WO2024174332A1 - 显示模组 - Google Patents

显示模组 Download PDF

Info

Publication number
WO2024174332A1
WO2024174332A1 PCT/CN2023/084088 CN2023084088W WO2024174332A1 WO 2024174332 A1 WO2024174332 A1 WO 2024174332A1 CN 2023084088 W CN2023084088 W CN 2023084088W WO 2024174332 A1 WO2024174332 A1 WO 2024174332A1
Authority
WO
WIPO (PCT)
Prior art keywords
support plate
layer
bending area
display module
support
Prior art date
Application number
PCT/CN2023/084088
Other languages
English (en)
French (fr)
Inventor
汪文强
Original Assignee
武汉华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电半导体显示技术有限公司 filed Critical 武汉华星光电半导体显示技术有限公司
Publication of WO2024174332A1 publication Critical patent/WO2024174332A1/zh

Links

Classifications

    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/301Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements flexible foldable or roll-able electronic displays, e.g. thin LCD, OLED
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • G09F9/33Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes
    • G09F9/335Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements being semiconductor devices, e.g. diodes being organic light emitting diodes [OLED]

Definitions

  • the present application relates to the field of foldable display technology, and in particular to a display module.
  • Folding phones have achieved the miniaturization of the whole machine and the large-screen display and consumer demand, and have been favored by consumers.
  • the flexible folding screen is one of the important components of folding phones.
  • the weight of the OLED folding screen display module is mainly concentrated on the support layer of the OLED folding screen display module.
  • the OLED folding screen display module often uses metal plates as the support layer, such as stainless steel, titanium alloy, copper alloy, etc. Since the density of metal materials is often too high, the overall weight of the OLED folding screen display module is relatively large.
  • the support layer directly uses materials such as carbon fiber and titanium alloy, the overall price of the module support layer cannot be effectively reduced due to the high cost of raw materials.
  • the OLED folding screen display module is divided into a bending area and a non-bending area.
  • the structural part of the bending area is usually designed with a hollow through-hole structure. Therefore, the through-hole structure in the bending area is required to have sufficient strength.
  • the through-hole structure is often formed by chemical etching. This processing method can be mass-produced, which is convenient for reducing the overall processing cost.
  • Non-metallic materials such as carbon fiber and glass fiber require laser processing to hollow out the bending area. Therefore, the processing price is expensive and the processing efficiency is low, resulting in high overall costs and inability to mass produce.
  • the present application provides a display module that reduces the overall weight of the display module.
  • the present application provides a display module, comprising a display panel and a support structure formed on a side of the display panel away from a light output, wherein the display panel is a foldable display panel, the display panel comprises a bending area, a first non-bending area and a second non-bending area, the bending area is located between the first non-bending area and the second non-bending area; the support structure comprises a composite support layer, and the composite support layer comprises:
  • a first supporting plate located in the first non-bending area
  • a second supporting plate located in the second non-bending area
  • a third support plate is located between the first support plate and the second support plate and located in the bending area; the third support plate is connected to the first support plate and the second support plate respectively, and has a hollow structure on the third support plate;
  • the density of the first support plate and the second support plate is smaller than the density of the third support plate.
  • a first joint seam is provided between the first support plate and the third support plate, and the first joint seam is located in the first non-bending area;
  • a second joint seam is provided between the second support plate and the third support plate, and the second joint seam is located in the second non-bending area.
  • first splicing seam and the second splicing seam are filled with thermoplastic material so that the surfaces of the first support plate, the second support plate and the third support plate are flush with the first splicing seam and the second splicing seam.
  • the support structure further includes a flat layer, which is formed on a side of the composite support layer close to the display panel and covers the surface of the thermoplastic material in the first joint seam and the second joint seam.
  • an orthographic projection of the flat layer on the composite supporting layer falls outside the hollow structure.
  • the support structure further includes a protective layer, which is located on a surface of the composite support layer away from the flat layer, and the protective layer covers the first splicing seam, the second splicing seam and the hollow structure.
  • the third support plate is made of metal; and the first support plate and the second support plate are made of non-metal.
  • a side of the first support plate close to the third support plate and a side of the second support plate close to the third support plate each have a first combining portion
  • two opposite sides of the third support plate have a second combining portion
  • the first combining portion and the second combining portion are interlocked and spliced together with each other.
  • the first combining portion includes a first protrusion and a first avoidance groove located between any two adjacent first protrusions
  • the second combining portion includes a plurality of second protrusions and a second avoidance groove located between any two adjacent second protrusions
  • the first protrusion is accommodated in the second avoidance groove
  • the second protrusion is accommodated in the first avoidance groove.
  • the first combining portion and the second combining portion are at least one of a wavy shape, a trapezoidal shape, a rectangular shape and a sawtooth shape.
  • the first support plate and the second support plate are respectively spliced with the third support plate using a concave-convex plug-in structure.
  • the concave-convex interlocking structure includes a concave structure and a convex structure, one of the concave structure and the convex structure is located on the first support plate and the second support plate, and the other is located on the third support plate;
  • the concave structure is formed by being recessed from the surface of one of the first combining part and the second combining part toward its interior, and the convex structure extends from the surface of the other of the first combining part and the second combining part, and the concave structure and the convex structure are bonded together by an adhesive layer.
  • a fingerprint sensor hole is provided on the first support plate or the second support plate, and the fingerprint sensor hole is filled with a transparent resin, and the end surface of the transparent resin is flush with the surface of the first support plate or the second support plate around the fingerprint sensor hole.
  • the material of the first support plate and the second support plate is at least one of glass fiber, carbon fiber and polymer material.
  • the material of the first support plate and the second support plate is glass fiber or carbon fiber;
  • the first support plate and the second support plate each include N+1 first fiber layers, N second fiber layers and N+1 resin layers, the first fiber layers and the second fiber layers are alternately arranged, the resin layer is located on the first fiber layer and covers the second fiber layer, and the angle between the extension direction of the fibers of the first fiber layer and the extension direction of the fibers of the second fiber layer is greater than 0° and less than 180°; wherein N is a positive integer greater than 1.
  • the display panel includes a display screen, a back plate and an optical adhesive layer
  • the back plate is located on the backlight side of the display screen
  • the optical adhesive layer is located between the back plate and the supporting structure, and the optical adhesive layer bonds the flat layer.
  • the optical adhesive layer includes a first adhesive segment and a second adhesive segment, and the first adhesive segment and the second adhesive segment are respectively located in the first non-bending area and the second non-bending area.
  • the flat layer includes a first flat layer and a second flat layer, the first flat layer is located in the first non-bending area, and the second flat layer is located in the second non-bending area; the orthographic projection of the first rubber segment on the composite support layer falls on the first flat layer on the composite support layer.
  • the first rubber segment and the second rubber segment extend from the first non-bending zone and the second non-bending zone to the bending zone respectively, and the lengths of the extended parts of the first rubber segment and the second rubber segment in the bending zone are 1mm-2mm.
  • the first support plate and the second support plate are respectively formed integrally with the third support plate.
  • the display module provided in the present application uses two materials with different densities to form a composite support layer, and the density of the third support plate is greater than the density of the first support plate and the second support plate.
  • the first support plate and the second support plate are respectively located in the first non-bending area and the second non-bending area of the display module, and the third support plate is located in the bending area of the display module.
  • the present application integrates two materials with different densities into one, and the first support plate and the second support plate are made of a material with lower density, so as to reduce the weight of the display module as a whole.
  • FIG. 1 is a cross-sectional view of a display module provided in the first embodiment of the present application.
  • FIG. 2 is a top view of a composite support layer of the display module shown in FIG. 1 .
  • FIG. 3 is a bottom view of the composite support layer shown in FIG. 2 .
  • FIG. 4 is a partial exploded view of the composite support layer shown in FIG. 2 .
  • FIG5 is a top view of a composite support layer provided in some other embodiments of the present application.
  • FIG6 is a top view of a composite support layer provided in some further embodiments of the present application.
  • FIG. 7 is a top view of a composite support layer provided in some other embodiments of the present application.
  • FIG8 is a partial exploded view of a composite support layer provided in the second embodiment of the present application and a partial enlarged view of positions A and B.
  • FIG. 8 is a partial exploded view of a composite support layer provided in the second embodiment of the present application and a partial enlarged view of positions A and B.
  • FIG. 9 is a cross-sectional view along line VI-VI of the joint of the composite support layer shown in FIG. 7 .
  • FIG. 10 is a flow chart of a method for manufacturing a support structure provided in the present application.
  • FIGS 11A-11I are schematic diagrams of the manufacturing process of the support structure provided in the present application.
  • the first embodiment of the present application provides a display module 100, which includes a support structure 110 and a display panel 120, wherein the support structure 110 is located on the display panel 120. Specifically, the support structure 110 is located on a side of the display panel 120 away from light emission.
  • the display panel 120 includes a bending area 101 , a first non-bending area 102 and a second non-bending area 103 , and the bending area 101 is located between the first non-bending area 102 and the second non-bending area 103 .
  • the support structure 110 includes a composite support layer 10, the composite support layer 10 includes a first support plate 11, a second support plate 12 and a third support plate 13, the first support plate 11 is located in the first non-bending area 102, the second support plate 12 is located in the second non-bending area 103, the third support plate 13 is located between the first support plate 11 and the second support plate 12 and in the bending area 101, the third support plate 13 is connected to the first support plate 11 and the second support plate 12 respectively, and the third support plate 13 has a hollow structure 14.
  • the density of the first support plate 11 and the second support plate 12 is less than the density of the third support plate 13.
  • the support structure 110 and the display module 100 provided in the present application use two materials with different densities to form a composite support layer 10, and the density of the third support plate 13 is greater than the density of the first support plate 11 and the second support plate 12.
  • the first support plate 11 and the second support plate 12 are respectively located in the first non-bending area 102 and the second non-bending area 103 of the display module 100, and the third support plate 13 is located in the bending area 101 of the display module 100.
  • the present application integrates two materials with different densities into one, and the first support plate 11 and the second support plate 12 are made of a material with lower density, which can reduce the weight of the display module as a whole.
  • the third support plate 13 is made of metal, and the first support plate 11 and the second support plate 12 are made of non-metal.
  • the hollow structure 14 of the support structure 110 of the present application is formed on the third support plate 13 made of a relatively high-density metal material rather than on the first support plate 11 and the second support plate 12 made of a relatively low-density non-metal material, so that the hollow structure 14 can be formed by chemical etching and does not need to be hollowed out by laser processing in the bending area 101.
