTGGCAACGGGACGTTTTCTTGCCACGGTCCAGGACGCGGAAGCGGTGC AGCAGCGACACCGATTCCAGGTGCCCAACGCGGTCGGACGTGAAGCCCATCGCCGTCGCCTGT AGGCGCGACAGGCATTCCTCGGCCTTCGTGTAATACCGGCCATTGATCGACCAGCCCAGGTCCT GGCAAAGCTCGTAGAACGTGAAGGTGATCGGCTCGCCGATAGGGGTGCGCTTCGCGTACTCCA ACACCTG CTG CCACACCAGTTCGTCATCGTCGG CCCG CAG CTCG ACG CCGGTGTAG GTG ATCTT CACGTCCTTGTTG ACGTG G A AAATG ACCTTGTTTTGCAG CG CCTCG CGCG G G ATTTTCTTGTTG C GCGTGGTGAACAGGGCAGAGCGGGCCGTGTCGTTTGGCATCGCTCGCATCGTGTCCGGCCACG G CG CA ATATCG A AC A AG G A A AG CTG CATTTCCTTG ATCTG CTG CTTCGTGTGTTTC AG C A ACG C G G CCTG CTTG G CCTCG CTG ACCTGTTTTG CC AG GTCCTCG CCG G CG GTTTTTCG CTTCTTG GTCG TCATAGTTCCTCGCGTGTCGATGGTCATCGACTTCGCCAAACCTGCCGCCTCCTGTTCGAGACGA CGCGAACGCTCCACGGCGGCCGATGGCGCGGGCAGGGCAGGGGGAGCCAGTTGCACGCTGTC GCGCTCGATCTTGGCCGTAGCTTGCTGGACCATCGAGCCGACGGACTGGAAGGTTTCGCGGGG CG C ACG C ATG ACGGTGCGG CTTG CG ATG GTTTCG G C ATCCTCG G CG G A A A ACCCCG CGTCG AT CAGTTCTTG CCTGTATG CCTTCCG GTCAAACGTCCG ATTCATTCACCCTCCTTGCG G G ATTG CCCC G ACTC ACG CCG G G G CA ATGTG CCCTTATTCCTG ATTTG ACCCG CCTG GTG CCTTG GTGTCC AG AT AATCCACCTTATCG G CAATG A AGTCG GTCCCGTAG ACCGTCTG G CCGTCCTTCTCGTACTTGGTA TTCCG AATCTTGCCCTG CACG AATACCAG CG ACCCCTTG CCCAA ATACTTG CCGTGG G CCTCG GC CTGAGAGCCAAAACACTTGATGCGGAAGAAGTCGGTGCGCTCCTGCTTGTCGCCGGCATCGTT GCGCCACATCTAGGTACTAAAACAATTCATCCAGTAAAATATAATATTTTATTTTCTCCCAATCAG GCTTGATCCCCAGTAAGTCAAAAAATAGCTCGACATACTGTTCTTCCCCGATATCCTCCCTGATC G ACCG G ACG CAG AAGG C AATGTCATACCACTTGTCCG CCCTG CCG CTTCTCCC A AG ATCA ATA A AGCCACTTACTTTGCCATCTTTCACAAAGATGTTGCTGTCTCCCAGGTCGCCGTGGGAAAAGACA AGTTCCTCTTCG G G CTTTTCCGTCTTTA A A A A ATC ATAC AG CTCG CG CG G ATCTTTAA ATG G AGT GTCTTCTTCCCAGTTTTCGCAATCCACATCGGCCAGATCGTTATTCAGTAAGTAATCCAATTCGGC TAAGCGGCTGTCTAAGCTATTCGTATAGGGACAATCCGATATGTCGATGGAGTGAAAGAGCCT G ATG C ACTCCG CATAC AG CTCG ATA ATCTTTTC AG G G CTTTGTTC ATCTTC ATA TCTTCCG AG CA A AG G ACG CCATCG G CCTC ACTC ATG AG CAG ATTG CTCCAG CCATC ATG CCGTTC A A AGTG C AG G ACCTTTG G A AC AG G C AG CTTTCCTTCC AG CC ATAG CATC ATGTCCTTTTCCCGTTCCA CATC ATAG GTG GTCCCTTTATACCG G CTGTCCGTCATTTTTAAATATAGGTTTTCATTTTCTCCCACCAG CTTAT ATACCTTAGCAGGAGACATTCCTTCCGTATCTTTTACGCAGCGGTATTTTTCGATCAG I I I I I I CA ATTCCGGTGATATTCTCATTTTAGCCATTTATTATTTCCTTCCTCTTTTCTACAGTATT^
CCCCAAGAAGCTAATTATAACAAGACGAACTCCAATTCACTGTTCCTTGCATTCTAAAACCTTAA ATACCAGAAAACAGCTTTTTCAAAGTTGTTTTCAAAGTTGGCGTATAACATAGTATCGACGGAG CCGATTTTGAAACCACAATTATGGGTGATGCTGCCAACTTACTGATTTAGTGTATGATGGTGTTT TTG AG GTG CTCCAGTG G CTTCTGTGTCTATCAG CTGTCCCTCCTGTTCAG CTACTG ACG GG GTGG TG CGTA ACG G CA A A AG CACCG CCG G AC ATC AG CG CTATCTCTG CTCTC ACTG CCGTA A A AC ATG G C A ACTG CAGTTC ACTTAC ACCG CTTCTC A ACCCG GTACG C ACC AG A A A ATC ATTG AT ATG G CC A TG A ATG G CGTTG G ATG CCG G G C A AC AG CCCG C ATT ATG G G CGTTG G CCTC A AC ACG ATTTTACG TCACTTAAAAAACTCAG GCCG CAGTCGGTAACCTCG CG CATACAG CCGGG CAGTG ACGTCATCG TCTG CG CG G A A ATG G ACG A AC AGTG G G G CTATGTCG G G G CTA A ATCG CGCCAGCG CTG G CTGT TTTACGCGTATGACAGTCTCCGGAAGACGGTTGTTGCGCACGTATTCGGTGAACGCACTATGGC GACGCTGGGGCGTCTTATGAGCCTGCTGTCACCCTTTGACGTGGTGATATGGATGACGGATGG CTG G CCG CTGTATG A ATCCCG CCTG A AG G G A A AG CTG CACGTA ATC AG C A AG CG ATATACG C A GCGAATTGAGCGGCATAACCTGAATCTGAGGCAGCACCTGGCACGGCTGGGACGGAAGTCGCT GTCGTTCTCA A A ATCG GTG GAG CTG C ATG ACA A AGTC ATCG G G C ATTATCTG A AC ATA A A AC AC TATCAATAAGTTGGAGTCATTACCCAATTATGATAGAATTTACAAGCTATAAGGTTATTGTCCTG GGTTTCAAGCATTAGTCCATGCAAGTTTTTATGCTTTGCCCATTCTATAGATATATTGATAAGCGC G CTG CCTATG CCTTG CCCCCTG A A ATCCTTACATACG G CG ATATCTTCTATATA A A AG ATATATTA TCTTATCAGTATTGTCAATATATTCAAGGCAATCTGCCTCCTCATCCTCTTCATCCTCTTCGTCTTG GTAGCTTTTTAAATATGGCGCTTCATAGAGTAATTCTGTAAAGGTCCAATTCTCGTTTTCATACCT CGGTATAATCTTACCTATCACCTCAAATGGTTCGCTGGGTTTATCGCACCCCCGAACACGAGCAC GGCACCCGCGACCACTATGCCAAGAATGCCCAAGGTAAAAATTGCCGGCCCCGCCATGAAGTC CGTGAATGCCCCGACGGCCGAAGTGAAGGGCAGGCCGCCACCCAGGCCGCCGCCCTCACTGCC CGGCACCTGGTCGCTGAATGTCGATGCCAGCACCTGCGGCACGTCAATGCTTCCGGGCGTCGC G CTCG G G CTG ATCG CCC ATCCCGTTACTG CCCCG ATCCCG G C A ATG G C A AG G ACTG CC AG CG CT GCCATTTTTGGGGTGAGGCCGTTCGCGGCCGAGGGGCGCAGCCCCTGGGGGGATGGGAGGCC CGCGTTAGCGGGCCGGGAGGGTTCGAGAAGGGGGGGCACCCCCCTTCGGCGTGCGCGGTCAC G CG CAC AG G G CG C AG CCCTG GTTA A A A AC A AG GTTTATA A ATATTG GTTTA A A AG C AG GTTAA A AG AC AG GUAG CG GTG G CCG A A A A ACG G G CG G A A ACCCTTG C A A ATG CTG G ATTTTCTG CCT GTG G ACAG CCCCTCAA ATGTCAATAG GTG CGCCCCTCATCTGTCAGCACTCTG CCCCTCAAGTGT CA AGG ATCG CG CCCCTCATCTGTCAGTAGTCG CGCCCCTC AAGTGTCAATACCG CAG GG CACTT ATCCCC AG G CTTGTCCAC ATC ATCTGTG G G A A ACTCG CGTA A A ATC AG G CGTTTTCG CCG ATTTG CG AG G CTG G CC AG CTCC ACGTCG CCG G CCG A A ATCG AG CCTG CCCCTC ATCTGTC A ACG CCG CG CCGGGTGAGTCGGCCCCTCAAGTGTCAACGTCCGCCCCTCATCTGTCAGTGAGGGCCAAGTTTT CCGCGAGGTATCCACAACGCCGGCGGCCGCGGTGTCTCGCACACGGCTTCGACGGCGTTTCTG GCGCGTTTGCAGGGCCATAGACGGCCGCCAGCCCAGCGGCGAGGGCAACCAGCCCGGTGAGC GTCGCAAAGGCGCTCGGTCTTGCCTTGCTCGTCGGTGATGTACTTCACCAGCTCCGCGAAGTCG CTCTTCTTG ATG G AG CG C ATG GGGACGTG CTTG G C A ATC ACG CG C ACCCCCCG G CCGTTTTAG C G G CTA A A A A AGTC ATG G CTCTG CCCTCG GGCGGACCACG CCCATC ATG ACCTTG CC A AG CTCGT CCTG CTTCTCTTCG ATCTTCG CC AG CAGGGCGAGG ATCGTG G C ATCACCG A ACCG CG CCGTG CG CGGGTCGTCGGTGAGCCAGAGTTTCAGCAGGCCGCCCAGGCGGCCCAGGTCGCCATTGATGCG G G CCAG CTCG CG G ACGTG CTC ATAGTCC ACG ACG CCCGTG ATTTTGTAG CCCTG GCCGACGGCC AG C AG GTAG G CCG AC AG G CTC ATG CCGGCCGCCGCCG CCTTTTCCTC A ATCG CTCTTCGTTCGTC TG G A AG G CAGTAC ACCTTG ATAG GTG G G CTG CCCTTCCTG GTTG G CTTG GTTTC ATC AG CC ATC CGCTTGCCCTCATCTGTTACGCCGGCGGTAGCCGGCCAGCCTCGCAGAGCAGGATTCCCGTTGA GCACCGCCAGGTGCGAATAAGGGACAGTGAAGAAGGAACACCCGCTCGCGGGTGGGCCTACT TC ACCTATCCTG CCCG G CTG ACG CCGTTG G ATAC ACC A AG G A A AGTCTAC ACG A ACCCTTTG G C A A A ATCCTGTATATCGTG CG A A A A AG G ATG G ATATACCG A A A A A ATCG CTATA ATG ACCCCG A A G C AG G GTTATG C AG CG G A A A AG CG CC ACG CTTCCCG A AG G G AG A A AG G CG G AC AG GTATCCG GTAAGCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGT ATCTTTATAGTCCTGTCGGGmCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCA G G G G G G CG G AG CCTATG G A A A A ACG CCAG C A ACG CG G CCTTTTTACG GTTCCTG G CCTTTTG CT G G C TTTTG CTC ACATGTTCTTTCCTG CGTTATCCCCTG ATTCTGTG G ATA ACCGTATTACCG CCT TTGAGTGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAG GAAGCGGAAGAGCGCCAGAAGGCCGCCAGAGAGGCCGAGCGCGGCCGTGAGGCTTGGACGC TAG G G CAG G G C ATG A A A A AG CCCGTAGCGGG TG CTACG G G CGTCTG ACGCGGTGGAAAGGG G G AG G G G ATGTTGTCTAC ATG G CTCTG CTGTAGTG AGTG G GTTG CG CTCCG G C AG CG GTCCTG ATCAATCGTCACCCTTTCTCGGTCCTTCAACGTTCCTGACAACGAGCCTCCTTTTCGCCAATCCAT CGACAATCACCGCGAGTCCCTGCTCGAACGCTGCGTCCGGACCGGCTTCGTCGAAGGCGTCTAT CGCGGCCCGCAACAGCGGCGAGAGCGGAGCCTGTTCAACGGTGCCGCCGCGCTCGCCGGCATC GCTGTCGCCGGCCTGCTCCTCAAGCACGGCCCCAACAGTGAAGTAGCTGATTGTCATCAGCGCA TTGACGGCGTCCCCGGCCGAAAAACCCGCCTCGCAGAGGAAGCGAAGCTGCGCGTCGGCCGTT TCC ATCTG CGGTGCGCCCGGTCGCGTGCCGG C ATG G ATG CG CG CG CC ATCG CGGTAGGCGAGC AG CG CCTG CCTG A AG CTG CG G G C ATTCCCG ATCAG A A ATG AG CG CC AGTCGTCGTCG G CTCTC G G C ACCG A ATG CGTATG ATTCTCCG CCAG C ATG G CTTCG GCCAGTGCGTCGAGCAGCGCCCGCT TGTTCCTG AAGTG CCAGTAA AG CG CCGG CTG CTG A ACCCCCAACCGTTCCG CCAGTTTG CGTGT CGTCAG ACCGTCTACG CCG ACCTCGTTCAACAG GTCCAGG G CG G C ACG G ATC ACTGTATTCG G C TGCAACTTTGTCATGCTTGACACTTTATCACTGATAAACATAATATGTCCACCAACTTATCAGTGA TAAAGAATCCGCGCGTTCAATCGGACCAGCGGAGGCTGGTCCGGAGGCCAGACGTGAAACCCA ACATACCCCTG ATCGTAATTCTG AG CACTGTCG CGCTCG ACG CTGTCG G CATCG G CCTG ATTATG CCG GTG CTG CCG G G CCTCCTG CG CG ATCTG GTTC ACTCG A ACG ACGTC ACCG CCC ACTATG G C A TTCTG CTG G CG CTGTATG CGTTG GTG C A ATTTG CCTG CG C ACCTGTG CTG G G CG CG CTGTCG G A TCGTTTCG G G CG G CG G CC A ATCTTG CTCGTCTCG CTG G CCG G CG CCAG ATCTG G G G A ACCCTGT GGTTGG CATG C AC ATAC A A ATG G ACG A ACG G ATA AACCTTTTC ACG CCCTTTTAAATATCCG ATT ATTCTAATAAACG CTCTTTTCTCTTAG GTTTACCCG CCAATATATCCTGTCAAACACTG ATAGTTT AAACTGAAGGCGGGAAACGACAATCTGATCATGAGCGGAGAATTAAGGGAGTCACGTTATGAC CCCCG CCG ATG ACG CG GGACAAG CCGTTTTACGTTTG G AACTG ACAG AACCG CAACGTTGAAG GAG CCACTCAG CCGCG G GTTTCTGG AGTTTAATG AG CTA AG CACATACGTCAG AA ACCATTATT GCGCGTTCAAAAGTCGCCTAAGGTCACTATCAGCTAGCAAATATTTCTTGTCAAAAATGCTCCAC TGACGTTCCATAAATTCCCCTCGGTATCCAATTAGAGTCTCATATTCACTCTCAATCCAAATAATC TG C ACCG G ATCTG G ATCGTTTCG C ATG ATTG A AC A AG ATG G ATTG CACG C AG GTTCTCCG G CCG CTTGGGTGGAGAGGCTATTCGGCTATGACTGGGCACAACAGACAATCGGCTGCTCTGATGCCG CCGTGTTCCG G CTGTCAG CG CAG GG G CG CCCG GTTCTTTTTGTCAAG ACCG ACCTGTCCG GTG C CCTGAATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTG CG CAG CTGTG CTCG ACGTTGTCACTG AAG CG G G AAGG G ACTG G CTG CTATTG GG CG AAGTG CC GGGGCAGGATCTCCTGTCATCTCACCTTGCTCCTGCCGAGAAAGTATCCATCATGGCTGATGCA ATG CG G CG G CTG C ATACG CTTG ATCCG G CTACCTG CCC ATTCG ACC ACC A AG CG A A AC ATCG C A TCG AG CG AG C ACGTACTCG G ATG G A AG CCG GTCTTGTCG ATCAG G ATG ATCTG GACG A AG AG C ATCAG G G G CTCG CG CC AG CCG A ACTGTTCG CC AG G CTC A AG G CG CG C ATG CCCGACGGCG ATG ATCTCGTCGTG ACCC ATG G CG ATG CCTG CTTG CCG A ATATCATG GTG G A A A ATG G CCG CTTTTCT G G ATTC ATCG ACTGTG G CCG G CTG G GTGTG G CG G ACCG CT ATCAG G AC ATAG CGTTG G CTACC CGTGATATTGCTGAAGAGCTTGGCGGCGAATGGGCTGACCGCTTCCTCGTGCTTTACGGTATCG CCG CTCCCG ATTCG C AG CG C ATCG CCTTCTATCG CCTTCTTG ACG AGTTCTTCTG AG CG G G ACTC TGGGGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGC CG CCTTCTATG A A AG GTTG G G CTTCG G A ATCGTTTTCCG GGACGCCGG CTG G ATG ATCCTCC AG CG CG G G G ATCTC ATG CTG G AGTTCTTCG CCC ACG G G ATCTCTG CGGAACAGGCGGTCGAAGGT GCCGATATCATTACGACAGCAACGGCCGACAAGCACAACGCCACGATCCTGAGCGACAATATG ATCGGGCCCGGCGTCCACATCAACGGCGTCGGCGGCGACTGCCCAGGCAAGACCGAGATGCAC CGCGATATCTTGCTGCGTTCGGATATTTTCGTGGAGTTCCCGCCACAGACCCGGATGATCCCCG ATCGTTC A A AC ATTTG G C A ATA A AGTTTCTTA AG ATTG A ATCCTGTTG CCG GTCTTG CG ATG ATT ATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTT ATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAA TATAG CG CG C A A ACTAG G AT A A ATTATCG CG CG CG GTGTC ATCTATGTTACTAG ATCG G G CCTC CTGTCAATGCTGGCGGCGGCTCTGGTGGTGGTTCTGGTGGCGGCTCTGAGGGTGGTGGCTCTG AGGGTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCC GGTGATTTTGATTATGAAAAGATGGCAAACGCTAATAAGGGGGCTATGACCGAAAATGCCGAT G A A A ACG CG CTAC AGTCTG ACG CTA A AG G C A A ACTTG ATTCTGTCG CTACTG ATTACG GTG CTG rATCGATGGTTTCATTGGTGACGTTTCCGGCCTTG TAATGGTAATGGTG rACTGGTGATTTT
G CTG G CT TA ATTCCCA A ATG G CTC A AGTCG GTG ACG GTG ATA ATTCACCTTTA ATG A ATA ATTT
CCGTCAATATTTACCTTCCCTCCCTCAATCGGTTGAATGTCGCCCTTTTGTCTTTGGCCCAATACG
CAAACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGAC
TGGAAAGCGGGCAGTGAGCGCAACGCAATTAATGTGAGTTAGCTCACTCATTAGGCACCCCAG
GCTTTACACTTTATGCTTCCGGCTCGTATGTTGTGTGGAATTGTGAGCGGATAACAATTTCACAC
AG G A A ACAG CTATG ACC ATG ATTACG CC
SEQ I D NO 29: Synthetic pRNAi-GG with SEQID 14 inserts
