WO2024131325A1 - 制备涂层的方法、涂层、以及器件 - Google Patents

制备涂层的方法、涂层、以及器件 Download PDF

Info

Publication number
WO2024131325A1
WO2024131325A1 PCT/CN2023/129044 CN2023129044W WO2024131325A1 WO 2024131325 A1 WO2024131325 A1 WO 2024131325A1 CN 2023129044 W CN2023129044 W CN 2023129044W WO 2024131325 A1 WO2024131325 A1 WO 2024131325A1
Authority
WO
WIPO (PCT)
Prior art keywords
coating
substrate
plasma
reaction chamber
range
Prior art date
Application number
PCT/CN2023/129044
Other languages
English (en)
French (fr)
Inventor
宗坚
李福星
康必显
Original Assignee
江苏菲沃泰纳米科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 江苏菲沃泰纳米科技股份有限公司 filed Critical 江苏菲沃泰纳米科技股份有限公司
Publication of WO2024131325A1 publication Critical patent/WO2024131325A1/zh

Links

Definitions

  • the present application relates to the field of surface treatment, and in particular to a method for preparing a coating, a coating, and a device.
  • One object of the present application is to provide an improved method for preparing a coating, a coating, and a device.
  • one aspect of an embodiment of the present application relates to a method for preparing a coating, which comprises the following steps: placing a substrate in a plasma reaction chamber; and introducing a siloxane material into the plasma reaction chamber, applying a bias power supply, and plasma discharge to deposit a coating on the surface of the substrate.
  • the siloxane material includes aliphatic chain siloxane and cyclic siloxane.
  • the siloxane material includes at least one of hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, tetramethyldivinyldisiloxane, hexavinyldisiloxane, trimethylcyclotrisiloxane, trimethyltrivinylcyclotrisiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, tetramethylcyclotetrasiloxane, tetramethyltetravinylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, tetramethoxysilane, allyltrimethoxysilane, and tetraethoxysilane.
  • the siloxane material includes at least one of hexamethyldisiloxane and octamethylcyclotetrasiloxane.
  • the flow rate of the silicone material is in the range of 50-500 ⁇ L/min.
  • the bias power supply is in the range of -300 to -1000 volts.
  • the power of the plasma discharge is in the range of 300 to 1000 watts.
  • the plasma discharge time is in the range of 2-30 minutes.
  • the pressure in the plasma reaction chamber is in the range of 2-20 Pa.
  • the method includes introducing an inert gas into the plasma reaction chamber while introducing the siloxane material.
  • the flow rate of the inert gas is in the range of 10-200 standard milliliters per minute.
  • the method includes, before introducing the siloxane material, introducing a plasma cleaning gas source into the plasma reaction chamber to clean the substrate with plasma.
  • the method includes cleaning the substrate before placing the substrate in the plasma reaction chamber.
  • the substrate includes at least one of glass, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, and polystyrene.
  • the surface of the substrate has an anti-reflection and anti-reflection film.
  • Another aspect of the embodiments of the present application relates to a coating, which is prepared by the method described in the present application.
  • the water contact angle of the coating is greater than or equal to 150°.
  • the coating increases the transmittance of the substrate by more than 1%.
  • the coating is an anti-fog coating.
  • the coating has a thickness in the range of 20-300 nanometers.
  • Yet another aspect of the embodiments of the present application relates to a device, at least a portion of a surface of which includes the coating as described in the present application.
  • the device includes at least one of a mobile phone lens cover, ski goggles, bathroom glass, glasses, swimming goggles, camera lenses, car glass, infrared microscopes, surgical endoscopes, and solar panels.
  • FIG1 is a data curve diagram of the transmittance of light with a wavelength of 420-750 nanometers in the sample with coating in Example 1 and other identical samples without coating;
  • FIG. 2 is a data curve diagram of the transmittance of light with a wavelength of 420-750 nanometers in the sample with coating in Example 2 and other identical samples without coating.
  • One aspect of an embodiment of the present application relates to a method for preparing a coating, which includes the following steps: placing a substrate in a plasma reaction chamber; and introducing a siloxane material into the plasma reaction chamber, applying a bias power supply, and plasma discharge to deposit a coating on the surface of the substrate.
  • the embodiments of the present application can help prepare coatings, etc. using a process that is relatively simple in operation, highly controllable in process, and easier to introduce into industrial use.
  • the method for preparing the coating according to the embodiment of the present application mainly comprises applying a bias power supply.
  • the process is carried out by plasma discharge. There is no need to use laser to pre-prepare micro-nano structures such as pits and floccules on the surface of the substrate, and there is no need to heat and cure after immersion in fluorinated liquid.
  • the operation process is relatively simple, the process is highly controllable, it is easier to introduce industrial use, and the process cost can be greatly reduced.
  • the method for preparing the coating involved in the embodiment of the present application may not reduce the optical properties such as the light transmittance of the substrate, and may even improve the optical properties such as the light transmittance of the substrate, and has an anti-reflection effect.