  • the processing price of the hollow structure 14 can be reduced and the processing efficiency can be improved, thereby reducing the overall production cost of the display module 100.
  • the third support plate 13 is spliced with the first support plate 11 and the second support plate 12 respectively, and a first splicing seam 15 is provided between the first support plate 11 and the third support plate 13, and the first splicing seam 15 is located in the first non-bending area 102.
  • a second splicing seam 16 is provided between the second support plate 12 and the third support plate 13, and the second splicing seam 16 is located in the second non-bending area 103.
  • the first joint seam 15 and the second joint seam 16 are filled with thermoplastic material, so that the surfaces of the first support plate 11 , the second support plate 12 and the third support plate 13 are flush with the surfaces of the thermoplastic material in the first joint seam 15 and the second joint seam 16 .
  • the first splicing seam 15 between the first support plate 11 and the third support plate 13 and the second splicing seam 16 between the second support plate 12 and the third support plate 13 are respectively arranged in the first non-bending area 102 and the second non-bending area 103 (that is, arranged at a position outside the bending area 101), and the first splicing seam 15 and the second splicing seam 16 are smoothed with thermoplastic materials such as epoxy resin, so as to avoid bending stress causing the first splicing seam 15 and the second splicing seam 16 to be subjected to stress and cause interface cracking.
  • first support plate 11 and the second support plate 12 are respectively integrally formed with the third support plate 13. Specifically, the first support plate 11 and the second support plate 12 are respectively spliced into one body with the third support plate 13 through a thermoplastic molding process.
  • the side of the first support plate 11 close to the third support plate 13 and the side of the second support plate 12 close to the third support plate 13 each have a first combining portion 17, and the opposite two sides of the third support plate 13 have two second combining portions 18, and the first combining portion 17 and the second combining portion 18 are interlocked and spliced together with each other.
  • the first combining portion 17 includes a first protrusion 171 and a first avoidance groove 172 located between any two adjacent first protrusions 171
  • the second combining portion 18 includes a plurality of second protrusions 181 and a second avoidance groove 182 located between any two adjacent second protrusions 181
  • the first protrusion 171 is accommodated in the second avoidance groove 182
  • the second protrusion 181 is accommodated in the first avoidance groove 172.
  • the first combining portion 17 and the second combining portion 18 are both wavy in shape.
  • the first combining portion 17 and the second combining portion 18 are both trapezoidal.
  • the first combining portion 17 and the second combining portion 18 are both in a sawtooth shape.
  • the first combining portion 17 and the second combining portion 18 are both rectangular.
  • the shapes of the first protrusion 171 of the first combining portion 17 and the second protrusion 181 of the second combining portion 18 are not limited to wavy, trapezoidal, rectangular and sawtooth, but can also be other shapes or a combination of at least two of the wavy, trapezoidal, rectangular and sawtooth shapes.
  • the joining area of the metal material and the non-metal material at the first splicing seam 15 and the second splicing seam 16 is increased, so as to improve the bonding strength of the metal material and the non-metal material at the first splicing seam 15 and the second splicing seam 16, so as to make the splicing of the metal material and the non-metal material at the first splicing seam 15 and the second splicing seam 16 more reliable and firm.
  • the first support plate 11 and the second support plate 12 are made of at least one of glass fiber, carbon fiber, and a light and low-cost polymer material. In this embodiment, the first support plate 11 and the second support plate 12 are made of glass fiber.
  • the support structure 110 also includes a flat layer 20 and a protective layer 30.
  • the flat layer 20 and the protective layer 30 are respectively formed on two opposite surfaces of the composite support layer 10. Specifically, the flat layer 20 is formed on a side of the composite support layer 10 close to the display panel 120.
  • the flat layer 20 is formed by coating the first joint seam 15 and the second joint seam 16 with a flat layer material commonly used in the industry and curing the flat layer 20. In this way, the risk of marks when the support structure 110 and other components of the display module 100 are attached due to the uneven joint seams of two different materials can be reduced.
  • the flat layer 20 covers the first joint seam 15 and the second joint seam 16 .
  • the flat layer 20 also extends to the bending area 101 .
  • the orthographic projection of the flat layer 20 on the composite supporting layer 10 falls outside the hollow structure 14 .
  • the protective layer 30 covers the first splicing seam 15 , the second splicing seam 16 and the hollow structure 14 .
  • a fingerprint sensor hole 19 is provided on the first support plate 11 or the second support plate 12.
  • the fingerprint sensor hole 19 is filled with a transparent resin 191.
  • the end surface of the transparent resin 191 is flush with the surface of the first support plate 11 or the second support plate 12 around the fingerprint sensor hole 19.
  • the fingerprint sensor hole 19 is located on the first support plate 11.
  • the display module 100 further includes a fingerprint sensor (not shown), which is located opposite to the fingerprint sensor hole 19.
  • the fingerprint sensor hole 19 is set on the first support plate 11 or the second support plate 12 made of non-metallic material, and a transparent resin 191 is filled in the fingerprint sensor hole 19, so that the fingerprint recognition technology can be integrated into the folding screen and the risk of the imprint caused by the hole segment difference of the fingerprint sensor hole 19 being transferred to the display module 100 can be reduced.
  • a camera hole 192 is provided on the first support plate 11 or the second support plate 12 .
  • the camera hole 192 is filled with a light-transmitting material such as a transparent resin.
  • the support structure 110 is located on the backlight side of the display panel 120 .
  • the display panel 120 includes a display screen 121 , a back plate 122 and an optical adhesive layer 123 .
  • the back plate 122 is located at the backlight side of the display screen 121 .
  • the optical adhesive layer 123 is located between the back plate 122 and the support structure 110 .
  • the optical adhesive layer 123 bonds the flat layer 20 .
  • the optical adhesive layer 123 includes a first adhesive segment 1231 and a second adhesive segment 1232, and the first adhesive segment 1231 and the second adhesive segment 1232 are respectively located in the first non-bending area 102 and the second non-bending area 103. That is, there is a gap 1233 between the first adhesive segment 1231 and the second adhesive segment 1232, and the orthographic projection of the hollow structure 14 on the optical adhesive layer 123 falls within the gap 1233.
  • the support structure 110 located in the first non-bending area 102 and the second non-bending area 103 is bonded together with the display panel 120 (specifically, with the back panel 122), which can reduce the local thickness of the bending area 101 of the display module 100 to improve the bending stress of the display module 100 in the bending area 101.
  • the first adhesive segment 1231 and the second adhesive segment 1232 extend from the first non-bending area 102 and the second non-bending area 103 to the bending area 101, respectively, and the length of the extending portion of the first adhesive segment 1231 and the second adhesive segment 1232 in the bending area 101 is 1 mm-2 mm. In this way, the first adhesive segment 1231 and the second adhesive segment 1232 can be prevented from entering the hollow structure 14 of the bending area due to deformation under force when bending, thereby avoiding the stress concentration effect in the hollow structure 14 and further preventing the display module from being torn.
  • the flat layer 20 includes a first flat layer 21 and a second flat layer 22, the first flat layer 21 is located in the first non-bending area 102, the second flat layer 22 is located in the second non-bending area 103, and the first flat layer 21 and the second flat layer 22 extend from the first non-bending area 102 and the second non-bending area 103 to the bending area 101 respectively.
  • the first flat layer 21 and the second flat layer 22 cover the first splicing seam 15 and the second splicing seam 16 respectively.
  • the orthographic projection of the first adhesive segment 1231 on the composite supporting layer 10 falls within the orthographic projection of the first flat layer 21 on the composite supporting layer 10
  • the orthographic projection of the second adhesive segment 1232 on the composite supporting layer 10 falls within the orthographic projection of the second flat layer 22 on the composite supporting layer 10. If the first adhesive segment 1231 and the second adhesive segment 1232 cover the first flat layer 21 and the second flat layer 22 respectively, a stress concentration effect will occur between the end of the first adhesive segment 1231 and the first flat layer 21 and between the end of the second adhesive segment 1232 and the second flat layer 22.
  • the orthographic projection of the first adhesive segment 1231 on the composite supporting layer 10 falls within the orthographic projection of the first flat layer 21 on the composite supporting layer 10
  • the orthographic projection of the second adhesive segment 1232 on the composite supporting layer 10 falls within the orthographic projection of the second flat layer 22 on the composite supporting layer 10, so as to prevent this stress concentration effect.
  • the display panel 120 further includes a polarizer 124 and a cover plate 125, wherein the polarizer 124 is formed on the display screen 121, the polarizer 124 and the back plate 122 are respectively located on opposite sides of the display screen 121, and the cover plate 125 is formed on a side of the polarizer 124 away from the display screen 121.
  • the cover plate 125 includes an ultra-thin glass cover plate 1251 and a protective cover plate 1252, wherein the ultra-thin glass cover plate 1251 is formed on a side of the polarizer 124 away from the display screen 121, and the protective cover plate 1252 is formed on a side of the ultra-thin glass cover plate 1251 away from the polarizer 124.
  • the material of the protective cover plate 1252 is a transparent polymer material with good optical properties and wear resistance, which plays a role in protecting the display screen 121.
  • the material of the optical adhesive layer is an adhesive with the characteristics of colorless transparency, good light transmittance, high bonding strength, and small curing shrinkage.
  • the polarizer 124 is a polymer film layer with high polarization optical properties and resistance to high temperature and humidity.
  • the second embodiment of the present application provides another support structure 130, which is similar to the support structure 110, except that: at the first joint seam 15 and the second joint seam 16, the first support plate 11 and the second support plate 12 are respectively joined with the third support plate 13 by a concave-convex interlocking structure 131.
  • the concave-convex interlocking structure 131 includes a concave structure 1311 and a convex structure 1312, wherein the concave structure 1311 is located on one of the first joint portion 17 and the second joint portion 18, and the convex structure 1312 is located on the other of the first joint portion 17 and the second joint portion 18, and the concave structure 1311 and the convex structure 1312 are bonded by an adhesive layer 132, and one of the concave structure 1311 and the convex structure 1312 is located on the first support plate 11 and the second support plate 12, and the other is located on the third support plate 13.
  • the bonding area of the metal material and the non-metal material at the first splicing seam 15 and the second splicing seam 16 is increased, so as to improve the bonding force of the metal material and the non-metal material at the first splicing seam 15 and the second splicing seam 16, so that the splicing of the metal material and the non-metal material at the first splicing seam 15 and the second splicing seam 16 is more reliable and firm.
  • the bonding layer 132 is a gel layer. Since the gel layer has good elasticity and plastic deformation ability, it can effectively absorb the local deformation of the junction of two different materials and avoid undesirable behaviors such as unevenness on the surface of the composite board.
  • the convex structure 1312 is located on the first combination portion 17 of the third support plate 13, and the concave structure 1311 is located on the second combination portion 18 of the first support plate 11 and the second support plate 12.
  • the concave structure 1311 is formed from the second combination portion 18 to the inside of the first support plate 11 and the second support plate 12, and the convex structure 1312 extends from the first combination portion 17 to the direction away from the third support plate 13.
  • the convex structure 1312 and the first combination portion 17 are integrally formed and are in a step shape.
  • the step formed by the convex structure 1312 and the first combination portion 17 can be formed only on the side facing the flat layer 20, can also be formed on the side away from the flat layer 20, and can also be formed on both the side facing the flat layer 20 and the side away from the flat layer 20.
  • the step formed by the convex structure 1312 and the first combination portion 17 is formed on both the side facing the flat layer 20 and the side away from the flat layer 20.