AAG CTTTCAACATGTG G AG CACG ACACACTTGTCTACTCCAAA AATATCAAAG ATACAGTCTCA G A AG ACC A A AG G G C A ATTG AG ACTTTTC A AC A A AG G GTA ATATCCG G A A ACCTCCTCG G ATTCC ATTG CCCAG CTATCTGTC ACTTTATTGTG AAG ATAGTG G A A A AG G A AG GTG G CTCCTAC A A ATG CC ATC ATTG CG ATA AAG G A A AG G CC ATCGTTG AAG ATG CCTCTG CCG AC AGTG GTCCC A A AG AT GGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTTCAAAGCAA GTGGATTGATGTGATAACATGGTGGAGCACGACACACTTGTCTACTCCAAAAATATCAAAGATA CAGTCTCAG AAG ACC A A AG G G CA ATTG AG ACTTTTCA AC A A AG G GTA ATATCCG G A A ACCTCCT CGGATTCCATTGCCCAGCTATCTGTCACTTTATTGTGAAGATAGTGGAAAAGGAAGGTGGCTCC TACAAATGCCATCATTGCGATAAAGGAAAGGCCATCGTTGAAGATGCCTCTGCCGACAGTGGTC CCAAAGATGGACCCCCACCCACGAGGAGCATCGTGGAAAAAGAAGACGTTCCAACCACGTCTT CAAAGCAAGTGGATTGATGTGATATCTCCACTGACGTAAGGGATGACGCACAATCCCACTATCC TTCGCAAGACCCTTCCTCTATATAAGGAAGTTCATTTCATTTGGAGAGGACGTCGAGAGTTCTCA AC ACA AC ATATAC A A A AC A A ACG A ATCTC A AG C A ATC A AG CATTCTACTTCTATTG C AG C A ATTT AAATCATTTCTTTTAAAG CA AAAG CAATTTTCTGAAAATTTTCACCATTTACGAACGATAG CCAG GG CCCG G AGGTG CAACTCG CTG ATCATTATCAACAAAATACTCCAATTG G CG ATG G CCCCG CAG AGAGGCCGCTTCGTAAAATCTCAACTGCTTTCAAAGAACTAGCAGCCACCGTGAGCTCGCCGAG TCCTG AAGTCTCCGTGG CTCAGTTCTCTCACG CTTG CTCTCTCGTCTCG CCTCTCTTTG GTTGCCT CG GGATCG CCTTC A AG ATATTG AG G CAA ACTGTGTAAG G A AAG CTG GTAGTCATACTAG A AAC CTTTTGAGGGTAGAGCTAATGGTTGATCTCATGTCGACGCTGGAGGATCGCCTCCACTCTCAAA GAGAGTGGTGGGAGAAGAAGAGAAACTGGAGCTGGAAAGAAGAGATAAAAGCTTCAGAAGG A AG AG C ATC ACC ACCA ACTCTG GTG CTCCTGTATG G A AC A AC A ACTCCTCC ATG ACCGTTG G AC CCAGAGGTCCCCACGCGCTTAAACCAAACCCTAAATCTCACATTCAAGAAAACTGAACCTCACTT GTGCTGACTTCCTCAGAGCTCCAGGTGTTCAAACTCCGGTCATTCCTGTCCGCTGCGCCGAGAA AGTTCCTATCCCTACCAAATCCTACACTGGAATAAGAACAAATGTATCCTAGAGGAGCAACCAA TGTGCGTTGTGCGTTATGTCACATTGTCAACATGGTTCCTCTTCATCCTACCCTTACGGTGCATCA TCTGTTAAATGCGCTGTTTGCCAGTTTGTTACTAACGTTAACAAAACTTACCCTTAAATTTATTTG CACTACTG G A A A ACTACCTGTTCC ATG G CC A AC ACTTGTC ACTACTTTCTCTTATG ACG AG CCCTT GGTAAGGAAATAATTATTTTC I I I I I I CCTTTTAGTATAAAATAGTTAAGTGATGTTAATTAGTAT GATTATAATAATATAGTTGTTATAATTGTGAAAAAATAATTTATAAATATATTGTTTACATAAACA ACATAGTAATGTAAAAAAATATGACAAGTGATGTGTAAGACGAAGAAGATAAAAGTTGAGAGT A AGTATATTATTTTTA ATG A ATTTG ATCG A AC ATGTA AG ATG ATATACG G CCG GTA AG AG GTTC CAACTTTCACCATAATGAAATAAGATCACTACCGGGCGTA I I I I I I GAGTTATCGAGATTTTCAG GAG CTAAGGAAG CTAAAATG G AG AAA AAAATCACTG G ATATACCACCGTTG ATATATCCC AAT GGCATCGTAAAGAACATTTTGAGGCATTTCAGTCAGTTGCTCAATGTACCTATAACCAGACCGTT CAGCTGGATATTACGGCCTTTTTAAAGACCGTAAAGAAAAATAAGCACAAGTTTTATCCGGCCT TTATTC AC ATTCTTG CCCG CCTG ATG A ATG CTCATCCG G A ATTCCGTATG G C A ATG A A AG ACG GT GAGCTGGTGATATGGGATAGTGTTCACCCTTGTTACACCGTTTTCCATGAGCAAACTGAAACGT TTTCATCGCTCTGGAGTGAATACCACGACGATTTCCGGCAGTTTCTACACATATATTCGCAAGAT GTGGCGTGTTACGGTGAAAACCTGGCCTATTTCCCTAAAGGGTTTATTGAGAATATGTTTTTCGT CTC AG CC A ATCCCTG G GTG AGTTTC ACC AGTTTTG ATTTA A ACGTG G CCA AT ATG G AC A ACTTCT TCG CCCCCGTTTTC ACC ATG G G CA A ATATTATACG CAAG G CG AC A AG GTG CTG ATG CCG CTG G C G ATTC AG GTTC ATC ATG CCGTCTGTG ATG G CTTCC ATGTCG G CAG A ATG CTTA ATG A ATTAC A AC AGTACTG CG ATG AGTGGCAGGGCGGGG CGTA ATCG CGTG G ATCCG G CTTACTA A A AG CC AG AT A AC AGTATG CGTATTTG CG CG CTG ATTTTTG CG GTATA AG A ATATATACTG ATATGTCG GTCCC A TAATAGTAATTCTAGCTGGTTTGATGAATTAAATATCAATGATAAAATACTATAGTAAAAATAAG AATAAATAAATTAAAATAATA I I I I I I I ATGATTAATAGTTTATTATATAATTAAATATCTATACCA TTACTAAATATTTTAGTTTAAAAGTTAATAAATATTTTGTTAGAAATTCCAATCTGCTTGTAATTT ATCAATAAACAAAATATTAAATAACAAGCTAAAGTAACAAATAATATCAAACTAATAGAAACAG TA ATCTA ATGTA AC A A A AC ATA ATCTA ATG CTA ATATA AC A A AG CG CAAG ATCTATC ΑΤΠΤΑΤΑ TAGTATTATTTTCAATCAACATTCTTATTAATTTCTAAATAATACTTGTAGTTTTATTAACTTCTAA
ATG G ATTG ACTATTA ATTA A ATG A ATTAGTCG A AC ATG A ATA A AC A AG GTA AC ATG ATAG ATCA
TGTCATTGTGTTATCATTGATCTTACATTTGGATTGATTACAGTTGGTCTAGAGATTTCGTCTAGA
TCGTCATAAGAGAAAGTAGTGACAAGTGTTGGCCATGGAACAGGTAGTTTTCCAGTAGTGCAA
ATAAATTTAAG G GTAAGTTTTGTTAACGTTAGTAACA AACTG GCAAACAG CGC ATTTAAC AG AT
GATGCACCGTAAGGGTAGGATGAAGAGGAACCATGTTGACAATGTGACATAACGCACAACGCA
CATTGGTTGCTCCTCTAGGATACATTTGTTCTTATTCCAGTGTAGGATTTGGTAGGGATAGGAAC
TTTCTCGGCGCAGCGGACAGGAATGACCGGAGTTTGAACACCTGGAGCTCTGAGGAAGTCAGC
AC A AGTG AG GTTC AGTTTTCTTG A ATGTG AG ATTTAG G GTTTG GTTTA AG CGCGTGGGG ACCTC
TGGGTCCAACGGTCATGGAGGAGTTGTTGTTCCATACAGGAGCACCAGAGTTGGTGGTGATGC
TCTTCCTTCTGAAGCTTTTATCTCTTCTTTCCAGCTCCAGTTTCTCTTCTTCTCCCACCACTCTCTTT
GAGAGTGGAGGCGATCCTCCAGCGTCGACATGAGATCAACCATTAGCTCTACCCTCAAAAGGTT
TCTAGTATGACTACCAGCTTTCCTTACACAGTTTGCCTCAATATCTTGAAGGCGATCCCGAGGCA
ACCAAAGAGAGGCGAGACGAGAGAGCAAGCGTGAGAGAACTGAGCCACGGAGACTTCAGGA
CTCGGCGAGCTCACGGTGGCTGCTAGTTCTTTGAAAGCAGTTGAGATTTTACGAAGCGGCCTCT
CTGCGGGGCCATCGCCAATTGGAGTATTTTGTTGATAATGATCAGCGAGTTGCACCTCCGAGCT
CG AATTTCCCCG ATCGTTCA AACATTTG G CAATA AAGTTTCTTAAG ATTG AATCCTGTTG CCG GT
CTTGCGATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGC
ATG ACGTTATTTATG AG ATG G GTTTTTATG ATTAG AGTCCCG C A ATTATAC ATTTA ATACG CG AT
AG A A A AC A A A ATATAG CG CG C A A ACTAG G ATA A ATTATCG CG CG CG GTGTC ATCTATGTT ACTA
GATCGGGAATTCACTGGCCGTCGTTTTACAACGTCGTGACTGGGAAAACCCTGGCGTTACCCAA
CTTAATCGCCTTGCAGCACATCCCCCTTTCGCCAGCTGGCGTAATAGCGAAGAGGCCCGCACCG
ATCG CCCTTCCC A ACAGTTG CG C AG CCTG A ATG G CG CCCG CTCCTTTCG CTTTCTTCCCTTCCTTT
CTCG CC ACGTTCG CCG G CTTTCCCCGTC A AG CTCTA A ATCG G G G G CTCCCTTTAG G GTTCCG ATT
TAGTGCTTTACGGCACCTCGACCCCAAAAAACTTGATTTGGGTGATGGTTCACGTAGTGGGCCA
TCGCCCTGATAGACGGTTTTTCGCCCTTTGACGTTGGAGTCCACGTTCTTTAATAGTGGACTCTT
GTTCCA AACTG G A AC A AC ACTC A ACCCTATCTCG G G CTATTCTTTTG ATTTATA AG GGATTTTG C
CG ATTTCG G A ACCACC ATC A A AC AG G ATTTTCG CCTG CTG G G G C A A ACC AG CGTG G ACCG CTTG
CTG C A ACTCTCTCAG G GCCAGGCGGTGAAGGG C A ATC AG CTGTTG CCCGTCTC ACTG GTG AAA AGAAAAACCACCCCAGTACATTAAAAACGTCCGCAATGTGTTATTAAGTTGTCTAAGCGTCAATT TGTTTACACCACAATATATCCTGCCACCAGCCAGCCAACAGCTCCCCGACCGGCAGCTCGGCAC A A A ATC ACC ACTCG ATAC AG G C AG CCCATC AGTCCG G G ACG G CGTC AG CGGGAGAG CCGTTGT A AG G CG G C AG ACTTTG TC ATGTTACCG ATG CTATTCG G A AG A ACG G C A ACTA AG CTG CCG G G TTTGAAACACGGATGATCTCGCGGAGGGTAGCATGTTGATTGTAACGATGACAGAGCGTTGCT G CCTGTG ATCA A ATATC ATCTCCCTCG C AG AG ATCCG A ATTATC AG C TTCTTATTC ATTTCTCG C TTA ACCGTG AC AG G TGTCG ATCTTG AG A ACT ATG CCG AC ATA ATAG G A A ATCG CTG G ATA A AG CCGCTGAGGAAGCTGAGTGGCGCTATTTCTTTAGAAGTGAACGTTGACGATATCAACTCCCCTA TCCATTGCTCACCGAATGGTACAGGTCGGGGACCCGAAGTTCCGACTGTCGGCCTGATGCATCC CCGGCTGATCGACCCCAGATCTGGGGCTGAGAAAGCCCAGTAAGGAAACAACTGTAGGTTCGA GTCGCGAGATCCCCCGGAACCAAAGGAAGTAGGTTAAACCCGCTCCGATCAGGCCGAGCCACG CC AG G CCG AG A AC ATTG GTTCCTGTAG G C ATCG G G ATTG G CG G ATC A A AC ACTA A AG CTACTG GAACGAGCAGAAGTCCTCCGGCCGCCAGTTGCCAGGCGGTAAAGGTGAGCAGAGGCACGGGA GGTTG CCACTTG CG G GTCAG CACG GTTCCG AACG CCATG G AAACCG CCCCCGCCAGG CCCG CT GCGACGCCGACAGGATCTAGCGCTGCGTTTGGTGTCAACACCAACAGCGCCACGCCCGCAGTT CCG CA A ATAG CCCCCAGGACCG CC ATC A ATCGTATCG G G CTACCTAG C AG AGCGGCAGAG ATG AACACG ACCATCAG CG G CTG CACAGCG CCTACCGTCG CCG CG ACCCCGCCCG GCAG G CGGTAG ACCG A A ATA A AC A AC A AG CTCC AG A ATAG CG A A ATATTA AGTG CGCCGAGG ATG A AG ATG CG C ATCC ACC AG ATTCCCGTTG G A ATCTGTCG G ACG ATC ATC ACG AG C A ATA A ACCCG CCG G C A ACG CCCGCAGCAGCATACCGGCGACCCCTCGGCCTCGCTGTTCGGGCTCCACGAAAACGCCGGACA GATGCGCCTTGTGAGCGTCCTTGGGGCCGTCCTCCTGTTTGAAGACCGACAGCCCAATGATCTC GCCGTCGATGTAGGCGCCGAATGCCACGGCATCTCGCAACCGTTCAGCGAACGCCTCCATGGG CTTTTTCTCCTCGTGCTCGTAAACGG ACCCG AACATCTCTGGAGCTTTCTTCAGGGCCGACAATC GGATCTCGCGGAAATCCTGCACGTCGGCCGCTCCAAGCCGTCGAATCTGAGCCTTAATCACAAT TGTCAATTTTAATCCTCTGTTTATCGGCAGTTCGTAGAGCGCGCCGTGCGTCCCGAGCGATACTG AG CG A AG C A AGTG CGTCG AG C AGTG CCCG CTTGTTCCTG A A ATG CC AGTA A AG CG CTG G CTG C TG A ACCCCC AG CCG G A ACTG ACCCC AC A AG GCCCTAG CGTTTG CA ATG C ACC AG GTC ATC ATTG ACCC AG G CGTGTTCCACC AG G CCG CTG CCTCG C A ACTCTTCG C AG G CTTCG CCG ACCTG CTCG C GCCACTTCTTCACGCGGGTGGAATCCGATCCGCACATGAGGCGGAAGGTTTCCAGCTTGAGCG G GTACG G CTCCCG GTG CG AG CTG A A ATAGTCG A AC ATCCGTCG GGCCGTCGGCGACAG CTTG C GGTACTTCTCCCATATGAATTTCGTGTAGTGGTCGCCAGCAAACAGCACGACGATTTCCTCGTCG ATCAG G ACCTG G CA ACG G G ACGTTTTCTTG CC ACG GTCC AG G ACG CG G A AG CG GTG C AG C AG C G AC ACCG ATTCC AG GTGCCCAACGCGGTCGG ACGTG A AG CCC ATCG CCGTCG CCTGTAG G CG C GACAG G CATTCCTCG GCCTTCGTGTA ATACCG G CCATTG ATCG ACCAG CCC AG GTCCTG G C A A A GCTCGTAGAACGTGAAGGTGATCGGCTCGCCGATAGGGGTGCGCTTCGCGTACTCCAACACCT GCTGCCACACCAGTTCGTCATCGTCGGCCCGCAGCTCGACGCCGGTGTAGGTGATCTTCACGTC CTTGTTG ACGTG G A A A ATG ACCTTGTTTTG C AG CG CCTCG CG CG G G ATTTTCTTGTTG CG CGTG GTGAACAGGGCAGAGCGGGCCGTGTCGTTTGGCATCGCTCGCATCGTGTCCGGCCACGGCGCA AT ATCG A AC A AG G A A AG CTG C ATTTCCTTG ATCTG CTG CTTCGTGTGTTTC AG CA ACG CG G CCTG CTTGGCCTCGCTGACCTGTTTTGCCAGGTCCTCGCCGGCGGTTTTTCGCTTCTTGGTCGTCATAG TTCCTCG CGTGTCG ATG GTCATCG ACTTCGCCAAACCTG CCG CCTCCTGTTCG AG ACG ACG CG A ACG CTCC ACG G CG G CCG ATG GCGCGGGCAGGGCAGGGGGAG CCAGTTG C ACG CTGTCG CG CT CGATCTTGGCCGTAGCTTGCTGGACCATCGAGCCGACGGACTGGAAGGTTTCGCGGGGCGCAC GCATGACGGTGCGGCTTGCGATGGTTTCGGCATCCTCGGCGGAAAACCCCGCGTCGATCAGTTC TTG CCTGTATG CCTTCCG GTCAAACGTCCG ATTCATTCACCCTCCTTG CGGGATTG CCCCG ACTC ACGCCGG G G CAATGTG CCCTTATTCCTG ATTTG ACCCG CCTG GTG CCTTG GTGTCCAG ATAATCC ACCTTATCGGCAATGAAGTCGGTCCCGTAGACCGTCTGGCCGTCCTTCTCGTACTTGGTATTCCG AATCTTG CCCTG C ACG A ATACC AG CG ACCCCTTG CCC A A ATACTTG CCGTGGG CCTCG G CCTG A GAGCCAAAACACTTGATGCGGAAGAAGTCGGTGCGCTCCTGCTTGTCGCCGGCATCGTTGCGC CACATCTAGGTACTAAAACAATTCATCCAGTAAAATATAATATTTTATTTTCTCCCAATCAGGCTT GATCCCCAGTAAGTCAAAAAATAGCTCGACATACTGTTCTTCCCCGATATCCTCCCTGATCGACC GGACGCAGAAGG C A ATG TC ATACC ACTTGTCCG CCCTG CCG CTTCTCCC A AG ATC A ATA A AG CC ACTTACTTTG CCATCTTTCACAAAG ATGTTG CTGTCTCCCAG GTCG CCGTGGG AAAAGACAAGTT CCTCTTCG G G CTTTTCCGTCTTTA A A A A ATC ATAC AG CTCG CG CG G ATCTTTA A ATG G AGTGTCT TCTTCCCAGTTTTCGCAATCCACATCGGCCAGATCGTTATTCAGTAAGTAATCCAATTCGGCTAA GCGGCTGTCTAAGCTATTCGTATAGGGACAATCCGATATGTCGATGGAGTGAAAGAGCCTGAT GCACTCCGCATACAGCTCGATAATCTTTTCAGGGCTTTGTTCATCTTCATACTCTTCCGAGCAAAG GACGCCATCGGCCTCACTCATGAGCAGATTGCTCCAGCCATCATGCCGTTCAAAGTGCAGGACC TTTG G AACAG G CAGCTTTCCTTCCAG CCATAG CATCATGTCCTTTTCCCGTTCCACATCATAGGTG GTCCCTTTATACCG G CTGTCCGTCATTTTTAAATATAGGTTTTCATTTTCTCCCACCAG CTTATATA CCTTAG CAG G AG ACATTCCTTCCGTATCTTTTACG CAG CGGTATTTTTCGATCAG I I I I I I CAATT CCG GTG ATATTCTC ATTTTAG CC ATTTATTATTTCCTTCCTCTTTTCTAC AGTATTTA A AG ATACCC CAAGAAGCTAATTATAACAAGACGAACTCCAATTCACTGTTCCTTGCATTCTAAAACCTTAAATA CCAGAAAACAGCTTTTTCAAAGTTGTTTTCAAAGTTGGCGTATAACATAGTATCGACGGAGCCG ATTTTGAAACCACAATTATGGGTGATGCTGCCAACTTACTGATTTAGTGTATGATGGTGTTTTTG AGGTGCTCCAGTGGCTTCTGTGTCTATCAGCTGTCCCTCCTGTTCAGCTACTGACGGGGTGGTG CGTA ACG G C A A A AG C ACCG CCG G AC ATC AG CG CTATCTCTG CTCTC ACTG CCGTA A A ACATG G C A ACTG C AGTTC ACTTAC ACCG CTTCTC A ACCCG GTACG CACCAG A A A ATC ATTG ATATG G CC ATG AATGGCGTTGGATGCCGGGCAACAGCCCGCATTATGGGCGTTGGCCTCAACACGATTTTACGTC ACTTAAAAAACTCAGGCCGCAGTCGGTAACCTCGCGCATACAGCCGGGCAGTGACGTCATCGTC TG CG CG G A A ATG G ACG A AC AGTG G G G CTATGTCG G G G CTA A ATCG CG CC AG CG CTG G CTGTTT TACG CGTATG AC AGTCTCCG G A AG ACG GTTGTTG CG C ACGTATTCG GTG A ACG C ACT ATG G CG ACGCTGGGGCGTCTTATGAGCCTGCTGTCACCCTTTGACGTGGTGATATGGATGACGGATGGCT G G CCG CTGTATG A ATCCCG CCTG A AG G G A A AG CTG C ACGTA ATC AG C A AG CG ATATACG C AG C G A ATTG AG CG G CATA ACCTG A ATCTG AG G CAG C ACCTG G C ACG G CTG GGACGGAAGTCG CTGT CGTTCTCAAAATCG GTG GAG CTG CATG ACAAAGTCATCGG G CATTATCTG A ACATA AAACACTA TCAATAAGTTGGAGTCATTACCCAATTATGATAGAATTTACAAGCTATAAGGTTATTGTCCTGGG TTTC A AG CATTAGTCCATG C A AGTTTTTATG CTTTG CCC ATTCTATAG AT AT ATTG ATA AG CG CG C TG CCTATG CCTTG CCCCCTG A A ATCCTTAC ATACG G CG ATATCTTCTATATA A A AG AT AT ATT ATC TTATCAGTATTGTCAATATATTCAAGGCAATCTGCCTCCTCATCCTCTTCATCCTCTTCGTCTTGGT AGCTTTTTAAATATGGCGCTTCATAGAGTAATTCTGTAAAGGTCCAATTCTCGTTTTCATACCTCG GTATAATCTTACCTATCACCTCAAATG GTTCGCTG GGTTTATCG CACCCCCG A ACACG AG CACG G CACCCG CG ACC ACTATG CCA AG A ATG CCC A AG GTA A A A ATTG CCG G CCCCG CC ATG A AGTCCGT GAATGCCCCGACGGCCGAAGTGAAGGGCAGGCCGCCACCCAGGCCGCCGCCCTCACTGCCCGG CACCTG GTCG CTG A ATGTCG ATG CC AG C ACCTG CG G C ACGTC A ATG CTTCCG G G CGTCG CG CTC G G G CTG ATCG CCC ATCCCGTTACTG CCCCG ATCCCG G C A ATG G C A AG G ACTG CC AG CG CTG CCA TTTTTGGGGTGAGGCCGTTCGCGGCCGAGGGGCGCAGCCCCTGGGGGGATGGGAGGCCCGCG TTAGCGGGCCGGGAGGGTTCGAGAAGGGGGGGCACCCCCCTTCGGCGTGCGCGGTCACGCGC
ACAGGGCGCAGCCCTGGTTAAAAACAAGGTTTATAAATATTGGTTTAAAAGCAGGTTAAAAGA
CAG GTTAG CG GTG G CCG A A A A ACG G G CG G A A ACCCTTG C A A ATG CTG G ATTTTCTG CCTGTG G
ACAGCCCCTCAAATGTCAATAGGTGCGCCCCTCATCTGTCAGCACTCTGCCCCTCAAGTGTCAAG
GATCG CG CCCCTCATCTGTC AGTAGTCGCGCCCCTCAAGTGTCA ATACCG CAGG G CACTTATCCC
CAG G CTTGTCC AC ATC ATCTGTG G G A A ACTCG CGTA A A ATC AG G CGTTTTCG CCG ATTTG CG AG
G CTG G CC AG CTCC ACGTCG CCG G CCG A A ATCG AG CCTG CCCCTCATCTGTC A ACG CCG CG CCG G
GTGAGTCGGCCCCTCAAGTGTCAACGTCCGCCCCTCATCTGTCAGTGAGGGCCAAGTTTTCCGC
G AG GTATCCACAACG CCG G CG GCCG CGGTGTCTCG CACACG G CTTCG ACG G CGTTTCTG GCG C
GTTTGCAGGGCCATAGACGGCCGCCAGCCCAGCGGCGAGGGCAACCAGCCCGGTGAGCGTCG
CAAAGGCGCTCGGTCTTGCCTTGCTCGTCGGTGATGTACTTCACCAGCTCCGCGAAGTCGCTCTT
CTTG ATG G AG CG C ATG G G G ACGTG CTTG G C A ATC ACG CGCACCCCCCGG CCGTTTTAG CG G CT
A A A A A AGTC ATG G CTCTG CCCTCG GGCGGACCACG CCCATCATG ACCTTG CCA AG CTCGTCCTG
CTTCTCTTCGATCTTCGCCAGCAGGGCGAGGATCGTGGCATCACCGAACCGCGCCGTGCGCGG
GTCGTCGGTGAGCCAGAGTTTCAGCAGGCCGCCCAGGCGGCCCAGGTCGCCATTGATGCGGGC
CAGCTCGCGGACGTGCTCATAGTCCACGACGCCCGTGATTTTGTAGCCCTGGCCGACGGCCAGC
AGGTAGGCCGACAGGCTCATGCCGGCCGCCGCCGCCTTTTCCTCAATCGCTCTTCGTTCGTCTGG
AAG GCAGTACACCTTG ATAG GTG GG CTG CCCTTCCTGGTTGG CTTG GTTTCATCAG CCATCCG CT
TGCCCTCATCTGTTACGCCGGCGGTAGCCGGCCAGCCTCGCAGAGCAGGATTCCCGTTGAGCAC
CG CCAG GTG CG A ATA AG G G AC AGTG A AG A AG G A AC ACCCG CTCG CG G GTG G G CCTACTTC AC
CTATCCTGCCCGGCTGACGCCGTTGGATACACCAAGGAAAGTCTACACGAACCCTTTGGCAAAA