  • the light transmittance of the substrate may refer to the transmittance of light in the substrate, that is, the percentage of the light flux passing through the substrate to the incident light flux.
  • the method for preparing the coating involved in the embodiment of the present application can be carried out on a substrate having an anti-reflection and anti-reflection film on the surface, so that the coating is combined with the anti-reflection and anti-reflection film to achieve higher transmittance while simplifying the production process and reducing production costs.
  • the method for preparing the coating involved in the embodiment of the present application can be a plasma enhanced chemical vapor deposition (PECVD) method, which can be performed at a lower pressure, such as lower than the ambient pressure.
  • PECVD plasma enhanced chemical vapor deposition
  • the method for preparing the coating involved in the embodiment of the present application can be achieved by a plasma source composite bias process.
  • the plasma reaction chamber may be evacuated to receive the gaseous siloxane material, such as siloxane vapor.
  • the method for preparing the coating involved in the embodiment of the present application mainly uses siloxane materials, which can be conducive to forming a coating with good hydrophobicity.
  • the ultra-low surface energy can be used to roll away the small water droplets condensed on the surface of the coating in time to achieve the effect of no fogging and high transmittance, thereby preventing fog and solving the fogging problem.
  • the types of materials required are relatively small and the cost is low.
  • the siloxane material includes aliphatic chain siloxane and cyclic siloxane.
  • the siloxane material may include one or more of aliphatic chain siloxane and cyclic siloxane.
  • the siloxane material includes at least one of hexamethyldisiloxane, 1,1,3,3-tetramethyldisiloxane, tetramethyldivinyldisiloxane, hexavinyldisiloxane, trimethylcyclotrisiloxane, trimethyltrivinylcyclotrisiloxane, hexamethylcyclotrisiloxane, octamethylcyclotetrasiloxane, tetramethylcyclotetrasiloxane, tetramethyltetravinylcyclotetrasiloxane, decamethylcyclopentasiloxane, dodecamethylcyclohexasiloxane, tetramethoxysilane, allyltrimethoxysilane, and tetraethoxysilane.
  • the siloxane material may include one or more of the aforementioned materials.
  • the siloxane material includes at least one of hexamethyldisiloxane and octamethylcyclotetrasiloxane.
  • the siloxane material may include hexamethyldisiloxane and/or octamethylcyclotetrasiloxane. Oxyethane.
  • the flow rate of the siloxane material introduced into the plasma reaction chamber, the size of the bias power supply, the power strength and duration of the plasma discharge, the pressure in the plasma reaction chamber, etc. can be determined according to the type of the siloxane material, the coating thickness requirements, etc.
  • the flow rate of the silicone material is in the range of 50-500 ⁇ L/min.
  • the numerical values herein may include errors of measurement, precision, metrology, etc., such as errors within the range of ⁇ 5%.
  • 50 may include values within the range of 47.5 to 52.5.
  • 50-500 may include 50-495, 55-500, 55-495, 100-200, 150-450, and so on.
  • the bias power supply is in the range of -300 to -1000 V.
  • the bias power supply may be a negative bias power supply for a rotating frame.
  • the plasma discharge may be performed by inductive coupling, capacitive coupling, etc.
  • the power of the plasma discharge may be the power of a plasma source. In some embodiments, the power of the plasma discharge is in the range of 300 to 1000 watts.
  • the plasma discharge time may be the time for depositing a coating or a film. In some embodiments, the plasma discharge time is in the range of 2-30 minutes.
  • the pressure in the plasma reaction chamber can be adjusted by exhausting gas using a vacuum system.
  • the vacuum system can control the gas pressure through a butterfly valve, etc.
  • the pressure in the plasma reaction chamber is in the range of 2-20 Pa.
  • the method includes introducing an inert gas into the plasma reaction chamber while introducing the siloxane material.
  • the inert gas may include one or both of argon and helium.
  • the inert gas may assist in plasma formation of the siloxane material.
  • the flow rate of the inert gas may be related to the flow rate of the siloxane material. In some embodiments, the flow rate of the inert gas is in the range of 10-200 standard milliliters per minute.
  • the method includes, before introducing the siloxane material, introducing a plasma cleaning gas source into the plasma reaction chamber to clean the substrate with plasma.
  • the plasma cleaning gas source may include one or more of argon, helium, and oxygen.
  • Plasma cleaning of the substrate may be beneficial, for example, mainly through the bombardment cleaning effect of plasma, to obtain a clean surface with high surface energy, provide good adhesion conditions for the subsequent deposition of the coating, and improve the bonding strength between the coating and the substrate.
  • Plasma cleaning the substrate may include ionizing the plasma cleaning gas source at a gas pressure of 1-10 Pa and a plasma power of 100-1000 W, bombarding the surface of the substrate under a negative bias of a -300 to -1000 V turret for 10-30 minutes.