  • the concave structure 1311 and the convex structure 1312 may also be respectively located on opposite sides of the third support plate 13. Accordingly, the convex structure 1312 and the concave structure 1311 are correspondingly formed on the first support plate 11 and the second support plate 12, as long as the concave-convex structures of the first combining portion 17 on the first support plate 11 and the corresponding second combining portion 18 of the third support plate 13 are opposite, and the concave-convex structures of the first combining portion 17 on the second support plate 12 and the corresponding second combining portion 18 of the third support plate 13 are opposite.
  • first combination portion 17 and the second combination portion 18 are both rectangular.
  • shapes of the first convex portion 171 of the first combination portion 17 and the second convex portion 181 of the second combination portion 18 are not limited to rectangles, but can also be at least one of wavy, trapezoidal, zigzag, etc.
  • the material of the first support plate 11 and the second support plate 12 is glass fiber or carbon fiber.
  • the first support plate 11 and the second support plate 12 each include N+1 first fiber layers 111, N second fiber layers 112 and N+1 resin layers 113.
  • the first fiber layers 111 and the second fiber layers 112 are alternately arranged.
  • the resin layer 113 is located on the first fiber layer 111 and covers the second fiber layer 112.
  • the angle between the extension direction of the fibers of the first fiber layer 111 and the extension direction of the fibers of the second fiber layer 112 is greater than 0° and less than 180°; wherein N is a positive integer greater than 1. In this way, the bending strength near the splicing position of the two materials during bending can be ensured.
  • the Y axis is the width direction of the display screen 121
  • the X axis is the length direction of the display screen 121
  • the Z axis is the thickness direction of the first support plate 11 and the second support plate 12.
  • the display screen 121 rotates around the Y axis when bent.
  • the first support plate 11 and the second support plate 12 include four first fiber layers 111, three second fiber layers 112, and four resin layers 113.
  • the thickness of the convex structure 1312 is equal to the sum of the thickness of two resin layers 113 and one first fiber layer 111.
  • a bonding layer 132 is further formed on the first convex portion 171 or the second convex portion 181, and the convex structure 1312 is bonded to the concave structure 1311 through the bonding layer 132.
  • the bonding layer 132 is made of gel.
  • an adhesive layer (such as a gel layer) is coated on the surface of the third support plate 13 that contacts the first support plate 11 and the second support plate 12, which can ensure the flatness and bonding strength of the first splicing seam 15 and the second splicing seam 16 of the entire composite support layer 10.
  • the gel has good elasticity and plastic deformation ability, it can effectively absorb the local deformation of the junction of two different materials, avoiding undesirable behaviors such as unevenness on the surface of the composite support layer.
  • the membrane layer structure of the first support plate 11 and the second support plate 12 is also the same as the membrane layer structure in this embodiment.
  • the present application further provides a method for manufacturing a display module, including:
  • Step S1 Please refer to FIG. 11A to FIG. 11E , the first support plate and the second support plate are made of non-metallic materials.
  • step S1 includes: first, referring to FIG. 9 and FIG. 11A, providing N+1 first fiber layers 111, N second fiber layers 112 and N+1 resin layers 113, alternately plying the second fiber layers 112 and the first fiber layers 111 in sequence, and soaking them in resin materials such as epoxy resin and thermal conductive film to form a resin layer 113 on the surface of the second fiber layer 112, and pre-pressing the resin layer 113, the second fiber layer 112 and the first fiber layer 111 to obtain a pre-pressed fiber structure 31.
  • the pre-pressed fiber structure 31 is made into a fiber sheet 33 by a thermoplastic molding process.
  • the fiber sheet 33 is surface treated.
  • a fingerprint sensor hole 19 and a first bonding portion 17 are formed on the fiber sheet 33 after the surface treatment.
  • the method further includes the step of: pre-stretching the second fiber layers 112 and the first fiber layers 111 .
  • N 1.
  • the angle between the extending direction of the fibers of the first fiber layer 111 and the extending direction of the fibers of the second fiber layer 112 is greater than 0° and less than 180°, that is, the extending direction of the fibers of the first fiber layer 111 is different from the extending direction of the fibers of the second fiber layer 112. Specifically, the angle between the extending direction of the fibers of the first fiber layer 111 and the extending direction of the fibers of the second fiber layer 112 is 90°.
  • the diameters of the fibers of the first fiber layer 111 and the second fiber layer 112 are 5-8 um.
  • the first fiber layer 111 and the second fiber layer 112 are made of glass fiber or carbon fiber.
  • the pre-pressed fiber structure 31 needs to be placed in a mold 32 first, and then the pre-pressed fiber structure 31 is made into the fiber sheet 33 through a thermoplastic molding process.
  • the mold 32 is a mirror-surface precision mold.
  • the pressing temperature in the thermoplastic molding process is 300° C. to 500° C.
  • the pressure is 3 MPa to 6 MPa
  • the thickness of the fiber sheet 33 is 100 ⁇ m to 150 ⁇ m.
  • the fiber sheet 33 is preliminarily surface treated by edge trimming, surface polishing, etc., so as to remove burrs, flash, defects, etc.
  • the fingerprint sensor hole 19 is formed by laser drilling and other directions, and the first joint portion 17 is formed by laser drilling and edge cutting.
  • the laser processing heat affected zone can be controlled within the range of 5 ⁇ m by controlling parameters such as laser intensity, power and light path to ensure the processing quality accuracy of the first joint portion 17 at the edge of the structure.
  • the fingerprint sensor hole 19 penetrates the fiber sheet 33 .
  • the first joint portion 17 is located at the side of the fiber sheet 33.
  • the first joint portion 17 includes a first convex portion 171 and a first avoidance groove 172 located between any two adjacent first convex portions 171.
  • the first combining portion 17 is wavy in shape.
  • the first combining portion 17 is trapezoidal.
  • the first combining portion 17 is in a sawtooth shape.
  • the first combining portion 17 is rectangular.
  • the shape of the first connecting portion 17 is not limited to the wavy, trapezoidal, rectangular and sawtooth shapes, but may also be other shapes or a combination of at least two of the wavy, trapezoidal, rectangular and sawtooth shapes.
  • a concave structure 1311 and/or a convex structure 1312 is formed on the first combining portion 17, the concave structure 1311 is formed from the first combining portion 17 to the inside of the fiber sheet 33, and the convex structure 1312 extends outward from the first combining portion 17.
  • Step S2 Referring to FIG. 11F , a third support plate 13 is made of metal material, and a hollow structure 14 is made on the third support plate 13 ; the density of the first support plate 11 and the second support plate 12 is less than that of the third support plate.
  • Step S3 Please refer to FIG. 11G to FIG. 11I , the first support plate 11 and the second support plate 12 are respectively spliced on two opposite sides of the third support plate 13 to obtain a support structure 110 .
  • first support plate 11 and the second support plate 12 are pre-joined with the third support plate 13 respectively, and then a thermoplastic material such as epoxy resin is applied to the joint positions of the first support plate 11 and the second support plate 12 and the third support plate 13 respectively, and the composite support layer 10 is obtained by splicing them together through a thermoplastic molding process, and the composite support layer 10 is cooled. Finally, a flat layer material commonly used in the industry is applied to one surface of the joint of the composite support layer 10, and the support structure 110 is obtained by secondary thermoplastic molding.
  • a thermoplastic material such as epoxy resin
  • the first support plate 11 and the second support plate 12 are respectively located on two opposite sides of the third support plate 13 .
  • the mold is a mirror-surface precision mold.
  • the pressing temperature in the thermoplastic molding process is 400° C. to 500° C.
  • the pressure is 6 MPa to 10 MPa
  • the cooling time of the composite support layer 10 is within 10 minutes.
  • the third support plate 13 has a hollow structure 14 in the middle, and the third support plate 13 has a second combining portion 18 on two opposite sides respectively.
  • the first combining portion 17 and the second combining portion 18 are interlocked and spliced together.
  • the second combining portion 18 includes a plurality of second protrusions 181 and a second avoiding groove 182 located between any two adjacent second protrusions 181 .
  • the second combining portion 18 is wavy in shape.
  • the second combining portions 18 are all trapezoidal.
  • the second combining portions 18 are all in a sawtooth shape.
  • the second combining portions 18 are all rectangular.
  • the shape of the second connecting portion 18 is not limited to the wavy, trapezoidal, rectangular and sawtooth shapes, but may also be other shapes or a combination of at least two of the wavy, trapezoidal, rectangular and sawtooth shapes.
  • a concave structure 1311 and/or a convex structure 1312 is formed on the second combining portion 18.
  • the concave structure 1311 is formed from the second combining portion 18 to the inside of the third support plate 13, and the convex structure 1312 extends outward from the second combining portion 18.
  • the convex structure 1312 is accommodated in the concave structure 1311 .
  • the concave structure 1311 and the convex structure 1312 are bonded to each other via a bonding layer 132 .
  • the orthographic projection of the flat layer 20 on the composite supporting layer 10 falls outside the hollow structure 14 .
  • the thickness of the planar layer 20 is 5 ⁇ m-10 ⁇ m.
  • the method further includes forming a protective layer 30 covering the hollow structure 14 on the surface of the composite support layer 10 facing away from the flat layer 20 .
  • the support structure 110 is surface treated by edge trimming, surface polishing, etc. to remove burrs, flash, defects, etc.
  • Step S4 Referring to FIG. 1 , the support structure 110 is attached to a side of a display panel 120 away from the light output to obtain a display module 100 .
  • the display panel 120 includes a bending zone 101, a first non-bending zone 102 and a second non-bending zone 103, the bending zone 101 is located between the first non-bending zone 102 and the second non-bending zone 103; the first support plate 11 is located in the first non-bending zone 102, the second support plate 12 is located in the second non-bending zone 103, and the third support plate 13 is located in the bending zone 101.
  • the support structure and display module provided in the present application use two materials with different densities to form a composite support layer, and the density of the third support plate is greater than the density of the first support plate and the second support plate.
  • the first support plate and the second support plate are respectively located in the first non-bending area and the second non-bending area of the display module, and the third support plate is located in the bending area of the display module.
  • the present application integrates two materials with different densities into one, and the first support plate and the second support plate are made of a material with lower density, which can reduce the weight of the display module as a whole.
  • the material of the third support plate of the support structure and display module provided by the present application is metal, and the material of the first support plate and the second support plate is non-metal.
  • the hollow structure of the support structure of the present application is formed on the third support plate made of a relatively high-density metal material rather than on the first support plate and the second support plate made of a relatively low-density non-metal material, so that the hollow structure can be formed by chemical etching processing and does not need to be processed by laser processing to hollow out the bending area, which can reduce the processing price of the hollow structure and improve the processing efficiency, thereby reducing the overall production cost of the display module.
  • thermoplastic materials such as epoxy resin to smooth the first splicing seam and the second splicing seam, it is possible to avoid bending stress causing the first splicing seam and the second splicing seam to be stressed and cause interface cracking.
  • the combining area of the metal material and the non-metal material at the first splicing seam and the second splicing seam is increased, thereby improving the bonding strength of the metal material and the non-metal material at the first splicing seam and the second splicing seam, so that the splicing of the metal material and the non-metal material at the first splicing seam and the second splicing seam is more reliable and firm.
  • the flat layer is formed by coating the first joint seam and the second joint seam with a flat layer material commonly used in the industry and curing the flat layer through secondary thermoplastic molding. In this way, the risk of marks when the support structure and other components of the display module are attached due to the uneven joint seams of two different materials can be reduced.
  • the fingerprint recognition technology can be integrated into the folding screen and the risk of transferring the imprint caused by the segment difference of the fingerprint sensor hole to the display module can be reduced.
  • the local thickness of the bending area of the display module can be reduced to improve the bending stress of the display module in the bending area.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Theoretical Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示模组(100),包括分别位于显示模组(100)的第一非弯折区(102)和第二非弯折区(103)的第一支撑板(11)和第二支撑板(12),第三支撑板(13)位于显示模组(100)的弯折区(101),第三支撑板(13)的密度大于第一支撑板(11)及第二支撑板(12)的密度,将两种密度不同的材料整合成一体,采用密度较低的材料制作的第一支撑板(11)和第二支撑板(12),可以从整体上降低显示模组(100)的重量。