TCCTGTATATCGTG CG A A A A AG G ATG G ATATACCG A A A A A ATCG CTATA ATG ACCCCG A AG CAG
GGTTATGCAGCGGAAAAGCGCCACGCTTCCCGAAGGGAGAAAGGCGGACAGGTATCCGGTAA
GCGGCAGGGTCGGAACAGGAGAGCGCACGAGGGAGCTTCCAGGGGGAAACGCCTGGTATCTT
TATAGTCCTGTCGGGTTTCGCCACCTCTGACTTGAGCGTCGATTTTTGTGATGCTCGTCAGGGGG
GCGGAGCCTATGGAAAAACGCCAGCAACGCGGCCTTTTTACGGTTCCTGGCCTTTTGCTGGCCT
TTTG CTC AC ATGTTCTTTCCTG CGTTATCCCCTG ATTCTGTG G ATA ACCGTATTACCG CCTTTG AG
TGAGCTGATACCGCTCGCCGCAGCCGAACGACCGAGCGCAGCGAGTCAGTGAGCGAGGAAGC
GGAAGAGCGCCAGAAGGCCGCCAGAGAGGCCGAGCGCGGCCGTGAGGCTTGGACGCTAGGG CAGGGCATGAAAAAGCCCGTAGCGGGCTGCTACGGGCGTCTGACGCGGTGGAAAGGGGGAG
G G G ATGTTGTCTAC ATG G CTCTG CTGTAGTG AGTG G GTTG CG CTCCG G C AG CG GTCCTG ATC A A
TCGTCACCCTTTCTCGGTCCTTCAACGTTCCTGACAACGAGCCTCCTTTTCGCCAATCCATCGACA
ATCACCGCGAGTCCCTGCTCGAACGCTGCGTCCGGACCGGCTTCGTCGAAGGCGTCTATCGCGG
CCCGCAACAGCGGCGAGAGCGGAGCCTGTTCAACGGTGCCGCCGCGCTCGCCGGCATCGCTGT
CG CCG G CCTG CTCCTC A AG CACGG CCCC A AC AGTG A AGTAG CTG ATTGTC ATCAG CG CATTG AC
GGCGTCCCCGGCCGAAAAACCCGCCTCGCAGAGGAAGCGAAGCTGCGCGTCGGCCGTTTCCAT
CTGCGGTGCGCCCGGTCGCGTGCCGGCATGGATGCGCGCGCCATCGCGGTAGGCGAGCAGCG
CCTG CCTG AAG CTG CG G G CATTCCCG ATCAG AAATG AG CGCCAGTCGTCGTCG GCTCTCG G CAC
CG A ATG CGTATG ATTCTCCG CC AG CATG G CTTCG GCCAGTGCGTCGAGCAGCGCCCG CTTGTTC
CTGAAGTGCCAGTAAAGCGCCGGCTGCTGAACCCCCAACCGTTCCGCCAGTTTGCGTGTCGTCA
GACCGTCTACGCCGACCTCGTTCAACAGGTCCAGGGCGGCACGGATCACTGTATTCGGCTGCAA
CTTTGTCATGCTTGACACTTTATCACTGATAAACATAATATGTCCACCAACTTATCAGTGATAAAG
AATCCGCGCGTTCAATCGGACCAGCGGAGGCTGGTCCGGAGGCCAGACGTGAAACCCAACATA
CCCCTG ATCGTAATTCTG AG CACTGTCG CGCTCGACG CTGTCGG CATCG G CCTG ATTATG CCG G
TGCTGCCGGGCCTCCTGCGCGATCTGGTTCACTCGAACGACGTCACCGCCCACTATGGCATTCT
G CTG G CG CTGTATG CGTTG GTG C A ATTTG CCTG CG C ACCTGTG CTG G G CG CG CTGTCG G ATCGT
TTCG GGCGGCGG CC A ATCTTG CTCGTCTCG CTG G CCG G CG CC AG ATCTG G G G A ACCCTGTG GTT
GGCATGCACATACAAATGGACGAACGGATAAACCTTTTCACGCCCTTTTAAATATCCGATTATTC
TAATAAACGCTCTTTTCTCTTAGGTTTACCCGCCAATATATCCTGTCAAACACTGATAGTTTAAAC
TGAAGGCGGGAAACGACAATCTGATCATGAGCGGAGAATTAAGGGAGTCACGTTATGACCCCC
GCCG ATG ACG CG GGACAAG CCGTTTTACGTTTG G AACTG ACAG A ACCG CAACGTTG AAGG AG C
CACTCAG CCG CG GGTTTCTG G AGTTTAATG AG CTAAG CACATACGTCAG AAACCATTATTG CGC
GTTCAAAAGTCGCCTAAGGTCACTATCAGCTAGCAAATATTTCTTGTCAAAAATGCTCCACTGAC
GTTCCATAAATTCCCCTCGGTATCCAATTAGAGTCTCATATTCACTCTCAATCCAAATAATCTGCA
CCG G ATCTG G ATCGTTTCGCATG ATTG AACAAG ATG G ATTG CACGCAG GTTCTCCG GCCG CTTG
GGTGGAGAGG CTATTCG G CTATG ACTG G G CAC A AC AG AC A ATCG G CTG CTCTG ATG CCG CCGT
GTTCCG G CTGTCAG CG CAG GG G CG CCCGGTTCTTTTTGTCAAG ACCG ACCTGTCCG GTG CCCTG
AATGAACTGCAGGACGAGGCAGCGCGGCTATCGTGGCTGGCCACGACGGGCGTTCCTTGCGCA G CTGTG CTCG ACGTTGTC ACTG AAGCGGGAAGGG ACTG G CTG CTATTG GGCGAAGTGCCGGG GCAG G ATCTCCTGTCATCTC ACCTTGCTCCTG CCG AG AA AGTATCCATCATGG CTG ATG CAATG C GGCGGCTGCATACGCTTGATCCGGCTACCTGCCCATTCGACCACCAAGCGAAACATCGCATCGA GCGAGCACGTACTCGGATGGAAGCCGGTCTTGTCGATCAGGATGATCTGGACGAAGAGCATCA GGGGCTCGCGCCAGCCGAACTGTTCGCCAGGCTCAAGGCGCGCATGCCCGACGGCGATGATCT CGTCGTG ACCC ATG G CG ATG CCTG CTTG CCG A ATATC ATG GTG G A A A ATG G CCG CTTTTCTG G A TTCATCGACTGTGGCCGGCTGGGTGTGGCGGACCGCTATCAGGACATAGCGTTGGCTACCCGT G ATATTG CTG A AG AG CTTG G CG G CG A ATG G G CTG ACCG CTTCCTCGTG CTTTACG GTATCG CCG CTCCCG ATTCG C AG CG CATCG CCTTCTATCG CCTTCTTG ACG AGTTCTTCTG AG CG G G ACTCTG G GGTTCGAAATGACCGACCAAGCGACGCCCAACCTGCCATCACGAGATTTCGATTCCACCGCCGC CTTCTATG A A AG GTTG G G CTTCG G A ATCGTTTTCCG GGACGCCGG CTG G ATG ATCCTCC AG CG C GGGGATCTCATGCTGGAGTTCTTCGCCCACGGGATCTCTGCGGAACAGGCGGTCGAAGGTGCC G ATATCATTACG ACAG CAACG G CCG ACAAG CACAACG CCACG ATCCTG AG CG ACAATATG ATC GGGCCCGGCGTCCACATCAACGGCGTCGGCGGCGACTGCCCAGGCAAGACCGAGATGCACCG CG ATATCTTG CTG CGTTCG G ATATTTTCGTG G AGTTCCCG CCACAGACCCGG ATG ATCCCCG ATC GTTC A A AC ATTTG G C A ATA A AGTTTCTTA AG ATTG A ATCCTGTTG CCG GTCTTG CG ATG ATT ATC ATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATTTATG AGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAAATATA G CG CG C A A ACTAG G ATA A ATTATCG CG CG CG GTGTC ATCTATGTTACTAG ATCG G G CCTCCTGT CAATGCTGGCGGCGGCTCTGGTGGTGGTTCTGGTGGCGGCTCTGAGGGTGGTGGCTCTGAGG GTGGCGGTTCTGAGGGTGGCGGCTCTGAGGGAGGCGGTTCCGGTGGTGGCTCTGGTTCCGGT G ATTTTG ATTATG A A A AG ATG G CA A ACG CTA ATA AG G G G G CT ATG ACCG A A A ATG CCG ATG A A A ACG CG CTAC AGTCTG ACG CTA A AG G CA A ACTTG ATTCTGTCG CTACTG ATTACG GTG CTG CTA TCGATGGTTTCATTGGTGACGTTTCCGGCCTTGCTAATGGTAATGGTGCTACTGGTGATTTTGCT GGCTCTAATTCCCAAATGGCTCAAGTCGGTGACGGTGATAATTCACCTTTAATGAATAATTTCCG TCAATATTTACCTTCCCTCCCTCAATCGGTTGAATGTCGCCCTTTTGTCTTTGGCCCAATACGCAA ACCGCCTCTCCCCGCGCGTTGGCCGATTCATTAATGCAGCTGGCACGACAGGTTTCCCGACTGG A A AG CG G G C AGTG AG CG CAACG CA ATT A ATGTG AGTTAG CTC ACTCATTAG G C ACCCC AG G CT TTAC ACTTTATG CTTCCG G CTCGTATGTTGTGTG G A ATTG TG AG CG G ATA AC A ATTTC AC AC AG G A A AC AG CTATG ACC ATG ATTACG CC
SEQ ID NO 30: Human cytomegalovirus immediate early enhancer and promoter sequence. This is used to drive transcription of RNAi herbicide components in eukaryotic platforms. CGTTAC ATA ACTTACG GTA A ATG GCCCGCCTGG CTG ACCG CCCAACG ACCCCCG CCC AT
TGACGTCAATAATGACGTATGTTCCCATAGTAACGCCAATAGGGACTTTCCATTGACGTCAATG GGTGG AGTATTTACG GTAAACTG CCCACTTG G CAGTACATCAAGTGTATCATATG CCAAGTACG CCCCCTATTG ACGTC A ATG ACG GTA A ATG G CCCG CCTG G C ATT ATG CCCAGTAC ATG ACCTTATG GGACTTTCCTACTTGGCAGTACATCTACGTATTAGTCATCGCTATTACCATGGTGATGCGGTTTT G G C AGTAC ATC A ATG G G CGTG G ATAG CG GTTTG ACTC ACG G G G ATTTCC A AGTCTCC ACCCC AT
TGACGTCAATGGGAGTTTGTTTTGGCACCAAAATCAACGGGACTTTCCAAAATGTCGTAACAAC TCCGCCCCATTGACGCAAATGGGCGGTAGGCGTGTACGGTGGGAGGTCTATATAAGCAGAGCT
SEQ ID NO 31: Synthetic TRV coat protein CDS DNA from pTRV2 sequence.
AUGGGAGAUAUGUACGAUGAAUCAU UUGACAAGUCGGGCGGUCCUGCUGACUUGAUGGA CGAUUCUUGGGUGGAAUCAGUUUCGUGGAAAGAUCUGU UGAAGAAGUUACACAGCAUAA AAUUUGCACUACAGUCUGGUAGAGAUGAGAUCACUGGGUUACUAGCGGCACUGAAUAGAC AGUGUCCUUAU UCACCAUAUGAGCAGUUUCCAGAUAAGAAGGUGUAUUUCCUUUUAGAC UCACGGGCUAACAGUGCUCU UGGUGUGAUUCAGAACGCUUCAGCGUUCAAGAGACGAGCU GAUGAGAAGAAUGCAGUGGCGGGUGUUACAAAUAUUCCUGCGAAUCCAAACACAACGGUU ACGACGAACCAAGGGAGUACUACUACUACCAAGGCGAACACUGGCUCGACUUUGGAAGAA GACUUGUACACU UAUUACAAAUUCGAUGAUGCCUCUACAGCUUUCCACAAAUCUCUAACU UCGUUAGAGAACAUGGAGUUGAAGAGUUAUUACCGAAGGAACUUUGAGAAAGUAUUCGG GAU UAAGUUUGGUGGAGCAGCUGCUAGUUCAUCUGCACCGCCUCCAGCGAGUGGAGGUCC GAUACGUCCUAAUCCCUAG SEQ ID NO 32: Synthetic Tobacco Rattle Virus Codon-optimized Coat Protein mRNA sequence. AUGGGUGACAUGUACGACGAGUCGUUCGAUAAGUCCGGUGGCCCGGCCGACUUGAUGGAC GACAGCUGGGUGGAAUCCGUCAGCUGGAAAGAU UUGCUGAAAAAGCUCCAUUCUAUCAAG UUUGCGUUACAAUCCGGUCGUGAUGAGAUUACCGGCCUGCUGGCGGCCCUGAACCGCCAG UGCCCGUACAGCCCGUAUGAGCAAUUCCCAGACAAAAAAGUCUAUUUCCUGCUGGAUAGCC GUGCUAAUAGCGCCCUGGGCGUUAUUCAGAAUGCGUCUGCGUUUAAGCGCCGCGCGGACG AGAAGAACGCGGUGGCGGGCGUUACCAAUAUCCCGGCUAACCCGAACACCACGGUUACGAC CAAUCAAGGUAGCACUACCACCACCAAGGCUAACACCGGCUCGACCCUGGAAGAGGACUUG UACACUUACUAUAAAUUUGACGACGCGUCGACCGCAUUCCACAAAUCGCUGACCUCCU UGG AAAAUAUGGAACUGAAGUCUUAU UACCGCCGUAACUUCGAGAAAGUGUUUGGUAUUAAA UUUGGUGGCGCAGCCGCAUCCAGCUCGGCGCCGCCACCGGCGAGCGGUGGCCCGAUUCGU CCGAAUCCUUAA
SEQ ID NO 33: Tomato Bushy Stunt Virus P19 suppressor protein CDS from Tomato Bushy Stunt Virus M21958.1 sequence.
AUGGAACGAGCUAUACAAGGAAACGACGCUAGGGAACAAGCUAACAGUGAACGUUGGGAU GGAGGAUCAGGAGGUACCACUUCUCCCUUCAAACUUCCUGACGAAAGUCCGAGUUGGACU GAGUGGCGGCUACAUAACGAUGAGACGAAU UCGAAUCAAGAUAAUCCCCU UGGUU UCAAG GAAAGCUGGGGUUUCGGGAAAGUUGUAUU UAAGAGAUAUCUCAGAUACGACAGGACGGA AGCUUCACUGCACAGAGUCCUUGGAUCUUGGACGGGAGAUUCGGUUAACUAUGCAGCAUC UCGAUUU UUCGGUU UCGACCAGAUCGGAUGUACCUAUAGUAU UCGGUUUCGAGGAGU UA GUAUCACCGUUUCUGGAGGGUCGCGAACUCUUCAGCAUCUCUGUGAGAUGGCAAUUCGG UCUAAGCAAGAACUGCUACAGCUUGCCCCAAUCGAAGUGGAAAGUAAUGUAUCAAGAGGA UGCCCUGAAGGUACUGAGACCUUCGAAAAAGAAAGCGAGUAA
SEQ ID NO 34: Papaya Ringspot Virus strain P isolate pFT3-NP HCpro peptide CDS sequence.
AAUGAUGUUGCUGAAAAAUUCUGGCUCGGUU UCAACAGGGCUUUCUUACGACACAGAAAA CCAACGGAUCAUGUGUGUACAUCUGAUAUAGAUGUUACGAUGUGUGGUGAAGUAGCGGC UUUGGCAACCAUAAUCUUGUU UCCGUGUCAUAAGAUCACUUGCAACACUUGCAUGAACAA AGUAAAGGGGAGAGUAAUUGACGAAGUUGGUGAGGACU UGAAUUGUGAGCU UGAACGU
UUACGUGAAACUCUCUCGUCAUAUGGAGGCUCAUUCGGUCAUGUAUCAACAUUACUCGAC
CAACUGAACAGAAUUUUGAAUGCACGUAACAUGAACGACGGAGCUUU UAAAGAAGUUGCA
AAGAAGAUUGAUG CA A AG A A AG A A AG U CC U U G G ACCC ACC U A AC AG CCA U C A A U A AC ACG C
UUAUUAAAGGUUCGUUAGCAACUGGCAAUGAAUU UGAAAAAGCAUCUGAUAGCCUGCGG
GAAGUUGUGAGGUGGCAUCUCAAAAGAACAGAGUCAAUAAAAGCUGGCAGUGUUGAGAG
CUU UAGAAACAAGCGUUCUGGGAAAGCUCACUUUAACCCAGCUCUUACGUGUGACAAUCA
AUUGGACAGAAAUGGCAAU UUCUUAUGGGGUGAAAGACAAUAUCACGCCAAAAGAU UCUU
UGCUAACUACU UUGAAAAGAUUGAUCACAGUAAGGGUUAUGAGUACUAUAGUCAACGCCA
GAACCCAAAUGGCACUCGAAAGGUUGCCAU UGGUAAUUUAAUAUUCUCCACAAAUUUGGA
GAGGUUUCGGCAGCAGAUGGUCGAACAUCACAUUGACCAGGGACCAAUCACUCGUGAGUG
UAUCGCACUGCGCAACAACAAUUAUGCUCAUGUAUGUAGCUGCGUGACCUUGGAUGAUGG
AACUCCAGCAACGAGUGAAU UGAAAACUCCCACCAAGAAUCACAUCGUUCUUGGUAAUUCU
GGUGAUCCUAAGUAUGUUGACUUGCCGACUCUUGAGUCUGAUUCAAUGUACAUAGCCAA
GAAAGGUUAU UGCUACAUGAACAUCUUUUUGGCGAUGCUCAUAAACAUACCUGAGAAUG
AGGCGAAGGACUUUACGAAGAGAGUUCGCGAUCU UGUUGGUUCAAAGCUUGGGGAGUGG
CCAACGAUGCUAGAUGUUGCAACAUGCGCUAAUCAAUUGAUUAUCUUCCAUCCCGAUGCA
GCCAAUGCAGAAUUGCCGCGAAUUUUGGUGGAUCACCGACAGAAGACAAUGCACGUAAUU
GAU UCGUUUGGAUCUGUUGAUUCUGGAUAUCAUAUACUGAAGGCUAACACAGUCAAUCA
G U U G A U CCA A UUCGCCAGAGAGCCACUCGAUAGUG AAA U G A A AC ACU ACA U U G U CG G U
SEQ. ID NO 35: Tobacco Mosaic Virus TMV 30kDa movement protein CDS sequence.
AUGGCUCUAGUUGUUAAAGGAAAAGUGAAUAUCAAUGAGU UUAUCGACCUGACAAAAAU
GGAGAAGAUCUUACCGUCGAUGU UUACCCCUGUAAAGAGUGUUAUGUGU UCCAAAGUUG
AUAAAAUAAUGGU UCAUGAGAAUGAGUCAUUGUCAGAGGUGAACCUUCU UAAAGGAGUU
AAGCUUAUUGAUAGUGGAUACGUCUGUU UAGCCGGUUUGGUCGUCACGGGCGAGUGGAA
CUUGCCUGACAAUUGCAGAGGAGGUGUGAGCGUGUGUCUGGUGGACAAAAGGAUGGAAA
GAGCCGACGAGGCCACUCUCGGAUCUUACUACACAGCAGCUGCAAAGAAAAGAUUUCAGU
UCAAGGUCGUUCCCAAUUAUGCUAUAACCACCCAGGACGCGAUGAAAAACGUCUGGCAAG UUUUAGUUAAUAUUAGAAAUGUGAAGAUGUCAGCGGGUUUCUGUCCGCUUUCUCUGGA
GUU UGUGUCGGUGUGUAUUGUUUAUAGAAAUAAUAUAAAAUUAGGUU UGAGAGAGAAG
AUUACAAACGUGAGAGACGGAGGGCCCAUGGAACUUACAGAAGAAGUCGU UGAUGAGUUC
AUGGAAGAUGUCCCUAUGUCGAUCAGGCU UGCAAAGUUUCGAUCUCGAACCGGAAAAAAG
AGUGAUGUCCGCAAAGGGAAAAAUAGUAGUAAUGAUCGGUCAGUGCCGAACAAGAACUAU
AGAAAUGUUAAGGAUUUUGGAGGAAUGAGUUU UAAAAAGAAUAAU UUAAUCGAUGAUG
AUUCGGAGGCUACUGUCGCCGAAUCGGAUUCGUUUUAA
SEQ ID NO 36: Arabidopsis thaliana TOR gene CDS (TAIR accession AT1G50030).
AUGUCUACCUCGUCGCAAUCUUUUGUGGCUGGACGGCCUGCAUCCAUGGCUUCCCCUUCG
CAAUCGCACCGCUUUUGUGGUCCCUCAGCCACCGCUUCUGGUGGCGGAAGCUUUGACACU
UUGAAUCGUGUCAUCGCUGACCUU UGCAGCCGUGGUAAUCCUAAGGAGGGAGCUCCU UU
AGCGUUUAGGAAACACGUAGAGGAAGCAGUUCGUGAUCUUAGUGGUGAAGCU UCCUCUA
GGUUCAUGGAGCAAUUAUAUGACAGGAUUGCUAAU UUAAU UGAGAGCACUGAUGUGGCG
GAAAACAUGGGUGCACUCAGAGCCAUUGAUGAGUUGACGGAGAU UGGAUU UGGUGAGAA
UGCUACUAAGGUU UCUAGAUU UGCGGGUUACAUGAGGACUGUGUUCGAGUUGAAGCGU
GAUCCUGAAAUCUUGGUGCUUGCUAGUAGAGU UUUGGGGCACCUUGCUCGGGCAGGUGG
AGCAAUGACUUCUGAUGAAGUGGAGUUUCAGAUGAAAACAGCUUUUGAUUGGCUUCGCG
UAGACAGGGUGGAAUAUCGUCGUU UCGCCGCCGUUUUAAUAU UAAAGGAGAUGGCCGAA
AAUGCU UCUACUGUCUUUAACGU UCAUGUCCCUGAAUUUGUGGAUGCUAUCUGGGUUGC
ACUUAGGGACCCCCAGU UGCAAGUGCGAGAACGAGCUGUUGAAGCUUUGCGUGCAUGCCU
UCGUGUUAUUGAGAAAAGGGAGACUCGAUGGCGAGUGCAGUGGUACUAUCGAAUGUUUG
AAGCUACACAGGAUGGGU UGGGCAGAAAUGCUCCGGUUCACAGUAU UCAUGGUUCUUUA
CUUGCCGUGGGGGAGCUGUUGAGGAAUACAGGUGAGUUCAUGAUGUCUAGGUAUAGAGA
AGU UGCCGAAAUUGUCCUCAGAUACCUUGAACAUCGUGAUCGCCUUGU UCGCCUUAGCAU
CACCUCGUUACUGCCUCGCAUUGCUCACUUUCUCCGUGACCGG UUUGUGACAAACUAU UU
AACGAUAUGCAUGAAUCAUAUUCUUACUGUGUUAAGAAUACCGGCUGAAAGAGCCAGUG
GGUUCAUCGCCCU UGGGGAAAUGGCUGGUGCU UUGGAUGGUGAGCU UAUCCAUUAU UUG
CCGACAAUUAUGUCUCAUCUGCGGGAUGCGAU UGCUCCACGUAAAGGCAGACCUUUGCUU GAAGCUGUGGCUUGUGUUGGUAACAUCGCAAAGGCAAUGGGAUCCACAGUGGAAACUCA
UGUUCGAGAUCUU UUAGAUGUUAUGUUU UCAUCUAGUCUCUCU UCCACACUUGUUGACG
CUCUUGACCAGAUAACCAUCAGCAUUCCUUCUU UGCUGCCAACAGUACAAGAUCGGCUUC
UAGAUUGCAU UUCGUUGGUUCUUUCAAAAUCCCAUUAUUCUCAAGCAAAGCCUCCUGU UA
CCAUUGUCCGAGGUAGUACAGUGGGCAUGGCACCACAGUCUUCUGACCCUAGUUGUUCAG
CUCAAGUUCAACUAGCCCUGCAGACUCUUGCUCGUUUCAAUUUCAAGGGACAUGAUCUUC
UUGAAUUUGCUCGGGAGUCAGUUGUUGUUUAUUUGGAUGAUGAGGAUGCAGCCACAAG
AAAAGAUGCUGCUUUG UGUUGUUGCAGACUAAUUGCAAAUUCUCUUUCUGGCAUCACAC
AAUUUGGCUCGAGCAGGUCAACACGAGCAGGGGGGAGACGCAGGCGCCUUGUGGAAGAGA
UUGUGGAAAAGCUUCUCAGGACAGCCGUUGCAGAUGCUGAUGUAACUGUUCGCAAAUCU
AUAUUCGUUGCUUUAU UUGGCAACCAAUGU UUCGAUGAUUAUCUAGCACAGGCUGAUAG
UUUGACUGCCAUU UUUGCUUCCUUAAAUGAUGAGGACCUUGAUGUUCGAGAAUAUGCCA