  • the method includes cleaning the substrate before placing the substrate in the plasma reaction chamber.
  • Cleaning the substrate may include ultrasonically cleaning the substrate in isopropanol, ethanol and/or deionized water for 5-20 minutes. Cleaning the substrate may help remove oil stains on the surface of the substrate, improve the coating yield, and avoid separation of the coating from the substrate.
  • the substrate may be placed in an oven to dry the moisture on its surface for drying, or may be dried by other methods.
  • the substrate may be a material that is required and capable of forming the coating described in the present application on the surface.
  • the substrate may constitute part or all of the device.
  • the substrate may be in the form of a plate, a sheet, or other shapes and structures required for the device to perform its functions.
  • the substrate includes at least one of glass, polycarbonate, polymethyl methacrylate, polyethylene terephthalate, and polystyrene.
  • the surface of the substrate has an anti-reflection and anti-reflection film.
  • the anti-reflection and anti-reflection film can be an optical film that reduces or eliminates reflected light on the surface of the substrate, thereby increasing the light transmittance of the substrate and reducing or eliminating stray light.
  • the coating can be deposited on the anti-reflection and anti-reflection film, and cooperate with the anti-reflection and anti-reflection film to achieve a superposition effect of anti-reflection effect, for example, it can replace one anti-reflection and anti-reflection film surface in a double-sided anti-reflection and anti-reflection film, thereby simplifying the process and reducing production costs.
  • Another aspect of the embodiments of the present application relates to a coating, which is prepared by the method described in the present application.
  • the coating has good hydrophobic and super hydrophobic properties.
  • the water contact angle of the coating is greater than or equal to 150°.
  • the coating can be light-transmissive.
  • the coating can improve the optical properties of the substrate.
  • the coating increases the transmittance of the substrate by more than 1%. For example, if the transmittance of the substrate is 90%, and the transmittance of the coating deposited on the surface is more than 91%, it can be said that the coating increases the transmittance of the substrate by more than 1%.
  • the coating is an anti-fog coating.
  • the coating can reduce the probability of fogging, especially in terms of fog dissipation, and can quickly dissipate fog and reduce the interference of fogging on vision.
  • the substrate fogs significantly after encountering water vapor, but When the coating is exposed to water vapor, the surface is clear without fogging, indicating that the coating has excellent anti-fog performance.
  • the thickness of the coating can be in the nanometer range. In some embodiments, the thickness of the coating is in the range of 20-300 nanometers.
  • Another aspect of the embodiments of the present application relates to a device, at least part of the surface of which includes the coating as described in the present application.
  • the coating can help the device to be hydrophobic, anti-fog, and have high light transmittance.
  • the device includes at least one of a mobile phone lens cover, ski goggles, bathroom glass, glasses, swimming goggles, camera lenses, car glass, infrared microscopes, surgical endoscopes, and solar panels.
  • the glass substrate samples were ultrasonically cleaned in isopropanol, ethanol and deionized water for 10 minutes respectively, and the cleaned glass substrate samples were placed in an oven to dry the moisture on the surface.
  • the water contact angle was tested using a water contact angle tester in accordance with GB/T 30447-2013 "Nanofilm Contact Angle Measurement Method".
  • the hydrolysis angle of the coated glass substrate sample prepared as described above was found to be greater than 160°, i.e., 165°.
  • the transmittance of light with a wavelength of 420-750 nanometers on the glass substrate samples with coatings prepared as described above and other identical glass substrate samples without coatings was tested by UV1900i ultraviolet spectrometer.
  • the obtained data curve is shown in Figure 1, wherein the average transmittance of the uncoated samples is 91.80%, while the average transmittance of the deposited coating is increased to 93.82%, and the coating increases the transmittance of the glass substrate by 2.02%.
  • the glass substrate sample with the coating deposited as described above and other identical glass substrate samples without the coating were placed parallel to each other 5 cm above a 60°C water bath to observe the water vapor situation. After 5 minutes, it can be clearly seen that the surface of the coated sample is clear without fogging, while the surface of the uncoated sample is obviously fogged. In addition, it is measured that the transmittance of the coated sample is 40% higher than that of the uncoated sample, indicating that the coating has excellent anti-fog performance.
  • the glass substrate sample with anti-reflection (AR) film on the surface was ultrasonically cleaned in deionized water for 10 minutes. The cleaned sample was placed in an oven to dry the surface moisture.
  • the water contact angle was tested using a water contact angle tester in accordance with GB/T 30447-2013 "Nanofilm Contact Angle Measurement Method".
  • the hydrolysis angle of the coated sample prepared as described above was found to be greater than 160°, which was 170°.
  • the transmittance of light with a wavelength of 420-750 nanometers on the samples prepared as described above with coatings and other identical samples without coatings was tested by UV1900i ultraviolet spectrometer.