Description

显示模组 技术领域
本申请涉及可折叠显示技术领域,尤其涉及一种显示模组。
背景技术
折叠手机实现了整机体积小型化和大屏显示和的消费需求,受到了广大消费者的青睐。柔性折叠屏是折叠手机的重要组成部分之一,而作为折叠手机的显示主体,OLED折叠屏显示模组的重量主要集中于OLED折叠屏显示模组的支撑层上。通常情况下,为提高OLED折叠屏显示模组的支撑性和平整度,OLED折叠屏显示模组往往采用金属板作为支撑层,如不锈钢、钛合金、铜合金等。由于金属材料的密度往往过高,因此导致OLED折叠屏显示模组的整体重量较大。此外,支撑层如果直接采用碳纤维、钛合金等材料,因材料原料成本过高,导致模组支撑层的整体价格无法有效降低。
从结构功能角度上,OLED折叠屏显示模组分为弯折区和非弯折区,为改善弯折区的弯折性能,通常将弯折区的结构部分采用镂空式通孔结构设计。因此要求弯折区的通孔结构具备足够的强度。为提高加工效率和成本,通孔结构往往采用化学蚀刻加工方式成型,此种加工方法可以批量化生产,便于降低整体加工成本。而非金属材料碳纤维、玻璃纤维等材料则需要通过激光加工的方式将弯折区进行镂空结构设计处理,因此加工价格昂贵,且加工效率较低,导致整体成本偏高,无法批量生产。
技术问题
有鉴于此,本申请提供一种降低显示模组的整体重量的显示模组。
技术解决方案
为解决上述问题,本申请提供的技术方案如下:
本申请提供一种显示模组,包括显示面板及形成在所述显示面板的远离出光的一侧的支撑结构,所述显示面板为可折叠显示面板,所述显示面板包括弯折区、第一非弯折区及第二非弯折区,所述弯折区位于所述第一非弯折区和所述第二非弯折区之间;所述支撑结构包括复合支撑层,所述复合支撑层包括:
第一支撑板,位于所述第一非弯折区;
第二支撑板,位于所述第二非弯折区;及
第三支撑板,位于所述第一支撑板和所述第二支撑板之间且位于所述弯折区;所述第三支撑板分别与所述第一支撑板和所述第二支撑板连接,所述第三支撑板上具有镂空结构;
其中,所述第一支撑板及所述第二支撑板的密度小于所述第三支撑板的密度。
在本申请一可选实施例中,所述第一支撑板与所述第三支撑板之间具有第一拼接缝,所述第一拼接缝位于所述第一非弯折区内;
所述第二支撑板与所述第三支撑板之间具有第二拼接缝,所述第二拼接缝位于所述第二非弯折区内。
在本申请一可选实施例中,所述第一拼接缝及所述第二拼接缝填充有热塑性材料,以使得所述第一支撑板、所述第二支撑板及所述第三支撑板的表面与所述第一拼接缝及所述第二拼接缝平齐。
在本申请一可选实施例中,所述支撑结构还包括一平坦层,所述平坦层形成在所述复合支撑层的靠近所述显示面板的一侧且覆盖所述第一拼接缝及所述第二拼接缝中的所述热塑性材料的表面。
在本申请一可选实施例中,所述平坦层在所述复合支撑层上的正投影落在所述镂空结构之外。
在本申请一可选实施例中,所述支撑结构还包括一保护层,所述保护层位于所述复合支撑层的远离所述平坦层的表面上,所述保护层覆盖所述第一拼接缝、所述第二拼接缝及所述镂空结构。
在本申请一可选实施例中,所述第三支撑板的材质为金属;所述第一支撑板及所述第二支撑板的材质为非金属。
在本申请一可选实施例中,在所述第一拼接缝及所述第二拼接缝处,所述第一支撑板靠近所述第三支撑板的一侧及所述第二支撑板靠近所述第三支撑板的一侧各具有第一结合部,所述第三支撑板的相对两侧边具有第二结合部,所述第一结合部与所述第二结合部相嵌合且相互交错拼接在一起。
在本申请一可选实施例中,所述第一结合部包括第一凸部及位于任意两个相邻的所述第一凸部之间的第一避让槽,所述第二结合部包括多个第二凸部及位于任意两个相邻的所述第二凸部之间的第二避让槽,所述第一凸部收容在所述第二避让槽内,所述第二凸部收容在所述第一避让槽内。
在本申请一可选实施例中,所述第一结合部及所述第二结合部呈波浪形、梯形、矩形及锯齿形中的至少一种。
在本申请一可选实施例中,在所述第一拼接缝及所述第二拼接缝处,所述第一支撑板及所述第二支撑板分别与所述第三支撑板采用凹凸对插结构进行拼接。
在本申请一可选实施例中,所述凹凸对插结构包括凹结构及凸结构,所述凹结构及所述凸结构中的一个位于所述第一支撑板和第二支撑板上,另一个位于所述第三支撑板上;所述凹结构自所述第一结合部和所述第二结合部中的一个的表面向其内部凹陷形成,所述凸结构自所述第一结合部和所述第二结合部中的另一个的表面延伸而出,所述凹结构与所述凸结构之间通过粘结层粘结在一起。
在本申请一可选实施例中,所述第一支撑板或所述第二支撑板上具有一指纹传感器孔,所述指纹传感器孔内填充有透明树脂,所述透明树脂的端面与所述指纹传感器孔周围的所述第一支撑板或所述第二支撑板的表面平齐。
在本申请一可选实施例中,所述第一支撑板及所述第二支撑板的材质为玻璃纤维、碳纤维及高分子材料中的至少一种。
在本申请一可选实施例中,所述第一支撑板及所述第二支撑板的材质为玻璃纤维或碳纤维;所述第一支撑板及所述第二支撑板均包括N+1个第一纤维层、N个第二纤维层及N+1个树脂层,所述第一纤维层与所述第二纤维层交替设置,所述树脂层位于所述第一纤维层上且包覆所述第二纤维层,所述第一纤维层的纤维的延伸方向与所述第二纤维层的纤维的延伸方向之间的夹角大于0°且小于180°;其中,N为大于1的正整数。
在本申请一可选实施例中,所述显示面板包括显示屏、背板及光学胶层,所述背板位于所述显示屏的背光侧,所述光学胶层位于所述背板与所述支撑结构之间,所述光学胶层粘结所述平坦层。
在本申请一可选实施例中,所述光学胶层包括第一胶段及第二胶段,所述第一胶段及所述第二胶段分别位于所述第一非弯折区及所述第二非弯折区。
在本申请一可选实施例中,所述平坦层包括第一平坦层及第二平坦层,所述第一平坦层位于所述第一非弯折区内,所述第二平坦层位于所述第二非弯折区内;所述第一胶段在所述复合支撑层上的正投影落在所述第一平坦层在所述复合支撑层上。
在本申请一可选实施例中,所述第一胶段及所述第二胶段分别自所述第一非弯折区和所述第二非弯折区向所述弯折区延伸,所述第一胶段及所述第二胶段分别在所述弯折区内的延伸部分的长度为1mm-2mm。
在本申请一可选实施例中,所述第一支撑板及所述第二支撑板分别与所述第三支撑板一体成型。
有益效果
本申请提供的显示模组,采用两种密度不同的材料形成复合支撑层,且所述第三支撑板的密度大于所述第一支撑板及所述第二支撑板的密度,第一支撑板和第二支撑板分别位于显示模组的第一非弯折区和第二非弯折区,第三支撑板位于显示模组的弯折区;本申请将两种密度不同的材料整合成一体,采用密度较低的材料制作的第一支撑板和第二支撑板,可以从整体上降低显示模组的重量。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其它的附图。
图1为本申请第一实施例提供的一种显示模组的剖视图。
图2为图1所示的显示模组的一种复合支撑层的俯视图。
图3为图2所示的复合支撑层的仰视图。
图4为图2所示的复合支撑层的局部分解图。
图5为本申请另一些实施例提供的一种复合支撑层的俯视图。
图6为本申请再一些实施例提供的一种复合支撑层的俯视图。
图7为本申请又一些实施例提供的一种复合支撑层的俯视图。
图8为本申请第二实施例提供的一种复合支撑层的局部分解图及A位置和B位置处的局部放大图。
图9为图7所示的复合支撑层的拼接处的沿VI-VI的剖视图。
图10为本申请提供的支撑结构的制作方法的流程图。
图11A-图11I为本申请提供的支撑结构的制作流程示意图。
本发明的实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述。显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
在本申请的描述中,需要理解的是,术语“上”、“下”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本申请和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本申请的限制。此外,术语“第一”、“第二”仅用于描述目的,而不能理解为指示或暗示相对重要性或者隐含指明所指示的技术特征的数量。由此,限定有“第一”、“第二”的特征可以明示或者隐含地包括一个或者更多个所述特征。在本申请的描述中,“多个”的含义是两个或两个以上,除非另有明确具体地限定。