UCUCAGUUGCUGGAAGGUUAUCGGAAAAAAAUCCAGCAUACGUACU UCCAGCACUUCGUC
GCCAUCUUAUACAGUUGUUGACCUAUCUUGAGCUGAGUGCAGAUAACAAGUGCAGGGAA
GAGAGUGCAAAGCUCCU UGGUUGUU UAGUUCGAAAU UGUGAACGGCUCAUUCUUCCAUA
CGUAGCCCCUGUCCAAAAGGCACUUGUUGCGAGACUUAGUGAAGGAACUGGAGUGAAUGC
UAACAAUAAUAUUGUCACUGGAGUUCUCGUAACUGUUGGGGAUCUUGCAAGAGUGGGUG
GCUUGGCAAUGAGACAAUAUAUUCCGGAGCUGAUGCCU UUAAUUGUUGAAGCUUUAAUG
GAUGGAGCUGCUGUAGCAAAACGUGAGGUGGCUGUUUCUACUCUUGGUCAAGUUGUUCA
AAGUACAGGGUAUGUUGUGACUCCAUACAAGGAAUACCCAUUGUUGCUUGGGUUACUCU
UGAAAUUGCUGAAGGGUGACUUAGUGUGGUCUACCAGACGAGAAGUGCUCAAGGUUCU U
GGAAUUAUGGGCGCUU UGGAUCCUCAUGUGCAUAAACGUAACCAACAAAGUU UAUCAGGA
UCACAUGGUGAAGUUCCUCGCGGCACUGGUGAUUCUGGUCAACCUAUUCCAUCAAUUGAU
GAGUUACCUGUCGAACUCCGGCCGUCAUUUGCUACAUCUGAGGAU UAUUACUCAACGGUU
GCUAUCAACUCGCUUAUGCGAAU UCUUAGAGAUGCAUCACUUCUUAGUUACCACAAAAGG
GUUGUUAGAUCUCUGAUGAUCAUUUUCAAGUCAAUGGGAUUGGGAUGCGUGCCUUACUU
GCCGAAGGUUUUACCUGAGCUUUUUCACACUGU UCGAACAUCUGAUGAGAACCUGAAGGA
CUUCAU UACGUGGGGUCUUGGGACUCUUGUU UCCAUUGUUCGCCAGCACAUACGCAAGU
AUCUGCCAGAGCUGCUU UCAUUAGUCUCUGAACUAUGGUCAUCCUUCACCUUGCCCGGUC CCAUACGCCCAUCACGUGGUCUUCCGGUUCUGCAUCUACUGGAACAUCUU UGCUUGGCAC
UUAAUGAUGAAUUCAGAACUUAUCUUCCAGUCAUCCUUCCAUGUUUCAUCCAAGUAUUAG
GUGACGCCGAGCGGUU UAAUGAUUACACCUAUGUUCCUGAUAUUCUCCACACACUCGAAG
UGU UUGGCGGAACUCU UGAUGAGCACAUGCAUU UACUCCUUCCGGCACU UAUUCGAUUG
UUUAAAGUAGAUGCUCCUGUAGCUAUAAGACGCGAUGCCAUCAAAACUU UGACAAGAGUA
AUCCCGUGUGUUCAGG UUACUGGUCAUAUCUCCGCUCUCGUGCAUCACUUGAAGCUAGUA
UUAGAUGGGAAGAAUGAUGAGUUGCGGAAAGAUGCUGUCGAUGCACUAUGCUGUUUGGC
UCAUGCACUUGGAGAGGACUUCACCAUAUUCAUUGAAUCAAUUCACAAGCUUUUAUUGAA
GCAUCGAUUGCGGCAUAAAGAAU UUGAGGAAAU UCAUGCUCGCUGGCGGAGACGUGAACC
AUUGAUUGUAGCUACAACUGCAACCCAACAAUUAAGUAGGCGACUGCCAGUUGAGGUUAU
CAGGGAUCCUGUAAUUGAGAAUGAGAUCGAUCCUUUCGAAGAAGGAACUGACAGAAACCA
UCAGGUUAAUGAUGGUAGACUACGGACAGCUGGAGAAGCUUCUCAACGCAGCACCAAAGA
AGAUUGGGAGGAAUGGAUGAGACAU UUUAGUAU UGAAUUACUUAAGGAGUCUCCCUCUC
CAGCAUUAAGAACUUGUGCAAAACUUGCUCAGUUGCAGCCAU UUGUCGGGAGAGAGUUG
UUUGCUGCUGGCU UUGUCAGUUGCUGGGCACAGCUAAACGAGUCUAGCCAAAAGCAGUU
AGU UAGGAGCUUGGAAAUGGCCUUU UCAUCUCCAAAUAUCCCUCCAGAAAU UUUAGCUAC
ACUACUCAAUUUGGCAGAGUUUAUGGAACAUGAUGAGAAGCCUCUUCCCAUUGAUAUUCG
UCU UCUGGGGGCUCUUGCUGAAAAGUGCCGUGUUUUUGCCAAAGCUCUGCAUUAUAAAG
AGAUGGAAUU UGAAGGUCCACGAUCCAAGAGGAUGGAUGCCAACCCAGUUGCUGU UGUCG
AGGCUCUUAUACACAUAAAUAAUCAGUUACACCAGCAUGAGGCUGCUGUCGGUAUACUAA
CCUAUGCUCAACAACAUCUUGAUGUGCAAUUAAAAGAAUCAUGGUAUGAGAAGCUGCAGC
GCUGGGACGAUGCACUCAAGGCGUACACUUUGAAAGCAUCUCAAACAACAAAUCCUCAUCU
UGUAUUAGAAGCCACAU UAGGACAAAUGAGAUGUCUUGCUGCACUUGCACGAUGGGAAG
AGCUCAACAAUCUCUGCAAAGAGUACUGGAGUCCUGCUGAGCCAUCUGCGCGUCUGGAAA
UGGCACCAAUGGCUGCACAAGCUGCAUGGAACAUGGGAGAGUGGGAUCAAAUGGCCGAAU
AUGUGUCUCGGCUAGAUGAUGGUGAUGAAACAAAGCUUCGGGGUUUAGCAAGCCCGGUU
UCUAGUGGCGAUGGGAGCAGUAAUGGCACAUUCU UCAGGGCUGUUCUGU UAGUUCGAAG
GGCAAAGUACGACGAGGCACGCGAAUAUGUGGAAAGAGCUAGAAAAUGUCU UGCCACAGA
ACUUGCAGCGCUGGUU UUGGAGAGCUAUGAGCGUGCGUACAGCAAUAUGGUUCGUGUUC AGCAGCUGUCAGAACUAGAGGAGGUAAUUGAAUAUUAUACGCUGCCUGUGGGAAAUACU
AUUGCCGAAGAACGGAGAGCUCUAAUUCGUAAUAUGUGGACUCAGCGGAUUCAGGGAUC
UAAGCGUAAUGUGGAGGUGUGGCAAGCACUUU UGGCUGUCCGGGCACUUGUGCUACCUC
CUACAGAAGAUGUGGAAACUUGGCUCAAGUUUGCCUCGCUUUGUCGAAAGAGUGGGAGG
AUCAGUCAGGCGAAAUCUACUCUACUCAAGCUCU UACCGU UUGAUCCAGAAGUAUCACCA
GAAAACAUGCAAUAUCACGGACCUCCACAAGUGAUGCUUGGAUACUUAAAAUACCAAUGG
UCACUUGGAGAGGAACGUAAGCGCAAAGAGGCAU UUACCAAGCUGCAGAUUCUAACGAGA
GAGCUCUCAAGUGUGCCACAUUCUCAAUCUGACAUACUGGCUAGCAUGGUAUCUAGCAAG
GGCGCAAAUGUUCCACU UCUUGCACGUGUAAAUCUCAAACUGGGAACGUGGCAGUGGGCA
CUU UCUUCCGGUU UGAAUGAUGGGUCUAU UCAAGAAAU UCGUGAUGCGUUUGACAAAUC
UACUUGCUAUGCUCCUAAAUGGGCUAAAGCAUGGCACACAUGGGCAUUAUUCAAUACAGC
AGUGAUGUCGCAUUACAUU UCAAGAGGUCAAAUUGCUUCCCAGUACGU UGUUUCUGCAG
UCACUGGAUAUU UUUAUUCUAUAGCAUGUGCAGCAAAUGCCAAAGGAGUUGAUGAUAGU
UUACAGGACAUACUGCGUCU UCUGACAUUGUGGU UCAACCAUGGAGCUACAGCUGAUGUC
CAAACCGCAUUGAAGACAGGAUUCAGUCAUGUCAACAU UAACACAUGGCU UGUUGUGCUA
CCUCAAAUCAUUGCUAGGAUACAUUCUAAUAAUCGUGCUGUCAGGGAACUGAUUCAGUCU
CUUCUCAUCCGCAUAGGCGAAAACCACCCACAGGCUCUGAUGUAUCCCCUUCUCGUUGCAU
GUAAAUCAAUAAGCAAUCUUCGGAGAGCUGCGGCUCAAGAGGUGGUUGAUAAAGUUCGCC
AGCACAGUGGUGCACUCGUGGAUCAGGCGCAACUUGUAUCACAUGAACUUAUCAGGGUUG
CCAUACUU UGGCAUGAAAUGUGGCAUGAAGCACUAGAAGAAGCUAGUCGCU UGUAUUUU
GGUGAACAUAACAU UGAAGGCAUGCUGAAAGUACU UGAACCCUUACAUGACAUGCUCGAC
GAAGGUGUAAAAAAGGACAGUACGACCAUACAGGAAAGAGCAUUUAUAGAGGCAUACCGU
CACGAACUAAAAGAGGCACAUGAAUGCUGUUGCAAUUACAAGAUAACUGGGAAAGAUGCU
GAACUUACACAGGCUUGGGAUCUUUACUAUCACGUUUUCAAACGGAUUGACAAACAGCUA
GCCAGUCUCACGACAU UGGAUUUGGAAUCUGU UUCUCCUGAGUUGCUGCUGUGCCGUGA
CUUGGAGCUAGCAGU UCCUGGAACAUAUCGUGCAGAUGCCCCCGUCGUGACUAUAUCAUC
UUUUUCACGCCAACUUGUUGU UAUAACCUCUAAACAAAGACCAAGGAAAUUGACUAUUCA
CGGAAAUGACGGUGAGGACUACGCCUUCUUGUUGAAGGGACAUGAAGAUUUAAGGCAAG
AUGAGCGUGU UAUGCAGCUU UUUGGUUUGGUGAACACUUUGCUUGAGAAUUCCAGAAAA ACAGCCGAAAAAGAUCU UUCCAUUCAACGCUAUUCUGUAAUACCACUAUCUCCCAAUAGUG
GACUCAUCGGAUGGGUUCCGAACUGCGAUACCCU UCACCAUCUUAUUCGAGAGCACAGAG
AUGCAAGAAAGAUCAUUCUUAAUCAAGAAAAUAAGCAUAUGUUGAGU UUUGCUCCAGACU
AUGACAAUCUACCGCUUAUAGCAAAGGUUGAAGUAUUUGAGUAUGCUCUAGAAAACACAG
AGGGAAAUGAUCUAUCCAGGGUUCUCUGGUUAAAAAGUCGCUCGUCAGAAGUUUGGCUA
GAAAGAAGAACAAACUAUACUAGAAGUU UAGCAGUUAUGAGUAUGGU UGGUUAUAUUCU
UGGGUUAGGUGAUCGACACCCAAGUAACCUUAUGCUUCAUAGAUACAGUGGAAAGAUCU
UGCAUAUUGAUUUUGGAGAU UGUUU UGAGGCU UCUAUGAAUAGAGAGAAGUUUCCUGA
AAAGGUUCCAUUCCGCCUGACAAGAAUGCUUGUCAAAGCAAUGGAAGUCAGUGGCAUUGA
AGGAAACUUCCGCUCAACCUGCGAAAACGUUAUGCAAGUUCUCAGAACCAAUAAAGAUAG
UGUAAUGGCAAUGAUGGAAGCGUUUGUACAUGAUCCUUUAAUCAAUUGGCGUCUUUUCA
AUUUCAAUGAAGUCCCCCAAU UAGCACUGCUCGGUAACAACAACCCCAAUGCUCCUGCUGA
UGU UGAGCCUGACGAAGAAGAUGAAGAUCCCGCUGAUAUAGAUCUUCCUCAGCCUCAAAG
GAGUACUCGAGAGAAGGAGAU UCUUCAGGCUGUAAAUAUGCUUGGAGAUGCUAAUGAAG
UUUUAAAUGAGCGUGCCGUAGUUGUUAUGGCACGUAUGAGUCAUAAGCUUACAGGGCGU
GAU UUUUCUUCGUCUGCAAU UCCGAGCAAUCCCAU UGCUGAUCAUAAUAACUUGCUCGGA
GGAGAUUCUCAUGAAGUCGAACAUGGUUUGUCUGUGAAAGUUCAGGUUCAAAAACUAAU
CAAUCAAGCCACU UCCCAUGAGAAUCUCUGUCAAAACUAUGUUGGGUGGUGCCCUUUCUG
GUGA
SEQ ID NO 37: Arabidopsis thaliana ATG5 sequence.
AUGGCGAAGGAAGCGGUCAAGUAUGUAUGGGAAGGAGCAAUUCCUCUGCAGAUUCAUCU
CCACAAAUCCGACGUCGCUUCUCACCCUGCUCCUCCUCCUGCUCUUGUGUUAGCACCAAGA
AUAGGAUAUUUGCCUCUGUUGAUUCCUCUUAUAAAGCCUUAU UUCAAGGAUUCACUUCC
UCCUGGUGAAGAU UCAAUU UGGUUUGAUUACAAAGGAUUUCCUCUAAAAUGGUAUAUAC
CAACAGGUGUUCUUU UCGAUCUCCUUUGUGCAGAACCCGAAAGACCAUGGAAUCUCACGA
UACACUUUAGAGGAUAUCCUUGCAACAUACUGAUACCAUGUGAAGGAGAAGAUUCUGUAA
AAUGGAACU UUGU UAAU UCUUUGAAAGAGGCACAAUAUAUCAUCAAUGGAAAUUGCAAG
AAUGUUAUGAACAUGUCUCAGAGUGAUCAAGAGGAUCUAUGGACCUCUGUCAUGAACGG UGAUCU UGAUGCCUAUACAAGAU UAUCACCCAAGCU UAAAAUGGGAACAGUCGAAGAUGA
GUU UUCAAGGAAAACAAGUUUGUCAUCUCCACAAUCUCAACAAGUUGUGCCUGAGACGGA
GGUGGCUGGACAAGU UAAGACAGCAAGAAUUCCUGU UCGGUUGUAUGUUCGAAGUCUAA
AUAAAGAUU UCGAGAAUCUUGAAGAUGUACCGGAGAUCGAUACCUGGGAUGACAUCUCG
UACCUUAAUCGCCCUGU UGAGUUCCUCAAAGAAGAAGGGAAAUGCUUUACGUUACGUGAC
GCCAUUAAAAGUCUCCUCCCUGAGU UUAUGGGAGACAGAGCGCAAACGAGUGGUGAAGAA
AGAAGCAUAGAUGAUACAGAAGAAGCAGAUGGGUCGAGGGAGAUGGGUGAAAUCAAAUU
GGUAAGGAUACAAGGGAUAGAAAUGAAGCUAGAGAUACCGUUUUCGUGGGUGGUAAAUA
ACUUGAUGAACCCAGAAUUCUAUCUCCAUAUCUCUGUCCUUGUGAAAGCUCCUCAAAGGU
GA
SEQ. ID NO 38: Arabidopsis thaliana Beclin 1 sequence:
AUGAGGAAAGAGGAGAUUCCAGAUAAAAGUCGGACUAUCCCGAUCGAUCCGAAUCUGCCG
AAAUGGGUCUGCCAAAACUGUCACCACUCCCUUACCAUCGUCGGCGUCGAU UCCUACGCCG
GCAAGUUCUUCAACGAUCCCCCUCCGUCCGCUACGCAGGGCUCAUCUAUCCAUGGAGCUAA
CAGUGUUCUUGGUUCAACACGCAUGGACAACUCU UUUGU UGU UUUACCUCGACAUAAGCC
UCCUCAAUCUCAGGGCAUUCCUCCACGUCCUCGCGGGGCGUCCUCACCUCAGCCUGAUGCU
ACUCAAUCUGGAAAGGCGAUGGAGGAAUCGUUUGUAGUUGUCUAUAAGUCUGAGCCUGU
UUCUGAU UCUGGUGGUUCUCACAAUCUGUCUCUUGAAGUGGGCCAAAACGGUCCCUUACA
UUCAAAUACUUCUGGCUUUAAUGCGACUAUCAAUGUCUUAACUCGUGCUUU UGAUAUUG
CUAGAACUCAGACACAGGUUGAACAGCCAUUGUGCUUAGAAUGCAUGAGGGUAUUGUCU
GAUAAACUUGAAAAAGAAGUCGAGGAUGUGACGAGGGACGUGGAAGCAUACGAAGCAUGC
GUUCAGAGGU UAGAAGGAGAGACGCAAGAUGUUCUUAGUGAAGCUGAUUUUCUCAAGGA
AAAGAAGAAGAUUGAGGAAGAAGAAAGAAAACUUGU UGCAGCUAUAGAAGAAACAGAGAA
AC A A A A UGCUGAAGU A A ACC A U C A AC UGAAGGAGCUAGAAUU C A AG GGAAAUCGUU UUAA
CGAACUUGAAGAUCGGUAUUGGCAAGAGUUCAAUAAUUUUCAGUUUCAAUUAAUUGCCC
AUCAGGAAGAGAGAGAUGCAAUCUUGGCAAAGAU UGAAGU UUCACAAGCACAUUUAGAG
UUAUUAAAUAAGACAAAUGUACU UAUUGAUGCCUUCCCCAUACGGAAUGAUGGGGAAUU
UGGUACAAU UAACAAUU UUCGACUUGGAAGACUCCCUGCCAUAAAAGUUGAGUGGGAUG AGAUCAAUGCUGCUUGGGGCCAAGCCUGUCUUCUCCUCCAUACGAUGUGUAACUAUU UCC
GGCCAAAGUUUCAAUGUCAAGUUAAAAUACAGCCGAUGGGGAGUUAUCCUAGAAUUGUA
GACAGCAACAACGAAACU UAUGAGCUGUUUGGUCCUGUUAACUUGUUUUGGAGCACUCG
GUACGAUAAAGCCAUGACACUGUAU UUGAUGUGUCUUAAAGACU UUGCUGAUUUUGCAA
A U U C A A AG G ACC A AG AG A AC A A U A U U CCACC AG AUAAUUGCCUCAACCUUCCAU AC A AG A U
CGAAAAGGACAAAGUAU UGGGGUAUUCAAUAACACAGAGCUUCAACAAGCAAGAGAGUUG
GACCAAAGCACUAAAGUAUACUCUCUGCAACCUCAAAUGGGCUCUCUACUGGUUCGUUGG
AAACACUAAU UUCCAACCUCUCUCUGCGACGGUCUCUCUGCCUUCUAAUAUAUCAGCGGC
UGGUUCCUUGUACGCCAAGCGAGGUCCUGACUCUAGUAAGCCUUCAUGUAAAAAAACUUA
G
SEQ ID NO 39: Nicotiana attenuata ZIM domain protein h mRNA sequence. Target gene used to build targeting constructs. Also used to find homologues in other species.
AUUUUCUUGUGAUUU UUAAAACAUGUCAAAU UCGCAAAAUUCUUUUGACGGCGGCAGAA
GGGCCGGAAAAGCGCCGGAGAGAUCGAAU UUCGUGCAGACUUGUAAU UUAUUGAGUCAG
UUUAUUAAAGGAAAAGCUACUAUUAGAGAUCUGAAUCUCGGAAUUGCUGGAAAAUCUGA
AAUCUCAGGUAAAAGUGAUGUUACAGAAGCUGCAACUAUGGAUUUAU UGACAAUUAUGG
A A A ACCCCU CA A U U G A A AC U A A AG A AC A AG A AC A A A A A UCCAUAGAUCCCGUUCGUCAGAG
UGCUGUAACAGAAUCU UCUAGAGAUAUGGAGGUGGCCGUAAAUGAGCCCAGCACGAGCAA
AGAGGCACCAAAAGAGCCUAAGGCAGCACAAUUGACUAUGUUCUAUGAUGGUAAAGUGAU
AGUAUUUGAUGAUUUUCCAGCUGACAAAGCUAGAGCAGUAAUGUUAUUGGCUAGUAAAG
GAUGCCCUCAGAGU UCAUUUGGCACUUUUCAUACUACAACCAUCGACAAAAUUAACACAUC
UGCUACUGCUGCUGCCACAGCUUCUUUGACAUGUAAUAAAACUAAUCAGCUUAAACCAAG
UACAGU UUCUAUUGCACCACCACAACAAAAGCAGCAGCAAAUUCAUGUUUCUUAUAGUAA
AAGUGACCAACUCAAGCCAGGGUAUAAUUCUGCUACGCCGCAAGUACUGCAGCAGCAGCUA
GUCCAUGUUUCUAGUACUAGUAAAACUGAUCAGCUUAAGCCAGUAUCAACUUCUUCUGCG
UCGCAAAAACAGCAGGAGCAACAUCAGCAAACGCAGUCACAGACACCUGGAACUAGCAGCU
CUGAGCUACCUAUUGCAAGAAGAUCAUCACUACAUAGGUUUCUUGAGAAGAGGAAAGAUA
GGGCAACGGCUAGAGCGCCAUACCAAGUUGUACAUAAUAAUCCGUUACCAUCAUCUUCAA AUAAUAAUGGGGAAUCAUCUUCCAAGGAUUGCGAAGAUCAACUCGAUCUCAAUUUCAAGU UAUAG
SEQ ID NO. 40: Nicotiana benthamiana Bax inhibitor 1 mRNA sequence:
AUGGAGUCUUGCACAUCGUUCUUCAAU UCGCAGUCGGCGUCGUCUCGCAAUCGCUGGAGU UACGAU UCUCUUAAGAACUUCCGCCAGAUCUCUCCCUUUGUUCAAACUCAUCUCAAAAAG GUCUACCUU UCAUUAUGCUGUGCUUUAAUUGCUUCGGCUGCUGGAGCU UACCUUCACAU UCU UUGGAACAUCGGUGGUUUACUUACGACGCUGGGAUGCGUGGGAAGCAUAGUAUGGC UGAUGGCGACUCCUCUGUAUGAAGAGCAAAAGAGGAUAGCACUUCUGAUGGCAGCUGCAC UGU UUAAAGGAGCAUCUGUUGGUCCACUGAUUGAACUGGCUAUUGACU UUGACCCAAGC AUCGUGUUAGGUGCUUUUGUUGGUUGUGCUGUGGCUUUUGGUUGCUUCUCAGCUGCUG CCAUGGUGGCAAAGCGCAGAGAGUACUUGUAUCUUGGAGGUCUUCUUUCAUCUGGUCUC UCUAUCCUUUUCUGGUUGCACUUUGCGUCCUCCAUU UUUGGUGGUUCUAUGGCCCUAU U CAAGUU UGAGGUUUACU UUGGGCUCUUGGUGUUUGUUGGCUAUAUCAUUUU UGACACC CAAGAUAUAAU UGAGAAGGCACACCU UGGGGAUUUGGACUACGUGAAGCAUGCUCUGACC CUCUU UACAGAUUUUAUUGCUGUUUU UGUGCGAAU UUUAAUCAUAAUGU UGAAGAAUG CAUCCGACAAGGAAGAGAAGAAGAAGAAGAGGAGAAACUAA
SEQ ID NO 41: Nicotiana sylvestris Acd2 partial transcript sequence derived from N. sylvestris transcriptome.
G U U CA U CC U CA A A A UACAUGGAACAGCAGAAUG A A A AC A AG U CG A A A UUGAAGGAAUUUC CUUACGUGUCGGUCCCACAUAGGGAGUUGAUGGUUGAACUUAUAUCGACUGUGGAGAAU CGGCU UGGAACAGCUCUUCUGCCUUGUACUCUGCCUUCUAACGUGCAGUACU UUGAGAAU UCGACUGCUACUGCUCAUGCUUCUCUCUAUGUCAGAUCUGGCCACUCCUCUUCCCAGGUU GAU UUCAUACUGGGUAGUUGGGUUCACUGCGACUUGCCCACAGGUGGAGCCUUGAACAU UACAAGCCUCUCCGCCUAU UUGAGACCUUCAACUGAUGCACCAAACUUCUUAAUCGAAGUC AUCCGCAGCAGUCCAACAUCUCUCAUCCUCAUUCUUGAUCUACCUCCACGAAAGGACCUCG UCCAACAUCCUGAUUACCUUAAAACCUUUUACGAGGAAACACAAUUAGACGAACAGAGACA ACUUCUCGAGAAGCUACCUGAGGUGAAGCCU UACUUCUCUUCAUCUCUAUAUAUCCGAGC
UGU UGUCUCUCCGUCAGCUAUCU UGGU UUCCAUAGAAACCGAAGCU UCUCAGGCCGUUCG
CAUUGAUGAGAUUAUUCAGGACCACAUAAGUCCUGUUGCUAAGGUAAUGUUGGAGACAU
GGUUGGAUCUGUGUGCUUGUGCUGAGAGAAAAU UGACAGAGGAUGAAAGUACAGCU UUG
GCAAAGAGGGAUAAAAUAAUUAAGAAUAAGACAAUUGAGAUAGAUCUUGAAUCAAGCUUC
CCUAGGCUUUUUGGUCAAGAAGUAGCAAACAAGGUU UUAGUAGUACUAAGGGAAAUCUA
CAAUGCUUGAAUCUCUUACU UAUGCAGCUGUUGAUUAAUACAGAAAGGUGAUUAU UGUA
UGUAAUCUUGUUAAUUCUUCAAAUAUCAGAAAAGGCAAAUUGAAAGUAAUUAUAAAAGU
UGC
SEQ ID NO 42: Lycopersicon esculentum lethal leaf spot 1-like protein mRNA sequence.
CUUCU UUACUUGAACAUAUGUGUAUUAGUAACACAAAACAUUGAUUAACUCAAUAAUGG
UUUCUUCUCUGUUACUACCAACUCCUCAAAU UCUUUCAAU UUCAUCUUCCUUACAGUCUU
CACUACCU UUCAAACCUCAUAAUUUUCUUCAAAUUACAAGGAAAAAAAAUACGCUAAUUU
CAUCUCCUCU UAGAGUAGCUGCACCUCCAACAACAACAACAGCUACUGAAGAAGAAGAGAA
GCUAGAUUCAAAAUCUAGUGAUAUUGAAGAUACAGAAAAUGAUGAACAAGAUUCGUCGUC
