WO2024157621A1 - 粘着剤層を有する積層フィルム - Google Patents

粘着剤層を有する積層フィルム Download PDF

Info

Publication number
WO2024157621A1
WO2024157621A1 PCT/JP2023/043860 JP2023043860W WO2024157621A1 WO 2024157621 A1 WO2024157621 A1 WO 2024157621A1 JP 2023043860 W JP2023043860 W JP 2023043860W WO 2024157621 A1 WO2024157621 A1 WO 2024157621A1
Authority
WO
WIPO (PCT)
Prior art keywords
film
adhesive layer
laminated film
less
laminated
Prior art date
Application number
PCT/JP2023/043860
Other languages
English (en)
French (fr)
Inventor
清貴 堤
そら 道下
真也 山本
Original Assignee
日東電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日東電工株式会社 filed Critical 日東電工株式会社
Publication of WO2024157621A1 publication Critical patent/WO2024157621A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form
    • B32B3/02Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar shape; Layered products comprising a layer having particular features of form characterised by features of form at particular places, e.g. in edge regions
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J201/00Adhesives based on unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/10Adhesives in the form of films or foils without carriers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/30Adhesives in the form of films or foils characterised by the adhesive composition
    • C09J7/38Pressure-sensitive adhesives [PSA]
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J7/00Adhesives in the form of films or foils
    • C09J7/40Adhesives in the form of films or foils characterised by release liners