本申请可以在不同实施中重复参考数字和/或参考字母,这种重复是为了简化和清楚的目的,其本身不指示所讨论各种实施方式和/或设置之间的关系。
以下将结合具体实施例及附图对本申请提供的支撑结构及显示模组进行详细描述。
请参阅图1,本申请第一实施例提供一种显示模组100,所述显示模组100包括支撑结构110及显示面板120,所述支撑结构110位于所述显示面板120上。具体地,所述支撑结构110位于所述显示面板120的远离出光的一侧。
其中,所述显示面板120包括弯折区101、第一非弯折区102及第二非弯折区103,所述弯折区101位于所述第一非弯折区102和所述第二非弯折区103之间。
其中,所述支撑结构110包括复合支撑层10,所述复合支撑层10包括第一支撑板11、第二支撑板12及第三支撑板13,所述第一支撑板11位于所述第一非弯折区102内,所述第二支撑板12位于所述第二非弯折区103内,所述第三支撑板13位于所述第一支撑板11和所述第二支撑板12之间且位于所述弯折区101,所述第三支撑板13分别与所述第一支撑板11和所述第二支撑板12连接,所述第三支撑板13上具有镂空结构14。所述第一支撑板11及所述第二支撑板12的密度小于所述第三支撑板13的密度。
本申请提供的支撑结构110及显示模组100,采用两种密度不同的材料形成复合支撑层10,且所述第三支撑板13的密度大于所述第一支撑板11及所述第二支撑板12的密度,第一支撑板11和第二支撑板12分别位于显示模组100的第一非弯折区102和第二非弯折区103,第三支撑板13位于显示模组100的弯折区101;本申请将两种密度不同的材料整合成一体,采用密度较低的材料制作的第一支撑板11和第二支撑板12,可以从整体上降低显示模组的重量。
其中,所述第三支撑板13的材质为金属,所述第一支撑板11及所述第二支撑板12的材质为非金属。如此,本申请的支撑结构110的镂空结构14是形成在密度相对较高的金属材料制作成的第三支撑板13上而非形成在密度相对较低的非金属材料制作成的第一支撑板11和第二支撑板12上,从而镂空结构14可以通过化学蚀刻加工方式成型并不需要通过激光加工的方式将弯折区101进行镂空结构设计处理,能够降低镂空结构14的加工价格并能提高加工效率,进而能够从整体上降低显示模组100的制作成本。
其中,所述第三支撑板13分别与所述第一支撑板11和所述第二支撑板12拼接,所述第一支撑板11与所述第三支撑板13之间具有第一拼接缝15,所述第一拼接缝15位于所述第一非弯折区102内。所述第二支撑板12与所述第三支撑板13之间具有第二拼接缝16,所述第二拼接缝16位于所述第二非弯折区103内。
其中,所述第一拼接缝15及所述第二拼接缝16填充有热塑性材料,以使得所述第一支撑板11、所述第二支撑板12及所述第三支撑板13的表面与所述第一拼接缝15及所述第二拼接缝16中的所述热塑性材料的表面平齐。
将所述第一支撑板11与所述第三支撑板13之间的第一拼接缝15以及所述第二支撑板12与所述第三支撑板13之间的第二拼接缝16分别设置在所述第一非弯折区102以及所述第二非弯折区103内(即设置在弯折区101以外的位置),并采用环氧树脂等热塑性材料对所述第一拼接缝15及所述第二拼接缝16进行平整处理,可以避免弯折应力导致所述第一拼接缝15及所述第二拼接缝16受力引发界面开裂。
在本申请一可选实施例中,所述第一支撑板11及所述第二支撑板12分别与所述第三支撑板13一体成型。具体地,所述第一支撑板11及所述第二支撑板12通过热塑模压成型工艺分别与所述第三支撑板13拼接为一体。
请参阅图2至图4,在本申请一可选实施例中,在所述支撑结构110的所述第一拼接缝15及所述第二拼接缝16处,所述第一支撑板11靠近所述第三支撑板13的一侧及所述第二支撑板12靠近所述第三支撑板13的一侧各具有第一结合部17,所述第三支撑板13的相对两侧边具有两个第二结合部18,所述第一结合部17与所述第二结合部18相嵌合且相互交错拼接在一起。
其中,所述第一结合部17包括第一凸部171及位于任意两个相邻的所述第一凸部171之间的第一避让槽172,所述第二结合部18包括多个第二凸部181及位于任意两个相邻的所述第二凸部181之间的第二避让槽182,所述第一凸部171收容在所述第二避让槽182内,所述第二凸部181收容在所述第一避让槽172内。
具体地,请参阅图2-图4,在本申请一可选实施例中,所述第一结合部17及所述第二结合部18均呈波浪形。
具体地,请参阅图5,在本申请一可选实施例中,所述第一结合部17及所述第二结合部18均呈梯形。
具体地,请参阅图6,在本申请一可选实施例中,所述第一结合部17及所述第二结合部18均呈锯齿形。
具体地,请参阅图7,在本申请一可选实施例中,所述第一结合部17及所述第二结合部18均呈矩形。
当然,在其他实施例中,所述第一结合部17的第一凸部171及所述第二结合部18的第二凸部181的形状并不局限于波浪形、梯形、矩形及锯齿形,还可以是其他的形状或是波浪形、梯形、矩形及锯齿形中的至少两种的组合。
通过将所述第一结合部17与所述第二结合部18相嵌合且相互交错拼接在一起,以增加所述第一拼接缝15及第二拼接缝16处的金属材料和非金属材料的结合面积,以提高所述第一拼接缝15及第二拼接缝16处的金属材料和非金属材料的结合力,以使得第一拼接缝15及第二拼接缝16处的金属材料和非金属材料的拼接更为可靠、牢固。
在本申请一可选实施例中,所述第一支撑板11及所述第二支撑板12的材质为玻璃纤维、碳纤维、质量较轻且成本低廉的高分子材料中的至少一种。在本实施例中,所述第一支撑板11及所述第二支撑板12的材质为玻璃纤维。
请再次参阅图1,所述支撑结构110还包括平坦层20及保护层30,所述平坦层20及所述保护层30分别形成在所述复合支撑层10的相对两表面上,具体地,所述平坦层20形成在所述复合支撑层10靠近所述显示面板120的一侧。
通过二次热塑成型方式在所述第一拼接缝15及所述第二拼接缝16表面涂布业界常用的平坦层材料经固化形成所述平坦层20。如此,可以降低因两种不同材料的拼接缝不平整导致的支撑结构110与显示模组100的其他组件贴合时存在印痕的风险。
在本申请一可选实施例中,所述平坦层20覆盖所述第一拼接缝15及所述第二拼接缝16。
在本申请一可选实施例中,所述平坦层20还延伸至所述弯折区101。
在本申请一可选实施例中,所述平坦层20在所述复合支撑层10上的正投影落在所述镂空结构14之外。
在本申请一可选实施例中,所述保护层30覆盖所述第一拼接缝15、所述第二拼接缝16及所述镂空结构14。
请参阅图2,在本申请一可选实施例中,所述第一支撑板11或所述第二支撑板12上具有一指纹传感器孔19,所述指纹传感器孔19内填充有透明树脂191,所述透明树脂191的端面与所述指纹传感器孔19周围的所述第一支撑板11或所述第二支撑板12的表面平齐。在本实施例中,所述指纹传感器孔19位于所述第一支撑板11上。相应地,所述显示模组100还包括一指纹传感器(图未示),所述指纹传感器与所述指纹传感器孔19位置相对。
其中,将所述指纹传感器孔19设置在非金属材料制作的第一支撑板11或第二支撑板12上,并在所述指纹传感器孔19中填充透明树脂191,可以将指纹识别技术集成于折叠屏中并降低指纹传感器孔19孔段位差所引起的印痕转移到显示模组100的风险。
请参阅图2,在本申请一可选实施例中,所述第一支撑板11或所述第二支撑板12上具有一摄像孔192,所述摄像孔192内填充有透明树脂等透光材料。
请再次参阅图1,在本申请一可选实施例中,所述支撑结构110位于所述显示面板120的背光侧。
其中,所述显示面板120包括显示屏121、背板122及光学胶层123,所述背板122位于所述显示屏121的背光侧,所述光学胶层123位于所述背板122与所述支撑结构110之间,所述光学胶层123粘结所述平坦层20。
其中,所述光学胶层123包括第一胶段1231及第二胶段1232,所述第一胶段1231及所述第二胶段1232分别位于所述第一非弯折区102及所述第二非弯折区103。也即,所述第一胶段1231及第二胶段1232之间具有间隙1233,所述镂空结构14在所述光学胶层123上的正投影落在所述间隙1233内。
其中,采用分段式光学透明胶将位于第一非弯折区102和第二非弯折区103内的支撑结构110与显示面板120(具体地,与背板122)粘结在一起,可以降低显示模组100的弯折区101的局部厚度,以改善弯折区101内显示模组100的弯折应力。