GAAAUUCUCUUGGAGAGAUCAUUGGUACCCAGUU UCAUUAGUGGAAGAUCUCGACCCGA
GUU UACCCACACCGUUUCAGCUACUGAAUCGUGAUAUAGU UAUCUGGU UUGAUAAAUCU
GGAUCUCAGUGGGUUGCUUUGGAUGACAAAUGCCCUCAUCGUCUUGCUCCU UUAUCUGA
AGGGAGAUUAGAUGAAAAUGGUGAUUUGCAGUGUUCAUAUCAUGGAUGGUCAUUUAAU
GGAUGUGGUUCU UGUACAAGGAUACCUCAAGCUGCAUCUCAAGGACCUGAAGCUAAAGCU
UUUCAGUCUCCAAGAGCU UGUGCUACUAGAUUUCCUACUAUGGU UUCUCAAGGAUUACU
CUU UGUU UGGCCUGAUGAAAAUGGAUGGGAGAGAGCUCAGGCAACAAAGCCGCCCAUGUU
GCCUGAAGAUUUUGAUAAGCCUGAGUUUGCAACUGUGACAAU UCAGCGUGAU UUGUUUU
AUGGCUAUGACACUCUCAUGGAGAACGUCUCUGAUCCUUCUCACAUUGAU UU UGCACACC
ACAAGGUUACUGGAAGGCGAGACAGAGCAAAGCCCU UGCCAUUCAAGAUGGAGGCAUCUG
GACCUUGGGGUUUUGCUGGUGCGAACAAUGAUAAACCAAAAAUUACUGCAAAAUUUGUC
GCACCUUGUUACUCAAUGAAUAAAAUAGAGAUCGACACAAAGCUUCCAAUCGUGGGUGAU CAGAAGUGGGUGAUAUGGAUU UGUUCCUUUAAUGUACCUAUGGCACCAGGAAAGACCAG GUCAAUUGU UUGUAGUGCUCGAAACUUCUCCCAGUUUACAGUGCCUGGCCCUGCUUGGU GGCAGGUUUU UCCAAGAUGGCAAGAACACUGGACUUCAAAUAAGGUGUAUGACGGGGAU AUGAUUGUUCUUCAAGGUCAAGAAAAAGUCUUUCUUUCAAAGUCGAAAGAAAAUGGUAC UGAUGUCAACAAAGAGUAUACAAAACUCACAUUUACACCUACUCAAGCUGAUCGUUUCGU CUUGGCAUUCCGAAAUUGGCUUAGACGGCAUGGCAAUAGUCAACCUGAAUGGUUUGGUA GCACAGACAACCAACCACUGCCAUCUACUGUCU UAUCCAAACGCCAGAUGAUGGACAGAUU CGAACAACAUACACUCAAAUGUUCAUCU UGCAAAAAGGCUUACUACACAUUCGAGAAGUU ACAAAAGUUACUGAUUGGCUCAGUAGUGGUAUGCUGUGCAUCUGCAGGCAUCCCUGCAGA UGU UAACCUACGAAU UAUAUUGGGUUCAUUAGCAAUUAUAAGUGCUGGAU UAGCAUACA UUCUACACGAAUUACAGAAAAAUUUCAUCUUUGUUGAUUAUGUACAUGCUGAAAU UGAC UAAACAUAUCAUCUAAGAACU UUCUCUAUAAAUAGCAGAUAUUUGAUUUGU
SEQ ID NO 43: Nicotiana tobacum mRNA for catalase 1 (catl gene), cultivar NC89 sequence.
AGAAAGGCAACUAAUGGAUCCAUACAAGUACCGUCCGUCAAGUGCCUUCAAU UCUCCAU UC UGCACCACUAAU UCUGGUGCUCCUGUUUUUAACAACAAUUCAUCUCU UACUGUUGGUGCA AGAGGUCCUGUAUUGCUUGAGGAUUACCAUUUGGUGGAGAAACUUGCCAAUU UUGACAG GGAACGUGUCCCUGAACGUGUUGUUCAUGCCCGAGGUGCUAGUGCCAAAGGGUU UUUCG AAGUUACCCAUGACAUCACUCACCUUACCUGUGCUGAUU UCCU UCGAGCUCCCGGUGUCCA GACUCCUGUCAUUGUGAGAUUCUCCACUGUUAUACAUGAGAGGGGUAGUCCUGAAACUC UGAGGGACCCUCGUGGUUUUGCUGUCAAGUUCUACACCAGAGAGGGAAACUUUGAUCUG GUAGGGAACAACUUCCCCGUCUUCUUCAUCCGUGAUGGAAUGAAGUUCCCUGACAUGGUC CACGCGCUGAAGCCAAAUCCUAAAUCCCAUAUCCAGGAGAAUUGGAGGGUCCUUGAUUU U UUCUCUCAUGUUCCUGAAAGCCUGCACAUGUUCACUU UCCUCUUCGACGAUAUUGGUAUU CC AC A AG AUUACAGGCAUAUGGACGGUUCUGGUGUCCACACAUUCACAUUGAU C A AC A AG GCUGGGAAAUCAACCUAUGUGAAGUUCCACUGGAAGCCCACAUGUGGUGUCAAGUCCUUG UUGGAAGAAGAAGCAGCCCGUAUCGGAGGAGCAAAUCACAGCCACGCUACUCAAGACCUCU AUGACUCUAUUGCCGCUGGAAAU UAUCCUGAAUGGAAGCUCUUCAUUCAGACUAUGGAUC CAGAUCAUGAAGACAGAUUUGAUUUUGAUCCACUUGAUGU UACAAAAACUUGGCCAGAG GAUAUCUUGCCGUUGCAGCCGGUGGGAAGAUUAGUUCUGAACAAGAACAU UGAUAACUU CUU UAAUGAGAAUGAGCAACUCGCU UUCUGCCCUUCUAUUGUGGUUCCAGGUGUUUAUU ACUCAGAUGACAAGAUGCUUCAAACUCGUAUUUUCUCCUACUCUGAUACCCAGAGGUAUC GACUUGGACCAAACUAU UUGCAACU UCCUGCUAAUGCUCCAAAGUGUGCUCAUCACAACA AUCACUAUGAUGGCUCUAUGAAUU UUAUGCACAGGGACGAGGAGAUCGACUACUUCCCUU CAAGGUAUGAUCCUGU UCGCCAUGCUGAGAAGUAUCCAAU UCCUUCUACAAUGUGCACUG GCAAACG AG AG AAG UG U GUCAUUCAGAAAGAG A AC A A U U U U AAGCAACCAG G AG AU AGG U ACCGCUCAUUCACACCAGACAGGCAAGAACGCUUUAUUCGUCGGUGGGUGGAGGCCUUGU CUGAUCCUCGUAUCACUUAUGAGAUCCGCAGCAUUUGGAUCUCAUACUGGUCUCAGGCUG ACAAAUCUCUGGGUCAAAAGCUUGCUUCUAGGCUUAAUGUGAGACCAAGCAUAUGAAGAU GAAGCUUUUAAUGGUU UCGGAGGAGGUGAUGUCAAU
SEQ ID NO 44: Arabidopsis thaliana MC2 sequence:
AUGUUGU UGCUGGUGGACUGCUCCAGCUGUCGUACGCCGCU UCACCUUCCUCCCGGAGCC ACCCGAAUCCGCUGCGCCAU UUGUCACGCCUUCACUCUCAUCGCCCCCGAGCCCCGUCUCCA AUCUCACGCGUCGGCGAGCCCUU UUCCUUUCCCCAACUCAUCUCCGGCUCCAUCCACUUUC AUCUACCCGCCGCCAACACCUUCUCCGUACACUCACGCGCCGCAUGCACCGUCUCCAUUCAA CCACGCGCCUCCAGAUUCUUACCCGUUCACUCACGCGCCUCCAGCAUCGUCUCCAUUCAACC ACGCGCCGCCGGGUCCUCCACCGCCGGUACAUGGACAGAAGCGAGCGGUGAUAGUCGGGG U U U C U U AC A AG A AC AC A A AG G ACG A AC U C A A AG G A U G U A U C A A U G ACG C A A AC U G CA U G A AGU UCAUGUUGAUGAAGCGUUUCCAAUUCCCUGAAUCUUGCAUUCUUAUGCUCACCGAAG A AG A AG CG G ACCC A A UGAGAUGG CCA ACG AAG A AC A ACA U A AC A A UGGCGAUGCAUUGGC UUGU UCU UAGCUGCAAACCGGGAGAUUCCCUCGUCUUUCACUUCUCCGGUCACGGCAACA ACCAGAUGGACGACAACGGCGACGAGGUUGACGGCU UCGAUGAGACUCU UCUCCCGGUGG ACCACAGGACUUCAGGUGUCAUCGUGGACGAUGAGAUCAAUGCUACAAUCGUACGGCCGC UCCCUUAUGGAGUUAAGCUCCAUGCCAUCGUCGACGCUUGUCAUAGUGGUACCGUCAUGG ACUUACCUUAUCUU UGUAGAAUGGACAGGCUCGGAAACUAUGAAUGGGAAGACCAUCGGC CUAAAACAGGAAUGUGGAAAGGUACGAGUGGCGGUGAAGUCUUCUCCU UCACAGGCUGCG AUGAUGACCAGACCUCGGCUGACACUCCGCAAUUGUCAGGGAGCGCAUGGACGGGGGCAA UGACUUAUGCAUUCAU UCAGGCCAUAGAACGUGGCCACGGGAUGACUUAUGGGAGCUUG CU G A A U G C A A UGAGAUCAACGGUUCAUGAGAUCUUCG AC A A A A AC A A AG GUAGAGAGCUU GUGGAAGUGGGAGGUGCUGAUUUUCUCUCUACUCUUCUUGGU UUGCUCAUCUUAGGCGC UUCUCCUCCUGAUGAGGAAGAGGAAGUAAACCAAGCCCCUCAAAAAACUCAGGAACCACAG UUGAGCGCUAACGAGGCAUUUGCUGUAUAUGAGAAGCCCUUCUCU UUAUAA
SEQ I D NO 45: Nicotiana benthamiana NbTCTP mRNA for translationally controlled tumor protein sequence:
AUGUUGGUUUACCAGGAUCU UAUCUCCGGUGAUGAGCUCCUCUCAGAUUCAUUUCCCUAC AAAGAACUUGAGAAUGGAUGUCUU UGGGAGGU UCAAGGGAAGUGGGUUGUUCAAGGUG CUCUUGAUGUAGACAU UGGGGCGAAUCCUUCUGCUGAGGGUGCAGAUGAAGAUGAAGGU GUGGAUGAUCAAGCUGUCAAGGUUGUCGAUAU UGU UGACACUU UCAGACUUCAGGAGCA ACCAUCU UUUGACAAGAAACAAUU UGUUACAUACAUGAAGAGAUACAUCAAGAACCUGAC U CCC A AG CUAGAAGGAGAAG CCC A AG A AG C A U U U A A A A AG A AC A U U G A A U C AG C A AC U A AG UUCCUCAUGUCAAAGCUCAAGGACCUUCAGUUCUUUGUUGGCGAGAGCAUGCAUGACGAU GGUGCCCUGGUGUU UGCAUACUACAAGGAUGGUGCAACUGAUCCUACCUUU UUGUACCU UGCACAUGGACUCAAGGAGGUCAAGUGUUAA
SEQ ID NO 46: Arabidopsis thaliana Lsdl sequence.
AUGCAGGACCAGCUGGUGUGUCAUGGU UGUAGGAAUUUAUUGAUGUAUCCUAGAGGAGC AUCUAAUGUGCGU UGUGCGUUAUGUAACACUAUCAACAUGGUUCCUCCUCCUCCUCCACC UCACGACAUGGCACACAUUAUAUGUGGUGGUUGUAGAACAAUGCUUAUGUAUACGCGUG GGGCUAGUAGCGUAAGAUGCUCUUGCUGUCAAACUACGAACCUUGUGCCAGAAUCUUCUU UCACACU UUUGUUUGAUAACAUUCUGAAAGUACUUAAAACAAAGCU UUUAGAUGGUCCC GGUGGACUAGCGCACUCCAAUCAGGUUGCCCAUGCUCCUUCCAGUCAGGUUGCGCAGAUC AAUUGUGGGCAUUGUCGGACGACCCUCAUGUAUCCU UACGGUGCAUCAUCCGUCAAAUGC GCUGUUUGUCAAUUCGUAACUAACGUUAAUAUGAGCAAUGGAAGGGUACCUCUCCCAACU AACCGGCCAAAUGGAACAGCUUGUCCCCCCUCUACAUCAACUUCAACACCACCCUCUCAGAC CC A A ACCG UUGUUGUAGAAAACCCCAUGUCCGUUGAUGAAAGCGG A A AG UUGGUGAG C A A UGU UGUUGUUGGAGUG AC A AC U G AC A A A A AG U A A
SEQ ID NO 47: Arabidopsis thaliana Acdll sequence.
AUGGCGGAU UCGGAAGCAGAUAAGCCACUGAG A A A A A UCUCAGCCGCUUU C A A A A A AC U A GCAAUCAUCGUGAAUUCACCGAAUCCGGAAGUUCCUGUAACGCAAUUCUCUCACGCUUGC UCUCUGGUCUCGCCUCUCUU UGGUUGCCUUGGAAUAGCUUUUAAGU UUGCGGAAAUGGA CUAUGUUGCCAAGGUUGAUGAUCU UGUGAGGGCGUCGAGUUCGAUAUCGACAUUAGUGG UAAUGAUGGACAAAGAUAUUGAGGCAGAUUGUGUAAGGAAAGCUGGUAGUCAUACGAGA AACCU UUUGAGGGUUAAGCGUGGUCU UGACAUGGUCAAAGUUCUCUUUGAACAGAUCAU AGCUUCCGAAGGAGAUAACUCCUUGAAGGAUCCAGCAACUAAGUCUUAUGCUCAAGUGUU UGCUCCCCACCAUGGAUGGGCUAUACGGAAAGCUGUUUCUCU UGGGAUGUAUGCUCU UCC CACAAGGGCUCACCUACUUAAUAUGCUCAAAGAGGAUGAGGCGGCGGCUAAGAUACAUAU GCAAAGCUAUGUCAAUUCAUCGGCACCAUUAAUCACGUAUCUUGAUAAUCUAU UCCUCUC CAAGCAACUCGGUAUUGAUUGGUGA
SEQ I D NO 48: Nicotiana sylvestris PDS gene targeting construct
CCCCAAATTGGACTTGTTTCTGCCGTTAATTTGAGAGTCCAAGCTTTGGAGCTCGAGGTCTTCTT TGGGAACTGAAAGTCAAGATGGTCACTTGCAAAGGAAGACTCCATGGGGCATAAGTTAAGGAT TCGTACTCCCAGTGCCATGACCAGAAGATTGACAAAGGACTTTAATTAGACAATACAGTTAACT ATTTG G AGG CGG CGTTATTATCATCATCATTTCGTACTTCCTCACG CCCAAG G GC AATCTTATGT
TGAAG CTCA AG ACG GTTTA AGTGTTAAG G ACTG G ATG AG A AAG CAAG CTG AG AG ACTTTG CAT GCCGATTGTTGAACATATTGAGTCAAAAGGTGGCCAAGTCAGACTAAACTCACGAATAAAAAA GATTTTGACAGAAAACTGAAGAACACATCTGATAATCTGCTCCTAGCAAAGCTTTTCCCTGACGA AATTTCGGCAGATCAGAGCAAAGCAAAAATATTGAAGTATCACGTTGTCTGTTGCTTCTGTACA CTA A ATTTA AG ATG A AG G
SEQ I D NO 49: T7 driven RNA2 with NSYL PDS targeting construct in MCS TAATACG ACTCACTATAG G ATAAAACATTG CACCTATG GTGTTGCCCTG G CTG G GGTATGTCAG TGATCGCAGTAGAATGTACTAATTGACAAGTTGGAGAATACGGTAGAACGTCCTTATCCAACAC AG CCTTTATCCCTCTCCCTG ACG AG GTTTTTGTC AGTGTA ATATTTCTTTTTG A ACTATCC AG CTT AGTACCGTACGGGAAAGTGACTGGTGTGCTTATCTTTGAAATGTTACTTTGGGTTTCGGTTCTTT AG GTTAGTA AG A A AG C ACTTGTCTTCTC ATAC A A AG G A A A AC TG AG ACGTATCG CTTACG AAA GTAGCAATGAAAGAAAGGTGGTGGTTTTAATCGCTACCGCAAAAACGATGGGGTCGTTTTAATT A ACTTCTCCTACG C A AG CGTCTA A ACG G ACGTTG G G GTTTTG CTAGTTT nTAG AG A A A ACTAG CTAAGTCTTTAATGTTATCATTAGAGATGGCATAAATATAATACTTGTGTCTGCTGATAAGATCA ΤΠΤΑ ATTTG G ACG ATTAG ACTTGTTG A ACTAC AG GTTACTG A ATC ACTTG CG CTA ATC A AC ATG GGAGATATGTACGATGAATCATTTGACAAGTCGGGCGGTCCTGCTGACTTGATGGACGATTCTT GGGTGGAATCAGTTTCGTGGAAAGATCTGTTGAAGAAGTTACACAGCATAAAATTTGCACTACA GTCTGGTAGAGATGAGATCACTGGGTTACTAGCGGCACTGAATAGACAGTGTCCTTATTCACCA TATG AG C AGTTTCCAG ATA AG A AG GTGTATTTCCTTTTAG ACTC ACG G G CTA AC AGTG CTCTTG G TGTGATTCAGAACGCTTCAGCGTTCAAGAGACGAGCTGATGAGAAGAATGCAGTGGCGGGTGT TACAAATATTCCTGCGAATCCAAACACAACGGTTACGACGAACCAAGGGAGTACTACTACTACC A AG G CG A AC ACTG G CTCG ACTTTG G A AG A AG ACTTGTACACTTATTAC A A ATTCG ATG ATG CCT CTACAGCTTTCCACAAATCTCTAACTTCGTTAGAGAACATGGAGTTGAAGAGTTATTACCGAAG G AACTTTG AG AAAGTATTCG GG ATTAAGTTTG GTGG AG CAG CTG CTAGTTCATCTG CACCG CCT CCAG CG AGTG GAG GTCCG ATACGTCCTAATCCCTAG G G ATTTA AG G ACGTG AACTCTGTTG AG ATCTCTGTG A A ATTC AG AG G GTG G GTG ATACC ATATTC ACTG ATG CC ATTAG CG AC ATCTA A AT AGG G CTAATTGTG ACTAATTTG AG G G AATTTCCTTTACCATTG ACGTCAGTGTCGTTG GTAG CAT TTG AGTTTCG C A ATG C ACG A ATTACTTAG G A AGTG G CTTG ACG AC ACTA ATGTGTTATTGTTAG ATAATGGTTTGGTGGTCAAGGTACGTAGTAGAGTCCCACATATTCGCACGTATGAAGTAATTGG AAAGTTGTCAGTTTTTGATAATTCACTGGGAGATGATACGCTGTTTGAGGGAAAAGTAGAGAAC GTATTTGTTTTTATGTTCAG G CG GTTCTTGTGTGTCAACAAAG ATG G ACATTGTTACTCA AG G AA GCACGATGAGCTTTATTATTACGGACGAGTGGACTTAGATTCTGTGAGTAAGGTTACCGAATTC TCCCCA AATTG G ACTTGTTTCTG CCGTTAATTTG AG AGTCCAAG CTTTG G AG CTCG AG GTCTTCT TTG G G A ACTG A A AGTCA AG ATG GTC ACTTG C A A AG G A AG ACTCC ATG G G G CATA AGTTA AG G A TTCGTACTCCCAGTGCCATGACCAGAAGATTGACAAAGGACTTTAATTAGACAATACAGTTAACT ATTTG G AGG CGG CGTTATTATCATCATCATTTCGTACTTCCTCACG CCCAAG G GC AATCTTATGT
TGAAG CTCA AG ACG GTTTA AGTGTTAAG G ACTG G ATG AG A AAG CAAG CTG AG AG ACTTTG CAT
GCCGATTGTTGAACATATTGAGTCAAAAGGTGGCCAAGTCAGACTAAACTCACGAATAAAAAA
GATTTTGACAGAAAACTGAAGAACACATCTGATAATCTGCTCCTAGCAAAGCTTTTCCCTGACGA
AATTTCGGCAGATCAGAGCAAAGCAAAAATATTGAAGTATCACGTTGTCTGTTGCTTCTGTACA
CTA A ATTTA AG ATG A AG G CTAG A AG G CCTCCATG G G G ATCCG GTACCG AG CTC ACG CGTCTCG
AGGCCCGGGCATGTCCCGAAGACATTAAACTACGGTTCTTTAAGTAGATCCGTGTCTGAAGTTT
TAGGTTCAAmAAACCTACGAGATTGACATTCTCGACTGATCTTGATTGATCGGTAAGTCTTTT
GTAATTTAATTTTCTTTTTGATTTTATTTTAAATTGTTATCTGTT^
TCGGCGTTTGGCCGACTCATTGTCTTACCATAGGGGAACGGACTTTGTTTGTGTTGTTATTTTAT
TTGTATTTTATTAAAATTCTCAACG ATCTG A AAAAG CCTCG CGG CTAAG AG ATTGTTG G GG GGT
GAGTAAGTACTTTTAAAGTGATGATGGTTACAAAGGCAAAAGGGGTAAAACCCCTCGCCTACGT
AAGCGTTATTACGCCCGTCTGTACTTATATCAGTACACTGACGAGTCCCTAAAGGACGAAACGG
GAGAACGCTAGCCACCACCACCACCACCACGTGTGAATTACAGGTGACCAGCTCGAATTTCCCC
GATCGTTCAAACATTTGGCAATAAAGTTTCTTAAGATTGAATCCTGTTGCCGGTCTTGCGATGAT
TATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGACGTTATT
TATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAAAACAAA
ATATAG CG CG C A A ACTAG G ATA A ATTATCG CG CG CG GTGTC ATCTATGTTACTAG ATCG G G
SEQ I D NO 50: T7 driven truncated PPK20 RNAl consisting of 5' sequence, replicase CDS, PUC57 MCS, 3' sequence, ribozyme and NOS terminator.
TAATACG ACTCACTATAG G ATGG CG AACG GTA ACTTCAAGTTGTCTCA ATTG CTCAATGTG G AC
GAGATGTCTGCTGAGCAGAGGAGTCATTTCTTTGACTTGATGCTGACTAAACCTGATTGTGAGA
TCGGGCAAATGATGCAAAGAGTTGTTGTTGATAAAGTCGATGACATGATTAGAGAAAGAAAGA
CTAAAGATCCAGTGATTGTTCATGAAGTTCTTTCTCAGAAGGAACAGAACAAGTTGATGGAAAT
TTATCCTGAATTCAATATCGTGTTTAAAGACGACAAAAACATGGTTCATGGGTTTGCGGCTGCTG
AG CG A A A ACTAC A AG CTTTATTG CTTTTAG ATAG AGTTCCTG CTCTG CAAG AG GTG G ATG AC AT
CG GTG GTCAATG GTCGTTTTG G GTA ACTAG AG GTG AG AAA AGG ATTCATTCCTGTTGTCCAAAT CTAGATATTCGGGATGATCAGAGAGAAATTTCTCGACAGATATTTCTTACTGCTATTGGTGATCA
AGCTAGAAGTGGTAAGAGACAGATGTCGGAGAATGAGCTGTGGATGTATGACCAATTTCGTGA
AAATATTGCTGCGCCTAACGCGGTTAGGTGCAATAATACATATCAGGGTTGTACATGTAGGGGT
TTTTCTG ATG GTA AG A AG A A AG G CG CG C AGTATG CG ATAG CTCTTC AC AG CCTGTATG ACTTC A
AGTTG A A AG ACTTG ATG G CTACTATG GTTG AG A AG AA A ACTA A AGTG GTTC ATG CTG CTATG CT
TTTTGCTCCTGAAAGTATGTTAGTGGACGAAGGTCCATTACCTTCTGTTGACGGTTACTACATGA
AGAAGAACGGGAAG ATCTATTTCG GTTTTG AG A A AG ATCCTTCCTTTTCTTAC ATTC ATG ACTG G
GAAGAGTACAAGAAGTATCTACTGGGGAAGCCAGTGAGTTACCAAGGGAATGTGTTCTACTTC
G AACCGTG G CAGGTG AG AG G AG ACACAATG C I I I I I I CGATCTACAGGATAGCTGGAGTTCCG
AGGAGGTCTCTATCATCGCAAGAGTACTACCGAAGAATATATATCAGTAGATGGGAAAACATG