  • the resulting data curve is shown in Figure 2, where the average transmittance of the uncoated samples is 95.43%, while the average transmittance of the coated samples is increased to 97.02%.
  • the coating increases the transmittance of the glass substrate with the anti-reflection and anti-reflection film by 1.59%.
  • the glass substrate samples with anti-reflection and anti-reflection film prepared as described above and other identical but uncoated ones were placed parallelly 5 cm above a 60°C water bath to observe the water vapor. After 5 minutes, it can be clearly seen that the surface of the coated sample is clear without fogging, while the surface of the uncoated sample is obviously fogged. In addition, the transmittance of the coated sample is measured to be 43% higher than that of the uncoated sample, indicating that the coating has excellent anti-fog performance.
  • the polycarbonate (PC) substrate sample was ultrasonically cleaned in deionized water for 10 minutes, and the cleaned sample was placed in an oven to dry the surface moisture.
  • the water contact angle was tested using a water contact angle tester in accordance with GB/T 30447-2013 "Nanofilm Contact Angle Measurement Method".
  • the hydrolysis angle of the coated sample prepared as described above was found to be greater than 160°, at 172°.
  • the transmittance of light in the wavelength range of 420-750 nanometers was tested by UV1900i ultraviolet spectrometer on the coated samples prepared as described above and other identical samples but without coating.
  • the average transmittance of the uncoated samples was 88.30%, while the average transmittance of the coated samples was increased to 89.89%.
  • the coating increased the transmittance of the polycarbonate substrate by 1.59%.
  • coated polycarbonate substrate sample prepared as described above and other identical polycarbonate substrate samples without coating were placed in parallel 5 cm above a 60°C water bath to observe the water vapor. After 5 minutes, it can be clearly seen that the surface of the coated sample is clear without fogging, while the surface of the uncoated sample is obviously fogged, indicating that the coating has excellent anti-fog performance.