其中,所述第一胶段1231及所述第二胶段1232分别自所述第一非弯折区102和所述第二非弯折区103向所述弯折区101延伸,所述第一胶段1231及所述第二胶段1232分别在所述弯折区101内的延伸部分的长度为1mm-2mm。如此,可以避免所述第一胶段1231及所述第二胶段1232在弯折时因受力变形而进入弯折区的镂空结构14内,从而能够避免镂空结构14内产生应力集中效应,进一步避免显示模组撕裂。
在本申请一可选实施例中,所述平坦层20包括第一平坦层21及第二平坦层22,所述第一平坦层21位于所述第一非弯折区102内,所述第二平坦层22位于所述第二非弯折区103内,所述第一平坦层21及所述第二平坦层22分别自所述第一非弯折区102及所述第二非弯折区103向所述弯折区101延伸。所述第一平坦层21及所述第二平坦层22并分别覆盖所述第一拼接缝15及所述第二拼接缝16。
在本申请一可选实施例中,所述第一胶段1231在所述复合支撑层10上的正投影落在所述第一平坦层21在所述复合支撑层10上的正投影内,所述第二胶段1232在所述复合支撑层10上的正投影落在所述第二平坦层22在所述复合支撑层10上的正投影内。如果第一胶段1231和第二胶段1232分别覆盖住第一平坦层21和第二平坦层22,第一胶段1231和第一平坦层21的端部之间以及第二胶段1232和第二平坦层22的端部之间会产生应力集中效应,将第一胶段1231在所述复合支撑层10上的正投影落在所述第一平坦层21在所述复合支撑层10上的正投影内,所述第二胶段1232在所述复合支撑层10上的正投影落在所述第二平坦层22在所述复合支撑层10上的正投影内,可以防止这个应力集中效应。
其中,所述显示面板120还包括偏光片124及盖板125,所述偏光片124形成在所述显示屏121上,所述偏光片124及所述背板122分别位于所述显示屏121的相背两侧,所述盖板125形成在所述偏光片124的背离所述显示屏121的一侧。在本实施例中,所述盖板125包括超薄玻璃盖板1251及保护盖板1252,所述超薄玻璃盖板1251形成在所述偏光片124的背离所述显示屏121的一侧,所述保护盖板1252形成在所述超薄玻璃盖板1251的背离所述偏光片124的一侧。其中,所述保护盖板1252的材质为透明高分子材料,具备良好光学特性以及抗磨损的特性,起到保护所述显示屏121的作用,所述光学胶层的材质为具有无色透明、光通率良好、胶结强度高、固化收缩小等特点的粘胶剂,所述偏光片124为具备高偏振度光学特性、耐高温高湿等特点的高分子薄膜层。
请参阅图8至图9,本申请第二实施例提供了另一种支撑结构130,所述支撑结构130与所述支撑结构110结构相似,其不同在于:在所述第一拼接缝15及所述第二拼接缝16处,所述第一支撑板11及所述第二支撑板12分别与所述第三支撑板13采用凹凸对插结构131进行拼接。所述凹凸对插结构131包括凹结构1311及凸结构1312,所述凹结构1311位于所述第一结合部17和所述第二结合部18中的一个上,所述凸结构1312位于所述第一结合部17和所述第二结合部18中的另一个上,所述凹结构1311与所述凸结构1312之间通过粘结层132粘结,所述凹结构1311及所述凸结构1312中的一个位于所述第一支撑板11和第二支撑板12上,另一个位于所述第三支撑板13上。
通过将凹凸对插结构131进行拼接,以增加所述第一拼接缝15及第二拼接缝16处的金属材料和非金属材料的结合面积,以提高所述第一拼接缝15及第二拼接缝16处的金属材料和非金属材料的结合力,以使得第一拼接缝15及第二拼接缝16处的金属材料和非金属材料的拼接更为可靠、牢固。
在本申请一可选实施例中,所述粘结层132为凝胶层,因凝胶层具有良好的弹性和塑性变形能力,可以有效地吸收两种不同材质材料结合处的局部变形,避免复合板表面出现不平整等不良行为。
在本实施例中,所述凸结构1312位于所述第三支撑板13的所述第一结合部17上,所述凹结构1311位于所述第一支撑板11及第二支撑板12的所述第二结合部18上。在本实施例中,所述凹结构1311自所述第二结合部18向所述第一支撑板11及第二支撑板12的内部凹陷形成,所述凸结构1312自所述第一结合部17向远离所述第三支撑板13的方向延伸而出。具体地,所述凸结构1312与所述第一结合部17一体成型且呈台阶状。其中,所述凸结构1312与所述第一结合部17形成的台阶可以只形成在面向所述平坦层20的一侧,也可以形成在背离所述平坦层20的一侧,还可以同时形成在面向所述平坦层20的一侧以及背离所述平坦层20的一侧上。在本实施例中,所述凸结构1312与所述第一结合部17形成的台阶同时形成在面向所述平坦层20的一侧以及背离所述平坦层20的一侧上。
当然,在其他实施例中,所述凹结构1311及所述凸结构1312也可以分别位于所述第三支撑板13的相对两侧上,相应地,所述第一支撑板11和所述第二支撑板12上对应形成所述凸结构1312及所述凹结构1311,只要保证所述第一支撑板11上的所述第一结合部17和与之对应的所述第三支撑板13的第二结合部18的凹凸结构相反即可,以及保证所述第二支撑板12上的所述第一结合部17和与之对应的所述第三支撑板13的第二结合部18的凹凸结构相反即可。
在本实施例中,所述第一结合部17及所述第二结合部18均呈矩形。当然,所述第一结合部17的第一凸部171及所述第二结合部18的第二凸部181的形状不局限于矩形,还可以为波浪形、梯形、锯齿形等中的至少一种。
具体地,请再次参阅图9,所述第一支撑板11及所述第二支撑板12的材质为玻璃纤维或碳纤维。所述第一支撑板11及所述第二支撑板12均包括N+1个第一纤维层111、N个第二纤维层112及N+1个树脂层113,所述第一纤维层111与所述第二纤维层112交替设置,所述树脂层113位于所述第一纤维层111上且包覆所述第二纤维层112。所述第一纤维层111的纤维的延伸方向与所述第二纤维层112的纤维的延伸方向之间的夹角大于0°且小于180°;其中,N为大于1的正整数。如此,可以确保弯折时两种材质拼合位置附近的弯折强度。
其中,Y轴为显示屏121的宽度方向,X轴为显示屏121的长度方向,Z轴为所述第一支撑板11及所述第二支撑板12的厚度方向。显示屏121弯折时绕Y轴转动。
请参阅图9,在本实施例中,N=3,也即,所述第一支撑板11及所述第二支撑板12包括4个所述第一纤维层111、3个所述第二纤维层112及4个所述树脂层113。所述凸结构1312的厚度等于两层树脂层113及一所述第一纤维层111的厚度之和。
具体地,请再次参阅图9,所述第一凸部171或所述第二凸部181上还形成有粘结层132,所述凸结构1312分别通过所述粘结层132与所述凹结构1311粘结在一起。在本实施例中,所述粘结层132的材质为凝胶。
其中,在第三支撑板13的与第一支撑板11及第二支撑板12接触的表面上涂敷有粘结层(例如凝胶层),可以确保整个复合支撑层10的第一拼接缝15及第二拼接缝16处的平整性与结合强度,同时因凝胶具有良好的弹性和塑性变形能力,可以有效地吸收两种不同材质材料结合处的局部变形,避免复合支撑层表面出现不平整等不良行为。
当然,在第一实施例中,所述第一支撑板11和所述第二支撑板12的材质选自玻璃纤维或碳纤维等纤维类材料时,所述第一支撑板11和所述第二支撑板12的膜层结构也与本实施例中的膜层结构相同。
请参阅图10及图11A-图11I,本申请还提供一种显示模组的制作方法,包括:
步骤S1:请参阅图11A-图11E,采用非金属材料制作第一支撑板和第二支撑板。
具体的,步骤S1包括:第一,请参阅图9及图11A,提供N+1个第一纤维层111、N个第二纤维层112及N+1个树脂层113,将所述第二纤维层112及所述第一纤维层111依次交替铺层,并将其在环氧树脂、导热薄膜等树脂材料中浸润,以在所述第二纤维层112表面形成树脂层113,并预压合所述树脂层113、所述第二纤维层112及所述第一纤维层111,以得到预压合纤维结构31。第二,请参阅图11B至图11C,通过热塑成型工艺将预压合纤维结构31制作成纤维薄板33。第三,请参阅图11D,对所述纤维薄板33进行表面处理。第四,请参阅图11D,在表面处理后的所述纤维薄板33上形成指纹传感器孔19及第一结合部17。第五,请参阅图11E,在所述指纹传感器孔19内填充透明树脂191,并采用模压成型工艺,使得所述透明树脂191的端面与所述指纹传感器孔19周围的纤维薄板33的表面平齐,以得到所述第一支撑板11或所述第二支撑板12。