GTTGTTGTCCC A ATTTTCG ATCTG GTCG A ATC A ACG CG AG AGTTG GTC A AG A A AG ACCTGTTTG
TAG AG A A AC A ATTC ATG G AC A AGTGTTTG G ATTAC ATAG CTAG GTTATCTG ACC AG C AG CTG AC
CATA AG C A ATGTTA A ATC ATACTTG AGTTC A A ATA ATTG G GTCTTATTC ATA A ACG G G G CG G CC
GTGAAGAACAAGCAAAGTGTAGATTCTCGAGATTTACAGTTGTTGGCTCAAACTTTGCTAGTGA
AGGAACAAGTGGCGAGACCTGTCATGAGGGAGTTGCGTGAAGCAATTCTGACTGAGACGAAA
CCTATCACGTCATTGACTGATGTGCTGGGTTTAATATCAAGAAAACTGTGGAAGCAGTTTGCTA
AC A AG ATCG C AGTCG G CG G ATTCGTTG G C ATG GTTG GTACTCTA ATTG G ATTCTATCCA A AG A A
GGTACTAACCTGGGCGAAGGACACACCAAATGGTCCAGAACTATGTTACGAGAACTCGCACAA
AACCAAGGTGATAGTATTTCTGAGTGTTGTGTATGCCATTGGAGGAATCACGCTTATGCGTCGA
GACATCCGAGATGGACTGGTGAAAAAACTATGTGATATGTTTGATATCAAACGGGGGGCCCAT
GTCTTAGACGTTGAGAATCCGTGCCGCTATTATGAAATCAACGATTTCTTTAGCAGTCTGTATTC
GGCATCTGAGTCCGGTGAGACCGTTTTACCAGATTTATCCGAGGTAAAAGCCAAGTCTGATAAG
CTATTGCAGCAGAAGAAAGAAATCGCTGACGAGTTTCTAAGTGCAAAATTCTCTAACTATTCTG
GCAGTTCG GTG AG A ACTTCTCC ACCATCG GTG GTCG GTTCATCTCG A AGCG G ACTG G GTCTGTT
GTTGGAAGACAGTAACGTGCTGACCCAAGCTAGAGTTGGAGTTTCAAGAAAGGTAGACGATGA
GGAGATCATGGAGCAGTTTCTGAGTGGTCTTATTGACACTGAAGCAGAAATTGACGAGGTTGTT
CCAGCCTTTTCAGCTGAATGTGAAAGAGGGGAAACAAGCGGTACAAAGGTGTTGTGTAAACCT
TTA ACG CC ACC AG G ATTTG AG A ACGTGTTG CC AG CTGTC A A ACCTTTG GTC AG CA A AG G A A A A A
CGGTCAAACGTGTCGATTACTTCCAAGTGATGGGAGGTGAGAGATTACCAAAAAGGCCGGTTG TCAGTGGAGACGATTCTGTGGACGCTAGAAGAGAGTTTCTGTACTACTTAGATGCGGAGAGAG
TCGCTCAAAATGATGAAATTATGTCTCTGTATCGTGACTATTCGAGAGGAGTTATTCGAACTGG
AGGTCAGAATTACCCGCACGGACTGGGAGTGTGGGATGTGGAGATGAAGAACTGGTGCATAC
GTCCAGTGGTCACTGAACATGCTTATGTGTTCCAACCAGACAAACGTATGGATGATTGGTCGGG
ATACTTAGAAGTGGCTGTTTGGGAACGAGGTATGTTGGTCAACGACTTCGCGGTCGAAAGGAT
GAGTGATTATGTCATAGTTTGCGATCAGACGTATCTTTGCAATAACAGGTTGATCTTGGACAATT
TAAGTGCCCTGGATCTAGGACCAGTTAACTGTTCTTTTGAATTAGTTGACGGTGTACCTGGTTGT
GGTAAGTCGACAATGATTGTCAACTCAGCTAATCCTTGTGTCGATGTGGTTCTCTCTACTGGGAG
AGCAGCAACCGACGACTTGATCGAGAGATTCGCGAGCAAAGGTTTTCCATGCAAATTGAAAAG
GAGAGTGAAGACGGTTGATTC I I I I I I GATGCATTGTGTTGATGGTTCTTTAACCGGAGACGTG
TTGCATTTCGATGAAGCTCTCATGGCCCATGCTGGTATGGTGTACTTTTGCGCTCAGATAGCTGG
TGCTAAACGATGTATCTGTCAAGGAGATCAGAATCAAATTTCTTTCAAGCCTAGGGTATCTCAA
GTTGATTTGAGGTTTTCTAGTCTGGTCGGAAAGTTTGACATTGTTACAGAAAAAAGAGAAACTT
ACAG A AGTCCAG CAGATGTG G CTG CCGTATTG A ACAAGTACTATACTG G AG ATGTCAG AACAC
ATAACGCGACTGCTAATTCGATGACGGTGAGGAAGATTGTGTCTAAAGAACAGGTTTCTTTGAA
GCCTGGTGCTCAGTACATAACTTTCCTTCAGTCTGAGAAGAAGGAGTTGGTAAATTTGTTGGCA
TTGAGGAAAGTGGCAGCTAAAGTGAGTACAGTACACGAGTCGCAAGGAGAGACATTCAAAGA
TGTAGTCCTAGTC AG G ACG A A ACCTACG G ATG ACTC A ATCG CTAG AG GTCG G G AGTACTTA ATC
GTGGCGTTGTCGCGTCACACACAATCACTTGTGTATGAAACTGTGAAAGAGGACGATGTAAGC
A A AG AG ATCAG G G A A AGTG CCG CG CTTACG A AG G CG G CTTTG G C A AG A I I I I I I GTTACTGAG
ACCGTCTTATGACGGTTTCGGTCTAGGTTTGATGTCTTTAGACATCATGAAGGGCCTTGCGCCGT
TCCAGATTCAGGTACGATTACGGACTTGGAGATGTGGTACGACGCTTTGTTTCCGGGAAATTCG
TTA AG AG ACTC A AG CCTAG ACG G GTATTTG GTG G C A ACG ACTG ATTG C A ATTTG CG ATTAG AC A
ATGTTACG ATC A A A AGTG G A A ACTG G A A AG AC A AGTTTG CTG A A A A AG A A ACGTTTCTG A A AC
CGGTTATTCGTACTGCTATGCCTGACAAAAGGAAGACTACTCAGTTGGAGAGTTTGTTAGCATT
G C AG A A A AG G A ACC A AG CG G C ACCCG ATCTAC A AG A A A ATGTG CACG C A AC AGTTCTA ATCG A
AGAGACGATGAAGAAGTTGAAATCTGTTGTCTACGATGTGGGAAAAATTCGGGCTGATCCTATT
GTC A ATAG AG CTC A A ATG G AG AG ATG GTG GAG A A ATC A A AG C AC AG CG GTAC AG G CTA AG GT
AGTAGCAG ATGTG AGAGAGTTACATGAAATAGACTATTCGTCTTACATGTAT ATG ATCAAATCT GACGTGAAACCTAAGACTGATTTAACACCGCAATTTGAATACTCAGCTCTACAGACTGTTGTGTA TC ACG AG A AGTTG ATC A ACTCGTTGTTCG GTCC A ATTTTC A A AG A A ATTA ATG A ACG C A AGTTG GATGCTATGCAACCACATTTTGTGTTCAACACGAGAATGACATCGAGTGATTTAAACGATCGAG TGAAGTTCTTAAATACGGAAGCGGCTTACGACTTTGTTGAGATAGACATGTCTAAATTCGACAA GTCG G C A A ATCG TTCCATTTAC A ACTG C AG CTG G AG ATTTAC AG GTTATTTG G G TAG ATG AG TG G G CG G CCTTCCTTTG G G AG GTGTCG C AC ACTC A A ACTACTGTG AG AG ATATTC A A A ATG GTA TG ATG G CG CATATTTG GTACC A AC A A A AG AGTG G AG ATG CTG ATACTTATA ATG C A A ATTC AG A TAG AACACTGTGTG CACTCTTGTCTG A ATTACC ATTG GAG A A AG CAGTCATG GTTACATATG G A GGAGATGACTCACTGATTGCGTTTCCTAGAGGAACGCAGTTTGTTGATCCGTGTCCAAAGTTGG CTACTAAGTGGAATTTCGAGTGCAAGATTTTTAAGTACGATGTCCCAATGTTTTGTGGGAAGTTC TTGCTTAAGACGTCATCGTGTTACGAGTTCGTGCCAGATCCGGTAAAAGTTCTGACGAAGTTGG GGAAAAAGAGTATAAAGGATGTGCAACATTTAGCCGAGATCTACATCTCGCTGAATGATTCCAA TAGAGCTCTTGGGAACTACATGGTGGTATCCAAACTGTCCGAGTCTGTTTCAGACCGGTATTTGT ACAAAG GTG ATTCTGTTCATG CG CTTTGTG CGCTATG G AAG CATATTAAG AGTTTTACAGCTCTG TGTACATTATTCCGAGACGAAAACGATAAGGAATTGAACCCGGCTAAGGTTGATTGGAAGAAG GCACAGAGAGCTGTGTCAAACTTTTACGACTGGTAATATGGAAGACAAGTCATTGGTCACCTTG A AG A AG A AG ACTTTCG A AGTCTC A A A ATTCTC A A ATCTAG G G G CC ATTG A ATTGTTTGTG G ACG GTAGGAGGAAGAGACCGAAGTATTTTCACAGAAGAAGAGAAACTGTCCTAAATCATGTTGGTG G G A AG A AG AGTG A AC AC A AGTTAG ACGTTTTTG ACC A A AG G G ATTAC A A A ATG ATTA A ATCTTA CG CGTTTCTAA AG ATAGTAG GTGTACAACTAGTTGTAACATCACATCTACCTG CAG ATACG CCTG GGTTCATTCAAATCGATCTGTTGGATTCGAGACTTACTGAGAAAAGAAAGAGAGGAAAGACTA TTC AG AG ATTC A A AG CTCG AG CTTG CG ATA ACTGTTC AGTTG CG C AGTAC A AG GTTG A ATAC AG TATTTCCACACAGGAGAACGTACTTGATGTCTGGAAGGTGGGTTGTATTTCTGAGGGCGTTCCG GTCTGTGACGGTACATACCCTTTCAGTATCGAAGTGTCGCTAATATGGGTTGCTACTGATTCGAC TAG G CG CCTCA ATGTG G A AG A ACTG A AC AGTTCG G ATTAC ATTG A AG G CG ATTTTACCG ATC A A GAGGTTTTCGGTGAGTTCATGTCTTTGAAACAAGTGGAGATG AAG ACG ATTG AGGCGAAGTAC GATGGTCCTTACAGACCAGCTACTACTAGACCTAAGTCATTATTGTCAAGTGAAGATGTTAAGA GAGCGTCTAATAAGAAAAACTCGTCTTAATGCATAAAGAAATTTATTGTCAATGAATTCGAGCTC G GTACCTCG CG A ATG CATCTAG AT ATCG G ATCCCG GGCCCGTCG ACTG CAG AG G CCTG CATG C A AG C I I I I I I ATTTTATATTGTTATCTGTTTCTGTGTATAGACTGTTTGAGATTGGCGCTTGGCCG
ACTCATTGTCTTACCATAGGGGAACGGA I TGTTTGTGTTGTTATTTTATTTGTATTTTATTA
ATTCTCAATG ATCTG AAAAG G CCTCG AG G CTAAG AG ATTATTG G GG GGTG AGTA AGTACTTTTA
AAGTG ATG ATG GTTAC A A AG G C A A A AG G G GTA A A ACCCCTCG CCTACGTA AG CGTTATTACG C
CCGTCTGTACTTATATCAGTACACTGACGAGTCCCTAAAGGACGAAACGGGCCCCTCGAATTTC
CCCG ATG G GCGTTCAAACATTTGG CAATAAAGTTTCTTAAG ATTG AATCCTGTTG CCGGTCTTG C
GATGATTATCATATAATTTCTGTTGAATTACGTTAAGCATGTAATAATTAACATGTAATGCATGA
CGTTATTTATGAGATGGGTTTTTATGATTAGAGTCCCGCAATTATACATTTAATACGCGATAGAA
AACAAAATATAGCGCGCAAACTAGGATAAATTATCGCGCGCGGTGTCATCTATGTTACTAGATC
GGG
SEQ I D NO 51: TRV PPK20 RNA1 replicase CDS
ATGGCGAACGGTAACTTCAAGTTGTCTCAATTGCTCAATGTGGACGAGATGTCTGCTGAGCAGA
GGAGTCATTTCTTTGACTTGATGCTGACTAAACCTGATTGTGAGATCGGGCAAATGATGCAAAG
AGTTGTTGTTGATAAAGTCGATGACATGATTAGAGAAAGAAAGACTAAAGATCCAGTGATTGTT
CATGAAGTTCTTTCTCAGAAGGAACAGAACAAGTTGATGGAAATTTATCCTGAATTCAATATCGT
GTTTAAAGACGACAAAAACATGGTTCATGGGTTTGCGGCTGCTGAGCGAAAACTACAAGCTTTA
TTGCTTTTAGATAGAGTTCCTGCTCTGCAAGAGGTGGATGACATCGGTGGTCAATGGTCGTTTT
GGGTAACTAGAGGTGAGAAAAGGATTCATTCCTGTTGTCCAAATCTAGATATTCGGGATGATCA
GAGAGAAATTTCTCGACAGATATTTCTTACTGCTATTGGTGATCAAGCTAGAAGTGGTAAGAGA
CAGATGTCGGAGAATGAGCTGTGGATGTATGACCAATTTCGTGAAAATATTGCTGCGCCTAACG
CGGTTAGGTGCAATAATACATATCAGGGTTGTACATGTAGGGGTTTTTCTGATGGTAAGAAGAA
AGGCGCGCAGTATGCGATAGCTCTTCACAGCCTGTATGACTTCAAGTTGAAAGACTTGATGGCT
ACTATG GTTG AG A AG AAA ACTA AAGTG GTTC ATG CTG CTATG CTTTTTG CTCCTG A A AGT ATGTT
AGTG G ACG A AG GTCC ATTACCTTCTGTTG ACG GTTACTAC ATG A AG A AG A ACG G G A AG ATCTAT
TTCGGTTTTGAGAAAGATCCTTCCTTTTCTTACATTCATGACTGGGAAGAGTACAAGAAGTATCT
ACTGGGGAAGCCAGTGAGTTACCAAGGGAATGTGTTCTACTTCGAACCGTGGCAGGTGAGAGG
AGACACAATGC I I I I I I CGATCTACAGGATAGCTGGAGTTCCGAGGAGGTCTCTATCATCGCAA
GAGTACTACCGAAGAATATATATCAGTAGATGGGAAAACATGGTTGTTGTCCCAATTTTCGATC TGGTCGAATCAACGCGAGAGTTGGTCAAGAAAGACCTGTTTGTAGAGAAACAATTCATGGACA
AGTGTTTGGATTACATAGCTAGGTTATCTGACCAGCAGCTGACCATAAGCAATGTTAAATCATA TTG AGTTC A A ATA ATTG G GTCTTATTC ATA A ACG G G G CG G CCGTG A AG A AC A AG CA A AGTGT
AGATTCTCGAGATTTACAGTTGTTGGCTCAAACTTTGCTAGTGAAGGAACAAGTGGCGAGACCT
GTCATGAGGGAGTTGCGTGAAGCAATTCTGACTGAGACGAAACCTATCACGTCATTGACTGATG
TGCTGGGTTTAATATCAAGAAAACTGTGGAAGCAGTTTGCTAACAAGATCGCAGTCGGCGGATT
CGTTGG CATG GTTG GTACTCTAATTG G ATTCTATCCAAAG AAG GTACTAACCTG GG CG AAG G AC
ACACCAAATGGTCCAGAACTATGTTACGAGAACTCGCACAAAACCAAGGTGATAGTATTTCTGA
GTGTTGTGTATG CC ATTG G AG G A ATC ACG CTTATG CGTCG AG AC ATCCG AG ATG G ACTG GTG A
AAAAACTATGTGATATGTTTGATATCAAACGGGGGGCCCATGTCTTAGACGTTGAGAATCCGTG
CCG CT ATT ATG A A ATC A ACG ATTTCTTTAG C AGTCTGTATTCG G C ATCTG AGTCCGGTGAGACCG
TTTTACCAGATTTATCCGAGGTAAAAGCCAAGTCTGATAAGCTATTGCAGCAGAAGAAAGAAAT
CGCTGACGAGTTTCTAAGTGCAAAATTCTCTAACTATTCTGGCAGTTCGGTGAGAACTTCTCCAC
CATCGGTGGTCGGTTCATCTCGAAGCGGACTGGGTCTGTTGTTGGAAGACAGTAACGTGCTGA
CCCAAGCTAGAGTTGGAGTTTCAAGAAAGGTAGACGATGAGGAGATCATGGAGCAGTTTCTGA
GTGGTCTTATTGACACTGAAGCAGAAATTGACGAGGTTGTTCCAGCCTTTTCAGCTGAATGTGA
AAG AGG G G A AACAAG CG GTACAAAG GTGTTGTGTAAACCTTTA ACGCCACCAG G ATTTG AG AA
CGTGTTG CCAG CTGTCAAACCTTTG GTCAG CAAAG G AAAA ACGGTCA AACGTGTCG ATTACTTC
CAAGTGATGGGAGGTGAGAGATTACCAAAAAGGCCGGTTGTCAGTGGAGACGATTCTGTGGA
CGCTAGAAGAGAGTTTCTGTACTACTTAGATGCGGAGAGAGTCGCTCAAAATGATGAAATTATG
TCTCTGTATCGTGACTATTCGAGAGGAGTTATTCGAACTGGAGGTCAGAATTACCCGCACGGAC
TGGGAGTGTGGGATGTGGAGATGAAGAACTGGTGCATACGTCCAGTGGTCACTGAACATGCTT
ATGTGTTCCAACCAG ACA AACGTATG G ATG ATTG GTCG G G ATACTTAG AAGTGGCTGTTTG G G
AACGAGGTATGTTGGTCAACGACTTCGCGGTCGAAAGGATGAGTGATTATGTCATAGTTTGCG
ATCAGACGTATCTTTGCAATAACAGGTTGATCTTGGACAATTTAAGTGCCCTGGATCTAGGACC
AGTTAACTGTTCTTTTGAATTAGTTGACGGTGTACCTGGTTGTGGTAAGTCGACAATGATTGTCA
ACTCAGCTAATCCTTGTGTCGATGTGGTTCTCTCTACTGGGAGAGCAGCAACCGACGACTTGAT
CGAGAGATTCGCGAGCAAAGGTTTTCCATGCAAATTGAAAAGGAGAGTGAAGACGGTTGATTC
I I I I I I GATGCATTGTGTTGATGGTTCTTTAACCGGAGACGTGTTGCATTTCGATGAAGCTCTCA TG G CCCATG CTG GTATG GTGTACTTTTG CG CTCAG ATAGCTG GTG CTAAACG ATGTATCTGTCA
AG G AG ATC AG A ATCA A ATTTCTTTC A AG CCTAG G GTATCTCA AGTTG ATTTG AG GTTTTCTAGTC
TG GTCG G A AAGTTTG ACATTGTTACAG AA AAAAG AG AAACTTACAG AAGTCCAG CAGATGTG G
CTG CCGTATTG A AC A AGTACTATACTG GAG ATGTC AG A AC AC ATA ACG CG ACTG CTA ATTCG AT
GACGGTGAGGAAGATTGTGTCTAAAGAACAGGTTTCTTTGAAGCCTGGTGCTCAGTACATAACT
TTCCTTCAGTCTGAGAAGAAGGAGTTGGTAAATTTGTTGGCATTGAGGAAAGTGGCAGCTAAA
GTGAGTACAGTACACGAGTCGCAAGGAGAGACATTCAAAGATGTAGTCCTAGTCAGGACGAAA
CCTACGGATGACTCAATCGCTAGAGGTCGGGAGTACTTAATCGTGGCGTTGTCGCGTCACACAC
AATCACTTGTGTATGAAACTGTGAAAGAGGACGATGTAAGCAAAGAGATCAGGGAAAGTGCCG
CG CTTACG A AG G CG G CTTTG G C A AG ATTTTTTGTTACTG AG ACCGTCTTATG ACG GTTTCG GTCT
AGGTTTGATGTCTTTAGACATCATGAAGGGCCTTGCGCCGTTCCAGATTCAGGTACGATTACGG
ACTTGGAGATGTGGTACGACGCTTTGTTTCCGGGAAATTCGTTAAGAGACTCAAGCCTAGACGG
GTATTTG GTG G C A ACG ACTG ATTG C A ATTTG CG ATTAG AC A ATGTTACG ATC A AA AGTG G A A AC
TGGAAAGACAAGTTTGCTGAAAAAGAAACGTTTCTGAAACCGGTTATTCGTACTGCTATGCCTG
AC A A A AG G A AG ACTACTC AGTTG GAG AGTTTGTTAG C ATTG C AG AAAAG G A ACC A AG CG G C AC
CCGATCTACAAGAAAATGTGCACGCAACAGTTCTAATCGAAGAGACGATGAAGAAGTTGAAAT
CTGTTGTCTACGATGTGGGAAAAATTCGGGCTGATCCTATTGTCAATAGAGCTCAAATGGAGAG
ATGGTGGAGAAATCAAAGCACAGCGGTACAGGCTAAGGTAGTAGCAGATGTGAGAGAGTTAC
ATGAAATAGACTATTCGTCTTACATGTATATGATCAAATCTGACGTGAAACCTAAGACTGATTTA
ACACCGCAATTTGAATACTCAGCTCTACAGACTGTTGTGTATCACGAGAAGTTGATCAACTCGTT
GTTCG GTCC A ATTTTC A AAG A A ATTA ATG A ACG CA AGTTG G ATG CTATG C A ACC AC ATTTTGTGT
TC A ACACG AG A ATG ACATCG AGTG ATTTA A ACG ATCG AGTG A AGTTCTTA A ATACG G A AG CG G
CTTACG ACTTTGTTG AG ATAGACATGTCTAAATTCGACAAGTCGGCAAATCGCTTCCATTTACAA
CTGCAGCTGGAGATTTACAGGTTATTTGGGCTAGATGAGTGGGCGGCCTTCCTTTGGGAGGTG
TCGCACACTCAAACTACTGTGAGAGATATTCAAAATGGTATGATGGCGCATATTTGGTACCAAC
AAAAGAGTGGAGATGCTGATACTTATAATGCAAATTCAGATAGAACACTGTGTGCACTCTTGTC
TGAATTACCATTGGAGAAAGCAGTCATGGTTACATATGGAGGAGATGACTCACTGATTGCGTTT
CCTAG AGGAACGCAGTTTGTTGATCCGTGTCCAAAGTTGGCTACTAAGTGGAATTTCGAGTGCA
AGATTTTTAAGTACGATGTCCCAATGTTTTGTGGGAAGTTCTTGCTTAAGACGTCATCGTGTTAC GAGTTCGTGCCAGATCCGGTAAAAGTTCTGACGAAGTTGGGGAAAAAGAGTATAAAGGATGTG CA ACATTTAG CCG AG ATCTAC AT TCG TG A ATG ATTCCA ATAG AG CTCTTG G G A A TAC ATG GT GGTATCCAAACTGTCCGAGTCTGTTTCAGACCGGTATTTGTACAAAGGTGATTCTGTTCATGCGC TTTGTGCGCTATGGAAGCATATTAAGAGTTTTACAGCTCTGTGTACATTATTCCGAGACGAAAAC GATAAGGAATTGAACCCGGCTAAGGTTGATTGGAAGAAGGCACAGAGAGCTGTGTCAAACTTT TACGACTGGTAA
SEQ I D NO 52: TRV PPK20 RNA2 5' replication element containing sequence
ATA A A AC ATTG C ACCTATG GTGTTG CCCTG G CTG G G GTATGTC AGTG ATCG C AGTAG A ATGTAC
TAATTGACAAGTTGGAGAATACGGTAGAACGTCCTTATCCAACACAGCCTTTATCCCTCTCCCTG
ACGAGGTTTTTGTCAGTGTAATATTTCTTTTTGAACTATCCAGCTTAGTACCGTACGGGAAAGTG
ACTGGTGTGCTTATCTTTGAAATGTTACTTTGGGTTTCGGTTCTTTAGGTTAGTAAGAAAGCACT