Landscapes

  • Chemical Vapour Deposition (AREA)

Abstract

本发明实施例涉及一种制备涂层的方法、涂层、以及器件。所述方法包括以下步骤:将基材放置于等离子体反应腔室内;以及向所述等离子体反应腔室通入硅氧烷材料,施加偏压电源,等离子体放电,以在所述基材的表面沉积涂层。本发明实施例可以有助于以操作过程较为简单、过程可控性较强、较易导入工业化使用的工艺制备涂层等。

Description

制备涂层的方法、涂层、以及器件
本申请要求于2022年12月20日提交中国专利局、申请号为202211641733.4,发明名称为“制备涂层的方法、涂层、以及器件”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及表面处理领域,尤其涉及一种制备涂层的方法、涂层、以及器件。
背景技术
当环境中饱和的水蒸气遇到温度低于露点的器件的时候,易于在器件表面形成粘附的雾,这通常引发生活中随处可见的起雾现象。例如手机镜头盖板、滑雪镜、浴室玻璃、眼镜、泳镜、摄像机镜头、汽车后视镜和汽车前挡之类的汽车玻璃等器件起雾的时候,往往直接影响观察视野的清晰度。若高速行驶的汽车前挡玻璃、汽车后视镜在短时间内起雾,将直接影响视野清晰度,带来很大的驾驶危险性。如红外显微镜和手术内窥镜等精密设备的应用也深受起雾现象的不良影响。此外,近些年,清洁能源发展迅速,其中太阳能电池板的光照透过率和发电效率密切相关,太阳能电池板的表面的起雾将直接影响透过率、进而影响发电效率。
为解决各种器件的起雾问题,人们进行了广泛的研究,其中一个研究方向是对基材进行表面处理,以得到在部分或者全部表面具有涂层的器件。但是现有的制备涂层的方法往往不甚理想,比如操作过程繁琐,过程可控性较差,很难导入进工业化使用,等等,因此需要改进。
发明内容
本申请的一个目的在于,提供改进的制备涂层的方法、涂层、以及器件。
针对以上目的,本申请实施例的一方面涉及一种制备涂层的方法,其包括以下步骤:将基材放置于等离子体反应腔室内;以及向所述等离子体反应腔室通入硅氧烷材料,施加偏压电源,等离子体放电,以在所述基材的表面沉积涂层。
一些实施例中,所述硅氧烷材料包括脂肪链状硅氧烷、环状硅氧烷。
一些实施例中,所述硅氧烷材料包括六甲基二硅氧烷、1,1,3,3-四甲基二硅氧烷、四甲基二乙烯基二硅氧烷、六乙烯基二硅氧烷、三甲基环三硅氧烷、三甲基三乙烯环三硅氧烷、六甲基环三硅氧烷、八甲基环四硅氧烷、四甲基环四硅氧烷、四甲基四乙烯基环四硅氧烷、十甲基环五硅氧烷、十二甲基环六硅氧烷、四甲氧基硅烷、烯丙基三甲氧基硅烷、四乙氧基硅烷中至少一个。
一些实施例中,所述硅氧烷材料包括六甲基二硅氧烷、八甲基环四硅氧烷中至少一个。
一些实施例中,所述硅氧烷材料的流量在50-500微升/分钟的范围。
一些实施例中,所述偏压电源在-300~-1000伏的范围。
一些实施例中,所述等离子体放电的功率在300~1000瓦的范围。
一些实施例中,所述等离子体放电的时间在2-30分钟的范围。
一些实施例中,通入所述硅氧烷材料的时候,所述等离子体反应腔室内压力在2-20帕的范围。
一些实施例中,所述方法包括,通入所述硅氧烷材料的同时,向所述等离子体反应腔室通入惰性气体。
一些实施例中,所述惰性气体的流量在10-200标况毫升每分的范围。
一些实施例中,所述方法包括,通入所述硅氧烷材料之前,向所述等离子体反应腔室通入等离子体清洗气源,以等离子体清洗所述基材。
一些实施例中,所述方法包括,将所述基材放置于所述等离子体反应腔室内之前,清洗所述基材。
一些实施例中,所述基材包括玻璃、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚苯乙烯中至少之一。
一些实施例中,所述基材的所述表面具有减反增透膜。
本申请实施例的另一方面涉及一种涂层,其由本申请所述的方法制备而得。
一些实施例中,所述涂层的水接触角大于、等于150°。
一些实施例中,所述涂层对所述基材增透1%以上。
一些实施例中,所述涂层为防雾涂层。
一些实施例中,所述涂层的厚度在20-300纳米的范围。
本申请实施例的又一方面涉及一种器件,其至少部分表面包括如本申请所述的涂层。
一些实施例中,所述器件包括手机镜头盖板、滑雪镜、浴室玻璃、眼镜、泳镜、摄像机镜头、汽车玻璃、红外显微镜、手术内窥镜、太阳能电池板中至少之一。
在技术条件允许的情况下,本申请中各实施例的技术特征可以任意组合、形成在本申请保护范围内的新的技术方案。
下文将结合实施例和附图对本申请进行进一步的描述。
附图说明
图1为波长在420-750纳米的光分别在实施例1的有涂层的样品和其它相同但无涂层的样品的透过率的数据曲线图;