Definitions

  • the present invention relates to a laminated film having an adhesive layer.
  • Display panels have a laminated structure that includes elements such as a pixel panel, a polarizing film, a touch panel, and a cover film.
  • an optically transparent adhesive sheet (optical adhesive sheet) is used to bond the elements included in the laminated structure.
  • the optical adhesive sheet is manufactured, for example, in a form in which both sides of the sheet are covered with release liners (in the form of a laminated film having an adhesive layer).
  • a foldable display panel can be repeatedly deformed between a curved shape and a flat, non-bent shape.
  • each element in the laminated structure is made to be repeatedly foldable, and a thin optical adhesive sheet is used to bond such elements together.
  • Optical adhesive sheets for flexible devices such as foldable display panels are described, for example, in Patent Document 1 below.
  • Optical adhesive sheets for flexible devices are conventionally manufactured, for example, as follows:
  • a work film W' is prepared.
  • the work film W' consists of a laminate film 90 as a long original sheet, and a long carrier film C' that supports the laminate film 90.
  • the laminate film 90 has a release liner 91, an adhesive layer 92, and a release liner 93, in that order in the thickness direction H.
  • the release liner 91 is in releasable contact with one side of the adhesive layer 92.
  • the release liner 93 is in releasable contact with the other side of the adhesive layer 92.
  • the carrier film C' supports the laminate film 90 from the release liner 91 side.
  • the adhesive layer 92 of the laminated film 90 is pressed to form a plurality of sheet-like adhesive sheets 92A (pressing process).
  • the blade 101 of the blade die 100 is pressed into the laminated film 90 from the release liner 93 side until it reaches the release liner 91.
  • a peripheral portion 92a is formed around the adhesive sheet 92A in the adhesive layer 92.
  • the release liner 93 is also pressed to form a release liner 93A of the same shape in plan view as the adhesive layer 92, and a peripheral portion 93a is formed around the release liner 93A. Also, a cutting groove 95 is formed in the laminated film 90 from the release liner 93 side to the release liner 91.
  • the peripheral portions 92a, 93a (FIG. 12B) are removed from the release liner 91 (removal process). Then, as shown in FIG. 12D, the long release liner 91 is cut into sheet-shaped release liners 91A. This results in sheet-shaped laminated film 90A (release liner 91A/adhesive sheet 92A/release liner 93A) having an adhesive layer.
  • Adhesive sheets (adhesive layers) for flexible devices are required to be highly flexible so that they can conform to the adherend when the device is bent and have excellent stress relaxation properties.
  • the protruding portion 92E is a portion of the end 92e of the adhesive sheet 92A that extends outward in the planar direction D beyond the end surface 93e of the release liner 93A.
  • the protruding portions 92E cause the edges of adjacent laminated films 90A to adhere to each other (edge blocking). Edge blocking reduces the handleability of the laminated film 90A.
  • This type of problem also occurs when a surface protection film with an adhesive layer (with the release liner 91A attached to the adhesive layer side) is formed on the release liner 91A instead of the adhesive sheet 92A and release liner 93A.
  • the release liner 91A has an extending end 91a.
  • the extending end 91a extends outward in the planar direction D beyond the end face 93e of the release liner 93A.
  • the extending end 91a extends outward in the planar direction D beyond the protruding end 92e, such an extending end 91a suppresses the above-mentioned end blocking.
  • the present invention provides a laminated film with an adhesive sheet that is suitable for suppressing edge blocking and ensuring easy peeling of the film on one side.
  • the present invention [1] includes a laminated film having an adhesive layer having a first surface and a second surface opposite to the first surface, a first film in contact with the first surface, and a second film in contact with the second surface, the first film having an extended end portion that extends outward beyond an end surface of the adhesive layer in a planar direction perpendicular to the thickness direction, the extended end portion having a surface that is flush with and connected to the end surface, and the adhesive layer is thinner than a main region of the first film that is in contact with the adhesive layer.
  • the present invention [2] includes a laminated film having the adhesive layer described in [1] above, in which the extension length of the extension end from the end face in the planar direction is 50 ⁇ m or more.
  • the present invention [3] includes a laminated film having the adhesive layer described in [1] or [2] above, in which the extension length of the extension end from the end face in the planar direction is 500 ⁇ m or less.
  • the present invention [4] includes a laminated film having the adhesive layer described in any one of [1] to [3] above, in which the ratio of the minimum thickness of the extended end portion to the thickness of the main region portion is 0.3 or more.
  • the present invention [5] includes a laminated film having a pressure-sensitive adhesive layer according to any one of [1] to [4] above, in which the extending end portion has a thinnest portion and an outer portion that is outer than the thinnest portion in the planar direction, and the outer portion is thicker than the thinnest portion.
  • the present invention [6] includes a laminated film having an adhesive layer according to any one of [1] to [5] above, in which the adhesive layer has a shear storage modulus of 100 kPa or less at 25°C.
  • the present invention [7] includes a laminated film having an adhesive layer according to any one of [1] to [6] above, in which the adhesive layer has a gel fraction of 40% by mass or more and 80% by mass or less.
  • the present invention [8] includes a laminated film having the adhesive layer described in any one of [1] to [7] above, in which in a peel test in which the first film is peeled from the adhesive layer under conditions of 25°C, a peel angle of 180°, and a tensile speed of 300 mm/min, the ratio of peel initiation force to peel force is 10 or less.
  • the first film has an extended end portion that extends outward from the end face of the adhesive layer in the surface direction, and the extended end portion has a surface that is flush with the end face of the adhesive layer and is thinner than the main region of the first film that contacts the adhesive layer.
  • the fact that the first film has an extended end portion and that the extended end portion has a surface that is flush with the end face of the adhesive layer is suitable for suppressing the above-mentioned end blocking.
  • the fact that the extended end portion is thinner than the main region portion (contacting the adhesive layer) is suitable for ensuring the ease of deformation (bending) of the extended end portion when the extended end portion of the first film is pulled to peel the first film from the adhesive layer.
  • the laminated film of the present invention is suitable for suppressing end blocking and for ensuring the ease of peeling of one side film.
  • FIG. 1 is a schematic cross-sectional view of one embodiment of a laminate film (a laminate film having a pressure-sensitive adhesive layer) of the present invention.
  • FIG. FIG. 2 is a partially enlarged cross-sectional view of the laminated film shown in FIG. 1 .
  • 3 shows an example of a method for producing the laminated film shown in Fig. 1.
  • Fig. 3A shows a preparation step
  • Fig. 3B shows a half-cut step
  • Fig. 3C shows a full-cut step.
  • FIG. 3B is a schematic plan view of an example of a region in the work film after the half-cut process.
  • FIG. 3C is a schematic plan view of an example of a region in the workpiece film after the full cutting process (FIG. 3C).
  • FIG. 1 shows a modified example of the half-cut process, in which the melt-cutting of the second film layer and the pressure-sensitive adhesive layer by irradiation and scanning with the first laser light is repeated multiple times while shifting the melt-cutting location in a direction intersecting the scanning direction, thereby forming a half-cut groove.
  • 7 is a schematic plan view of an example of a region of the work film after the half-cut process shown in FIG. 6 .
  • This shows the full cut process after the half cut process shown in FIG. 9 is a schematic plan view of an example of a region of the work film after the full cutting process shown in FIG. 8 .
  • 10A and 10B show a part of another example of the method for producing the laminated film shown in Fig. 1.
  • FIG. 10A shows a full-cut process
  • Fig. 10B shows a half-cut process
  • 1 shows an example of a graph obtained by a peel test in which a release liner on a pressure-sensitive adhesive layer is peeled from the pressure-sensitive adhesive layer.
  • 12A shows an example of a method for producing a conventional laminated film having a pressure-sensitive adhesive layer, in which Fig. 12A shows a preparation step, Fig. 12B shows a press processing step, Fig. 12C shows a removal step, and Fig. 12D shows a cutting step. This shows the press processing process using a blade die.
  • FIG. 2 is a partially enlarged cross-sectional view of an end portion of a conventional laminated film having a pressure-sensitive adhesive layer.
  • laminated film X according to one embodiment of the present invention comprises film 10 (first film), adhesive layer 20, and film 30 (second film) in this order in the thickness direction H.
  • Adhesive layer 20 has a first surface 21 and a second surface 22 opposite to first surface 21.
  • Film 10 contacts first surface 21.
  • Film 30 contacts second surface 22.
  • Laminated film X extends in a plane direction D perpendicular to thickness direction H.
  • the film 10 is a release liner that can be peeled off from the adhesive layer 20.
  • the film 10 has a main region 11 and an extended end 12.
  • the main region 11 is a region of the film 10 that contacts the adhesive layer 20.
  • the extended end 12 extends outward from the end face 23 of the adhesive layer 20 in the planar direction D, as shown in FIG. 2.
  • the extended end 12 has a surface 12a that is flush with the end face 23 and a surface 12b that is outward from the surface 12a in the planar direction D.
  • the surface 12a has, for example, an arc shape in the cross section shown in FIG. 2.
  • the surface 12b has, for example, a straight or slightly curved shape in the cross section shown in FIG. 2.
  • a top 12c is formed between the surface 12a and the surface 12b.
  • the top 12c is, for example, pointed with an acute angle in the cross section shown in FIG. 2.
  • the extended end 12 is also thinner than the main region 11. That is, the extension end 12 is a thin-walled extension end.
  • the film 30 is, for example, a release liner, a functional optical film, or a substrate film (support film).
  • the film 30 has a first surface 31 on the pressure-sensitive adhesive layer 20 side, a second surface 32 on the opposite side, and an end surface 33.
  • the end surface 33 is flush with and connected to the end surface 23 of the pressure-sensitive adhesive layer 20.
  • the end face 33 of the film 30, the end face 23 of the adhesive layer 20, and the portion of the surface 12a of the film 10 adjacent to the end face 23 form a curved shape (R-shape) that widens outward and has a smaller radius of curvature as it moves away from the second surface 32 of the film 30 in the thickness direction H.
  • the surface 12b of the extended end 12 is inclined or curved so as to widen outward as it moves away from the second surface 32 in the thickness direction H.
  • film 10 has extended end 12 that extends outward beyond end face 23 of adhesive layer 20 in plane direction D, and extended end 12 has surface 12a that is flush with end face 23 and is thinner than main region 11 of film 10 that contacts adhesive layer 20.
  • the fact that film 10 has extended end 12 and that extended end 12 has surface 12a that is flush with end face 23 of adhesive layer 20 is suitable for suppressing the above-mentioned end blocking.
  • the extended end 12 is thinner than the main region 11 (contacting the adhesive layer 20), which is suitable for ensuring that the extended end 12 of the film 10 is easily deformed (bended) when the extended end 12 of the film 10 is pulled to peel the film 10 from the adhesive layer 20.
  • the fact that the extended end 12 is easily deformed when the film 10 is peeled off helps to reduce the peel initiation force for starting the peeling of the film 10, ensuring that the film 10 is easily peeled off.
  • the laminated film X is suitable for suppressing edge blocking and for ensuring that the film 10 can be easily peeled off.
  • the extension length d1 (FIG. 2) of the extended end portion 12 from the end face 23 in the plane direction D (direction perpendicular to the end face 23 in a plan view) is preferably 50 ⁇ m or more, more preferably 70 ⁇ m or more, and even more preferably 100 ⁇ m or more.
  • the extension length d1 is preferably 500 ⁇ m or less, more preferably 400 ⁇ m or less, and even more preferably 300 ⁇ m or less.
  • the ratio ( h2 / h1 ) of the minimum thickness h2 of the extended end 12 to the thickness h1 of the main region 11 of the film 10 is preferably 0.3 or more, more preferably 0.4 or more, and even more preferably 0.43 or more, from the viewpoint of ensuring the strength of the extended end 12.
  • the ratio ( h2 / h1 ) is, for example, 0.7 or less, 0.8 or less, or 0.9 or less.
  • the thickness h1 of the main region 11 is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more, from the viewpoint of ensuring the protective function of the pressure-sensitive adhesive layer 20 by the film 10.
  • the thickness h1 of the main region 11 is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, and even more preferably 100 ⁇ m or less, from the viewpoint of making the laminated film X thinner.
  • the extending end 12 has the thinnest part 12p having the above-mentioned minimum thickness h2 and an outer part 12q that is outside the thinnest part 12p in the surface direction D.
  • the outer part 12q is thicker than the thinnest part 12p.
  • the extending end 12 of the film 10 having such a thinnest part 12p and an outer part 12q is suitable for achieving both the ease of deformation (bending) of the extending end 12 when the film 10 is peeled off from the adhesive layer 20 and the ease of catching an abutting element (such as the finger of the peeling operator) on the extending end 12.
  • the thinnest part 12p is located on the way from the end surface 23 side of the adhesive layer 20 to the top 12c (in this embodiment, from the center to the top 12c side).
  • the ratio ( h3 / h2 ) of the thickness h3 of the outer portion 12q to the minimum thickness h2 at the extended end 12 is preferably 1.2 or more, more preferably 1.5 or more, even more preferably 1.8 or more, from the viewpoint of ensuring the ease with which the abutting element catches on the extended end 12 when peeled off, and is preferably 3.0 or less, more preferably 2.5 or less, even more preferably 2.2 or less.
  • the distance d 2 ( FIG. 2 ) between the outer end of the film 10 and the inner end of the adhesive layer 20 in the surface direction D (the direction perpendicular to the end face 23 in a plan view) is preferably 1000 ⁇ m or less, more preferably 700 ⁇ m or less, and even more preferably 500 ⁇ m or less.
  • the distance d 2 is, for example, 50 ⁇ m or more or 70 ⁇ m or more.
  • the region between the outer end of the film 10 and the inner end of the adhesive layer 20 in the surface direction D is a part of the edge region that can be used as an alignment mark (edge alignment mark) for detecting the end of the laminated film X.
  • the distance d 2 is 1000 ⁇ m or less (preferably 700 ⁇ m or less, more preferably 500 ⁇ m or less), erroneous detection of the edge alignment mark by the detection camera can be suppressed (if the edge alignment mark is too large, erroneous detection occurs).
  • the thickness of the adhesive layer 20 is preferably 5 ⁇ m or more, more preferably 10 ⁇ m or more, and even more preferably 15 ⁇ m or more, from the viewpoint of ensuring the adhesive strength of the adhesive layer 20.
  • the thickness of the adhesive layer 20 is preferably 100 ⁇ m or less, more preferably 70 ⁇ m or less, and even more preferably 50 ⁇ m or less, from the viewpoint of making the adhesive layer 20 thinner.
  • the gel fraction of the adhesive layer 20 is preferably 80% by mass or less, more preferably 75% by mass or less, and even more preferably 70% by mass or less, from the viewpoint of ensuring the softness of the adhesive layer 20.
  • the gel fraction of the adhesive layer 20 is preferably 40% by mass or more, more preferably 45% by mass or more, and even more preferably 50% by mass or more, from the viewpoint of ensuring the cohesive strength of the adhesive layer 20.
  • Methods for adjusting the gel fraction include, for example, selecting the type of base polymer in the adhesive layer 20, adjusting the molecular weight, and adjusting the blending amount. The method for measuring the gel fraction is as described below in the examples.
  • the shear storage modulus of the adhesive layer 20 at 25°C is preferably 100 kPa or less, more preferably 90 kPa or less, and even more preferably 80 kPa or less, from the viewpoint of ensuring the softness required for the adhesive layer for flexible device applications in the adhesive layer 20.
  • the shear storage modulus of the adhesive layer 20 at 25°C is preferably 10 kPa or more, more preferably 15 kPa or more, even more preferably 20 kPa or more, and particularly preferably 25 kPa or more, from the viewpoint of ensuring the adhesive strength of the adhesive layer 20.
  • Examples of methods for adjusting the shear storage modulus of the adhesive layer 20 include selecting the type of base polymer in the adhesive layer 20, adjusting the molecular weight, adjusting the blending amount, adjusting the glass transition temperature, and adjusting the degree of crosslinking. Examples of methods for adjusting the shear storage modulus of the adhesive layer 20 include selecting components other than the base polymer in the adhesive layer 20 and adjusting the blending amount.
  • the shear storage modulus of the adhesive layer is determined by dynamic viscoelasticity measurement. The specific method for measuring the shear storage modulus is described below in the examples.
  • the peel initiation force F1 for starting peeling of the film 10 from the adhesive layer 20 is preferably 1.5 N/50 mm or less, more preferably 1.3 N/50 mm or less, and even more preferably 1.2 N/50 mm or less, from the viewpoint of ensuring easy peeling of the film 10.
  • the peel initiation force F1 is preferably 0.5 N/50 mm or more, more preferably 0.65 N/50 mm or more, and even more preferably 0.75 N/50 mm or more, from the viewpoint of preventing unintended peeling of the film 10.
  • the peel initiation force is the force required in the peel initiation process when peeling off a film peelably attached to an adhesive layer from the adhesive layer.
  • a force is applied to the film so that the film deforms in a direction away from the adhesive layer.
  • the edge of the adhesive layer attached to the film and its vicinity are elastically deformed once to follow the deformation of the film.
  • a cleavage occurs between the edge of the adhesive layer and its vicinity and the film, and peeling begins.
  • the peel initiation force is the force required to pull the film away from the elastically deformed end of the adhesive layer and start peeling the film from the adhesive layer in the peel initiation process.
  • a peel initiation force can be measured by the method described later in the examples below. Examples of methods for adjusting such a peel initiation force include adjusting the thickness of the film and selecting the type of release treatment agent on the adhesive layer side surface of the film.
  • the peeling force F2 for peeling the film 10 from the adhesive layer 20 after the start of peeling of the film 10 from the adhesive layer 20 is preferably 0.2 N/50 mm or less, more preferably 0.17 N/50 mm or less, and even more preferably 0.16 N/50 mm or less, from the viewpoint of ensuring easy peeling of the film 10.