具体地,在步骤“将所述第二纤维层112及所述第一纤维层111依次交替铺层”之前还包括步骤:预拉伸所述第二纤维层112及所述第一纤维层111。
在本实施例中,N=1。
在本申请一可选实施例中,所述第一纤维层111的纤维的延伸方向与所述第二纤维层112的纤维的延伸方向之间的夹角大于0°且小于180°,也即,所述第一纤维层111的纤维的延伸方向与所述第二纤维层112的纤维的延伸方向不同。具体地,所述第一纤维层111的纤维的延伸方向与所述第二纤维层112的纤维的延伸方向之间的夹角为90°。
在本申请一可选实施例中,所述第一纤维层111及述第二纤维层112的纤维的直径为5~8um。
在本申请一可选实施例中,所述第一纤维层111及述第二纤维层112的材质为玻璃纤维或碳纤维等。
其中,需要先将所述预压合纤维结构31置于模具32,再通过热塑成型工艺将所述预压合纤维结构31制作成所述纤维薄板33。
其中,所述模具32为镜面精密模具。热塑成型工艺中的压合温度为300℃~500℃,压力为3MPa~6MPa,所述纤维薄板33的厚度为100μm~150μm。
具体地,通过边缘修整、表面抛光等方式对所述纤维薄板33进行初步表面处理,以去除毛刺、飞边、残缺等不良缺陷。
其中,通过激光打孔等方向形成所述指纹传感器孔19,并通过激光打孔以及切边的方式形成所述第一结合部17。可以通过控制激光强度、功率以及光径等参数,将激光加工热影响区控制在5μm范围内,以确保结构边缘的所述第一结合部17的加工质量精度。
其中,所述指纹传感器孔19贯穿所述纤维薄板33。
所述第一结合部17位于所述纤维薄板33的侧边。其中,所述第一结合部17包括第一凸部171及位于任意两个相邻的所述第一凸部171之间的第一避让槽172。
具体地,请参阅图2-图4,在本申请一可选实施例中,所述第一结合部17呈波浪形。
具体地,请参阅图5,在本申请一可选实施例中,所述第一结合部17呈梯形。
具体地,请参阅图6,在本申请一可选实施例中,所述第一结合部17呈锯齿形。
具体地,请参阅图7,在本申请一可选实施例中,所述第一结合部17呈矩形。
当然,在其他实施例中,所述第一结合部17的形状并不局限于波浪形、梯形、矩形及锯齿形,还可以是其他的形状或是波浪形、梯形、矩形及锯齿形中的至少两种的组合。
在本申请其他实施例中,请参阅图8,所述第一结合部17上形成有凹结构1311及/或凸结构1312,所述凹结构1311自所述第一结合部17向所述纤维薄板33的内部凹陷形成,所述凸结构1312自所述第一结合部17向外延伸而出。
步骤S2:请参考图11F,采用金属材料制作第三支撑板13,并在所述第三支撑板13上制作镂空结构14;所述第一支撑板11及所述第二支撑板12的密度小于所述第三支撑板的密度。
步骤S3:请参考图11G-图11I,将所述第一支撑板11和所述第二支撑板12分别拼接在所述第三支撑板13的相对的两侧,得到支撑结构110。
具体地,先将一个所述第一支撑板11和一个所述第二支撑板12分别与所述第三支撑板13预拼接,再在所述第一支撑板11和所述第二支撑板12分别与所述第三支撑板13的拼接位置处涂布环氧树脂等热塑性材料,并通过热塑模压成型工艺拼接为一体,得到复合支撑层10,并冷却所述复合支撑层10。最后在复合支撑层10的拼接处的一表面上涂布业界常用的平坦层材料,通过二次热塑成型得到支撑结构110。
其中,所述第一支撑板11和所述第二支撑板12分别位于所述第三支撑板13的相对的两侧。
其中,所述模具为镜面精密模具。热塑成型工艺中的压合温度为400℃~500℃,压力为6MPa~10MPa,所述复合支撑层10的冷却时间为10min以内。
其中,所述第三支撑板13的中间部位具有镂空结构14,所述第三支撑板13的相对两侧分别具有一个第二结合部18,所述第一结合部17与所述第二结合部18相嵌合且相互交错拼接在一起。
具体地,所述第二结合部18包括多个第二凸部181及位于任意两个相邻的所述第二凸部181之间的第二避让槽182。
具体地,请参阅图2-图4,在本申请一可选实施例中,所述第二结合部18均呈波浪形。
具体地,请参阅图5,在本申请一可选实施例中,所述第二结合部18均呈梯形。
具体地,请参阅图6,在本申请一可选实施例中,所述第二结合部18均呈锯齿形。
具体地,请参阅图7,在本申请一可选实施例中,所述第二结合部18均呈矩形。
当然,在其他实施例中,所述第二结合部18的形状并不局限于波浪形、梯形、矩形及锯齿形,还可以是其他的形状或是波浪形、梯形、矩形及锯齿形中的至少两种的组合。
请参阅图8,在本申请一可选实施例中,所述第二结合部18上形成有凹结构1311及/或凸结构1312,所述凹结构1311自所述第二结合部18向所述第三支撑板13的内部凹陷形成,所述凸结构1312自所述第二结合部18向外延伸而出。
其中,所述凸结构1312收容在所述凹结构1311内。
请参阅图9,在本申请一可选实施例中,所述凹结构1311与所述凸结构1312之间通过粘结层132粘结。
其中,所述平坦层20在所述复合支撑层10上的正投影落在所述镂空结构14之外。
其中,所述平坦层20的厚度为5μm~10μm。
其中,在二次热塑成型之后,还包括步骤:在所述复合支撑层10的背离所述平坦层20的表面上形成覆盖所述镂空结构14的保护层30。
在形成所述保护层30之后或之前,还包括步骤通过边缘修整、表面抛光等方式对支撑结构110进行表面处理,再次去除毛刺、飞边、残缺等不良缺陷。
步骤S4:请参阅图1,将所述支撑结构110贴合在一显示面板120的远离出光的一侧,得到显示模组100。
其中,所述显示面板120包括弯折区101、第一非弯折区102及第二非弯折区103,所述弯折区101位于所述第一非弯折区102和所述第二非弯折区103之间;所述第一支撑板11位于所述第一非弯折区102,所述第二支撑板12位于所述第二非弯折区103,所述第三支撑板13位于所述弯折区101。
本申请提供的支撑结构及显示模组,采用两种密度不同的材料形成复合支撑层,且所述第三支撑板的密度大于所述第一支撑板及所述第二支撑板的密度,第一支撑板和第二支撑板分别位于显示模组的第一非弯折区和第二非弯折区,第三支撑板位于显示模组的弯折区;本申请将两种密度不同的材料整合成一体,采用密度较低的材料制作的第一支撑板和第二支撑板,可以从整体上降低显示模组的重量。
本申请提供的支撑结构及显示模组的所述第三支撑板的材质为金属,所述第一支撑板及所述第二支撑板的材质为非金属。如此,本申请的支撑结构的镂空结构是形成在密度相对较高的金属材料制作成的第三支撑板上而非形成在密度相对较低的非金属材料制作成的第一支撑板和第二支撑板上,从而镂空结构可以通过化学蚀刻加工方式成型并不需要通过激光加工的方式将弯折区进行镂空结构设计处理,能够降低镂空结构的加工价格并能提高加工效率,进而能够从整体上降低显示模组的制作成本。
另外,采用环氧树脂等热塑性材料对所述第一拼接缝及所述第二拼接缝进行平整处理,可以避免弯折应力导致所述第一拼接缝及所述第二拼接缝受力引发界面开裂。
另外,通过将所述第一结合部与所述第二结合部相嵌合且相互交错拼接在一起或通过凹凸插接结构,以增加所述第一拼接缝及第二拼接缝处的金属材料和非金属材料的结合面积,以提高所述第一拼接缝及第二拼接缝处的金属材料和非金属材料的结合力,以使得第一拼接缝及第二拼接缝处的金属材料和非金属材料的拼接更为可靠、牢固。
另外,通过二次热塑成型方式在所述第一拼接缝及所述第二拼接缝表面涂敷业界常用的平坦层材料经固化形成所述平坦层。如此,可以降低因两种不同材料的拼接缝不平整导致的支撑结构与显示模组的其他组件贴合时存在印痕的风险。
另外,将所述指纹传感器孔设置在非金属材料制作的第一支撑板或第二支撑板上,并在所述指纹传感器孔中填充透明树脂,可以将指纹识别技术集成于折叠屏中并降低指纹传感器孔孔段位差所引起的印痕转移到显示模组的风险。
采用分段式光学透明胶将位于第一非弯折区和第二非弯折区内的支撑结构与显示面板(具体地,与背板)粘结在一起,可以降低显示模组的弯折区的局部厚度,以改善弯折区内显示模组的弯折应力。
综上所述,虽然本申请已以优选实施例揭露如上,但上述优选实施例并非用以限制本申请,本领域的普通技术人员,在不脱离本申请的精神和范围内,均可作各种更动与润饰,因此本申请的保护范围以权利要求界定的范围为准。