图2是波长在420-750纳米的光分别在实施例2的有涂层的样品和其它相同但无涂层的样品的透过率的数据曲线图。
具体实施方式
本申请实施例的一方面涉及一种制备涂层的方法,其包括以下步骤:将基材放置于等离子体反应腔室内;以及向所述等离子体反应腔室通入硅氧烷材料,施加偏压电源,等离子体放电,以在所述基材的表面沉积涂层。
本申请实施例可以有助于以操作过程较为简单、过程可控性较强、较易导入工业化使用的工艺制备涂层等。
举例而言,本申请实施例涉及的制备涂层的方法主要通过施加偏压电源, 等离子体放电进行,无需例如使用激光在基材表面预先制备凹坑和絮状等微纳结构,无需比如浸润到氟化液中后再加热固化,操作过程较为简单、过程可控性较强、较易导入工业化使用,且可大大降低工艺成本。
而且,本申请实施例涉及的制备涂层的方法可以不降低所述基材的透光率等光学性能、甚至还可以提升所述基材的透光率等光学性能,具有增透效果。基材的透光率可以指光在基材的透过率,即透过基材的光通量占入射光通量的百分比。
此外,本申请实施例涉及的制备涂层的方法可以在表面具有减反增透膜的基材上进行,使涂层与减反增透膜结合,达到更高的透光率的同时简化生产工艺,降低生产成本。
本申请实施例涉及的制备涂层的方法可以为等离子体增强化学气相沉积(Plasma Enhanced Chemical Vapor Deposition,PECVD)法,可以在例如低于环境压力的较低气压进行。本申请实施例涉及的制备涂层的方法可以通过等离子体源复合偏压工艺实现。
所述等离子体反应腔室可以被抽真空,可以接收气态的所述硅氧烷材料,例如硅氧烷蒸汽。
本申请实施例涉及的制备涂层的方法主要使用硅氧烷材料,可以有利于形成疏水性好的涂层,例如通过超低表面能将在涂层表面凝结的小水珠及时滚走,来达到不起雾、高透过的效果,从而可以防雾,解决起雾问题,所需材料种类相对较少,成本较低。
一些实施例中,所述硅氧烷材料包括脂肪链状硅氧烷、环状硅氧烷。所述硅氧烷材料可以包括脂肪链状硅氧烷、环状硅氧烷中的一种或者多种。
一些实施例中,所述硅氧烷材料包括六甲基二硅氧烷、1,1,3,3-四甲基二硅氧烷、四甲基二乙烯基二硅氧烷、六乙烯基二硅氧烷、三甲基环三硅氧烷、三甲基三乙烯环三硅氧烷、六甲基环三硅氧烷、八甲基环四硅氧烷、四甲基环四硅氧烷、四甲基四乙烯基环四硅氧烷、十甲基环五硅氧烷、十二甲基环六硅氧烷、四甲氧基硅烷、烯丙基三甲氧基硅烷、四乙氧基硅烷中至少一个。所述硅氧烷材料可以包括前述材料中的一个或者多个。
一些实施例中,所述硅氧烷材料包括六甲基二硅氧烷、八甲基环四硅氧烷中至少一个。所述硅氧烷材料可以包括六甲基二硅氧烷和/或八甲基环四硅 氧烷。
向所述等离子体反应腔室通入的所述硅氧烷材料的流量、所述偏压电源的大小、所述等离子体放电的功率强弱、时间长短、所述等离子体反应腔室内压力高低等可以根据所述硅氧烷材料种类、涂层厚度需求等确定。
一些实施例中,所述硅氧烷材料的流量在50-500微升/分钟的范围。
除非另行特别说明,本文中的数值可以包括测量、精度、计量等误差,比如±5%范围内的误差。例如,50可以包括47.5至52.5范围内的数值。
除非另行特别说明,本文中的数值范围包括其内的任意子范围,比如50-500可以包括50-495、55-500、55-495、100-200、150-450,等等。
一些实施例中,所述偏压电源在-300~-1000伏的范围。所述偏压电源可以为转架负偏置偏压电源。
所述等离子体放电可以通过电感耦合、电容耦合等方式进行。所述等离子体放电的功率可以为等离子体源的功率。一些实施例中,所述等离子体放电的功率在300~1000瓦的范围。
所述等离子体放电的时间可以为沉积涂层、镀膜的时间。一些实施例中,所述等离子体放电的时间在2-30分钟的范围。
所述等离子体反应腔室内压力可以通过使用真空系统排出气体来进行调节。所述真空系统可以通过蝶阀等控制气压。一些实施例中,通入所述硅氧烷材料的时候,所述等离子体反应腔室内压力在2-20帕的范围。
一些实施例中,所述方法包括,通入所述硅氧烷材料的同时,向所述等离子体反应腔室通入惰性气体。所述惰性气体可以包括氩、氦中的一者或二者。所述惰性气体可以辅助所述硅氧烷材料的等离子体化。
所述惰性气体的流量可以与所述硅氧烷材料的流量相关。一些实施例中,所述惰性气体的流量在10-200标况毫升每分的范围。
一些实施例中,所述方法包括,通入所述硅氧烷材料之前,向所述等离子体反应腔室通入等离子体清洗气源,以等离子体清洗所述基材。所述等离子体清洗气源可以包括氩、氦、氧中的一种或者多种。等离子体清洗所述基材可以有利于比如主要通过等离子体的轰击清洁的效应,获得高表面能的洁净面,为后续沉积涂层提供良好的附着条件,提高涂层与基材之间的结合强度。
等离子体清洗所述基材可以包括在1-10帕的气压,100-1000瓦的等离子体功率离化所述等离子体清洗气源,在-300~-1000伏转架负偏置的作用下轰击所述基材的表面10-30分钟。