  • the peeling force F2 is preferably 0.10 N/50 mm or more, more preferably 0.12 N/50 mm or more, and even more preferably 0.14 N/50 mm or more, from the viewpoint of preventing unintended peeling of the film 10.
  • the ratio (F1/F2) of the peel initiation force F1 to the peel force F2 is preferably 10 or less, more preferably 9 or less, even more preferably 8 or less, and even more preferably 7.5 or less, from the viewpoint of ensuring the ease of peeling of the film 10.
  • the ratio (F1/F2) is, for example, 1 or more, 3 or more, or 5 or more.
  • FIG. 3A to FIG. 3C show an example of a method for manufacturing laminated film X.
  • FIG. 3A shows a preparation process
  • FIG. 3B shows a half-cut process
  • FIG. 3C shows a full-cut process.
  • a long work film W is prepared.
  • the work film W includes a laminate film X' and a carrier film C.
  • the laminate film X' is a long original film.
  • the carrier film C supports the laminate film X'.
  • Laminated film X' comprises film layer 10A (first film layer), adhesive layer 20A, and film layer 30A (second film layer) in this order in the thickness direction H.
  • Adhesive layer 20A has a first surface 20a and a second surface 20b opposite to the first surface 20a.
  • Film layer 10A is in contact with the first surface 20a.
  • Film layer 30A is in contact with the second surface 20b.
  • Laminated film X' extends in a planar direction perpendicular to the thickness direction H.
  • the carrier film C is a single-sided adhesive film having an adhesive surface on one side in the thickness direction H.
  • the adhesive surface of the carrier film C is bonded to the film layer 10A side of the laminated film X'. That is, the work film W specifically comprises the carrier film C, the film layer 10A, the adhesive layer 20A, and the film layer 30A in this order in the thickness direction H.
  • the carrier film C is wider than the laminate film X' in the width direction D2 (FIGS. 4 and 5) perpendicular to the flow direction D1 of the work film W.
  • the laminate film X' is disposed at the center position in the width direction D2 on the carrier film C.
  • the width (length in the width direction D2) of the laminate film X' is, for example, 200 mm or more, preferably 280 mm or more, more preferably 400 mm or more, and is, for example, 2000 mm or less, preferably 1800 mm or less, more preferably 1600 mm or less.
  • Such a work film W is run through the production line.
  • the film layer 10A is a release liner.
  • materials for the release liner include polyester, polyolefin, and polycarbonate.
  • polyester include polyethylene terephthalate, polyethylene naphthalate, and polybutylene terephthalate.
  • polyolefin include polyethylene, polypropylene, and cycloolefin polymer (COP).
  • the film layer 10A as a release liner is releasably in contact with the first surface 20a of the adhesive layer 20A.
  • the surface of such a film layer 10A (the surface on the adhesive layer 20A side) is preferably subjected to a release treatment.
  • the release treatment include a silicone release treatment and a fluorine release treatment.
  • the adhesive layer 20A is formed from an adhesive composition.
  • the adhesive composition includes a base polymer.
  • the base polymer is an adhesive component that exhibits adhesiveness.
  • Examples of base polymers include acrylic polymers, polyurethane polymers, polyamide polymers, and polyvinyl ether polymers.
  • the base polymers may be used alone or in combination of two or more types. From the viewpoint of ensuring good transparency and adhesiveness in the adhesive layer 20A, an acrylic polymer is preferably used as the base polymer.
  • An acrylic polymer is a copolymer of monomer components containing 50% or more by mass of (meth)acrylic acid ester.
  • “(Meth)acrylic” means acrylic and/or methacrylic.
  • As the (meth)acrylic acid ester preferably, a (meth)acrylic acid alkyl ester is used, and more preferably, a (meth)acrylic acid alkyl ester having an alkyl group with 1 to 20 carbon atoms is used.
  • Examples of (meth)acrylic acid alkyl esters include methyl (meth)acrylate, ethyl (meth)acrylate, n-butyl (meth)acrylate, pentyl (meth)acrylate, n-hexyl (meth)acrylate, heptyl (meth)acrylate, 2-ethylhexyl (meth)acrylate, n-octyl (meth)acrylate, isooctyl (meth)acrylate, nonyl (meth)acrylate, isononyl (meth)acrylate, decyl (meth)acrylate, isodecyl (meth)acrylate, undecyl (meth)acrylate, dodecyl (meth)acrylate (i.e., lauryl (meth)acrylate), isotridecyl (meth)acrylate, and tetradecyl (meth)acrylate.
  • the (meth)acrylic acid alkyl ester is preferably at least one selected from the group consisting of 2-ethylhexyl acrylate (2EHA), lauryl acrylate (LA), and n-butyl acrylate (BA).
  • the proportion of (meth)acrylic acid alkyl ester in the monomer components is preferably 60% by mass or more, more preferably 70% by mass or more, and even more preferably 90% by mass or more, from the viewpoint of adequately expressing basic properties such as adhesiveness in the adhesive layer 20A, and is, for example, 99% by mass or less.
  • the monomer component may include a copolymerizable monomer that is copolymerizable with the (meth)acrylic acid alkyl ester.
  • the copolymerizable monomer include a monomer having a polar group.
  • the polar group-containing monomer include a hydroxy group-containing monomer, a carboxy group-containing monomer, and a monomer having a nitrogen atom-containing ring. The polar group-containing monomer is useful for modifying the acrylic polymer, such as introducing crosslinking points into the acrylic polymer and ensuring the cohesive force of the acrylic polymer.
  • hydroxyl group-containing monomer examples include 2-hydroxyethyl (meth)acrylate, 2-hydroxypropyl (meth)acrylate, and 4-hydroxybutyl (meth)acrylate.
  • the hydroxyl group-containing monomer at least one selected from the group consisting of 2-hydroxyethyl acrylate (2HEA) and 4-hydroxybutyl acrylate (4HBA) is preferably used.
  • the ratio of the hydroxyl group-containing monomer in the monomer component is preferably 1% by mass or more, more preferably 2% by mass or more, and even more preferably 3% by mass or more, from the viewpoint of introducing a crosslinked structure into the acrylic polymer and ensuring the cohesive force in the adhesive layer 20A.
  • the ratio is preferably 20% by mass or less, more preferably 10% by mass or less.
  • the polarity of the acrylic polymer is related to the compatibility of the acrylic polymer with various additive components in the adhesive layer 20A.
  • Examples of monomers having a nitrogen atom-containing ring include N-vinyl-2-pyrrolidone, N-methylvinylpyrrolidone, N-vinylpyridine, N-vinylpiperidone, N-vinylpyrimidine, N-vinylpiperazine, N-vinylpyrrole, N-vinylimidazole, N-(meth)acryloyl-2-pyrrolidone, and acryloylmorpholine.
  • N-vinyl-2-pyrrolidone (NVP) is preferably used as the monomer having a nitrogen atom-containing ring.
  • the proportion of the monomer having a nitrogen atom-containing ring in the monomer components is preferably 0.1% by mass or more, more preferably 0.5% by mass or more, and even more preferably 1% by mass or more, from the viewpoints of ensuring the cohesive force in the adhesive layer 20A and ensuring the adhesive force to the adherend in the adhesive layer 20A.
  • the proportion is preferably 30% by mass or less, more preferably 20% by mass or less, from the viewpoints of adjusting the glass transition temperature of the acrylic polymer and adjusting the polarity of the acrylic polymer.
  • the base polymer preferably has a crosslinked structure.
  • methods for introducing a crosslinked structure into a base polymer include the following first and second methods.
  • a base polymer having a functional group capable of reacting with the crosslinking agent and a crosslinking agent are blended into an adhesive composition, and the base polymer and the crosslinking agent are reacted in an adhesive sheet.
  • a polyfunctional compound is included as a crosslinking agent in the monomer components forming the base polymer, and a base polymer in which a branched structure (crosslinked structure) is introduced into the polymer chain is formed by polymerization of the monomer components.
  • the crosslinking agent used in the first method is, for example, a compound that reacts with functional groups (such as hydroxyl groups and carboxyl groups) contained in the base polymer.
  • functional groups such as hydroxyl groups and carboxyl groups
  • crosslinking agents include isocyanate crosslinking agents, peroxide crosslinking agents, and epoxy crosslinking agents.
  • the crosslinking agents may be used alone or in combination of two or more types.
  • the monomer components may be polymerized in one step or in multiple steps.
  • the multistep polymerization method first, a monofunctional monomer for forming a base polymer is polymerized (preliminary polymerization), thereby preparing a prepolymer composition containing a partial polymer (a mixture of a polymer with a low degree of polymerization and an unreacted monomer).
  • a multifunctional monomer is added as a crosslinking agent to the prepolymer composition, and then the partial polymer and the multifunctional monomer are polymerized (main polymerization).
  • a multifunctional (meth)acrylate containing two or more ethylenically unsaturated double bonds in one molecule can be mentioned.
  • a multifunctional acrylate is preferable from the viewpoint of being able to introduce a crosslinked structure by active energy ray polymerization (photopolymerization).
  • polyfunctional (meth)acrylates include dipentaerythritol hexaacrylate (DPHA), ethylene glycol di(meth)acrylate, 1,6-hexanediol di(meth)acrylate, and trimethylolpropane tri(meth)acrylate.
  • Acrylic polymers can be formed by polymerizing the above-mentioned monomer components.
  • Polymerization methods include, for example, solution polymerization, solvent-free photopolymerization (e.g., UV polymerization), bulk polymerization, and emulsion polymerization. Ethyl acetate and toluene are used as solvents for solution polymerization. Thermal polymerization initiators and photopolymerization initiators are used as polymerization initiators.
  • the weight average molecular weight of the base polymer is preferably 100,000 or more, more preferably 300,000 or more, and even more preferably 500,000 or more.
  • the weight average molecular weight is preferably 5 million or less, more preferably 3 million or less, and even more preferably 2 million or less.
  • the weight average molecular weight of the base polymer is measured by gel permeation chromatography (GPC) and calculated in terms of polystyrene.
  • the glass transition temperature (Tg) of the base polymer is preferably 0°C or lower, more preferably -10°C or lower, and even more preferably -20°C or lower, from the viewpoint of ensuring the softness of the adhesive layer 20A.
  • the glass transition temperature is, for example, -80°C or higher.
  • the glass transition temperature (Tg) of the base polymer can be determined by the following Fox formula (theoretical value).
  • the Fox formula is a relational expression between the glass transition temperature Tg of a polymer and the glass transition temperature Tg i of a homopolymer of a monomer constituting the polymer.
  • Tg represents the glass transition temperature (°C) of a polymer
  • Wi represents the weight fraction of the monomer i constituting the polymer
  • Tgi represents the glass transition temperature (°C) of a homopolymer formed from the monomer i.
  • the glass transition temperature of a homopolymer can be determined by a literature value.
  • the glass transition temperatures of various homopolymers are listed in “Polymer Handbook” (4th edition, John Wiley & Sons, Inc., 1999).
  • the glass transition temperature of a homopolymer of a monomer can also be determined by a method specifically described in JP-A-2007-51271.
  • the adhesive composition may contain other components as required.
  • the other components include a solvent, a silane coupling agent, an ultraviolet absorber, a tackifier, a softener, and an antioxidant.
  • the solvent include a polymerization solvent that is used as required during polymerization of the acrylic polymer, and a solvent that is added to the polymerization reaction solution after polymerization. Examples of the solvent that is used include ethyl acetate and toluene.
  • the haze of the adhesive layer 20A is preferably 3% or less, more preferably 2% or less, and even more preferably 1% or less.
  • the haze of the adhesive layer 20A can be measured using a haze meter in accordance with JIS K7136 (2000). Examples of haze meters include the "NDH2000” manufactured by Nippon Denshoku Industries Co., Ltd. and the “HM-150” manufactured by Murakami Color Research Laboratory Co., Ltd.
  • Film layer 30A is, for example, a release liner, a functional optical film, or a substrate film (support film).
  • the film layer 30A as a release liner is in peelable contact with the second surface 20b of the adhesive layer 20A.
  • the surface of such a film layer 30A (the surface on the adhesive layer 20A side) is preferably subjected to a release treatment.
  • the release treatment include a silicone release treatment and a fluorine release treatment.
  • the thickness of the film layer 30A as a release liner is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, and even more preferably 30 ⁇ m or more.
  • the thickness of the film layer 30A as a release liner is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • Examples of functional optical films include polarizing films and phase difference films.
  • the functional optical film may be other optical films such as panel reinforcement materials.
  • the film layer 30A is a functional optical film
  • the second surface 20b of the adhesive layer 20A is bonded to such a film layer 30A.
  • the film layer 30A as a functional optical film and the adhesive layer 20A form a functional optical film with an adhesive layer.
  • the polarizing film may be, for example, a hydrophilic polymer film that has been dyed with a dichroic substance and then stretched.
  • the dichroic substance may be, for example, iodine and a dichroic dye.
  • the hydrophilic polymer film may be, for example, a polyvinyl alcohol (PVA) film, a partially formalized PVA film, and a partially saponified film of an ethylene-vinyl acetate copolymer.
  • PVA polyvinyl alcohol
  • the polarizing film may also be a polyene-oriented film. Examples of materials for the polyene-oriented film include a dehydrated PVA film and a dehydrochlorinated polyvinyl chloride film.
  • the polarizing film may have a protective film bonded to one side and/or the other side in the thickness direction via an adhesive.
  • the thickness of the polarizing film is preferably 10 ⁇ m or more, more preferably 20 ⁇ m or more, from the viewpoint of ensuring the function, strength, and durability of the polarizing film.
  • the thickness of the polarizing film is preferably 500 ⁇ m or less, more preferably 300 ⁇ m or less, from the viewpoint of making the laminated film X thinner.
  • the retardation film may be, for example, a ⁇ /2 wavelength film, a ⁇ /4 wavelength film, or a viewing angle compensation film.
  • the retardation film may be made of a polymer film that has been birefringent by stretching.
  • the polymer film may be, for example, a cellulose film or a polyester film.
  • the cellulose film may be, for example, a triacetyl cellulose film.
  • the polyester film may be, for example, a polyethylene terephthalate film, a polyethylene naphthalate film, or a polybutylene terephthalate film.
  • the retardation film may be a film having a substrate such as a cellulose film and an orientation layer on the substrate.
  • the orientation layer is formed from a liquid crystal compound such as a liquid crystal polymer.
  • the thickness of the retardation film is preferably 1 ⁇ m or more, more preferably 2 ⁇ m or more, from the viewpoint of ensuring the function and strength of the retardation film.
  • the thickness of the retardation film is preferably 100 ⁇ m or less, more preferably 80 ⁇ m or less, from the viewpoint of making the laminated film X thinner.
  • Materials for the base film include, for example, the materials mentioned above as materials for the release liner.
  • the film layer 30A is a base film
  • the second surface 20b of the adhesive layer 20A is bonded to such film layer 30A.
  • the film layer 30A as a base film and the adhesive layer 20A form a one-sided adhesive sheet.
  • the thickness of the base film is preferably 10 ⁇ m or more, more preferably 15 ⁇ m or more, and even more preferably 20 ⁇ m or more.
  • the thickness of the base film is preferably 150 ⁇ m or less, more preferably 120 ⁇ m or less, and even more preferably 100 ⁇ m or less.
  • the laminated film X' can be manufactured, for example, as follows. First, the above-mentioned adhesive composition is applied onto the film layer 30A to form a coating film. Next, the film layer 10A is laminated onto the coating film on the film layer 30A. Next, the coating film between the film layers 10A and 30A is dried, and the coating film is irradiated with light as necessary. In this way, an adhesive layer 20A is formed between the film layers 10A and 30A.
  • methods for applying the adhesive composition include roll coating, kiss roll coating, gravure coating, reverse coating, roll brushing, spray coating, dip roll coating, bar coating, knife coating, air knife coating, curtain coating, lip coating, and die coating.
  • the drying temperature for the coating film is, for example, 50°C to 200°C.
  • the drying time is, for example, 5 seconds to 20 minutes.
  • a half-cut groove G1 is formed by laser processing the work film W. Specifically, a laser processing device irradiates and scans the work film W with laser light L1 (first laser light) from the film layer 30A side, thereby melting the film layer 30A and the adhesive layer 20A in the laminated film X' to form a half-cut groove G1.
  • the half-cut groove G1 is formed so as to follow a predetermined cutting line (design cutting line) in the work film W.
  • a predetermined cutting line design cutting line
  • FIG. 4 is a plan view that shows a schematic example of an area of the workpiece film W after the half-cut process. In FIG. 4, the half-cut groove G1 is shown hatched.
  • the partial cross-sectional view shown in FIG. 3B corresponds to the partial cross-sectional view taken along line I-I of the workpiece film W shown in FIG. 4.
  • Examples of lasers for laser processing include gas lasers, solid-state lasers, and semiconductor lasers.
  • Examples of gas lasers include excimer lasers and CO2 lasers (10.6 ⁇ m) (numbers in parentheses indicate laser wavelengths. The same applies below for lasers).
  • Examples of excimer lasers include F2 excimer lasers (157 nm), ArF excimer lasers (193 nm), KrF excimer lasers (248 nm), and XeCl excimer lasers (308 nm).
  • Examples of solid-state lasers include Nd:YAG lasers (1064 nm), the second harmonic of Nd:YAG lasers (532 nm), the third harmonic of Nd:YAG lasers (355 nm), and the fourth harmonic of Nd:YAG lasers (266 nm).
  • Examples of semiconductor lasers include semiconductor lasers with a wavelength of 405 nm.
  • a CO2 laser is preferred from the viewpoint of appropriately cutting both the adhesive layer 20A and the film layer 30A which are made of different materials and have different optical properties (such as absorbance).
  • the laser light L1 is preferably a Gaussian type laser light or a top hat type laser light. Such a configuration is preferable for appropriately forming the half cut groove G1 in the half cut process.
  • a Gaussian type laser light is a laser light whose energy intensity distribution is a Gaussian distribution.
  • a top hat type laser light is a laser light whose energy intensity distribution is in a top hat shape.
  • the output of the laser light L1 is, for example, 2 to 500 W.
  • the pulse frequency of the laser light L1 is, for example, 10 to 100 kHz.
  • the spot diameter of the laser light L1 on the work film W is, for example, 50 to 500 ⁇ m.
  • a full-cut groove G2 is formed by laser processing the work film W. Specifically, a laser processing device irradiates and scans the work film W with laser light L2 (second laser light) from the film layer 30A side, thereby melting the film layer 30A, the adhesive layer 20A, and the film layer 10A in the laminated film X' to form the full-cut groove G2.
  • the full-cut groove G2 is formed along the half-cut groove G1 as shown in FIG. 5 (in FIG. 5, the full-cut groove G2 is shown with finer hatching than the half-cut groove G1).
  • 3C corresponds to the partial cross-sectional view taken along line II-II in the work film W shown in FIG.