TGTCTTCTCATACAAAGGAAAACCTGAGACGTATCGCTTACGAAAGTAGCAATGAAAGAAA
SEQ I D NO 53: TRV Ppk20 RNA2 3' replication element containing sequence
ATGTCCCGAAGACATTAAACTACGGTTCTTTAAGTAGATCCGTGTCTGAAGTTTTAGGTTCAATT
TAAACCTACGAGATTGACATTCTCGACTGATCTTGATTGATCGGTAAGTCTmGTAATTTAATTT
TCTTTTTGATTTTATTTTAAATTGTTATCTGTTTCTGTGTATAGACTGTTTGAGATCGGCG
CGACTCATTGTCTTACCATAGGGGAACGGACTTTGmGTGTTGTTATmAmGTATTTTATTA
AAATTCTCAACGATCTGAAAAAGCCTCGCGGCTAAGAGATTGTTGGGGGGTGAGTAAGTACTTT
TA A AGTG ATG ATG GTTACA A AG G CA A A AG G G GTA A A ACCCCTCG CCTACGTA AG CGTTATTAC
GCCC
SEQ I D NO 54: Arabidopsis thaliana ESR gene CDS
AUGGCUCCGACUUUGCAAGGCCAGUGGAUCAAGGUGGGGCAGAAAGGAGGAACGGGACCA
GGACCUAGAAGU UCACACGGCAUAGCCGCGGUCGGAGACAAGCUCUACAGU UUCGGCGGC
GAGUUAACACCAAACAAACACAUCGACAAAGACCUCUACGUCU UUGACU UCAACACUCAAA
CUUGGUCAAUCGCUCAACCCAAAGGAGACGCCCCAACUGUAUCCUGCUUAGGCGUGCGCAU
GGUGGCCGUGGGAACUAAGAUCUAUAUCUU UGGAGGCCGCGAUGAGAACCGCAACUUCGA AAACUUUCGCUCCUACGAUACGGUGACAUCCGAGUGGACAUUCCUGACGAAGCUUGAUGA GGUGGGAGGACCCGAGGCUCGUACUUUCCAUUCGAUGGCUUCGGAUGAAAACCAUGUGU AUGUAUUCGGUGGGGUGAGCAAAGGCGGUACUAUGAAUACUCCCACGCGGUUCAGGACAA UCGAGGCGUAUAACAUUGCUGAUGGGAAAUGGGCUCAGCUACCGGAUCCAGGAGAUAACU UCGAGAAAAGAGGAGGAGCGGGAUUCGCUGUGGUACAAGGGAAGAUUUGGGUGGUUUA UGGGUUUGCGACCUCGAUUGUGCCCGGAGGCAAAGAUGACUAUGAGUCUAAUGCUGUGC AAUUCUAUGAUCCGGCU UCCAAAAAGUGGACCGAAGUAGAGACUACAGGAGCGAAACCU U CCGCAAGGAGCGUGU UUGCCCAUGCGGUAGUGGGAAAGUAUAUAAUAAUAU UUGCAGGU GAGGUAUGGCCUGAUCUCAAUGGGCAUUAUGGUCCCGGGACGCUGUCCAAUGAGGGAUA UGCGUUGGACACCGAGACACUGGUGUGGGAAAAGUUGGGAGAAGAAGGUGCACCAGCCAU ACCACGAGGUUGGACUGCCUAUACUGCUGCCACUGUCGAUGGAAAGAAUGGCCUCCUCAU GCAUGGCGGAAAGCUUCCGACCAACGAGCGAACUGAUGAUCUCUACUUCUAUGCGGUCAA UUCAGCUUAA SEQ I D NO 55: Arabidopsis thaliana SAG12 (senescence associated gene 12) CDS
AUGGCUUUAAAACAUAUGCAAAUCUUUCUCUUCGUCGCUAUAUUU UCAUCAUUCUGUUU CUCCAUCACUCU UUCUCGUCCACUCGACAAUGAACUCAUCAUGCAAAAGAGGCACAUCGAG UGGAUGACUAAACACGGCCGUGUCUACGCGGAUGUGAAGGAGGAAAACAAUCGCUACGUU GUGUUCAAAAACAACGUCGAACGCAUUGAACAU UUAAAUAGCAUUCCUGCCGGAAGAACU UUCAAACUUGCGGUAAAUCAGUUUGCUGAUUUAACCAAUGACGAAUUUCGUUCCAUGUA CACUGGUUUCAAAGGUGUCUCGGCAUUAUCUAGCCAAAGCCAAACUAAAAUGUCGCCGU U UAGGUACCAAAACGUUUCUUCUGGUGCUUUGCCGGUUUCUGUUGACUGGAGGAAGAAAG GAGCUGUGACCCCUAUCAAGAAUCAAGGCAGCUGCGGAUGUUGUUGGGCGUUU UCAGCG GUUGCGGCUAUUGAAGGAGCAACACAAAUAAAGAAAGGGAAACUUAUAUCUUUGUCAGAA CAACAGCUUGUUGAU UGCGACACAAACGAUU UUGGCUGCGAAGGCGGUUUAAUGGAUAC UGCGUUUGAGCAUAUAAAAGCGACUGGCGGCUUGACAACUGAGUCAAAU UAUCCUUACAA AGGCGAAGACGCUACUUGCAAUUCCAAAAAGACCAAUCCAAAAGCAACUUCUAUUACAGGU UAUGAGGAUGUCCCGGU UAAUGAUGAGCAAGCACUGAUGAAGGCAGUGGCACACCAACCG GUUAGCGUUGGAAU UGAAGGAGGUGGUU UUGAUUUCCAAU UCUAUUCGUCUGGUGUGU UCACUGGAGAGUGCACUACGUAUCUUGAUCAUGCAGUAACUGCGAUUGGAUACGGCGAA UCUACUAACGGAUCAAAGUAUUGGAUCAUCAAGAAUUCAUGGGGAACAAAAUGGGGAGAA AGUGGAUAUAUGAGGAUUCAAAAAGAUGUCAAGGAUAAACAAGGACUAUGUGGUCUUGC CAUGAAAGCUUCUUACCCAACUAUAUGA
SEQ I D NO 56: Arabidopsis thaliana PAD4 (phytoalexin deficient 4) gene CDS
AUGGACGAUUGUCGAU UCGAGACGAGUGAGU UGCAAGCUUCGGUAAUGAUAUCGACUCC
UUUAUUUACCGAU UCU UGGAGUUCAUGCAACACCGCAAAUUGCAACGGGAGUAUAAAGAU
CCAUGACAUCGCCGGGAUUACAUACGU UGCUAUACCGGCGGUAUCGAUGAU UCAGUUGGG
GAAUCU UGUGGGCU UGCCAGUCACCGGAGAUGU UCUUUUCCCCGGCU UAUCCUCCGAUGA
ACCUCUACCUAUGGUCGACGCUGCCAUACUCAAACUCUUUCUUCAGU UAAAGAUCAAGGA
AGGAUUGGAAUUGGAAUUGUUAGGUAAAAAGCUGGUGGUGAUAACCGGCCAUUCAACCG
GCGGCGCAUUGGCCGCUU UCACCGCACUUUGGCUUCUAUCUCAAUCUUCUCCGCCGUCAU
UCCGCGUCUUUUGUAUCACCUUUGGCUCUCCUCUGCUCGGAAACCAAUCUCUCUCCACCUC
AAUUUCACGAUCACGUUUAGCACACAACU UCUGCCACGUGGUCUCCAUCCACGACCUCGUU
CCUAGAAGCAGCAAUGAACAAUUCUGGCCCUUUGGAACUUACUUGUUCUGUUCCGACAAA
GGAGGUGUCUGUCUAGACAACGCUGGUUCUGUUCGUCUGAUGUUUAAUAUCCUCAACAC
CACAG C A AC U C A A A AC ACCG AG G AACAUCAGAGGUACGGACACUAUGUGUUCACACUUUCA
CACAUGUU UCUUAAAUCUAGAAGCUUUCUUGGUGGGAGUAUCCCCGACAAUAGCUACCAA
GCUGGUGUUGCGUUAGCCGU UGAAGCUCUAGGU UUCUCUAACGAUGACACAAGUGGCGU
UUUAGUCAAAGAAUGUAUAGAAACAGCUACAAGAAUUGUUCGGGCUCCUAU UCUGAGGU
CAGCUGAGUUAGCCAAUGAGCUUGCUAGUGUCU UGCCAGCAAGACUCGAGAU UCAAUGGU
ACAAAGAUCGU UGCGAUGCAUCAGAAGAGCAGCUAGGUUACUACGAUU UCUUCAAACGAU
AUUCGUUGAAGAGAGACUU UAAAGUGAACAUGAGUCGCAUAAGACUAGCUAAGU UUUGG
GACACAGUGAUUAAAAUGGUGGAGACGAAUGAGUUACCUUU UGAUUUUCAUUUAGGAAA
GAAAUGGAU UUACGCAUCUCAAUUUUAUCAACUCUUAGCCGAGCCACUCGACAUUGCGAA
UUUCUACAAAAACAGAGAUAUAAAGACUGGCGGGCAUUACUUGGAGGGGAAUAGACCUAA
AAGGUAUGAGGUGAUUGAUAAAUGGCAGAAAGGAGUUAAAGUGCCUGAGGAGUGUGUG
AGAAGCAGAUACGCGAGCACAACGCAAGAUACUUGCUUU UGGGCUAAGCUUGAGCAAGCA AAAGAGUGGUUGGAUGAGGCGAGAAAAGAGAGUAGUGAUCCCCAGAGGAGAUCUUUGUU ACGGGAAAAGAUUGUUCCAU UCGAGAGUUAUGCGAAUACAUUGGUGACGAAGAAGGAGG UUUCUUUGGAUGUUAAAGCGAAGAACUCGAGUUAUAGUGUGUGGGAGGCGAAUCUGAAA GAGUUCAAGUGCAAAAUGGGUUAUGAAAAUGAAAUUGAGAUGGU UGUUGAUGAGAGUG ACGCAAUGG AG ACU U AG
SEQ I D NO 57: Arabidopsis thaliana CPR5 (constitutive expression of PR genes 5) gene CDS
AUGGAAGCCCUCCUCCUCCCUCCUUCGCCGGAACCCCAAAAUCAAAUCACCAAUCCGGCGAA
UUCAAAGCCAAAUCAUCAAUCUGGUGACGUACAUAAAGAUGAGACGAUGAUGAUGAAGAA
GAAGAAGGAUACGAAUCCAUCGAAUUUGGAAAAGAGAAAACUCAAGGGAAAGAAGAAAGA
GAU UAUGGACAACGACGAAGCUUCUUCGUCCUAU UGUUCUACAUCUUCUACCUCUAAU UC
AAAUUCUACUAAAAGGGUUACGAGAGUGGUUCAUAGAUUACGAAACCCUAUGCGGUUAG
GUAUGGCUCGACGAAGCGUUGGUGAACGACAAGCUGAAAAAUUGGCGAAGCCUCUGGGCU
UUUCACUUGCCGCUUU UGCUAAUAUGGUUAU UGCGAGAAAGAAUGCCGCAGGUCAGAAU
GUU UAUGUUGAUGAUCUUGUUGAGAUCUU UGCUACUCUUGUCGAAGAAUCAUUAGCCAA
UGU UUAUGGUAAUAAGCUUGGUUCCUUUGCGACCAACUUUGAGCAAACAUUCAGCAGUA
CUCUAAAGAUCCUUAAAU UGACCAAUGAAUGUGCAAAUCCACAUCAGUCAAACAAUAAUG
AUGGUGGGAGUUGUAAUUUAGAUCGCUCUACCAUAGACGGAUGCUCAGACACCGAGCUA
UUUGAGAGGGAGACUUCAUCUGCUACGUCUGCU UAUGAAGUGAUGCAAGGCAGUGCAAC
AGCAACCUCUU UGAUGAAUGAGCUUGCCCUU UUCGAAGAGACUCUACAACUCUCUUGUGU
CCCUCCUAGAAGUUCAGCAAUGGCUUUGACCACAGACGAAAGGUUUUUAAAAGAGCAAAC
ACGAGCAAACGACCUAAAGACCGUGGAGAUUGGUCUUCAAAUAAGAGAGU UAAGGUGCAA
AGAGACGGCGCUAGGAU UAAAAUUUGAAUCAAACAACCUGGGGAAAGCGGCGCUAGAGUU
GGAUGUUUCGAAAGCUGCAU UCAGAGCGGAGAAAUUCAAAACCGAAUUAGAAGAUACAAG
GCAAGAGAUGUCCUAGGUGGAAAGGUAGCUGCAUGGAAAGAUGAUGAUGGAGAUUGGUA
UGAGACUGGGUUGCACAUAUUCUUUGGGGCUUACCCAAAUAUGCAGAACCUGUUUGGAG
AACUAGGGAUAAAUGAUCGGUUGCAGUGGAAGGAACAUUCAAUGAUAU UUGCGAUGCCU
AACAAGCCAGGGGAGUUCAGCCGCUUUGAUUUUCCUGAAGCUCU UCCUGCGCCAUUAAAU GGAAUUU UGGCCAUACU A A AG A AC A ACG A A A UGCUUACGUGGCCCG A A A A AG U C A A A U U U
GCUAU UGGACUCUUGCCAGCAAUGCUUGGAGGGCAAUCUUAUGUUGAAGCUCAAGACGG
UUUAAGUGUUAAGGACUGGAUGAGAAAGCAAGGUGUGCCUGAUAGGGUGACAGAUGAGG
UGU UCAUUGCCAUGUCAAAGGCACUUAACUUCAUAAACCCUGACGAGCUUUCGAUGCAGU
GCAUU UUGAU UGCUUUGAACAGAUU UCUUCAGGAGAAACAUGGUUCAAAAAUGGCCUUU
UUAGAUGGUAACCCUCCUGAGAGACUUUGCAUGCCGAU UGU UGAACAUAU UGAGUCAAA
AGGUGGCCAAGUCAGACUAAACUCACGAAUAAAAAAGAUUGAGCUGAAUGAGGAUGGAAG
UGUCAAAUGU UUUAUACUGAAUAAUGGCAGUACAAUUAAAGGAGAUGCUUUUGUGUUU
GCCACUCCAGUGGAUAUCUUCAAGCUUCUUUUGCCUGAAGAGUGGAAAGAGAUCCCAUAU
UUCCAAAAGUUGGAGAAGCUAGUGGGAGUUCCUGUGAUAAAUGUCCAUAUAUGGUU UGA
CAGAAAACUGAAGAACACAUCUGAUAAUCUGCUCUUCAGCAGAAGCCCAUUGCUCAGUGU
GUAUGCUGACAUGUCUGUUACAUGUAAGGAAUAUUACAACCCCAAUCAGUCUAUGUUGG
AAUUGGUAUUUGCACCUGCAGAAGAGUGGAUAAAUCGUAGUGACUCAGAAAUUAUUGAU
GCUACAAUGAAGGAACUAGCAAAGCUUU UCCCUGACGAAAUUUCGGCAGAUCAGAGCAAA
GCAAAAAUAUUGAAGUAUCACGUUGUCAAAACUCCAAGGUCUGUU UAUAAAACUGUGCCA
GGUUGUGAACCCUGUCGGCCCUUGCAAAGAUCUCCUAUUGAGGGGUU UUAUU UAGCUGG
UGACUACACAAAACAGAAAUACUUGGCUUCAAUGGAAGGUGCUGUCUUAUCAGGAAAGCU
UUGUGCCCAAGCUAUUGUACAGGAUUACGAGUUACU UCUUGGCCGGAGCCAGAAGAAGU
UGGCAGAAGCAAGCGUAGUUUAGCAUGGUGAACUAAAAUGUUGCU UCUGUACACUAAAU
UUAAGAUGAAGGCGGCCACACUGAAUUAGCGUUGUACAC
SEQ I D NO 58: Arabidopsis thaliana ACD1 (accelerated cell death 1) gene CDS
AUGUCAGUAGUUUUACUCUCU UCUACUUCUGCAACAAUCACCAAAUCCCAAUCCAAAAAGA
UUCCCU UUUUAUCUCCCACCACAAAAUUCCCAUUAAAGGUCUCAAUUUCUCCAUCAAGAUC
GAAACUUUUCCACAACCCUUUACGCGUGGCGGCGCCGCCG UCUGUACCCACUUCGGAUUCG
ACGGAGGAGAAGCGGAUCGAAGAAGAAUACGGCGGAGAUAAGGAAGAAGAAGGGUCUGA
GUU UAAGUGGAGAGAUCAUUGGUAUCCAGUUUCUUUGGU UGAGGAU UUGGAUCCGAAU
GUGCCAACCCCGUUCCAGCUCUUGGGUCGAGACCUUGUACUCUGGUUUGAUCGGAAUGAU
CAGAAAUGGGCAGCCUU UGAUGAUCUCUGCCCUCACCGGCUCGCUCCUUUAUCUGAAGGA AGGUUGGAUGAGAAUGGACACUUGCAAUGU UCGUAUCAUGGAUGGUCAU UUGGUGGGU
GUGGAUCUUGCACUAGGAUUCCUCAGGCUGCUACUUCAGGUCCUGAAGCUCGUGCUGUU
AAAUCCCCGAGAGCUUGUGCUAUUAAGUUCCCGACAAUGGUGUCUCAAGGUCUUCUCUU U
GUGUGGCCUGAUGAAAAUGGUUGGGAUAGAGCCAAUUCAAUUGAACCCCCUAGGUUGCC
GGAUGAUUUCGAUAAACCGGAAUU UUCGACGGUGACAAUUCAAAGGGAUCU UUUCUAUG
GAUAUGAUACUCUCAUGGAAAAUGUAUCUGAUCCU UCCCAUAUAGAUUU UGCUCAUCACA
AGGUUACAGGAAGAAGAGACAGAGCCAAACCAUUGCCGU UCAAGGUGGAGUCAAGUGGGC
CUUGGGGUU UCCAAGGUGCGAAUGAUGACAGUCCAAGGAUAACCGCAAAAUUUGUUGCU
CCGUGCUAUUCUAUGAACAAAAU UGAGUUAGAUGCGAAACUACCAAUCGUCGGUAAUCAA
AAAUGGGUCAUUUGGAU UUGCUCAU UCAAUAUACCAAUGGCUCCAGGAAAGACCCGUUCC
AUCGUU UGCAGCGCCCGUAACUUCUUUCAGU UCUCUGUACCAGGACCAGCUUGGUGGCAG
GUUGUACCAAGAUGGUAUGAACACUGGACUUCGAACUUAGUCUAUGACGGAGACAUGAU
CG U AC U U C A AG G AC A AG AG A A AG UAUUCCUCGCU AAA U C A A UGGAGUCACCAGACUACGAC
GUGAACAAACAGUACACAAAGCUCACAUUCACUCCAACCCAGGCAGACCGU UUUGUUCUAG
CAUUCAGAAACUGGCUCAGACGGCAUGGUAAGAGUCAGCCUGAAUGGUUCGGCUCCACCC
CGUCUAACCAACCUCUCCCU UCCACUGUCUUAACCAAGCGUCAGAUGCUAGAUAGAUUUGA
UCAGCAUACACAAGUAUGCUCUUCCUGCAAAGGAGCUUACAACAGU UUCCAAAUCCUCAAG
AAGUUUCUCGU UGGCGCGACGGUUUUCUGGGCCGCCACGGCUGGUGUUCCUUCUGAUGU
UCAGAU UCGACUGGUUCUUGCUGGUUUAUCACUGAUAUCAGCUGCUUCUGCAUAUGCU U
UACAUGAACAAGAGAAGAACUUUGUGUUUAGAGAUUAUGUACAUUCUGAAAUCGAGUAG
SEQ ID NO 59: Arabidopsis thaliana ATG18 (homolog of yeast autophagy gene 18 G) gene CDS
AUGAUGAAGAAGGGGAAAGGAAAGAACAGUGGCUUGUUACCGAAU UCCUUUAAGAUUAU
AUCUUCUUGCCU UAAAACUGUAUCGGCUAACGCCACCAACGUUGCGUCGUCUGUUCGU UC
CGCUGGUGCCUCCGU UGCUGCUUCAAUUUCCGCUGCUGAAGAUGAUAAGGAUCAGGUGAC
CUGGGCUGGAUUUGGCAUUCUUGAACUGGGUCAACAUGUCACCAGACAUGUUCUCUUAC
UCGGUUAUCAGAAUGGCUUUCAAGUCU UUGAUGUUGAGGAUGCCUCUAAUUUUAAUGAA
CUGGUCUCUAAACGAGGUGGUCCAGUU UCAUUCUUACAGAUGCAGCCAUUACCUGCAAGG UCUGGUGAUCAUGAGGGUUUUUGGAACUCACAUCCUCU UUUGCUGGUUGUUGCUGGGG
AUGAAACAAAUGGCACUGGU UUGGGUCACAGUUU UUCCCAGAAUGGUUCAUUAGCAAGA
GAUGGUAGUUCAGACUCUAAAGCCGGGGAUGCCAUCAAUUAUCCUACCACUGUUCGCU UC
UACUCCCU UAGGUCCCACAGU UAUGUAUAUGUCCUGAGAU UUCGGUCAUCUGUU UGCAU
GAU UAGAUGCAGCUCCCGAGUAGUCGCUGUUGGCCU UGCGAAUCAAAUAUAUUGUGUUG
ACGCACUUACUCUGGAAAAUAAGUUCAGUGUUCUCACUUAUCCUGUCCCCCAGCCAGUGA
GACAAGGGACAACCAGAGUUAAUGUUGGCUAUGGUCCGAUGGCUGUAGGUCCAAGGUGG
CUUGCAUAUGCGU CCA A A AG U U CCA U G ACC A U G A A A AC AG GGCGCCUAAGCCCACAGACGU
UUACUUCUUCACCCAGUCUCAGCCCAAGUUCAUCAUCAGGUGGAAGCAGUUUUAUGGCCC
GUUAUGCCAUGGAGUCUAGCAAGCAGUUAGCCAAUGGAU UAAUCAACCUGGGGGACAUG
GGAUACAAAACAUUGUCAAAAUACUGUCAAGAUAUGCUCCCUGAUGGAUCUACUUCUCCA
GCAUCACCAAAUGCAAUCUGGAAAGUUGGUGGGGUUUCUGGAUCAGAUGCAGAGAAUGC
CGGAAUGGU UGCUGUUAAAGAUCUUGUUUCUGGAGCUUUAGUAUCACAGUUCAAGGCUC
AUACGAGUCCUAUCUCAGCACUUUGUUUUGAUCCUAGUGGAACUCUAUUGGUUACUGCU
UCAGUAUGUGGGAACAAUAUCAAUGUCUUUCAGAUCAUGCCAUCUCGUUCACAUAAUGCA
CCUGGUGACCUAAGU UAUGAGUGGGAAUCU UCUCAUGUGCAUCUCUUCAAACUGCAUAG
AGGGAUCACUUCAGCUAU UGUCCAGGACAUUUGCUU UAGUCAGCAGAGUCAGUGGGUUG
CUAUUAUUUCAUCCAAGGGUACUUGCCAUAUAU UUGU UUUAAACUCUUCUGGUAGCGAC
GCUGCGUU UCAACCUUGCGAGGGUGAGGAGCCUACCCGACUACCAGCUUCAUCCUUGCCA
UGGUGGUU UACUCAAUCGUUGUCAAGUAAUCAGCAGUCUU UAUCGCCACCAACAGCUGUU
GCCCU UUCUGUUGUAAGCAGAAUAAAGUAUAGCAGU UUUGGGUGGCUUAACACAGUAAG
CAAUGCUACUACUGCUGCUACUGGAAAAGUU UUUGUACCAUCAGGUGCCGUGGCUGCUG
UUUUUCAUAAAUCUGUCACUCAUGACCUUCAGCUGAACUCCCGGACUAACGCGUUGGAGC
AUAUCUUAGUCUAUACUCCAUCAGGCCAUGUGGUGCAGCAUGAACUUCUGCCAUCAGUUU
G C AC AG A A U C ACC U G A A A A UGGUUUGAGAGUG C A A A A A AC A U C AC A U G U U C A AG U U CAG G
AGGAUGAUU UGAGGGUCAAAGUUGAGCCUAU UCAGUGGUGGGAUGUAUGUAGAAGGUC
UGACUGGCUAGAGACUGAGGAACGACUUCCCAAAAGUAUCACUGAAAAGCAAUAUGAUUU
AGAGACAGUGUCGAAUCACUUGACAAGCCAUGAGGAUGCAUGUCUU UCCCU UGACAUGAA
CAGCCAUUUUAGUGAAGAUAAGUAUUUGAAAAGCUGUUCUGAGAAGCCCCCUGAAAGAUC ACAUUGCUAUCUUUCUAACUUUGAGGUAAAGGU UACCUCGGGGAUGCUACCAGUGUGGC
AAAAUUCAAAGAUUUCUUUUCAUGUUAUGGAUUCUCCAAGAGAUAGUAGU UCCACUGGU
GGAGAGUUUGAGAUAGAAAAGGUUCCGGCCCAUGAACUUGAAAUAAAACAGAAAAAGCUG
CUGCCAGU UUUUGACCAUU UCCACAGCACCAAAGCAACGU UGGAAGACAGGUUUUCAAUG
AAAUGCUAUCACACAUCCGCAACGGGAUCUCAUCAAGU UAAUGGAAAAAUAUGCCAAGAU
AUUAUCAACUGUCACUCUAAGCCAGGAUCAAUUGAGUCCGCCGAAAGUUCUGAAGAGGGU
UCAACAAAACAGAUGGAGAAUCUCCAUGAU UCGGAUCAUAUGAGCAACUCAAUCAAGUCU
UCU UUACCCCU UUACCCAACAGUAAAUGGGAUCUACAAGGAAAUAGAGAAGAACAACGCAA
AUGGGUGGAUGGAGAAACCCGUAACAGCCAAACUCUCUACACUCAAAGAAACCCGGAUCAC
AAAUGGUUUUACCACACCACCUAUACUCACCGAUAGUGUCAACGAACAGAUGCUCUCUACA
GGAAAACCUCCUAUGGGCUUUGGUUUUGCUUUGCAUGAGGAGCACUGUAAAGCAGUAGC
AG A U CCA A A AG A AG A AC ACC U G A A A A AG AAGUUAGAUGAAGUUACUAAUGUUCAUCACUU
AAACGUCAACAACAACAACACAGAGAAACUACAAGGAGACAAAAUGGUACAUGGUAUGGUU
UCCUU UGUAGGUGAUUAA