一些实施例中,所述方法包括,将所述基材放置于所述等离子体反应腔室内之前,清洗所述基材。清洗所述基材可以包括将所述基材放入异丙醇、乙醇和/或去离子水中超声清洗5-20分钟。清洗所述基材可以有助于去除所述基材表面的油污,提高涂层良率,避免涂层与所述基材分离。清洗后,可以将所述基材放入烘箱里以烘干其表面的水分来进行干燥,也可以通过其他方式干燥。
所述基材可以为需要且能够在表面形成本申请所述的涂层的材料。所述基材可以构成所述器件的部分或全部。所述基材可以为板状、片状或者所述器件实施功能所需的其他形状、构造。一些实施例中,所述基材包括玻璃、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚苯乙烯中至少之一。
一些实施例中,所述基材的所述表面具有减反增透膜。所述减反增透膜可以是减少或消除所述基材表面的反射光,从而增加所述基材的透光量,减少或消除杂散光的光学薄膜。所述涂层可以沉积在所述减反增透膜上,与所述减反增透膜配合达到增透效果叠加的效应,可以例如取代双面减反增透膜里面一个减反增透膜面,从而简化工艺,降低生产成本。
本申请实施例的另一方面涉及一种涂层,其由本申请所述的方法制备而得。
所述涂层具有良好的疏水、超疏水性能。一些实施例中,所述涂层的水接触角大于、等于150°。
所述涂层可以透光。所述涂层可以提升所述基材的光学性能。一些实施例中,所述涂层对所述基材增透1%以上。举例来说,所述基材的透光率为90%,表面沉积有所述涂层后的透光率为91%以上,即可谓所述涂层对所述基材增透1%以上。
一些实施例中,所述涂层为防雾涂层。所述涂层可以降低起雾情况出现的机率,特别是在雾气消散方面有尤为突出的表现,可以迅速消散雾气,减小起雾对视野的干扰。一些实施例中,所述基材遇水蒸气后起雾明显,但有 所述涂层的遇水蒸气则表面清晰,没有起雾现象,表明所述涂层防雾性能优异。
所述涂层的厚度可以为纳米级别的。一些实施例中,所述涂层的厚度在20-300纳米的范围。
本申请实施例的又一方面涉及一种器件,其至少部分表面包括如本申请所述的涂层。所述涂层可以有助于所述器件疏水、防雾、高透光率。
一些实施例中,所述器件包括手机镜头盖板、滑雪镜、浴室玻璃、眼镜、泳镜、摄像机镜头、汽车玻璃、红外显微镜、手术内窥镜、太阳能电池板中至少之一。
下面的实施例可以帮助理解本发明的实施方式,不欲构成对保护范围的限制。
实施例1
将玻璃基材样品分别放入异丙醇、乙醇和去离子水中超声清洗10分钟。将清洗后的玻璃基材样品放入烘箱里,以烘干其表面的水分。
将烘干的玻璃基材样品放置于等离子体反应腔室内。通过真空系统排出腔室内气体以降低腔室内气压。腔室内本底真空达到1.0×10-1帕以下时,通入50标况毫升每分的等离子体清洗气源氩。蝶阀控制气压在2帕,通过1000瓦的等离子体发生装置离化活性气体,使氩等离子体化。再在-600伏转架负偏置的作用下轰击,以等离子体清洗玻璃基材样品的表面20分钟。
再通入300微升/分钟的六甲基二硅氧烷蒸汽、100标况毫升每分的惰性气体氩。调节等离子体反应腔室内压力在10帕。偏压电源设定为-500伏,等离子体源功率设定为900瓦,等离子体放电镀膜20分钟,在玻璃基材样品的表面沉积制备一层200纳米的涂层。
根据GB/T 30447-2013《纳米薄膜接触角测量方法》标准利用水接触角测试仪测试水接触角,测得如上所述制备有涂层的玻璃基材样品的水解触角大于160°,为165°。
通过UV1900i型紫外分光光谱仪分别测试波长为420-750纳米的光在如上所述制备有涂层的玻璃基材样品和其它相同但没有涂层的玻璃基材样品的透过率,所得数据曲线见图1,其中无涂层的平均透过率为91.80%,而沉积有涂层的平均透过率提升至93.82%,涂层对玻璃基材增透2.02%。
将如上所述沉积有涂层的玻璃基材样品和其它相同但没有涂层的玻璃基材样品平行放置于60℃水浴锅上方5厘米,观察水汽情况,5分钟后可以明显看到有涂层的样品表面清晰,没有起雾现象,而无涂层的样品表面起雾明显,并且测得有涂层的样品的透过率比无涂层的样品高40%,可见涂层防雾性能优异。
实施例2
将表面具有减反(anti reflection,AR)增透膜的玻璃基材样品放入去离子水中超声清洗10分钟。将清洗后的样品放入烘箱里,以烘干其表面水分。
将烘干的样品放置于等离子体反应腔室内。通过真空系统排出腔室内气体以降低腔室内气压。腔室内本底真空达到1.0×10-1帕以下时,通入50标况毫升每分的等离子体清洗气源氩。蝶阀控制气压在2帕,通过1000瓦的等离子体发生装置离化活性气体,使氩等离子体化。再在-600伏转架负偏置的作用下轰击,以等离子体清洗样品的表面20分钟。
再通入300微升/分钟六甲基二硅氧烷蒸汽、100标况毫升每分的惰性气体氩。调节等离子体反应腔室内压力在10帕。偏压电源设定为-500伏,等离子体源功率设定为900瓦,等离子体放电镀膜20分钟,在样品的表面沉积制备一层200纳米的涂层。
根据GB/T 30447-2013《纳米薄膜接触角测量方法》标准利用水接触角测试仪测试水接触角,测得如上所述制备有涂层的样品的水解触角大于160°,为170°。