  • the half-cut groove G1 and the full-cut groove G2 extend parallel to each other and are adjacent to each other, and are continuously connected in the extension direction in the adjacent direction.
  • a CO2 laser is preferable from the viewpoint of appropriately cutting the adhesive layer 20A and the film layers 10A and 30A, which are different in material and optical properties (such as absorbance).
  • the laser light L2 may be a Gaussian type laser light or a top hat type laser light.
  • the output of the laser light L2 is, for example, 2 to 500 W.
  • the pulse frequency of the laser light L2 is, for example, 10 to 100 kHz.
  • the spot diameter of the laser light L2 on the workpiece film W is, for example, 50 to 500 ⁇ m.
  • peripheral portions 25, 35 between adjacent half-cut grooves G1 are evaporated and removed, and individualized films 10 are formed in the film layer 10A.
  • a laminated film X (a laminated film having an adhesive layer) is formed on the carrier film C.
  • the laminate film X is removed from the carrier film C. In this manner, the laminate film X can be manufactured.
  • Laminate film X is used, for example, as a supply material for an adhesive layer that is incorporated into the laminate structure of a flexible device during the manufacturing process of the device.
  • An example of a flexible device is a flexible display panel.
  • a flexible display panel has a laminate structure that includes elements such as a pixel panel, a polarizing film, a touch panel, and a cover film (surface protection film).
  • the laminated film X is contoured by laser processing as described above.
  • Laser processing is suitable for continuous contour processing while continuously flowing the work film (there is no need to feed the work film intermittently for contour processing). Therefore, this manufacturing method is suitable for efficiently manufacturing the laminated film X.
  • the material of the work film W is evaporated and removed in the portion where the laser light L1 is irradiated to the work film W. This forms the half-cut groove G1.
  • the material of the work film W is evaporated and removed in the portion where the laser light is irradiated to the work film W. This forms the full-cut groove G2.
  • the half-cut groove G1 and the full-cut groove G2 extend adjacent to each other in parallel, and are continuously connected in the extension direction in the adjacent direction.
  • the half-cut groove G1 and the full-cut groove G2 connected in this way define the outer shape of the laminated film X (film 10/adhesive layer 20/film 30) on the carrier film C. Therefore, in this manufacturing method, the removal process described above in relation to the conventional manufacturing method is not necessary in manufacturing the laminated film X (having the film 10 with the extended end portion 12). Therefore, this manufacturing method is suitable for efficiently manufacturing the laminated film X.
  • the half-cut groove G1 may be formed by repeatedly irradiating and scanning the laser light L1 to melt the film layer 30A and the adhesive layer 20A, shifting the melting points in a direction intersecting the scanning direction.
  • the half-cut groove G1 separates the adhesive layer 20 in the adhesive layer 20A.
  • FIG. 7 is a plan view that shows a schematic example of an area in the work film W after such a half-cut process (the half-cut groove G1 is shown hatched in FIG. 7).
  • the partial cross-sectional view shown in FIG. 6 corresponds to the partial cross-sectional view of the work film W taken along line III-III shown in FIG. 7.
  • Such a half-cut process is preferable for forming a wide half-cut groove G1.
  • the half-cut groove G1 may be formed so as not to leave the peripheral portions 25, 35.
  • the work film W is irradiated with and scanned with laser light L2 from the film layer 30A side to melt and cut the film layer 30A, adhesive layer 20, and film layer 10A in the laminated film X' to form a full-cut groove G2.
  • the full-cut groove G2 is formed along the half-cut groove G1 as shown in FIG. 9 (in FIG. 9, the full-cut groove G2 is shown with finer hatching than the half-cut groove G1).
  • the partial cross-sectional view shown in FIG. 8 corresponds to the partial cross-sectional view taken along line IV-IV of the work film W shown in FIG.
  • the full-cut groove G2 is formed along the half-cut groove G1 on the outer side of the half-cut groove G1 with respect to the adhesive layer 20 that has been divided by the half-cut groove G1.
  • the half-cut groove G1 and the full-cut groove G2 extend parallel to each other and are connected in the adjacent direction continuously in the extension direction.
  • the laser light L2 is irradiated and scanned so as to trace, for example, the center of the width of the half-cut groove G1, and the film layer 10A is melted.
  • a laminated film X (film 10/adhesive layer 20/film 30) is formed on the carrier film C, which includes a film 10 having an extended end 12.
  • a laminated film X including a film 10 having a longer extended end 12. The longer the extended end 12, the more the above-mentioned blocking can be suppressed.
  • FIGS. 10A and 10B show process diagrams for the case where the full-cut process and the half-cut process are performed in this order.
  • a full-cut groove G2 is formed by laser processing the workpiece film W. Specifically, laser light L2 (second laser light) is irradiated and scanned onto the workpiece film W from the film layer 30A side, melting the film layer 30A, adhesive layer 20A, and film layer 10A in the laminated film X' to form the full-cut groove G2.
  • the full-cut groove G2 is formed so as to follow a predetermined intended cutting line in the workpiece film W.
  • a half-cut groove G1 is formed by laser processing the work film W.
  • the work film W is irradiated and scanned with laser light L1 (first laser light) from the film layer 30A side to melt and cut the film layer 30A and the adhesive layer 20A in the laminated film X to form the half-cut groove G1.
  • the half-cut groove G1 is formed along the full-cut groove G2 formed in advance.
  • the half-cut groove G1 is formed along the full-cut groove G2 on the inside of the full-cut groove G2 so as to contour the adhesive layer 20 within the area surrounded by the full-cut groove G2.
  • the half-cut groove G1 and the full-cut groove G2 extend adjacent to each other in parallel, and are connected in the adjacent direction continuously in the extension direction.
  • Example 1 Preparation of Pressure-Sensitive Adhesive Composition First, a mixture containing 56 parts by mass of 2-ethylhexyl acrylate (2EHA), 34 parts by mass of lauryl acrylate (LA), 7 parts by mass of 4-hydroxybutyl acrylate (4HBA), 2 parts by mass of N-vinyl-2-pyrrolidone (NVP), and 0.015 parts by mass of a photopolymerization initiator (trade name "Omnirad 184", manufactured by IGM Resins) was irradiated with ultraviolet light (polymerization reaction) to obtain a prepolymer composition (polymerization rate of about 10%) (the prepolymer composition contains monomer components that have not undergone polymerization reaction).
  • 2EHA 2-ethylhexyl acrylate
  • LA lauryl acrylate
  • 4HBA 4-hydroxybutyl acrylate
  • NDP N-vinyl-2-pyrrolidone
  • DPHA dipentaerythritol hexaacrylate
  • silane coupling agent trade name "KBM-403", 3-glycidoxypropyltrimethoxysilane, manufactured by Shin-Etsu Chemical Co., Ltd.
  • the adhesive composition C1 was applied onto the release-treated surface of the release liner (first film layer) to form a coating film.
  • the release liner was a polyethylene terephthalate (PET) film (product name "Diafoil MRV#50", thickness 50 ⁇ m, manufactured by Mitsubishi Chemical Corporation) with one side treated for release with silicone.
  • PET polyethylene terephthalate
  • the plasma-treated surface of a surface protection film (second film layer) with one side treated with plasma was attached to the coating film on the release liner.
  • the surface protection film was a predetermined polyethylene terephthalate (PET) film with a thickness of 50 ⁇ m.
  • a plasma irradiation device (product name "AP-TO5", manufactured by Sekisui Kogyo Co., Ltd.) was used, and the voltage was set to 160 V, the frequency was set to 10 kHz, and the treatment speed was set to 5000 mm/min.
  • the coating film was irradiated with ultraviolet light from the surface protection film side to cure the coating film with ultraviolet light, forming a 50 ⁇ m thick adhesive layer. This resulted in a laminated film (release liner/adhesive layer/surface protection film).
  • a black light was used as the irradiation light source, and the irradiation intensity was set to 5 mW/ cm2 .
  • a carrier film was attached to the laminated film.
  • the carrier film was a single-sided adhesive film having an adhesive surface on one side in the thickness direction, and the adhesive surface of the carrier film was attached to the release liner side of the laminated film.
  • the adhesive layer and the surface protective film on the release liner were processed by laser processing the laminated film on the carrier film. Specifically, the first laser light was irradiated and scanned on the laminated film from the surface protective film side to melt and cut the surface protective film and the adhesive layer so as to follow a predetermined first planned cutting line in the laminated film to form a half-cut groove.
  • a laser processing device product name "LC500”, Takei Electric Industry Co., Ltd.
  • a CO2 laser with a wavelength of 9360 nm was used as the first laser light
  • the spot diameter of the laser light was 100 ⁇ m
  • the laser output was 20 W
  • the pulse frequency was 30 kHz
  • the cutting speed by the laser light was 500 mm/sec
  • the number of scans was 1.
  • an adhesive layer that was singulated into a predetermined planar shape was formed in the large-sized adhesive layer, and an individualized surface protective film (having the same planar shape as the singulated adhesive layer) was formed in the large-sized surface protective film.
  • the release liner was contoured by laser processing the laminated film on the carrier film. Specifically, the second laser light was irradiated and scanned from the surface protection film side onto the laminated film on the carrier film to form a full-cut groove that partially overlaps with the half-cut groove so as to follow a predetermined second cutting line outside the half-cut groove in the laminated film.
  • the full-cut groove thus formed and the half-cut groove described above extend adjacent to each other in parallel, and are connected continuously in the extension direction in the adjacent direction.
  • a laser processing device product name "LC500”, Takei Electric Co., Ltd.
  • a CO2 laser with a wavelength of 9360 nm was used as the second laser light
  • the spot diameter of the laser light was 100 ⁇ m
  • the laser output was 27 W
  • the pulse frequency was 30 kHz
  • the cutting speed by the laser light was 500 mm/sec
  • the number of scans was 1.
  • the separation distance between the first planned cutting line in the above-mentioned half cut process and the second planned cutting line in the full cut process was 101 ⁇ m.
  • the laminated film of Example 1 (a laminated film having an adhesive layer) was produced.
  • the laminated film of Example 1 has a release liner, an adhesive layer, and a surface protection film in this order in the thickness direction, and the release liner has a thin extending end portion (extending end portion 12 shown in Figures 1 and 2).
  • Example 2 A laminated film of Example 2 was produced in the same manner as the laminated film of Example 1, except for the following.
  • the melting of the surface protection film and the adhesive layer by irradiation and scanning of the first laser light was repeated 11 times with the melting point shifted by 20 ⁇ m in the direction intersecting the scanning direction, forming a half-cut groove with a groove width of about 300 ⁇ m (the number of half-cuts was 11).
  • the irradiation and scanning of the second laser light was performed so as to trace the center of the width direction of the half-cut groove to melt the release liner.
  • the spot center distance S of the irradiation spots of the laser light in the half-cut process and the full-cut process was set to 139 ⁇ m.
  • the full-cut groove (G2) formed in this way and the above-mentioned half-cut groove (G1) extend adjacent to each other and in parallel, as shown in FIG. 8, and are continuously connected in the extension direction in the adjacent direction.
  • the laminated film of Example 2 has a longer extended end of the release liner than the laminated film of Example 1.
  • Example 3 The laminated film of Example 3 was prepared in the same manner as the laminated film of Example 2, except for the following.
  • the adhesive composition for forming the adhesive layer the adhesive composition C2 was prepared as described below, and in the preparation process, the adhesive composition C2 was used instead of the adhesive composition C1.
  • the spot center distance S of the laser light irradiation spots in the half-cut process and the full-cut process (the distance between the planar center position of the outermost irradiation spot of the first laser light in the half-cut process and the planar center position of the irradiation spot of the second laser light in the full-cut process) was set to 73 ⁇ m.
  • the laminated film of Example 3 has a shorter extended end of the release liner than the laminated film of Example 2.
  • adhesive composition C2 In preparing adhesive composition C2, first, a mixture containing 45 parts by mass of 2-ethylhexyl acrylate (2EHA), 42 parts by mass of lauryl acrylate (LA), 2 parts by mass of n-butyl acrylate (BA), 4 parts by mass of 4-hydroxybutyl acrylate (4HBA), 7 parts by mass of N-vinyl-2-pyrrolidone (NVP), and 0.015 parts by mass of a photopolymerization initiator (product name: Omnirad 184, manufactured by IGM Resins) was irradiated with ultraviolet light (polymerization reaction) to obtain a prepolymer composition (polymerization rate: approximately 10%) (the prepolymer composition contains monomer components that have not undergone the polymerization reaction).
  • 2EHA 2-ethylhexyl acrylate
  • LA lauryl acrylate
  • BA n-butyl acrylate
  • 4HBA 4-hydroxybutyl acrylate
  • Comparative Example 1 A laminated film of Comparative Example 1 was produced in the same manner as the laminated film of Example 1, except that the following contour processing step was carried out instead of the half-cutting step and full-cutting step described above.
  • the release liner, adhesive layer, and surface protective film on the carrier film were fully cut by laser processing the laminate film on the carrier film. Specifically, the surface protective film, adhesive layer, and release liner were melted and cut to form a full-cut groove by irradiating and scanning the laminate film with laser light from the surface protective film side so as to follow a predetermined planned cutting line in the laminate film.
  • a laser processing device product name "LC500”, Takei Electric Co., Ltd.
  • a CO2 laser with a wavelength of 9360 nm was used as the laser light
  • the spot diameter of the laser light was 100 ⁇ m
  • the laser output was 27 W
  • the pulse frequency was 30 kHz
  • the cutting speed by the laser light was 500 mm/sec
  • the number of scans was 1.
  • a laminate film that was cut into a predetermined planar shape was formed in a large-sized laminate film.
  • the laminated film of Comparative Example 1 (a laminated film having an adhesive layer) has a release liner, an adhesive layer, and a surface protection film in that order in the thickness direction, and the release liner has an extended end portion that is not thin.
  • Comparative Example 2 The laminate film of Comparative Example 2 was produced in the same manner as the laminate film of Example 1, except for the following.
  • a press processing step was carried out instead of the half-cut step and the full-cut step. Specifically, a press processing blade was inserted in the thickness direction from the surface protection film side to the carrier film into the laminate film on the carrier film prepared in the preparation step, thereby forming a laminate film (release liner/adhesive layer/surface protection film) of a predetermined planar shape.
  • the press processing blade has a cutting edge with a blade angle of 30 degrees.
  • the package containing the adhesive sample was placed in a container with a volume of 50 mL, and the container was filled with ethyl acetate (one container was used for each package). After leaving this at 23° C. for 7 days, the package was removed from the container and dried at 130° C. for 2 hours. Thereafter, the mass (W 4 mg) of the package was measured. Then, the gel fraction (mass%) of the adhesive layer was calculated by substituting the values of W 1 to W 4 into the following formula. The values are shown in Table 1.
  • the required number of measurement samples were prepared for each adhesive layer. Specifically, multiple pieces of adhesive layer cut from the adhesive layer of the laminated film were first laminated together to prepare a sample sheet approximately 1.5 mm thick. Next, this sheet was punched out to obtain cylindrical pellets (diameter 7.9 mm) that served as measurement samples.
  • Shape analysis The shape of the adhesive layer in each laminate film of Examples 1 to 3 and Comparative Examples 1 and 2 was analyzed using a shape analysis laser microscope (product name "VK-X1000", manufactured by KEYENCE). Specifically, the thickness h 1 of the main region of the release liner, the extension length d 1 and minimum thickness h 2 (thickness of the thinnest part) of the extension end of the release liner, the thickness h 3 of the outer part, and the distance d 2 between the outer end of the release liner and the inner end of the adhesive layer were measured using the same microscope (thicknesses h 1 to h 3 , extension length d 1 and distance d 2 are shown in FIG. 2 ). The measurement results are shown in Table 1. The ratio of thickness h 2 to thickness h 1 (h 2 /h 1 ) is also shown in Table 1. The ratio of thickness h 3 to thickness h 2 (h 3 /h 2 ) is also shown in Table 1.
  • test piece for measurement (approximately 50 mm short x 100 mm long) was cut out from the laminated film. Specifically, a test piece having a length of approximately 100 mm from the end of the laminated film and a width of 50 mm was cut out from the laminated film.
  • test specimen was fixed to the fixing table of a tensile testing machine (product name: "Autograph", manufactured by Shimadzu Corporation). Specifically, the surface protection film side of the test specimen was attached to the fixing table via strong double-sided adhesive tape.
  • a gripping tape was attached to the short side of the extended end of the release liner of the test piece placed on the fixing table.
  • This gripping tape has a strong adhesive surface, and the gripping tape was attached to the release liner of the test piece via this strong adhesive surface.
  • a peel test was conducted using a tensile tester to peel the release liner on the adhesive layer of the test piece from the adhesive layer, and the force required for peeling was measured as the peel strength.
  • the measurement temperature was 25°C
  • the release liner was peeled off by pulling the gripping tape in the length direction of the test piece
  • the peel angle was 180°
  • the pulling speed was 300 mm/min
  • the peel length was 80 mm.
  • An example of a graph obtained by such a peel test is shown in Figure 11.
  • the horizontal axis represents the peel length (mm)
  • the vertical axis represents the peel strength (N/50 mm)
  • Fmax represents the maximum peel strength.
  • peel initiation force F1 N/50mm
  • peel force F2 N/50mm
  • the ratio of peel initiation force F1 to peel force F2 is also shown in Table 1.
  • Peel initiation force F1 is the maximum peel strength within a peel length of 20mm when the release liner is peeled from the adhesive layer
  • peel force F2 is the average peel strength within a peel length of 20-100mm (where the peel strength stabilizes after passing the peel initiation force F1 at the start of peeling).
  • the laminated film having an adhesive layer of the present invention can be used, for example, as a supply material for optical adhesive sheets for flexible devices such as foldable display panels.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Adhesive Tapes (AREA)
  • Laminated Bodies (AREA)
  • Adhesives Or Adhesive Processes (AREA)