Claims

What is claimed is:
[Claim 1] A formulation for application to a host plant to reduce, inhibit or impair one or more of growth and development of the host plant, the formulation comprising an interfering Ribonucleic Acid (RNAi) payload, and at least one of a liquid carrier, a surfactant, a binder and tackifier, a thickener, a colourant, a spreader, an antifreezing agent, a sticker, an anticaking agent, a stabilizer, a disintegrator, an emulsifier, a synergistic compound, an abrasive, an emulsifier, a penetrating agent and a preservative.
[Claim 2] The formulation of claim 1, wherein the RNAi payload comprises an at least one sequence specific to the host plant.
[Claim 3] The formulation of claim 1 or 2 at least 20 contiguous nucleotides of at least one sequence selected from the group consisting of SEQ ID NOs 1 to 66.
[Claim 4] The formulation of any one of claims 1 to 3, comprising an RNAi inducer.
[Claim 5] The formulation of any one of claims 1 to 4, comprising the liquid carrier and the surfactant.
[Claim 6] The formulation of any one of claims 1 to 5, further comprising the abrasive.
[Claim 7] The formulation of claim 2, for stem injection, the formulation comprising the liquid carrier and the penetrating agent.
[Claim 8] A method of inhibiting or impairing plant growth and development, the method comprising delivering a formulation to a host plant, by spraying, imbibing, irrigating, or injecting the formulation, the formulation comprising an interfering Ribonucleic Acid (RNAi) payload, and an at least one of a liquid carrier, a surfactant, a binder and tackifier, a thickener, a colourant, a spreader, an antifreezing agent, a sticker, an anticaking agent, a stabilizer, a disintegrator, an emulsifier, a synergistic compound, an abrasive, an emulsifier, a penetrating agent and a preservative, thereby inhibiting or impairing growth and development.
[Claim 9] The method of claim 8 comprising delivering the formulation to at least one of a leaf, a root, a stem, a petiole, a seed and a cotyledon.
[Claim 10] The method of claim 8 or 9 wherein the RNAi payload comprises a sequence selected from the group consisting of SEQ ID NOs 1 to 66.
[Claim 11] The method of any one of claims 8 to 10, comprising injecting the stem or petiole.
[Claim 12] The method of any one of claims 8 to 11, comprising spraying the host plant.
[Claim 13] The method of any one of claims 8 to 12 further comprising inducing expression of any of SEQ ID NOs 7, 8, 9, 10, 11 and 12 thereby producing any of SEQ ID NOs 1, 2, 3, 4, 5, and 6.
[Claim 14] A method of weed control, the method comprising: -selecting a weed plant species to be controlled;
-synthesizing or obtaining at least one RNAi or RNAi encoding sequence; -formulating a species-specific RNAi payload; and
-delivering the species-specific RNAi payload to the weed plant species while minimally impacting an at least one other plant species.
[Claim 15] The method of claim 14 wherein the RNAi payload comprises one or more of SEQ ID NOs l to 66.
[Claim 16] The method of claim 14 or 15 wherein delivering comprises spraying the weed plant species.
[Claim 17] The method of claim 14 or 15 wherein delivering comprises injecting the weed plant species.
[Claim 18] A method of designing a species-specific gene construct for siRNA suppression of growth of a target plant species, the method comprising the steps of:
selecting a suitable gene for growth suppression;
identifying an at least one target site accessible to base pairing in the suitable gene; identifying an at least one divergent site in the at least one target site;
designing a construct complementary to the at least one divergent site; and
adding an at least one RNAi inducer to the construct, thereby designing a species- specific gene construct for siRNA suppression of growth of the target plant species.
[Claim 19] The method of claim 18, further comprising adding an at least one helper sequence to the species specific gene construct.
[Claim 20] The method of claim 18 or 19, further comprising sequencing an at least one gene from the target plant to select the suitable gene.
[Claim 21] The method of any one of claims 18 to 20, wherein the construct includes any one of SEQ ID No. 1 to 66 or their complement.
[Claim 22] A method of inhibiting or impairing plant growth and development of a target plant, the method comprising:
selecting a suitable gene for growth suppression;
identifying an at least one target site accessible to base pairing in the suitable gene; identifying an at least one divergent site in the at least one target site;
designing a construct complementary to the at least one divergent site; adding an at least one RNAi inducer to the construct; and
delivering the construct to the target plant.
[Claim 23] The method of claim 22, further comprising adding an at least one helper sequence to the species specific gene construct.
[Claim 24] The method of claim 22 or 23, further comprising sequencing an at least one gene from the target plant to select the suitable gene.
[Claim 25] The method of any one of claims 22 to 24, wherein the construct includes any one of SEQ ID No. 1 to 66 or their complement.
PCT/IB2014/060565 2013-04-09 2014-04-09 Formulations and methods for control of weedy species WO2014167514A1 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
AU2014252200A AU2014252200A1 (en) 2013-04-09 2014-04-09 Formulations and methods for control of weedy species
CA2896886A CA2896886A1 (en) 2013-04-09 2014-04-09 Formulations and methods for control of weedy species
EP14782757.0A EP2983476A4 (en) 2013-04-09 2014-04-09 Formulations and methods for control of weedy species
US14/783,341 US9909132B2 (en) 2013-04-09 2014-04-09 Formulations and methods for control of weedy species
US15/875,965 US11377664B2 (en) 2013-04-09 2018-01-19 Formulations and methods for control of weedy species
US15/875,909 US11434495B2 (en) 2013-04-09 2018-01-19 Formulation and methods for control of weedy species

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US201361810024P 2013-04-09 2013-04-09
US61/810,024 2013-04-09

Related Child Applications (3)

Application Number Title Priority Date Filing Date
US14/783,341 A-371-Of-International US9909132B2 (en) 2013-04-09 2014-04-09 Formulations and methods for control of weedy species
US15/875,965 Division US11377664B2 (en) 2013-04-09 2018-01-19 Formulations and methods for control of weedy species
US15/875,909 Continuation US11434495B2 (en) 2013-04-09 2018-01-19 Formulation and methods for control of weedy species

Publications (1)

Publication Number Publication Date
WO2014167514A1 true WO2014167514A1 (en) 2014-10-16

Family

ID=51689013

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/IB2014/060565 WO2014167514A1 (en) 2013-04-09 2014-04-09 Formulations and methods for control of weedy species

Country Status (5)

Country Link
US (3) US9909132B2 (en)
EP (1) EP2983476A4 (en)
AU (1) AU2014252200A1 (en)
CA (1) CA2896886A1 (en)
WO (1) WO2014167514A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3302030A4 (en) * 2015-06-03 2019-04-24 Monsanto Technology LLC Methods and compositions for introducing nucleic acids into plants
CN110607307A (en) * 2019-09-01 2019-12-24 天津大学 Sedum lineare salt-tolerant gene SlNAC and application thereof
CN110643614A (en) * 2019-09-01 2020-01-03 天津大学 Sedum lineare drought-resistant gene SlDREB and application thereof
EP3535416A4 (en) * 2016-11-04 2020-05-13 Flagship Pioneering Innovations V. Inc. Novel plant cells, plants, and seeds
CN112167055A (en) * 2020-11-05 2021-01-05 贵州师范大学 Breeding and cultivation method of creeping tartary buckwheat variety growing in chlorophytum comosum shape
WO2021058145A1 (en) * 2019-09-24 2021-04-01 Max-Delbrück-Centrum Für Molekulare Medizin In Der Helmholtz-Gemeinschaft Phage t7 promoters for boosting in vitro transcription

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9909132B2 (en) * 2013-04-09 2018-03-06 Chris Tuttle Formulations and methods for control of weedy species
IT201700089680A1 (en) * 2017-08-03 2019-02-03 Giuliani Spa SYNERGIC COMPOSITION AS A SELF-MAGIC PROMOTER / A SYNERGISTIC COMPOSITION AS A PROMOTER OF AUTOPHAGY

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203024A1 (en) * 1996-06-06 2004-10-14 Baker Brenda F. Modified oligonucleotides for use in RNA interference

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19717656A1 (en) * 1997-04-25 1998-10-29 Hoechst Schering Agrevo Gmbh DNA sequences coding for the subunit CHLD of plant magnesium chelatases, as well as methods for determining the activity of plant magnesium chelatases
US7148400B1 (en) * 1999-04-20 2006-12-12 Bayer Bioscience N.V. Methods and means for delivering inhibitory RNA to plants and applications thereof
US20030113785A1 (en) * 2001-12-12 2003-06-19 Adel Zayed Methods for the identification of herbicides and the modulation of plant growth
US7371927B2 (en) * 2003-07-28 2008-05-13 Arborgen, Llc Methods for modulating plant growth and biomass
CA2591717A1 (en) * 2004-12-16 2006-07-06 President And Fellows Of Harvard College Histone demethylation mediated by the nuclear amine oxidase homolog lsd1
BR112012022570A2 (en) 2010-03-08 2015-10-06 Monsato Technology Llc polynucleotide molecules for gene regulation in plants.
WO2013040117A1 (en) * 2011-09-13 2013-03-21 Monsanto Technology Llc Methods and compositions for weed control
AU2012308686B2 (en) * 2011-09-13 2018-05-10 Monsanto Technology Llc Methods and compositions for weed control
US9909132B2 (en) * 2013-04-09 2018-03-06 Chris Tuttle Formulations and methods for control of weedy species

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040203024A1 (en) * 1996-06-06 2004-10-14 Baker Brenda F. Modified oligonucleotides for use in RNA interference

Non-Patent Citations (21)

* Cited by examiner, † Cited by third party
Title
"Penn State Extension, Agronomy Facts 37: Adjuvants for enhancing herbicide performance", 2009, XP055293002, Retrieved from the Internet <URL:http://extension.psu.edu/pests/weeds/control/adjuvants-for-enhancing-herbicide-performance> [retrieved on 20140617] *
"Spray Additives and Pesticide Formulations", WEBSITE UNIVERSITY OF FLORIDA, EXTENSION INSTITUTE OF FOOD AND AGRICULTURAL SCIENCES, May 1999 (1999-05-01), XP008182210, Retrieved from the Internet <URL:http://edis.ifas.ufl.edu/pdffiles/LH/LH06100.pdf> [retrieved on 20140617] *
ALLEN, E. ET AL.: "microRNA-Directed phasing during Trans-Acting siRNA biogenesis in plants", CELL, vol. 121, 2005, pages 207 - 221, XP002403170 *
BERKOWITZ, O. ET AL.: "Characterization of TCTP, the translationally controlled tumor protein, from Arabidopsis thaliana", THE PLANT CELL, vol. 20, pages 3430 - 3447, XP055293011 *
BORGHI, L. ET AL.: "Arabidopsis RETINABLASTOMA-RELATED Is required for stem cell maintenance, cell differentiation and lateral organ production", THE PLANT CELL, vol. 22, 2010, pages 1792 - 1811, XP055295236 *
BRODERSEN, P. ET AL.: "Knockout of Arabidopsis ACCELERATED- CELL -DEATH11 encoding a sphingosine transfer protein causes activation of programmed cell death and defense", GENES AND DEVELOPMENT, vol. 16, 2002, pages 490 - 502, XP055293005 *
COX, P.: "Characterization of the metacaspase gene family in Arabidopsis thaliana", SWEDISH UNIVERSITY OF AGRICULTURAL SCIENCES FACULTY OF FOREST SCIENCES;, 2011, XP055293010, Retrieved from the Internet <URL:http://stud.epsilon.slu.se/2721/1/cox_p_110607.pdf> [retrieved on 20140617] *
DEPROST, D. ET AL.: "The Arabidopsis TOR kinase links plant growth, yield, stress resistance and mRNA translation", EMBO REPORTS, vol. 8 / 9, 2007, pages 864 - 870, XP008156785 *
DIETRICH, R. A. ET AL.: "A Novel Zinc Finger Protein Is encoded by Arabidopsis LSD1 gene and functions as a negative regulator of plant cell death", CELL, vol. 88 / 5, 1997, pages 685 - 694, XP002910516 *
GUAN, L. ET AL.: "Characterization of the catalase antioxidant defense gene Catl or maize, and its developmentally regulated expression in transgenic tobacco", PLANT J., vol. 3 / 4, 1993, pages 527 - 536, XP055293008 *
HAN, S. ET AL.: "Role of Plant autophagy in stress response", PROTEIN & CELL, vol. 2 / 10, 2011, pages 784 - 791, XP035980463 *
HU , Y. Q. ET AL.: "Functional comparison of catalase genes in the elimination of photorespiratory H2O2 using promoter- and 3'-untranslated region exchange experiments in the Arabidopsis Cat2 photorespiratory mutant", PLANT CELL ENVIRON, vol. 33 / 10, 2010, pages 1656 - 1670, XP055293009 *
LEE, G-H ET AL.: "Bax Inhibitor 1 increases cell adhesion through Actin polymerization: involvement of Calcium and actin binding", MOLECULAR AND CELLULAR BIOLOGY, vol. 30 / 7, 2010, pages 1800 - 1813, XP055293007 *
LI, X. ET AL.: "The growth reduction associated with repressed lignin biosynthesis in Arabidopsis thaliana is independent of flavonoids", THE PLANT CELL, vol. 22, 2010, pages 1620 - 1632, XP055170912 *
LIU, Y. ET AL.: "Autophagy regulates programmed cell Death during the plant innate immune response", CELL, vol. 121, 2005, pages 567 - 577, XP055293006 *
PASCAL, E. ET AL.: "Transgenic tobacco plants expressing the Geminivirus BL1 protein exhibit symptoms of viral disease", THE PLANT CELL, vol. 5, 1993, pages 795 - 807, XP002024288 *
PATTANAYAK, G. K. ET AL.: "The Role of Arabidopsis Acd2 in programmed cell death", BIOLOGICAL SCIENCES DIVISION INAUGURAL PDA SYMPOSIUM, 8 April 2011 (2011-04-08), THE UNIVERSITY OF CHICAGO, pages 27, XP008181829, Retrieved from the Internet <URL:http://www.bsdpostdoc.uchicago.edu/downloads/SymposiumAbstractBook.pdf> [retrieved on 20140617] *
PREUSS S. AND PIKAARD C.S., WASHINGTON UNIVERSITY AT SAINT LOUIS: "Targeted Gene Silencing in Plants using RNA Interference", 2003, XP055293003, Retrieved from the Internet <URL:http://sites.bio.indiana.edu/~pikaardlab/reprints.pdf%20files/Preuss%20&%20Pikaard%20RNAi%20chapter.pdf> [retrieved on 20140617] *
See also references of EP2983476A4 *
SOLTIS, P. S. ET AL.: "The phylogeny of land plants inferred from 18s rDNA sequences: Pushing the limits of rDNA signal", MOL. BIOL. EVOL., vol. 16 / 12, 1999, pages 1774 - 1784, XP055293004 *
YANG, M. ET AL.: "The wound-inducible Llsl gene from maize is an orthologue of the Arabidopsis Acdl gene and the LLS 1 protein is present in non-photosynthetic tissues", PLANT MOL BIOL., vol. 54 / 2, 2004, pages 175 - 191, XP019262455 *

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3302030A4 (en) * 2015-06-03 2019-04-24 Monsanto Technology LLC Methods and compositions for introducing nucleic acids into plants
EP3535416A4 (en) * 2016-11-04 2020-05-13 Flagship Pioneering Innovations V. Inc. Novel plant cells, plants, and seeds
AU2017355507B2 (en) * 2016-11-04 2023-09-21 Flagship Pioneering Innovations V. Inc. Novel plant cells, plants, and seeds
EP4256951A3 (en) * 2016-11-04 2023-12-06 Flagship Pioneering Innovations V. Inc. Novel plant cells, plants, and seeds
CN110607307A (en) * 2019-09-01 2019-12-24 天津大学 Sedum lineare salt-tolerant gene SlNAC and application thereof
CN110643614A (en) * 2019-09-01 2020-01-03 天津大学 Sedum lineare drought-resistant gene SlDREB and application thereof
WO2021058145A1 (en) * 2019-09-24 2021-04-01 Max-Delbrück-Centrum Für Molekulare Medizin In Der Helmholtz-Gemeinschaft Phage t7 promoters for boosting in vitro transcription
CN112167055A (en) * 2020-11-05 2021-01-05 贵州师范大学 Breeding and cultivation method of creeping tartary buckwheat variety growing in chlorophytum comosum shape

Also Published As

Publication number Publication date
EP2983476A1 (en) 2016-02-17
CA2896886A1 (en) 2014-10-16
US20180201945A1 (en) 2018-07-19
EP2983476A4 (en) 2017-03-22
US11377664B2 (en) 2022-07-05
AU2014252200A1 (en) 2015-10-29
US20180216126A1 (en) 2018-08-02
US20160281099A1 (en) 2016-09-29
US9909132B2 (en) 2018-03-06
US11434495B2 (en) 2022-09-06

Similar Documents

Publication Publication Date Title
EP2983476A1 (en) Formulations and methods for control of weedy species
US20200140884A1 (en) Down-regulating gene expression in insect plants
EP3302053B1 (en) Compositions and methods for delivery of a polynucleotide into a plant
RU2639549C2 (en) Nucleic acids molecules that provide resistance to beetle pests
US10435701B2 (en) Methods and compositions for plant pest control
US10844398B2 (en) Methods and compositions for plant pest control
MX2012010479A (en) Polynucleotide molecules for gene regulation in plants.
AU2011321846A1 (en) Hollow fiber membrane filtration device and method for washing hollow fiber membrane module
US9970022B2 (en) Gall wasp control agents
US10344291B2 (en) Double stranded RNA compositions for reducing asian citrus psyllid infestation and methods of use
US5312912A (en) Procedures and regulatory DNA sequences for genetically engineering disease resistance and other inducible traits in plants
US20150361445A1 (en) A method for the control of nematodes in plants
WO2022040354A2 (en) Use of fana antisense oligonucleotides for the prevention and management of huanglongbing and zebra chip diseases
CN116200383A (en) Nucleotide sequence and method for controlling plant pest stress

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14782757

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2896886

Country of ref document: CA

WWE Wipo information: entry into national phase

Ref document number: 14783341

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2014252200

Country of ref document: AU

Date of ref document: 20140409

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2014782757

Country of ref document: EP