Claims (20)

  1. 一种显示模组,包括显示面板及形成在所述显示面板的远离出光的一侧的支撑结构,所述显示面板为可折叠显示面板,所述显示面板包括弯折区、第一非弯折区及第二非弯折区,所述弯折区位于所述第一非弯折区和所述第二非弯折区之间;其中,所述支撑结构包括复合支撑层,所述复合支撑层包括:
    第一支撑板,位于所述第一非弯折区;
    第二支撑板,位于所述第二非弯折区;及
    第三支撑板,位于所述第一支撑板和所述第二支撑板之间且位于所述弯折区;所述第三支撑板分别与所述第一支撑板和所述第二支撑板连接,所述第三支撑板上具有镂空结构;
    其中,所述第一支撑板及所述第二支撑板的密度小于所述第三支撑板的密度。
  2. 如权利要求1所述的显示模组,其中,所述第三支撑板分别与所述第一支撑板和所述第二支撑板拼接,所述第一支撑板与所述第三支撑板之间具有第一拼接缝,所述第一拼接缝位于所述第一非弯折区内;
    所述第二支撑板与所述第三支撑板之间具有第二拼接缝,所述第二拼接缝位于所述第二非弯折区内。
  3. 如权利要求2所述的显示模组,其中,所述第一拼接缝及所述第二拼接缝中具有热塑性材料,所述第一支撑板、所述第二支撑板及所述第三支撑板的表面与所述第一拼接缝及所述第二拼接缝中的所述热塑性材料的表面平齐。
  4. 如权利要求2所述的显示模组,其中,所述支撑结构还包括一平坦层,所述平坦层形成在所述复合支撑层的靠近所述显示面板的一侧且覆盖所述第一拼接缝及所述第二拼接缝。
  5. 如权利要求4所述的显示模组,其中,所述平坦层在所述复合支撑层上的正投影落在所述镂空结构之外。
  6. 如权利要求5所述的显示模组,其中,所述支撑结构还包括一保护层,所述保护层位于所述复合支撑层的远离所述平坦层的表面上,所述保护层覆盖所述第一拼接缝、所述第二拼接缝及所述镂空结构。
  7. 如权利要求1所述的显示模组,其中,所述第三支撑板的材质为金属,所述第一支撑板及所述第二支撑板的材质为非金属。
  8. 如权利要求2所述的显示模组,其中,在所述第一拼接缝及所述第二拼接缝处,所述第一支撑板靠近所述第三支撑板的一侧及所述第二支撑板靠近所述第三支撑板的一侧各具有第一结合部,所述第三支撑板的相对两侧边具有第二结合部,所述第一结合部与所述第二结合部相嵌合且相互交错拼接在一起。
  9. 如权利要求8所述的显示模组,其中,所述第一结合部包括第一凸部及位于任意两个相邻的所述第一凸部之间的第一避让槽,所述第二结合部包括多个第二凸部及位于任意两个相邻的所述第二凸部之间的第二避让槽,所述第一凸部收容在所述第二避让槽内,所述第二凸部收容在所述第一避让槽内。
  10. 如权利要求9所述的显示模组,其中,所述第一结合部及所述第二结合部呈波浪形、梯形、矩形及锯齿形中的至少一种。
  11. 如权利要求8所述的显示模组,其中,在所述第一拼接缝及所述第二拼接缝处,所述第一支撑板及所述第二支撑板分别与所述第三支撑板采用凹凸对插结构进行拼接。
  12. 如权利要求11所述的显示模组,其中,所述凹凸对插结构包括凹结构及凸结构,所述凹结构及所述凸结构中的一个位于所述第一支撑板和第二支撑板上,另一个位于所述第三支撑板上;所述凹结构自所述第一结合部和所述第二结合部中的一个的表面向其内部凹陷形成,所述凸结构自所述第一结合部和所述第二结合部中的另一个的表面延伸而出,所述凹结构与所述凸结构之间通过粘结层粘结在一起。
  13. 如权利要求1所述的显示模组,其中,所述第一支撑板或所述第二支撑板上具有一指纹传感器孔,所述指纹传感器孔内填充有透明树脂,所述透明树脂的端面与所述指纹传感器孔周围的所述第一支撑板或所述第二支撑板的表面平齐。
  14. 如权利要求1所述的显示模组,其中,所述第一支撑板及所述第二支撑板的材质为玻璃纤维、碳纤维及高分子材料中的至少一种。
  15. 如权利要求1所述的显示模组,其中,所述第一支撑板及所述第二支撑板的材质为玻璃纤维或碳纤维;
    所述第一支撑板及所述第二支撑板均包括N+1个第一纤维层、N个第二纤维层及N+1个树脂层,所述第一纤维层与所述第二纤维层交替设置,所述树脂层位于所述第一纤维层上且包覆所述第二纤维层,所述第一纤维层的纤维的延伸方向与所述第二纤维层的纤维的延伸方向之间的夹角大于0°且小于180°;其中,N为大于1的正整数。
  16. 如权利要求2所述的显示模组,其中,所述显示面板包括显示屏、背板及光学胶层,所述背板位于所述显示屏的背光侧,所述光学胶层位于所述背板与所述支撑结构之间,所述光学胶层粘结所述支撑结构的平坦层。
  17. 如权利要求16所述的显示模组,其中,所述光学胶层包括第一胶段及第二胶段,所述第一胶段及所述第二胶段分别位于所述第一非弯折区及所述第二非弯折区并分别覆盖所述第一拼接缝及所述第二拼接缝。
  18. 如权利要求17所述的显示模组,其中,所述第一胶段及所述第二胶段分别自所述第一非弯折区和所述第二非弯折区向所述弯折区延伸,所述第一胶段及所述第二胶段分别在所述弯折区内的延伸部分的长度为1mm-2mm。
  19. 如权利要求17所述的显示模组,其中,所述平坦层包括第一平坦层及第二平坦层,所述第一平坦层位于所述第一非弯折区内,所述第二平坦层位于所述第二非弯折区内,所述第一平坦层及所述第二平坦层并分别覆盖所述第一拼接缝及所述第二拼接缝;
    所述第一胶段在所述复合支撑层上的正投影落在所述第一平坦层在所述复合支撑层上的正投影内,所述第二胶段在所述复合支撑层上的正投影落在所述第二平坦层在所述复合支撑层上的正投影内。
  20. 如权利要求1所述的显示模组,其中,所述第三支撑板分别与所述第一支撑板和所述第二支撑板一体成型。
PCT/CN2023/084088 2023-02-24 2023-03-27 显示模组 WO2024174332A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202310180387.2A CN117456825A (zh) 2023-02-24 2023-02-24 显示模组
CN202310180387.2 2023-02-24

Publications (1)

Publication Number Publication Date
WO2024174332A1 true WO2024174332A1 (zh) 2024-08-29

Family

ID=89587947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/084088 WO2024174332A1 (zh) 2023-02-24 2023-03-27 显示模组

Country Status (2)

Country Link
CN (1) CN117456825A (zh)
WO (1) WO2024174332A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112991959A (zh) * 2021-03-31 2021-06-18 上海天马微电子有限公司 可折叠显示模组及其制作方法、可折叠显示装置
CN113066375A (zh) * 2021-03-26 2021-07-02 京东方科技集团股份有限公司 柔性支撑件及其制作方法、显示装置
WO2021201575A1 (ko) * 2020-04-03 2021-10-07 삼성전자 주식회사 플렉서블 디스플레이를 포함하는 전자 장치
CN114005362A (zh) * 2021-10-29 2022-02-01 湖北长江新型显示产业创新中心有限公司 一种显示模组及显示装置
CN114694512A (zh) * 2022-04-25 2022-07-01 武汉华星光电半导体显示技术有限公司 显示模组和显示装置
CN115662297A (zh) * 2022-11-02 2023-01-31 厦门天马显示科技有限公司 支撑结构、显示面板以及显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021201575A1 (ko) * 2020-04-03 2021-10-07 삼성전자 주식회사 플렉서블 디스플레이를 포함하는 전자 장치
CN113066375A (zh) * 2021-03-26 2021-07-02 京东方科技集团股份有限公司 柔性支撑件及其制作方法、显示装置
CN112991959A (zh) * 2021-03-31 2021-06-18 上海天马微电子有限公司 可折叠显示模组及其制作方法、可折叠显示装置
CN114005362A (zh) * 2021-10-29 2022-02-01 湖北长江新型显示产业创新中心有限公司 一种显示模组及显示装置
CN114694512A (zh) * 2022-04-25 2022-07-01 武汉华星光电半导体显示技术有限公司 显示模组和显示装置
CN115662297A (zh) * 2022-11-02 2023-01-31 厦门天马显示科技有限公司 支撑结构、显示面板以及显示装置

Also Published As

Publication number Publication date
CN117456825A (zh) 2024-01-26

Similar Documents

Publication Publication Date Title
JP5346066B2 (ja) 表面構造化光学フィルムの積み重ね方法
KR20050085066A (ko) 곡면형 평판 디스플레이 디바이스 및 그의 제조 방법
TW201033660A (en) Light guide plate combination
US20220242074A1 (en) Laminated optical component and touch sensor device
WO2022141199A1 (zh) 显示模组及其贴合方法
WO2022011748A1 (zh) 屏幕组件和显示装置
KR20130039463A (ko) 백라이트유니트용 복합시트 및 그 제조 방법
WO2024174332A1 (zh) 显示模组
CN113314031B (zh) 一种显示面板及其制备方法
WO2022178664A9 (zh) 显示模组及其制造方法、显示装置
CN113539093A (zh) 显示面板及显示装置
WO2023246713A1 (zh) 一种柔性盖板、显示模组及显示装置
JP2009048078A (ja) 液晶マイクロレンズアレイ
KR20220156739A (ko) 디스플레이 디바이스 및 그 제조 방법
CN104698517A (zh) 光学膜片、光学膜片组件及光学膜片的制造方法
JPH10255531A (ja) 面光源装置
TW201209461A (en) Light guide plate with light entrance structure and manufacture method for manufacturing the same
KR20140021925A (ko) 백라이트 유니트용 광학 시트 및 그 제조 방법
JP2009008711A (ja) 液晶表示素子
TWI549560B (zh) 弧形顯示裝置及其製作方法
TW202101075A (zh) 顯示裝置
CN106981253B (zh) 一种基板及显示面板、电子设备
JP2002171063A (ja) 多層フレキシブル配線板
JP2000241606A (ja) 平板型マイクロレンズ、平板型レンズ、液晶表示装置、光学系および投射型表示装置
CN108254965A (zh) 液晶显示器及其制造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23923504

Country of ref document: EP

Kind code of ref document: A1