Abstract

積層フィルム(X)は、フィルム(10)と、粘着剤層(20)と、フィルム(30)とを備える。フィルム(10)は、粘着剤層(20)の第1面(21)に接する。フィルム(30)は、粘着剤層(20)の第2面(22)に接する。フィルム(10)は、延出端部(12)を有する。延出端部(12)は、厚さ方向(H)と直交する面方向(D)において粘着剤層(20)の端面(23)よりも外方に延出する。延出端部(12)は、端面(23)と面一で繋がる表面(12a)を有し、且つ、フィルム(10)において粘着剤層(20)と接する主領域部(11)より薄い。

Description

粘着剤層を有する積層フィルム
 本発明は、粘着剤層を有する積層フィルムに関する。
 ディスプレイパネルは、例えば、画素パネル、偏光フィルム、タッチパネルおよびカバーフィルムなどの要素を含む積層構造を有する。そのようなディスプレイパネルの製造過程では、積層構造に含まれる要素どうしの接合のために、例えば、光学的に透明な粘着シート(光学粘着シート)が用いられる。光学粘着シートは、例えば、同シートの両面がはく離ライナーで被覆された形態(粘着剤層を有する積層フィルムの形態)で製造される。
 一方、例えばスマートフォン用およびタブレット端末用に、繰り返し折り曲げ可能(フォルダブル)なディスプレイパネルの開発が進んでいる。フォルダブルディスプレイパネルは、具体的には、屈曲形状とフラットな非屈曲形状との間で、繰り返し変形可能である。このようなフォルダブルディスプレイパネルでは、積層構造中の各要素が、繰り返し折り曲げ可能に作製されており、そのような要素間の接合に薄い光学粘着シートが用いられている。フォルダブルディスプレイパネルなどフレキシブルデバイス用の光学粘着シートについては、例えば下記の特許文献1に記載されている。
特開2018-111754号公報
 フレキシブルデバイス用の光学粘着シートは、従来、例えば次のようにして製造される。
 まず、図12Aに示すように、ワークフィルムW’を用意する。ワークフィルムW’は、長尺の原反シートとしての積層フィルム90と、積層フィルム90を支持する長尺のキャリアフィルムC’とからなる。積層フィルム90は、はく離ライナー91と、粘着剤層92と、はく離ライナー93とを、厚さ方向Hにこの順で有する。はく離ライナー91は、粘着剤層92の一方面に剥離可能に接している。はく離ライナー93は、粘着剤層92の他方面に剥離可能に接している。キャリアフィルムC’は、積層フィルム90をはく離ライナー91側から支持する。
 次に、図12Bに示すように、積層フィルム90の粘着剤層92に対するプレス加工により、複数の枚葉状の粘着シート92Aを形成する(プレス加工工程)。プレス加工では、図13に示すように、積層フィルム90に対して、刃型100の刃101を、はく離ライナー93側からはく離ライナー91に至るまで押し入れる。これにより、粘着剤層92において、所定の平面視形状の粘着シート92Aを形成する。本工程では、粘着剤層92における粘着シート92Aまわりに、周囲部92aが形成される。はく離ライナー93もプレス加工されて、粘着剤層92と同一の平面視形状のはく離ライナー93Aが形成され、はく離ライナー93Aまわりに周囲部93aが形成される。また、積層フィルム90において、はく離ライナー93側からはく離ライナー91に至る切断溝95が形成される。
 このようなプレス加工工程の後、図12Cに示すように、はく離ライナー91上から周囲部92a,93a(図12B)を除去する(除去工程)。この後、図12Dに示すように、長尺のはく離ライナー91が枚葉状のはく離ライナー91Aに切断される。これにより、粘着剤層を有する枚葉状の積層フィルム90A(はく離ライナー91A/粘着シート92A/はく離ライナー93A)が得られる。
 フレキシブルデバイス用の粘着シート(粘着剤層)には、デバイス屈曲時の被着体への充分な追従性と、優れた応力緩和性とを有するように、高度に軟質であることが求められる。しかしながら、上述の製造方法では、粘着剤層92が軟質なほど、プレス加工工程(図12B)において、粘着剤層92が、刃型100に付着しやすく、当該刃型100によって引っ張られやすい。そのため、図14に示すように、プレス加工工程後の粘着シート92Aにおいて、はみ出し部92Eが形成されやすい。はみ出し部92Eは、粘着シート92Aの端部92eにおいて、はく離ライナー93Aの端面93eよりも面方向Dにおける外方に延出した部分である。
 はみ出し部92Eは、積層フィルム90Aを積み重ねた場合に、隣り合う積層フィルム90Aの端部どうしが付着すること(端部ブロッキング)の原因となる。端部ブロッキングは、積層フィルム90Aの取り扱い性を低下させる。このような不具合は、はく離ライナー91A上に、粘着シート92Aおよびはく離ライナー93Aに代えて粘着剤層付き表面保護フィルム(粘着剤層側にはく離ライナー91Aが貼着している)を形成する場合にも、生じる。
 積層フィルム90Aにおいて、はく離ライナー91Aは、延出端部91aを有する。延出端部91aは、面方向Dにおいて、はく離ライナー93Aの端面93eよりも外方に延出している。面方向Dにおいて延出端部91aがはみ出し端部92eよりも外方に延出している場合、そのような延出端部91aは、上述の端部ブロッキングを抑制する。
 しかし、従来の積層フィルム90Aでは、はく離ライナー91A(延出端部91aを有する)を粘着シート92Aから剥離するのに要する力(剥離力)が比較的大きい。そのため、はく離ライナー91Aを粘着シート92Aから適切に剥離できない場合がある。
 本発明は、端部ブロッキングを抑制するのに適するとともに、片側フィルムの剥離しやすさを確保するのに適した、粘着シートを有する積層フィルムを提供する。
 本発明[1]は、第1面と、当該第1面とは反対側の第2面とを有する粘着剤層と、前記第1面に接する第1フィルムと、前記第2面に接する第2フィルムとを備え、前記第1フィルムが延出端部を有し、当該延出端部は、厚さ方向と直交する面方向において前記粘着剤層の端面よりも外方に延出し、前記延出端部が、前記端面と面一で繋がる表面を有し、且つ、前記第1フィルムにおいて前記粘着剤層と接する主領域部より薄い、粘着剤層を有する積層フィルムを含む。
 本発明[2]は、前記面方向における前記端面からの前記延出端部の延出長さが50μm以上である、上記[1]に記載の粘着剤層を有する積層フィルムを含む。
 本発明[3]は、前記面方向における前記端面からの前記延出端部の延出長さが500μm以下である、上記[1]または[2]に記載の粘着剤層を有する積層フィルムを含む。
 本発明[4]は、前記主領域部の厚さに対する、前記延出端部の最小厚さの比率が、0.3以上である、上記[1]から[3]のいずれか一つに記載の粘着剤層を有する積層フィルムを含む。
 本発明[5]は、前記延出端部が、最薄部と、前記面方向において前記最薄部よりも外側の外側部とを有し、当該外側部は前記最薄部より厚い、上記[1]から[4]のいずれか一つに記載の粘着剤層を有する積層フィルムを含む。
 本発明[6]は、前記粘着剤層が25℃において100kPa以下のせん断貯蔵弾性率を有する、上記[1]から[5]のいずれか一つに記載の粘着剤層を有する積層フィルムを含む。
 本発明[7]は、記粘着剤層が40質量%以上80質量%以下のゲル分率を有する、上記[1]から[6]のいずれか一つに記載の粘着剤層を有する積層フィルムを含む。
 本発明[8]は、25℃、剥離角度180°および引張速度300mm/分の条件で前記粘着剤層から前記第1フィルムを剥離する剥離試験において、剥離力に対する剥離開始力の比率が10以下である、上記[1]から[7]のいずれか一つに記載の粘着剤層を有する積層フィルムを含む。
 本発明の積層フィルムでは、上記のように、第1フィルムが、面方向において粘着剤層の端面よりも外方に延出している延出端部を有し、当該延出端部が、粘着剤層の端面と面一で繋がる表面を有し、且つ、第1フィルムにおいて粘着剤層と接する主領域部より薄い。第1フィルムが延出端部を有すること、および、延出端部が粘着剤層端面と面一の表面を有することは、上述の端部ブロッキングを抑制するのに適する。また、第1フィルムにおいて、延出端部が主領域部(粘着剤層と接する)より薄いことは、第1フィルムの延出端部を引っ張って粘着剤層から第1フィルムを剥離する時の延出端部の変形(折れ曲がり)のしやすさを確保するのに適する。第1フィルム剥離時に延出端部が変形しやすいことは、第1フィルムの当該剥離を開始するための剥離開始力を低減して、第1フィルムの剥離しやすさを確保するのに役立つ。したがって、本発明の積層フィルムは、端部ブロッキングを抑制するのに適するとともに、片側フィルムの剥離しやすさを確保するのに適する。
本発明の積層フィルム(粘着剤層を有する積層フィルム)の一実施形態の断面模式図である。 図1に示す積層フィルムの部分拡大断面図である。 図1に示す積層フィルムの製造方法の一例を表す。図3Aは用意工程を表し、図3Bはハーフカット工程を表し、図3Cはフルカット工程を表す。 ワークフィルムにおけるハーフカット工程(図3B)後の領域の一例の模式的な平面図である。 ワークフィルムにおけるフルカット工程(図3C)後の領域の一例の模式的な平面図である。 ハーフカット工程の変形例を表す。本変形例では、第1レーザー光の照射および走査による第2フィルム層および粘着剤層の溶断を、走査方向と交差する方向に溶断箇所をずらして複数回繰り返され、ハーフカット溝が形成される。 ワークフィルムにおける図6に示すハーフカット工程後の領域の一例の模式的な平面図である。 図6に示すハーフカット工程後のフルカット工程を表す。 ワークフィルムにおける図8に示すフルカット工程後の領域の一例の模式的な平面図である。 図1に示す積層フィルムの製造方法の他の例の一部を表す。図10Aはフルカット工程を表し、図10Bはハーフカット工程を表す。 粘着剤層上のはく離ライナーを粘着剤層から剥離する剥離試験によって得られるグラフの一例を表す。 粘着剤層を有する従来の積層フィルムの製造方法の一例を表す。図12Aは用意工程を表し、図12Bはプレス加工工程を表し、図12Cは除去工程を表し、図12Dは切断工程を表す。 刃型によるプレス加工工程を表す。 粘着剤層を有する従来の積層フィルムの端部の部分拡大断面図である。
 本発明の一実施形態としての積層フィルムXは、図1に示すように、フィルム10(第1フィルム)と、粘着剤層20と、フィルム30(第2フィルム)とを厚さ方向Hにこの順で備える。粘着剤層20は、第1面21と、当該第1面21とは反対側の第2面22とを有する。フィルム10は、第1面21に接する。フィルム30は、第2面22に接する。積層フィルムXは、厚さ方向Hと直交する面方向Dに広がる。
 フィルム10は、粘着剤層20から剥離可能なはく離ライナーである。フィルム10は、主領域部11と、延出端部12とを有する。主領域部11は、フィルム10において粘着剤層20に接する領域である。延出端部12は、図2に示すように、面方向Dにおいて、粘着剤層20の端面23よりも外方に延出している。延出端部12は、端面23と面一で繋がる表面12aと、当該表面12aより面方向Dにおいて外側の表面12bとを有する。表面12aは、図2に示すような断面において、例えば弧形状を有する。表面12bは、図2に示すような断面において、例えば、直線形状またはやや湾曲形状を有する。本実施形態では、表面12aと表面12bとの間に頂部12cが形成されている。頂部12cは、図2に示すような断面において、例えば、鋭角を有して尖っている。また、延出端部12は、主領域部11より薄い。すなわち、延出端部12は、薄肉の延出端部である。
 フィルム30は、例えば、はく離ライナー、機能性光学フィルム、または基材フィルム(支持フィルム)である。フィルム30は、粘着剤層20側の第1面31と、これとは反対側の第2面32と、端面33とを有する。端面33は、粘着剤層20の端面23と面一で繋がる。
 積層フィルムXの端部では、フィルム30の端面33と、粘着剤層20の端面23と、フィルム10の表面12aにおいて端面23に隣接する部分とは、厚さ方向Hにおいてフィルム30の第2面32から遠ざかるに従って、外側に広がり且つ曲率半径が小さくなる湾曲形状(R形状)を形成する。また、延出端部12の表面12bは、厚さ方向Hにおいて第2面32から遠ざかるに従って外側に広がるように、傾斜または湾曲している。
 積層フィルムXでは、上述のように、フィルム10が、面方向Dにおいて粘着剤層20の端面23よりも外方に延出している延出端部12を有し、その延出端部12が、端面23と面一で繋がる表面12aを有し、且つ、フィルム10において粘着剤層20と接する主領域部11より薄い。フィルム10が延出端部12を有すること、および、延出端部12が粘着剤層20の端面23と面一の表面12aを有することは、上述の端部ブロッキングを抑制するのに適する。
 また、フィルム10において、延出端部12が主領域部11(粘着剤層20と接する)より薄いことは、フィルム10の延出端部12を引っ張って粘着剤層20からフィルム10を剥離する時の延出端部12の変形(折れ曲がり)のしやすさを確保するのに適する。フィルム10の剥離時に延出端部12が変形しやすいことは、フィルム10の当該剥離を開始するための剥離開始力を低減して、フィルム10の剥離しやすさを確保するのに役立つ。
 以上のように、積層フィルムXは、端部ブロッキングを抑制するのに適するとともに、フィルム10の剥離しやすさを確保するのに適する。
 積層フィルムXにおける上述のブロッキングの抑制の観点から、面方向D(平面視において、端面23と直交する方向)における、端面23からの延出端部12の延出長さd(図2)は、好ましくは50μm以上、より好ましくは70μm以上、更に好ましくは100μm以上である。積層フィルムXの効率的製造の観点から、延出長さdは、好ましくは500μm以下、より好ましくは400μm以下、更に好ましくは300μm以下である。
 フィルム10の主領域部11の厚さhに対する、延出端部12の最小厚さhの比率(h/h)は、延出端部12の強度の確保の観点から、好ましくは0.3以上、より好ましくは0.4以上、更に好ましくは0.43以上である。比率(h/h)は、例えば0.7以下、0.8以下または0.9以下である。
 主領域部11の厚さhは、フィルム10による粘着剤層20の保護機能を確保する観点から、好ましくは10μm以上、より好ましくは15μm以上、更に好ましくは20μm以上である。主領域部11の厚さhは、積層フィルムXの薄型化の観点から、好ましくは150μm以下、より好ましくは120μm以下、更に好ましくは100μm以下である。
 延出端部12は、本実施形態では、上述の最小厚さhを有する最薄部12pと、面方向Dにおいて最薄部12pよりも外側の外側部12qとを有する。外側部12qは、最薄部12pより厚い。フィルム10の延出端部12が、このような最薄部12pと外側部12qとを有することは、粘着剤層20からのフィルム10の剥離時の延出端部12の変形(折れ曲がり)のしやすさと、延出端部12に対する当接要素(剥離作業者の指など)の引っ掛かりやすさとを、両立するのに適する。また、延出端部12において、最薄部12pは、粘着剤層20の端面23の側から頂部12cに至る途中(本実施形態では、中央より頂部12c側)に位置する。
 延出端部12における最小厚さhに対する外側部12qの厚さhの比率(h/h)は、延出端部12に対する剥離時の当接要素の引っ掛かりやすさを確保する観点から、好ましくは1.2以上、より好ましくは1.5以上、更に好ましくは1.8以上であり、また、好ましくは3.0以下、より好ましくは2.5以下、更に好ましくは2.2以下である。
 面方向D(平面視において、端面23と直交する方向)におけるフィルム10の外方端と、粘着剤層20の内方端との間の距離d(図2)は、好ましくは1000μm以下、より好ましくは700μm以下、更に好ましくは500μm以下である。距離dは、例えば50μm以上または70μm以上である。面方向Dにおけるフィルム10の外方端と粘着剤層20の内方端との間の領域は、積層フィルムXの端部検知用のアライメントマーク(エッジアライメントマーク)として利用できるエッジ領域の一部である。距離dが1000μm以下(好ましくは700μm以下、より好ましくは500μm以下)である場合、エッジアライメントマークの、検出用カメラによる誤検知を抑制できる(エッジアライメントマークが大きすぎると、誤検知を生じる)。
 粘着剤層20の厚さは、粘着剤層20の粘着力の確保の観点から、好ましくは5μm以上、より好ましくは10μm以上、更に好ましくは15μm以上である。粘着剤層20の厚さは、粘着剤層20の薄型化の観点から、好ましくは100μm以下、より好ましくは70μm以下、更に好ましくは50μm以下である。
 粘着剤層20のゲル分率は、粘着剤層20の軟質性の確保の観点から、好ましくは80質量%以下、より好ましくは75質量%以下、更に好ましくは70質量%以下である。粘着剤層20のゲル分率は、粘着剤層20の凝集力の確保の観点から、好ましくは40質量%以上、より好ましくは45質量%以上、更に好ましくは50質量%以上である。ゲル分率の調整方法としては、例えば、粘着剤層20におけるベースポリマーの種類の選択、分子量の調整、および配合量の調整が挙げられる。ゲル分率の測定方法は、実施例に関して後述するとおりである。
 粘着剤層20の25℃でのせん断貯蔵弾性率は、フレキシブルデバイス用途の粘着剤層に求められる柔らかさを粘着剤層20において確保する観点から、好ましくは100kPa以下、より好ましくは90kPa以下、更に好ましくは80kPa以下である。粘着剤層20の25℃でのせん断貯蔵弾性率は、粘着剤層20の粘着力の確保の観点から、好ましくは10kPa以上、より好ましくは15kPa以上、更に好ましくは20kPa以上、特に好ましくは25kPa以上である。粘着剤層20のせん断貯蔵弾性率の調整方法としては、例えば、粘着剤層20におけるベースポリマーの種類の選択、分子量の調整、配合量の調整、ガラス転移温度の調整、および架橋度の調整が挙げられる。粘着剤層20のせん断貯蔵弾性率の調整方法としては、粘着剤層20におけるベースポリマー以外の成分の選択および配合量の調整も挙げられる。粘着剤層のせん断貯蔵弾性率は、動的粘弾性測定によって求められる。せん断貯蔵弾性率の測定方法は、具体的には、実施例に関して後述するとおりである。
 粘着剤層20からのフィルム10の剥離を開始するための剥離開始力F1は、フィルム10の軽剥離性を確保する観点から、好ましくは1.5N/50mm以下、より好ましくは1.3N/50mm以下、更に好ましくは1.2N/50mm以下である。剥離開始力F1は、フィルム10の意図しない剥離を抑制する観点から、好ましくは0.5N/50mm以上、より好ましくは0.65N/50mm以上、更に好ましくは0.75N/50mm以上である。
 剥離開始力とは、本実施形態においては、粘着剤層に剥離可能に貼着しているフィルムを当該粘着剤層から剥離するときの剥離開始過程で要する力である。剥離開始過程では、粘着剤層から離れる方向にフィルムが変形するように、当該フィルムに力が作用される。これにより、当該フィルムに貼着している粘着剤層の端縁およびその近傍が、フィルムの変形に追随するように、一旦、弾性変形する。そして、そのように弾性変形した粘着剤層端部からフィルムが引き離される程度に大きな力でフィルムが引っ張られた場合に、粘着剤層の端縁およびその近傍とフィルムとの間に開裂が生じ、剥離が開始する。すなわち、剥離開始力とは、剥離開始過程において、弾性変形した粘着剤層端部からフィルムを引き離して粘着剤層からのフィルムの剥離を開始させるのに要する力である。このような剥離開始力は、後記の実施例に関して後述する方法によって測定できる。このような剥離開始力の調整方法としては、例えば、フィルムの厚さの調整、および、フィルムの粘着剤層側表面における剥離処理剤の種類の選択が、挙げられる。
 フィルム10の粘着剤層20からの剥離開始後に当該フィルム10を粘着剤層20から剥離するための剥離力F2は、フィルム10の軽剥離性を確保する観点から、好ましくは0.2N/50mm以下、より好ましくは0.17N/50mm以下、更に好ましくは0.16N/50mm以下である。剥離力F2は、フィルム10の意図しない剥離を抑制する観点から、好ましくは0.10N/50mm以上、より好ましくは0.12N/50mm以上、更に好ましくは0.14N/50mm以上である。
 剥離力F2に対する剥離開始力F1の比率(F1/F2)は、フィルム10の剥離しやすさを確保する観点から、好ましくは10以下、より好ましくは9以下、更に好ましくは8以下、一層好ましくは7.5以下である。比率(F1/F2)は、例えば1以上、3以上または5以上である。
 図3Aから図3Cは、積層フィルムXの製造方法の一例を表す。図3Aは用意工程を表し、図3Bはハーフカット工程を表し、図3Cはフルカット工程を表す。
 用意工程では、図3Aに示すように、長尺のワークフィルムWを用意する。ワークフィルムWは、積層フィルムX’と、キャリアフィルムCとを含む。積層フィルムX’は、長尺の原反フィルムである。キャリアフィルムCは、積層フィルムX’を支持する。
 積層フィルムX’は、フィルム層10A(第1フィルム層)と、粘着剤層20Aと、フィルム層30A(第2フィルム層)とを、厚さ方向Hにこの順で備える。粘着剤層20Aは、第1面20aと、当該第1面20aとは反対の第2面20bとを有する。フィルム層10Aは第1面20aに接している。フィルム層30Aは第2面20bに接している。積層フィルムX’は、厚さ方向Hと直交する面方向に広がる。
 キャリアフィルムCは、厚さ方向Hの一方側に粘着面を有する片面粘着フィルムである。ワークフィルムWにおいて、キャリアフィルムCの粘着面が積層フィルムX’のフィルム層10A側に貼り合わせられている。すなわち、ワークフィルムWは、具体的には、キャリアフィルムCと、フィルム層10Aと、粘着剤層20Aと、フィルム層30Aとを厚さ方向Hにこの順で備える。
 また、キャリアフィルムCは、ワークフィルムWの流れ方向D1と直交する幅方向D2(図4,図5)において、積層フィルムX’よりも幅広である。積層フィルムX’は、キャリアフィルムC上において、幅方向D2の中央位置に配置される。積層フィルムX’の幅(幅方向D2の長さ)は、例えば200mm以上、好ましくは280mm以上、より好ましくは400mm以上であり、また、例えば2000mm以下、好ましくは1800mm以下、より好ましくは1600mm以下である。このようなワークフィルムWが、製造ラインを流される。
 フィルム層10Aは、はく離ライナーである。はく離ライナーの材料としては、例えば、ポリエステル、ポリオレフィン、およびポリカーボネートが挙げられる。ポリエステルとしては、例えば、ポリエチレンテレフタレート、ポリエチレンナフタレート、およびポリブチレンテレフタレートが挙げられる。ポリオレフィンとしては、例えば、ポリエチレン、ポリプロピレン、およびシクロオレフィンポリマー(COP)が挙げられる。はく離ライナーとしてのフィルム層10Aは、粘着剤層20Aの第1面20aに剥離可能に接している。そのようなフィルム層10Aの表面(粘着剤層20A側の表面)は、好ましくは剥離処理されている。剥離処理としては、例えば、シリコーン剥離処理およびフッ素剥離処理が挙げられる。
 粘着剤層20Aは、粘着剤組成物から形成されている。粘着剤組成物は、ベースポリマーを含む。ベースポリマーは、粘着性を発現させる粘着成分である。ベースポリマーとしては、例えば、アクリルポリマー、ポリウレタンポリマー、ポリアミドポリマー、およびポリビニルエーテルポリマーが挙げられる。ベースポリマーは、単独で用いられてもよいし、二種類以上が併用されてもよい。粘着剤層20Aにおける良好な透明性および粘着性を確保する観点から、ベースポリマーとしては、好ましくはアクリルポリマーが用いられる。
 アクリルポリマーは、(メタ)アクリル酸エステルを50質量%以上の割合で含むモノマー成分の共重合体である。「(メタ)アクリル」は、アクリルおよび/またはメタクリルを意味する。(メタ)アクリル酸エステルとしては、好ましくは、(メタ)アクリル酸アルキルエステルが用いられ、より好ましくは、アルキル基の炭素数が1~20である(メタ)アクリル酸アルキルエステルが用いられる。
 (メタ)アクリル酸アルキルエステルとしては、例えば、(メタ)アクリル酸メチル、(メタ)アクリル酸エチル、(メタ)アクリル酸n-ブチル、(メタ)アクリル酸ペンチル、(メタ)アクリル酸n-ヘキシル、(メタ)アクリル酸ヘプチル、(メタ)アクリル酸2-エチルヘキシル、(メタ)アクリル酸n-オクチル、(メタ)アクリル酸イソオクチル、(メタ)アクリル酸ノニル、(メタ)アクリル酸イソノニル、(メタ)アクリル酸デシル、(メタ)アクリル酸イソデシル、(メタ)アクリル酸ウンデシル、(メタ)アクリル酸ドデシル(即ちラウリル(メタ)アクリレート)、(メタ)アクリル酸イソトリデシル、および(メタ)アクリル酸テトラデシルが挙げられる。(メタ)アクリル酸アルキルエステルとしては、好ましくは、アクリル酸2-エチルヘキシル(2EHA)と、ラウリルアクリレート(LA)と、アクリル酸n-ブチル(BA)とからなる群より選択される少なくとも一つである。モノマー成分における(メタ)アクリル酸アルキルエステルの割合は、粘着剤層20Aにおいて粘着性等の基本特性を適切に発現させる観点から、好ましくは60質量%以上、より好ましくは70質量%以上、更に好ましくは90質量%以上であり、また、例えば99質量%以下である。
 モノマー成分は、(メタ)アクリル酸アルキルエステルと共重合可能な共重合性モノマーを含んでもよい。共重合性モノマーとしては、例えば、極性基を有するモノマーが挙げられる。極性基含有モノマーとしては、例えば、ヒドロキシ基含有モノマー、カルボキシ基含有モノマー、および窒素原子含有環を有するモノマーが挙げられる。極性基含有モノマーは、アクリルポリマーへの架橋点の導入、アクリルポリマーの凝集力の確保など、アクリルポリマーの改質に役立つ。
 ヒドロキシ基含有モノマーとしては、例えば、(メタ)アクリル酸2-ヒドロキシエチル、(メタ)アクリル酸2-ヒドロキシプロピル、および(メタ)アクリル酸4-ヒドロキシブチルが挙げられる。ヒドロキシ基含有モノマーとしては、好ましくは、アクリル酸2-ヒドロキシエチル(2HEA)およびアクリル酸4-ヒドロキシブチル(4HBA)からなる群より選択される少なくとも一つが用いられる。モノマー成分におけるヒドロキシ基含有モノマーの割合は、アクリルポリマーへの架橋構造の導入、および、粘着剤層20Aにおける凝集力の確保の観点から、好ましくは1質量%以上、より好ましくは2質量%以上、更に好ましくは3質量%以上である。同割合は、アクリルポリマーの極性の調整の観点から、好ましくは20質量%以下、より好ましくは10質量%以下である。アクリルポリマーの極性は、粘着剤層20Aにおけるアクリルポリマーと各種添加剤成分との相溶性に関わる。
 窒素原子含有環を有するモノマーとしては、例えば、N-ビニル-2-ピロリドン、N-メチルビニルピロリドン、N-ビニルピリジン、N-ビニルピペリドン、N-ビニルピリミジン、N-ビニルピペラジン、N-ビニルピロール、N-ビニルイミダゾール、N-(メタ)アクリロイル-2-ピロリドン、およびアクリロイルモルホリンが挙げられる。窒素原子含有環を有するモノマーとしては、好ましくは、N-ビニル-2-ピロリドン(NVP)が用いられる。モノマー成分における、窒素原子含有環を有するモノマーの割合は、粘着剤層20Aにおける凝集力の確保、および、粘着剤層20Aにおける対被着体密着力の確保の観点から、好ましくは0.1質量%以上、より好ましくは0.5質量%以上、更に好ましくは1質量%以上である。同割合は、アクリルポリマーのガラス転移温度の調整、および、アクリルポリマーの極性の調整の観点から、好ましくは30質量%以下、より好ましくは20質量%以下である。
 ベースポリマーは、好ましくは、架橋構造を有する。ベースポリマーへの架橋構造の導入方法としては、例えば、次の第1の方法および第2の方法が挙げられる。第1の方法では、架橋剤と反応可能な官能基を有するベースポリマーと架橋剤とを粘着剤組成物に配合し、ベースポリマーと架橋剤とを粘着シート中で反応させる。第2の方法では、ベースポリマーを形成するモノマー成分に、架橋剤としての多官能化合物を含め、当該モノマー成分の重合により、ポリマー鎖に分枝構造(架橋構造)が導入されたベースポリマーを形成する。これらの方法は、併用されてもよい。
 上記第1の方法で用いられる架橋剤としては、例えば、ベースポリマーに含まれる官能基(ヒドロキシ基およびカルボキシ基など)と反応する化合物が挙げられる。そのような架橋剤としては、例えば、イソシアネート架橋剤、過酸化物架橋剤、およびエポキシ架橋剤が挙げられる。架橋剤は、単独で用いられてもよいし、二種類以上が併用されてもよい。
 上記第2の方法では、モノマー成分(架橋構造を導入するための多官能モノマーと他のモノマーとを含む)は、一度で重合させてもよいし、多段階で重合させてもよい。多段階重合の方法では、まず、ベースポリマーを形成するための単官能モノマーを重合させ(予備重合)、これによって部分重合物(低重合度の重合物と未反応のモノマーとの混合物)を含有するプレポリマー組成物を調製する。次に、プレポリマー組成物に架橋剤としての多官能モノマーを添加した後、部分重合物と多官能モノマーとを重合させる(本重合)。多官能モノマーとしては、例えば、エチレン性不飽和二重結合を1分子中に2個以上含有する多官能(メタ)アクリレートが挙げられる。多官能モノマーとしては、活性エネルギー線重合(光重合)によって架橋構造を導入可能な観点から、多官能アクリレートが好ましい。多官能(メタ)アクリレートとしては、例えば、ジペンタエリスリトールヘキサアクリレート(DPHA)、エチレングリコールジ(メタ)アクリレート、1,6-ヘキサンジオールジ(メタ)アクリレート、トリメチロールプロパントリ(メタ)アクリレートが挙げられる。
 アクリルポリマーは、上述のモノマー成分を重合させることによって形成できる。重合方法としては、例えば、溶液重合、無溶剤での光重合(例えばUV重合)、塊状重合、および乳化重合が挙げられる。溶液重合の溶媒としては、例えば、酢酸エチルおよびトルエンが用いられる。また、重合の開始剤としては、例えば、熱重合開始剤および光重合開始剤が用いられる。
 ベースポリマーの重量平均分子量は、粘着剤層20Aにおける凝集力の確保の観点から、好ましくは10万以上、より好ましくは30万以上、更に好ましくは50万以上である。同重量平均分子量は、好ましくは500万以下、より好ましくは300万以下、更に好ましくは200万以下である。ベースポリマーの重量平均分子量は、ゲル・パーミエーション・クロマトグラフ(GPC)によって測定してポリスチレン換算により算出される。
 ベースポリマーのガラス転移温度(Tg)は、粘着剤層20Aの柔らかさを確保する観点から、好ましくは0℃以下、より好ましくは-10℃以下、更に好ましくは-20℃以下である。同ガラス転移温度は、例えば-80℃以上である。
 ベースポリマーのガラス転移温度(Tg)については、下記のFoxの式に基づき求められるガラス転移温度(理論値)を用いることができる。Foxの式は、ポリマーのガラス転移温度Tgと、当該ポリマーを構成するモノマーのホモポリマーのガラス転移温度Tgとの関係式である。下記のFoxの式において、Tgはポリマーのガラス転移温度(℃)を表し、Wiは当該ポリマーを構成するモノマーiの重量分率を表し、Tgiは、モノマーiから形成されるホモポリマーのガラス転移温度(℃)を示す。ホモポリマーのガラス転移温度については文献値を用いることができる。例えば、「Polymer Handbook」(第4版,John Wiley & Sons, Inc., 1999年)には、各種のホモポリマーのガラス転移温度が挙げられている。一方、モノマーのホモポリマーのガラス転移温度については、特開2007-51271号公報に具体的に記載されている方法によって求めることも可能である。
Foxの式  1/(273+Tg)=Σ[Wi/(273+Tgi)]
 粘着剤組成物は、必要に応じて他の成分を含有してもよい。他の成分としては、例えば、溶剤、シランカップリング剤、紫外線吸収剤、粘着付与剤、軟化剤、および酸化防止剤が挙げられる。溶剤としては、例えば、アクリルポリマーの重合時に必要に応じて用いられる重合溶媒、および、重合後に重合反応溶液に添加される溶剤が、挙げられる。当該溶剤としては、例えば、酢酸エチルおよびトルエンが用いられる。
 粘着剤層20Aのヘイズは、好ましくは3%以下、より好ましくは2%以下、更に好ましくは1%以下である。粘着剤層20Aのヘイズは、JIS K7136(2000年)に準拠して、ヘイズメーターを使用して測定できる。ヘイズメーターとしては、例えば、日本電色工業社製の「NDH2000」、および、村上色彩技術研究所社製の「HM-150型」が挙げられる。
 フィルム層30Aは、例えば、はく離ライナー、機能性光学フィルム、または基材フィルム(支持フィルム)である。
 はく離ライナーの材料としては、例えば、ポリエステル、ポリオレフィン、およびポリカーボネートが挙げられる。具体的には、フィルム層10Aに関して上記したはく離ライナーの材料が挙げられる。はく離ライナーとしてのフィルム層30Aは、粘着剤層20Aの第2面20bに剥離可能に接している。そのようなフィルム層30Aの表面(粘着剤層20A側の表面)は、好ましくは剥離処理されている。剥離処理としては、例えば、シリコーン剥離処理およびフッ素剥離処理が挙げられる。はく離ライナーとしてのフィルム層30Aの厚さは、粘着剤層20Aに対する保護機能を確保する観点から、好ましくは10μm以上、より好ましくは20μm以上、更に好ましくは30μm以上である。はく離ライナーとしてのフィルム層30Aの厚さは、製造される積層フィルムXの薄型化の観点から、好ましくは150μm以下、より好ましくは120μm以下、更に好ましくは100μm以下である。
 機能性光学フィルムとしては、例えば、偏光フィルムおよび位相差フィルムが挙げられる。機能性光学フィルムは、パネル補強材などの他の光学フィルムであってもよい。フィルム層30Aが機能性光学フィルムである場合、そのようなフィルム層30Aに対し、粘着剤層20Aの第2面20bは接合している。機能性光学フィルムとしてのフィルム層30Aと、粘着剤層20Aとは、粘着剤層付き機能性光学フィルムを形成する。
 偏光フィルムとしては、例えば、二色性物質による染色処理とその後の延伸処理とを経た親水性高分子フィルムが挙げられる。二色性物質としては、例えば、ヨウ素および二色性染料が挙げられる。親水性高分子フィルムとしては、例えば、ポリビニルアルコール(PVA)フィルム、部分ホルマール化PVAフィルム、および、エチレン・酢酸ビニル共重合体の部分ケン化フィルムが挙げられる。偏光フィルムとしては、ポリエン配向フィルムも挙げられる。ポリエン配向フィルムの材料としては、例えば、PVAの脱水処理物、および、ポリ塩化ビニルの脱塩酸処理物が挙げられる。偏光フィルムは、厚さ方向の一方面および/または他方面に、接着剤を介して接合された保護フィルムを有していてもよい。偏光フィルムの厚さは、偏光フィルムの機能、強度および耐久性を確保する観点から、好ましくは10μm以上、より好ましくは20μm以上である。偏光フィルムの厚さは、積層フィルムXの薄型化の観点から、好ましくは500μm以下、より好ましくは300μm以下である。
 位相差フィルムとしては、例えば、λ/2波長フィルムおよびλ/4波長フィルム、および視野角補償フィルムが挙げられる。位相差フィルムの材料としては、例えば、延伸処理によって複屈折化された高分子フィルムが挙げられる。高分子フィルムとしては、例えば、セルロースフィルムおよびポリエステルフィルムが挙げられる。セルロースフィルムとしては、例えばトリアセチルセルロースフィルムが挙げられる。ポリエステルフィルムとしては、例えば、ポリエチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、およびポリブチレンテレフタレートフィルムが挙げられる。位相差フィルムとしては、セルロースフィルムなどの基材と、当該基材上の配向層とを備えるフィルムも挙げられる。配向層は、液晶性ポリマーなどの液晶化合物から形成される。位相差フィルムの厚さは、位相差フィルムの機能および強度を確保する観点から、好ましくは1μm以上、より好ましくは2μm以上である。位相差フィルムの厚さは、積層フィルムXの薄型化の観点から、好ましくは100μm以下、より好ましくは80μm以下である。
 基材フィルムの材料としては、例えば、はく離ライナーの材料として上記した材料が挙げられる。フィルム層30Aが基材フィルムである場合、そのようなフィルム層30Aに対し、粘着剤層20Aの第2面20bは接合している。基材フィルムとしてのフィルム層30Aと、粘着剤層20Aとは、片面粘着シートを形成する。基材フィルムの厚さは、基材としての強度を確保する観点から、好ましくは10μm以上、より好ましくは15μm以上、更に好ましくは20μm以上である。基材フィルムの厚さは、積層フィルムXの薄型化の観点から、好ましくは150μm以下、より好ましくは120μm以下、更に好ましくは100μm以下である。
 積層フィルムX’は、例えば次のようにして製造できる。まず、上述の粘着剤組成物をフィルム層30A上に塗布して塗膜を形成する。次に、フィルム層30A上の塗膜の上にフィルム層10Aを貼り合わせる。次に、フィルム層10A,30A間の塗膜を乾燥させ、且つ、必要に応じて塗膜に対して光照射する。これにより、フィルム層10A,30A間に粘着剤層20Aを形成する。粘着剤組成物の塗布方法としては、例えば、ロールコート、キスロールコート、グラビアコート、リバースコート、ロールブラッシュ、スプレーコート、ディップロールコート、バーコート、ナイフコート、エアーナイフコート、カーテンコート、リップコート、およびダイコートが挙げられる。塗膜の乾燥温度は、例えば50℃~200℃である。乾燥時間は、例えば5秒~20分である。
 ハーフカット工程では、図3Bに示すように、ワークフィルムWに対するレーザー加工によってハーフカット溝G1を形成する。具体的には、レーザー加工装置により、ワークフィルムWに対してフィルム層30A側からレーザー光L1(第1レーザー光)を照射および走査することにより、積層フィルムX’においてフィルム層30Aおよび粘着剤層20Aを溶断してハーフカット溝G1を形成する。ハーフカット溝G1は、ワークフィルムWにおける所定の切断予定ライン(設計上の切断ライン)を辿るように形成される。これにより、粘着剤層20Aにおいて、個片化された粘着剤層20と、粘着剤層20まわりの周囲部25とが形成される。また、フィルム層30Aにおいて、粘着剤層20上のフィルム30と、フィルム30まわりの周囲部35とが形成される。フィルム層10Aには、溝G1a(ハーフカット溝G1の一部)が形成される。溝G1aは、粘着剤層20の端面23に沿って形成される。図4は、ワークフィルムWにおけるハーフカット工程後の領域の一例を模式的に表す平面図である。図4では、ハーフカット溝G1を、ハッチングを付して示す。図3Bに示される部分断面図は、図4に示すワークフィルムWにおけるI-I線に沿った部分断面図に相当する。
 レーザー加工用のレーザーとしては、例えば、気体レーザー、固体レーザー、および半導体レーザーが挙げられる。気体レーザーとしては、例えば、エキシマレーザーおよびCOレーザー(10.6μm)が挙げられる(括弧内の数値はレーザー波長を表す。レーザーに関して以下同じ)。エキシマレーザーとしては、例えば、Fエキシマレーザー(157nm)、ArFエキシマレーザー(193nm)、KrFエキシマレーザー(248nm)、およびXeClエキシマレーザー(308nm)が挙げられる。固体レーザーとしては、例えば、Nd:YAGレーザー(1064nm)、Nd:YAGレーザーの第2高調波(532nm)、Nd:YAGレーザーの第3高調波(355nm)、およびNd:YAGレーザーの第4高調波(266nm)が挙げられる。半導体レーザーとしては、例えば、波長405nmの半導体レーザーが挙げられる。ハーフカット工程(図3B)のレーザー光L1としては、材質および光学特性(吸光度など)の異なる粘着剤層20Aとフィルム層30Aとを共に適切に切断する観点から、COレーザーが好ましい。
 レーザー光L1は、好ましくは、ガウシアン型レーザー光またはトップハット型レーザー光である。このような構成は、ハーフカット工程においてハーフカット溝G1を適切に形成するのに好ましい。ガウシアン型レーザー光とは、エネルギー強度分布がガウシアン分布のレーザー光である。トップハット型レーザー光とは、エネルギー強度分布がトップハット形状のレーザー光である。
 レーザー光L1の出力は、例えば2~500Wである。レーザー光L1のパルスの周波数は、例えば10~100kHzである。レーザー光L1のワークフィルムW上でのスポット径は、例えば50~500μmである。
 フルカット工程では、図3Cに示すように、ワークフィルムWに対するレーザー加工によってフルカット溝G2を形成する。具体的には、レーザー加工装置により、ワークフィルムWに対してフィルム層30A側からレーザー光L2(第2レーザー光)を照射および走査することにより、積層フィルムX’においてフィルム層30A、粘着剤層20Aおよびフィルム層10Aを溶断してフルカット溝G2を形成する。フルカット溝G2は、図5に示すように、ハーフカット溝G1に沿って形成される(図5では、フルカット溝G2を、ハーフカット溝G1のハッチングよりも細かいハッチングを付して示す)。図3Cに示される部分断面図は、図5に示すワークフィルムWにおけるII-II線に沿った部分断面図に相当する。ハーフカット溝G1とフルカット溝G2とは、互いに隣接して並行に延び、且つ、当該延び方向において連続的に、隣接方向に繋がっている。
 フルカット工程(図3C)のレーザー光L2としては、材質および光学特性(吸光度など)の異なる粘着剤層20Aおよびフィルム層10A,30Aを適切に切断する観点から、COレーザーが好ましい。レーザー光L2は、ガウシアン型レーザー光であってもよいし、トップハット型レーザー光であってもよい。レーザー光L2の出力は、例えば2~500Wである。レーザー光L2のパルスの周波数は、例えば10~100kHzである。レーザー光L2のワークフィルムW上でのスポット径は、例えば50~500μmである。
 本工程では、隣り合うハーフカット溝G1間においては、周囲部25,35が蒸発して除去され、フィルム層10Aにおいては、個片化されたフィルム10が形成される。そして、キャリアフィルムC上には、積層フィルムX(粘着剤層を有する積層フィルム)が形成される。
 本製造方法では、ハーフカット工程(図3B)およびフルカット工程(図3C)の後、キャリアフィルムCから積層フィルムXが外される。以上のようにして、積層フィルムXを製造できる。
 積層フィルムXは、例えば、フレキシブルデバイスの製造過程において、同デバイスの積層構造に組み込まれる粘着剤層の供給材として用いられる。フレキシブルデバイスとしては、例えば、フレキシブルディスプレイパネルが挙げられる。フレキシブルディスプレイパネルは、例えば、画素パネル、偏光フィルム、タッチパネルおよびカバーフィルム(表面保護フィルム)などの要素を含む積層構造を有する。
 本製造方法では、積層フィルムXが、上述のようにレーザー加工によって外形加工される。レーザー加工は、ワークフィルムを連続的に流しながら連続的に外形加工するのに適する(外形加工のためにワークフィルムを間欠的に送る必要がない)。したがって、本製造方法は、積層フィルムXを効率よく製造するのに適する。
 ハーフカット工程(図3B)において、ワークフィルムWに対してレーザー光L1が照射された部分では、ワークフィルムWの材料が蒸発して除去される。これにより、ハーフカット溝G1が形成される。フルカット工程においても、ワークフィルムWに対してレーザー光が照射された部分では、ワークフィルムWの材料が蒸発して除去される。これにより、フルカット溝G2が形成される。そして、ハーフカット溝G1とフルカット溝G2とは、上述のように、互いに隣接して並行に延び、且つ、当該延び方向において連続的に、隣接方向に繋がっている。このように繋がっているハーフカット溝G1およびフルカット溝G2により、キャリアフィルムC上の積層フィルムX(フィルム10/粘着剤層20/フィルム30)の外形が規定されている。そのため、本製造方法においては、積層フィルムX(延出端部12を有するフィルム10を備える)の製造において、従来の製造方法に関して上述した除去工程が必要ない。したがって、本製造方法は、積層フィルムXを効率よく製造するのに適する。
 本製造方法のハーフカット工程では、図6に示すように、レーザー光L1の照射および走査によるフィルム層30Aおよび粘着剤層20Aの溶断を、走査の方向と交差する方向に溶断箇所をずらして複数回繰り返すことにより、ハーフカット溝G1を形成してもよい。ハーフカット溝G1により、粘着剤層20Aにおいて粘着剤層20が個片化される。図7は、ワークフィルムWにおけるそのようなハーフカット工程後の領域の一例を模式的に表す平面図である(図7では、ハーフカット溝G1を、ハッチングを付して示す)。図6に示される部分断面図は、図7に示すワークフィルムWのIII-III線に沿った部分断面図に相当する。このようなハーフカット工程は、幅広のハーフカット溝G1を形成するのに好ましい。また、本工程(ハーフカット工程)では、周囲部25,35を残さないようにハーフカット溝G1を形成してもよい。
 その後のフルカット工程では、図8に示すように、ワークフィルムWに対してフィルム層30A側からレーザー光L2を照射および走査することにより、積層フィルムX’においてフィルム層30A、粘着剤層20およびフィルム層10Aを溶断して、フルカット溝G2を形成する。フルカット溝G2は、図9に示すように、ハーフカット溝G1に沿って形成される(図9では、フルカット溝G2を、ハーフカット溝G1のハッチングよりも細かいハッチングを付して示す)。図8に示される部分断面図は、図9に示すワークフィルムWのIV-IV線に沿った部分断面図に相当する。フルカット溝G2は、具体的には、ハーフカット溝G1によって個片化された粘着剤層20に対して当該ハーフカット溝G1の外側において、当該ハーフカット溝G1に沿って形成される。ハーフカット溝G1とフルカット溝G2とは、互いに隣接して並行に延び、且つ、当該延び方向において連続的に、隣接方向に繋がっている。図6に示すハーフカット工程において、周囲部25,35を残さないようにハーフカット溝G1を形成した場合、その後のフルカット工程では、レーザー光L2の照射および走査を、ハーフカット溝G1の例えば幅方向中央を辿るように実施して、フィルム層10Aを溶断する。
 以上のようなハーフカット工程(図6)およびフルカット工程(図8)の後にも、キャリアフィルムC上には、延出端部12を有するフィルム10を備えた積層フィルムX(フィルム10/粘着剤層20/フィルム30)が形成される。幅広のハーフカット溝G1を形成するのに好ましいハーフカット工程(図6)を含むことは、より長い延出端部12を有するフィルム10を備える積層フィルムXを製造するのに好ましい。延出端部12が長いほど、上述のブロッキングを抑制できる。
 積層フィルムXの製造方法においては、フルカット工程とハーフカット工程とをこの順で実施してもよい。フルカット工程とハーフカット工程とがこの順で実施される場合の工程図を図10Aおよび図10Bに示す。
 フルカット工程では、図10Aに示すように、ワークフィルムWに対するレーザー加工によってフルカット溝G2を形成する。具体的には、ワークフィルムWに対してフィルム層30A側からレーザー光L2(第2レーザー光)を照射および走査することにより、積層フィルムX’においてフィルム層30A、粘着剤層20Aおよびフィルム層10Aを溶断してフルカット溝G2を形成する。フルカット溝G2は、ワークフィルムWにおける所定の切断予定ラインを辿るように形成される。
 ハーフカット工程では、図10Bに示すように、ワークフィルムWに対するレーザー加工によってハーフカット溝G1を形成する。具体的には、ワークフィルムWに対してフィルム層30A側からレーザー光L1(第1レーザー光)を照射および走査することにより、積層フィルムXにおいてフィルム層30Aおよび粘着剤層20Aを溶断してハーフカット溝G1を形成する。ハーフカット溝G1は、先行して形成されているフルカット溝G2に沿って形成される。ハーフカット溝G1は、具体的には、フルカット溝G2によって囲まれた領域内で粘着剤層20を外形加工するように、当該フルカット溝G2の内側において当該フルカット溝G2に沿って形成される。ハーフカット溝G1とフルカット溝G2とは、互いに隣接して並行に延び、且つ、当該延び方向において連続的に、隣接方向に繋がっている。
 本発明について、以下に実施例を示して具体的に説明する。ただし、本発明は、実施例に限定されない。また、以下に記載されている配合量(含有量)、物性値、パラメータなどの具体的数値は、上述の「発明を実施するための形態」において記載されている、それらに対応する配合量(含有量)、物性値、パラメータなどの上限(「以下」または「未満」として定義されている数値)または下限(「以上」または「超える」として定義されている数値)に代替できる。
〔実施例1〕
〈粘着剤組成物の調製〉
 まず、アクリル酸2-エチルヘキシル(2EHA)56質量部と、ラウリルアクリレート(LA)34質量部と、アクリル酸4-ヒドロキシブチル(4HBA)7質量部と、N-ビニル-2-ピロリドン(NVP)2質量部と、光重合開始剤(品名「Omnirad184」,IGM Resins社製)0.015質量部とを含む混合物に対して紫外線を照射し(重合反応)、プレポリマー組成物(重合率は約10%)を得た(プレポリマー組成物は、重合反応を経ていないモノマー成分を含有する)。次に、プレポリマー組成物100質量部と、多官能アクリレートモノマーとしてのジペンタエリスリトールヘキサアクリレート(DPHA)0.08質量部と、シランカップリング剤(品名「KBM-403」,3-グリシドキシプロピルトリメトキシシラン,信越化学工業社製)0.3質量部とを混合し、粘着剤組成物C1を得た。
〈用意工程〉
 まず、はく離ライナー(第1フィルム層)の剥離処理面上に、粘着剤組成物C1を塗布して塗膜を形成した。はく離ライナーは、片面がシリコーン剥離処理されたポリエチレンテレフタレート(PET)フィルム(品名「ダイアホイル MRV#50」,厚さ50μm,三菱ケミカル社製)である。次に、はく離ライナー上の塗膜に、片面がプラズマ処理された表面保護フィルム(第2フィルム層)のプラズマ処理面を貼り合わせた。表面保護フィルムは、厚さ50μmの所定のポリエチレンテレフタレート(PET)フィルムである。プラズマ処理では、プラズマ照射装置(品名「AP-TO5」,積水工業社製)を使用し、電圧を160Vとし、周波数を10kHzとし、処理速度を5000mm/分とした。次に、塗膜に対して表面保護フィルム側から紫外線を照射して塗膜を紫外線硬化させ、厚さ50μmの粘着剤層を形成した。これにより、積層フィルム(はく離ライナー/粘着剤層/表面保護フィルム)を得た。紫外線照射では、照射光源としてブラックライトを用い、照射強度を5mW/cmとした。そして、積層フィルムにキャリアフィルムを貼り合わせた。キャリアフィルムは、厚さ方向の一方側に粘着面を有する片面粘着フィルムであり、キャリアフィルムの粘着面を積層フィルムのはく離ライナー側に貼り合わせた。
〈ハーフカット工程〉
 次に、キャリアフィルム上の積層フィルムに対するレーザー加工により、はく離ライナー上の粘着剤層および表面保護フィルムを外形加工した。具体的には、積層フィルムに対して表面保護フィルム側から第1レーザー光を照射および走査することにより、積層フィルムにおける所定の第1切断予定ラインを辿るように、表面保護フィルムおよび粘着剤層を溶断してハーフカット溝を形成した。本工程では、レーザー加工装置(品名「LC500」,武井電機工業製)を使用し、波長9360nmのCOレーザーを第1レーザー光として用い、レーザー光のスポット径を100μmとし、レーザー出力を20Wとし、パルスの周波数を30kHzとし、レーザー光による切断速度を500mm/秒とし、走査回数(ハーフカット工程ではハーフカット回数)を1とした。本工程では、大判の粘着剤層において、所定の平面視形状に個片化された粘着剤層が形成され、大判の表面保護フィルムにおいて、個片化された表面保護フィルム(個片化された粘着剤層と同じ平面視形状を有する)が形成された。
〈フルカット工程〉
 次に、キャリアフィルム上の積層フィルムに対するレーザー加工により、はく離ライナーを外形加工した。具体的には、キャリアフィルム上の積層フィルムに対して表面保護フィルム側から第2レーザー光を照射および走査することにより、積層フィルムにおいて、ハーフカット溝外側の所定の第2切断予定ラインを辿るように、ハーフカット溝と部分的に重なるフルカット溝を形成した。このようにして形成されたフルカット溝と、上述のハーフカット溝とは、互いに隣接して並行に延び、且つ、当該延び方向において連続的に、隣接方向に繋がっている。本工程では、レーザー加工装置(品名「LC500」,武井電機工業製)を使用し、波長9360nmのCOレーザーを第2レーザー光として用い、レーザー光のスポット径を100μmとし、レーザー出力を27Wとし、パルスの周波数を30kHzとし、レーザー光による切断速度を500mm/秒とし、走査回数を1とした。また、上述のハーフカット工程での第1切断予定ラインと、フルカット工程での第2切断予定ラインとの間の離隔距離(第1レーザー光の照射スポットの平面視中心位置と、第2レーザー光の照射スポットの平面視中心位置との間の最短距離としてのスポット中心間距離S)は、101μmとした。
 以上のようにして、実施例1の積層フィルム(粘着剤層を有する積層フィルム)を作製した。実施例1の積層フィルムは、はく離ライナーと、粘着剤層と、表面保護フィルムとを厚さ方向にこの順で備え、はく離ライナーが薄肉の延出端部(図1,2に示す延出端部12)を有する。
〔実施例2〕
 次のこと以外は実施例1の積層フィルムと同様にして、実施例2の積層フィルムを作製した。
 ハーフカット工程において、第1レーザー光の照射および走査による表面保護フィルムおよび粘着剤層の溶断を、走査の方向と交差する方向に溶断箇所を20μmずつずらして11回繰り返すことにより、溝幅300μmほどのハーフカット溝を形成した(ハーフカット回数は11)。フルカット工程において、第2レーザー光の照射および走査を、ハーフカット溝の幅方向中央を辿るように実施して、はく離ライナーを溶断した。ハーフカット工程およびフルカット工程におけるレーザー光の照射スポットのスポット中心間距離S(ハーフカット工程での第1レーザー光の最外の照射スポットの平面視中心位置と、フルカット工程での第2レーザー光の照射スポットの平面視中心位置との間の距離)を、139μmとした。このようにして形成されたフルカット溝(G2)と、上述のハーフカット溝(G1)とは、図8に示すように、互いに隣接して並行に延び、且つ、当該延び方向において連続的に、隣接方向に繋がっている。実施例2の積層フィルムは、実施例1の積層フィルムと比較して、はく離ライナーの延出端部が長い。
〔実施例3〕
 次のこと以外は実施例2の積層フィルムと同様にして、実施例3の積層フィルムを作製した。粘着剤層形成用の粘着剤組成物として、後記のように粘着剤組成物C2を調製し、用意工程では、粘着剤組成物C2を粘着剤組成物C1の代わりに用いた。ハーフカット工程およびフルカット工程におけるレーザー光の照射スポットのスポット中心間距離S(ハーフカット工程での第1レーザー光の最外の照射スポットの平面視中心位置と、フルカット工程での第2レーザー光の照射スポットの平面視中心位置との間の距離)を、73μmとした。実施例3の積層フィルムは、実施例2の積層フィルムと比較して、はく離ライナーの延出端部が短い。
 粘着剤組成物C2の調製においては、まず、アクリル酸2-エチルヘキシル(2EHA)45質量部と、ラウリルアクリレート(LA)42質量部と、アクリル酸n-ブチル(BA)2質量部と、アクリル酸4-ヒドロキシブチル(4HBA)4質量部と、N-ビニル-2-ピロリドン(NVP)7質量部と、光重合開始剤(品名「Omnirad 184」,IGM Resins社製)0.015質量部とを含む混合物に対して紫外線を照射し(重合反応)、プレポリマー組成物(重合率は約10%)を得た(プレポリマー組成物は、重合反応を経ていないモノマー成分を含有する)。次に、プレポリマー組成物100質量部と、多官能アクリレートモノマーとしてのジペンタエリスリトールヘキサアクリレート(DPHA)0.08質量部と、シランカップリング剤(品名「KBM-403」,3-グリシドキシプロピルトリメトキシシラン,信越化学工業社製)0.3質量部とを混合した。以上のようにして、粘着剤組成物C2を得た。
〔比較例1〕
 上述のハーフカット工程およびフルカット工程の代わりに、次のような外形加工工程を実施したこと以外は、実施例1の積層フィルムと同様にして、比較例1の積層フィルムを作製した。
 比較例1の外形加工工程では、キャリアフィルム上の積層フィルムに対するレーザー加工により、キャリアフィルム上のはく離ライナー、粘着剤層および表面保護フィルムを、フルカットした。具体的には、積層フィルムに対して表面保護フィルム側からレーザー光を照射および走査することにより、積層フィルムにおける所定の切断予定ラインを辿るように、表面保護フィルム、粘着剤層およびはく離ライナーを溶断してフルカット溝を形成した。本工程では、レーザー加工装置(品名「LC500」,武井電機工業製)を使用し、波長9360nmのCOレーザーをレーザー光として用い、レーザー光のスポット径を100μmとし、レーザー出力を27Wとし、パルスの周波数を30kHzとし、レーザー光による切断速度を500mm/秒とし、走査回数を1とした。本工程では、大判の積層フィルムにおいて、所定の平面視形状に個片化された積層フィルムが形成された。
 比較例1の積層フィルム(粘着剤層を有する積層フィルム)は、はく離ライナーと、粘着剤層と、表面保護フィルムとを厚さ方向にこの順で備え、はく離ライナーが、薄肉でない延出端部を有する。
〔比較例2〕
 次のこと以外は実施例1の積層フィルムと同様にして、比較例2の積層フィルムを作製した。ハーフカット工程およびフルカット工程の代わりにプレス加工工程を実施した。具体的には、用意工程で用意されたキャリアフィルム上の積層フィルムに対し、表面保護フィルム側からキャリアフィルムに至るまで厚さ方向にプレス加工刃を突入させることにより、所定の平面視形状の積層フィルム(はく離ライナー/粘着剤層/表面保護フィルム)を形成した。プレス加工刃は、刃物角30度の刃先を有する。
〈ゲル分率〉
 実施例1~3および比較例1,2の各積層フィルムにおける粘着剤層のゲル分率を測定した。具体的には、次のとおりである。
 まず、積層フィルムにおける粘着剤層から約0.1g(質量:Wmg)の粘着剤サンプルを採取した。次に、粘着剤サンプルを、平均孔径0.2μmのテトラフルオロエチレン樹脂製多孔質膜(質量:Wmg)で巾着状に包み、口を凧糸(質量:Wmg)で縛り、包みを得た。テトラフルオロエチレン樹脂製多孔質膜としては、日東電工株式会社製の多孔質膜(品名「ニトフロンNTF1122」)を使用した。次に、粘着剤サンプル入りの包みを、容積50mLの容器に入れた後、当該容器に酢酸エチルを満たした(包みごとに一つの容器を使用した)。これを23℃で7日間静置した後、包みを容器から取り出して130℃で2時間乾燥させた。その後に当該包みの質量(Wmg)を測定した。そして、W~Wの値を下記式に代入することにより、粘着剤層のゲル分率(質量%)を算出した。その値を表1に示す。
 ゲル分率(質量%)=[(W-W-W)/W]×100
〈せん断貯蔵弾性率〉
 実施例1~3および比較例1,2の各積層フィルムにおける粘着剤層について、動的粘弾性を測定した。
 まず、粘着剤層ごとに、必要数の測定用のサンプルを作製した。具体的には、まず、積層フィルムの粘着剤層から切り出した複数の粘着剤層片を貼り合わせて、約1.5mmの厚さのサンプルシートを作製した。次に、このシートを打抜いて、測定用サンプルである円柱状のペレット(直径7.9mm)を得た。
 そして、測定用サンプルについて、動的粘弾性測定装置(品名「Advanced Rheometric Expansion System (ARES)」,Rheometric Scientific社製)によって動的粘弾性測定を実施した。具体的には、測定用サンプルを、同装置の直径7.9mmのパラレルプレートの治具に固定した後、測定を実施した。本測定において、測定モードをせん断モードとし、測定温度範囲を-40℃~100℃とし、昇温速度を5℃/分とし、周波数を1Hzとした。測定結果から25℃におけるせん断貯蔵弾性率(kPa)を読み取った。その値を表1に示す。
〈形状解析〉
 実施例1~3および比較例1,2の各積層フィルムにおける粘着剤層について、形状解析レーザー顕微鏡(品名「VK-X1000」,KEYENCE製)によって形状を解析した。具体的には、同顕微鏡により、はく離ライナーの主領域部の厚さh、はく離ライナーの延出端部の延出長さdと最小厚さh(最薄部の厚さ)と外側部の厚さh、および、はく離ライナーの外方端と粘着剤層の内方端との間の距離dを、測定した(厚さh~h、延出長さdおよび距離dは、図2に示されている)。その測定結果を表1に示す。厚さhに対する厚さhの比率(h/h)も、表1に示す。厚さhに対する厚さhの比率(h/h)も、表1に示す。
〈剥離開始力と剥離力〉
 実施例1~3および比較例1,2における各積層フィルムについて、はく離ライナーの剥離に要する力(剥離開始力とその後の剥離力)を調べた。
 まず、積層フィルムから、測定用の試験片(短50mm×長辺100mm程度)を切り出した。具体的には、積層フィルムの端部から100mm程度の長さを有し且つ50mmの幅を有する試験片を、積層フィルムから切り出した。
 次に、引張試験機(品名「オートグラフ」,島津製作所製)の固定用テーブルに試験片を固定した。具体的には、試験片の表面保護フィルム側を、強両面粘着テープを介して固定用テーブルに貼り付けた。
 次に、固定用テーブル上の試験片のはく離ライナーにおける延出端部側の短辺に、把持用テープを貼り付けた。この把持用テープは強粘着面を有し、当該強粘着面を介して把持用テープを試験片のはく離ライナーに貼り付けた。
 次に、引張試験機により、試験片における粘着剤層上のはく離ライナーを当該粘着剤層から剥離する剥離試験を実施し、剥離に要する力を剥離強度として測定した。本測定では、測定温度を25℃とし、把持用テープを試験片の長さ方向に引っ張ることによってはく離ライナーを剥離し、剥離角度を180°とし、引張速度を300mm/分とし、剥離長さを80mmとした。このような剥離試験によって得られるグラフの一例を図11に示す。図11のグラフにおいて、横軸は剥離長さ(mm)を表し、縦軸は剥離強度(N/50mm)を表し、Fmaxは、剥離強度の最大値を表す。
 以上のような剥離試験によって求められた剥離開始力F1(N/50mm)および剥離力F2(N/50mm)を表1に示す。剥離力F2に対する剥離開始力F1の比率(F1/F2)も表1に示す。剥離開始力F1は、はく離ライナーを粘着剤層から剥離したときの、剥離長さ20mm以内における剥離強度の最大値であり、剥離力F2は、剥離長さ20~100mm(剥離強度が、剥離開始時の剥離開始力F1を経た後に安定している)における剥離強度の平均値である。
〈端部ブロッキング〉
 実施例1~3および比較例1,2の各積層フィルムについて、端部ブロッキングのしにくさを調べた。具体的には、まず、積層フィルムごとに、実質的に同じサイズの10枚の評価サンプルを作製し、10枚の評価サンプルを積み重ねてフィルム束を形成した(第1工程)。フィルム束では、厚さ方向において、10枚の積層フィルムの端部が実質的に面一で連なっている。次に、フィルム束において一番上に位置する積層フィルムに対し、先端に粘着面を有する円柱のロッド(直径10mm)の先端粘着面を上方から押し付けた後、当該ロッドを上方に引き上げて、ロッドに伴って持ち上がった積層フィルムの枚数を数えた(第2工程)。第1工程とその後の第2工程とからなる試行を、フィルム束ごとに10回行った。10回の試行において、ロッドに伴って持ち上がった積層フィルムが1枚のみであった試行の数が10である場合を“優”と評価し、6~9である場合を“可”と評価し、5以下である場合を“不良”と評価した。その評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 上述の実施形態は本発明の例示であり、当該実施形態によって本発明を限定的に解釈してはならない。当該技術分野の当業者によって明らかな本発明の変形例は、後記の請求の範囲に含まれる。
 本発明の、粘着剤層を有する積層フィルムは、例えば、フォルダブルディスプレイパネルなどフレキシブルデバイス用の光学粘着シートの供給材として用いることができる。
X       積層フィルム(粘着剤層を有する積層フィルム)
H       厚さ方向
D       面方向
10      フィルム(第1フィルム)
11      主領域部
12      延出端部
12a,12b 表面
12c     頂部
12p     最薄部
12q     外側部
20      粘着剤層
23,33   端面
30      フィルム(第2フィルム)
W       ワークフィルム
10A,30A フィルム層
20A     粘着剤層
D1      流れ方向
D2      幅方向
 

Claims (8)

  1.  第1面と、当該第1面とは反対側の第2面とを有する粘着剤層と、
     前記第1面に接する第1フィルムと、
     前記第2面に接する第2フィルムとを備え、
     前記第1フィルムが延出端部を有し、当該延出端部は、厚さ方向と直交する面方向において前記粘着剤層の端面よりも外方に延出し、
     前記延出端部が、前記端面と面一で繋がる表面を有し、且つ、前記第1フィルムにおいて前記粘着剤層と接する主領域部より薄い、粘着剤層を有する積層フィルム。
  2.  前記面方向における前記端面からの前記延出端部の延出長さが50μm以上である、請求項1に記載の粘着剤層を有する積層フィルム。
  3.  前記面方向における前記端面からの前記延出端部の延出長さが500μm以下である、請求項1に記載の粘着剤層を有する積層フィルム。
  4.  前記主領域部の厚さに対する、前記延出端部の最小厚さの比率が、0.3以上である、請求項1に記載の粘着剤層を有する積層フィルム。
  5.  前記延出端部が、最薄部と、前記面方向において前記最薄部よりも外側の外側部とを有し、当該外側部は前記最薄部より厚い、請求項1に記載の粘着剤層を有する積層フィルム。
  6.  前記粘着剤層が25℃において100kPa以下のせん断貯蔵弾性率を有する、請求項1に記載の粘着剤層を有する積層フィルム。
  7.  前記粘着剤層が40質量%以上80質量%以下のゲル分率を有する、請求項1に記載の粘着剤層を有する積層フィルム。
  8.  25℃、剥離角度180°および引張速度300mm/分の条件で前記粘着剤層から前記第1フィルムを剥離する剥離試験において、剥離力に対する剥離開始力の比率が10以下である、請求項1から7のいずれか一つに記載の粘着剤層を有する積層フィルム。
PCT/JP2023/043860 2023-01-27 2023-12-07 粘着剤層を有する積層フィルム WO2024157621A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2023011009A JP2024106638A (ja) 2023-01-27 2023-01-27 粘着剤層を有する積層フィルム
JP2023-011009 2023-01-27

Publications (1)

Publication Number Publication Date
WO2024157621A1 true WO2024157621A1 (ja) 2024-08-02

Family

ID=91970309

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/043860 WO2024157621A1 (ja) 2023-01-27 2023-12-07 粘着剤層を有する積層フィルム

Country Status (2)

Country Link
JP (1) JP2024106638A (ja)
WO (1) WO2024157621A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065899A (ja) * 2012-09-04 2014-04-17 Nitto Denko Corp 防汚用粘着シートおよびこれを用いた構造物の防汚処理方法
JP2014189659A (ja) * 2013-03-27 2014-10-06 Lintec Corp 積層体、粘着ロール、および当該積層体を用いる粘着剤層含有積層構造体の製造方法
JP2019035966A (ja) * 2017-04-04 2019-03-07 住友化学株式会社 プロテクトフィルム付偏光板及び液晶パネル
JP2021055076A (ja) * 2019-09-30 2021-04-08 日東電工株式会社 積層シート
WO2022014545A1 (ja) * 2020-07-13 2022-01-20 大日本印刷株式会社 加飾シート
JP2023128155A (ja) * 2022-03-03 2023-09-14 日東電工株式会社 はく離ライナー付き光学粘着シート

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014065899A (ja) * 2012-09-04 2014-04-17 Nitto Denko Corp 防汚用粘着シートおよびこれを用いた構造物の防汚処理方法
JP2014189659A (ja) * 2013-03-27 2014-10-06 Lintec Corp 積層体、粘着ロール、および当該積層体を用いる粘着剤層含有積層構造体の製造方法
JP2019035966A (ja) * 2017-04-04 2019-03-07 住友化学株式会社 プロテクトフィルム付偏光板及び液晶パネル
JP2021055076A (ja) * 2019-09-30 2021-04-08 日東電工株式会社 積層シート
WO2022014545A1 (ja) * 2020-07-13 2022-01-20 大日本印刷株式会社 加飾シート
JP2023128155A (ja) * 2022-03-03 2023-09-14 日東電工株式会社 はく離ライナー付き光学粘着シート

Also Published As

Publication number Publication date
JP2024106638A (ja) 2024-08-08

Similar Documents

Publication Publication Date Title
JP3634080B2 (ja) 光学フィルム及び液晶表示装置
JP2016080830A (ja) 両面粘着剤付き光学フィルム、およびそれを用いた画像表示装置の製造方法、ならびに両面粘着剤付き光学フィルムのカール抑制方法
JP7273472B2 (ja) 積層体
KR20230130543A (ko) 박리 라이너 부착 광학 점착 시트
WO2024157621A1 (ja) 粘着剤層を有する積層フィルム
WO2024161789A1 (ja) 粘着剤層を有する積層フィルムの製造方法
TW202432764A (zh) 具有黏著劑層之積層膜
JP7247623B2 (ja) 粘着シート、剥離シート付き粘着シート、積層体及び積層体の製造方法
JP2024051402A (ja) 光学粘着シートおよび粘着剤層付き光学フィルム
JP2024010933A (ja) カバーフィルム付き粘着剤層
WO2023276653A1 (ja) 剥離フィルム付き光学フィルム
JP2024051400A (ja) 粘着剤層を有する積層フィルムの製造方法
WO2023276655A1 (ja) 光学積層体
JP2023095055A (ja) カバーフィルム付き光学フィルム
JP2023095056A (ja) 光学積層体およびカバード光学フィルム
WO2023276654A1 (ja) カバーフィルム付き光学フィルム
KR20230067515A (ko) 박리 라이너 부착 광학 점착 시트
JP2024051398A (ja) 粘着剤層を有する積層フィルムの製造方法
JP2024051401A (ja) 粘着剤層を有する積層フィルムの製造方法
JP2024051399A (ja) 粘着剤層を有する積層フィルムの製造方法
JP2023107668A (ja) 光学粘着シート
JP2023069650A (ja) はく離ライナー付き光学粘着シート
KR20240087792A (ko) 폴더블용 광학 점착 시트

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23918576

Country of ref document: EP

Kind code of ref document: A1