通过UV1900i型紫外分光光谱仪分别测试波长为420-750纳米的光在如上所述制备有涂层和其它相同但没有涂层的样品的透过率,所得数据曲线见图2,其中无涂层的平均透过率95.43%,而有涂层的平均透过率提升至97.02%,涂层对具有减反增透膜的玻璃基材增透1.59%。
将如上所述制备有涂层和其它相同但没有涂层的具有减反增透膜的玻璃基材样品分别平行放置于60℃水浴锅上方5厘米,观察水汽情况,5分钟后可以明显看到有涂层的样品表面清晰,没有起雾现象,而没有涂层的样品表面起雾明显,并且测得有涂层的样品的透过率比无涂层的样品高43%,可见涂层防雾性能优异。
实施例3
将聚碳酸酯(polycarbonate,PC)基材样品放入去离子水中超声清洗10分钟。将清洗后的样品放入烘箱里,以烘干其表面水分。
将烘干的基材样品放置于等离子体反应腔室内。通过真空系统排出腔室内气体以降低腔室内气压。腔室内本底真空达到1.0×10-1帕以下时,通入100标况毫升每分的等离子体清洗气源氧。蝶阀控制气压在5帕,通过700瓦的等离子体发生装置离化活性气体,使氩等离子体化。再在-400伏转架负偏置的作用下轰击,以等离子体清洗基材样品的表面10分钟。
再通入300微升/分钟的六甲基二硅氧烷蒸汽、100标况毫升每分的惰性气体氩。调节等离子体反应腔室内压力在10帕,偏压电源设定为-400伏,等离子体源功率设定为700瓦,等离子体放电镀膜20分钟,以在基材样品的表面沉积制备一层200纳米的涂层。
根据GB/T 30447-2013《纳米薄膜接触角测量方法》标准利用水接触角测试仪测试水接触角,测得如上所述制备有涂层的样品的水解触角大于160°,为172°。
通过UV1900i型紫外分光光谱仪分别测试波长在420-750纳米范围的光在如上所述制备有涂层的样品和其它相同但没有涂层的样品的透过率,其中没有涂层的平均透过率为88.30%,而有涂层的平均透过率提升至89.89%,涂层对聚碳酸酯基材增透1.59%。
将如上所述制备有涂层的聚碳酸酯基材样品和其它相同但没有涂层的聚碳酸酯基材样品平行放置于60℃水浴锅上方5厘米,观察水汽情况,5分钟后可以明显看到有涂层的样品表面清晰,没有起雾现象,而没有涂层的样品表面起雾明显,可见涂层防雾性能优异。
虽然本发明披露如上,但本发明并非限定于此。任何本领域技术人员,在不脱离本发明的精神和范围内,均可作各种更动与修改,因此本发明的保护范围应当以权利要求所限定的范围为准。

Claims (22)

  1. 一种制备涂层的方法,其特征在于,包括以下步骤:
    将基材放置于等离子体反应腔室内;以及
    向所述等离子体反应腔室通入硅氧烷材料,施加偏压电源,等离子体放电,以在所述基材的表面沉积涂层。
  2. 如权利要求1所述的方法,其特征在于,所述硅氧烷材料包括脂肪链状硅氧烷、环状硅氧烷。
  3. 如权利要求1所述的方法,其特征在于,所述硅氧烷材料包括六甲基二硅氧烷、1,1,3,3-四甲基二硅氧烷、四甲基二乙烯基二硅氧烷、六乙烯基二硅氧烷、三甲基环三硅氧烷、三甲基三乙烯环三硅氧烷、六甲基环三硅氧烷、八甲基环四硅氧烷、四甲基环四硅氧烷、四甲基四乙烯基环四硅氧烷、十甲基环五硅氧烷、十二甲基环六硅氧烷、四甲氧基硅烷、烯丙基三甲氧基硅烷、四乙氧基硅烷中至少一个。
  4. 如权利要求1所述的方法,其特征在于,所述硅氧烷材料包括六甲基二硅氧烷、八甲基环四硅氧烷中至少一个。
  5. 如权利要求1所述的方法,其特征在于,所述硅氧烷材料的流量在50-500微升/分钟的范围。
  6. 如权利要求1所述的方法,其特征在于,所述偏压电源在-300~-1000伏的范围。
  7. 如权利要求1所述的方法,其特征在于,所述等离子体放电的功率在300~1000瓦的范围。
  8. 如权利要求1所述的方法,其特征在于,所述等离子体放电的时间在2-30分钟的范围。
  9. 如权利要求1所述的方法,其特征在于,通入所述硅氧烷材料的时候,所述等离子体反应腔室内压力在2-20帕的范围。
  10. 如权利要求1所述的方法,其特征在于,包括,通入所述硅氧烷材料的同时,向所述等离子体反应腔室通入惰性气体。
  11. 如权利要求10所述的方法,其特征在于,所述惰性气体的流量在10-200标况毫升每分的范围。
  12. 如权利要求1所述的方法,其特征在于,包括,通入所述硅氧烷材料之前,向所述等离子体反应腔室通入等离子体清洗气源,以等离子体清洗所述基材。
  13. 如权利要求1所述的方法,其特征在于,包括,将所述基材放置于所述等离子体反应腔室内之前,清洗所述基材。
  14. 如权利要求1所述的方法,其特征在于,所述基材包括玻璃、聚碳酸酯、聚甲基丙烯酸甲酯、聚对苯二甲酸乙二醇酯、聚苯乙烯中至少之一。
  15. 如权利要求1所述的方法,其特征在于,所述基材的所述表面具有减反增透膜。
  16. 一种涂层,其特征在于,由权利要求1-15中任一项所述的方法制备而得。
  17. 如权利要求16所述的涂层,其特征在于,所述涂层的水接触角大于、等于150°。
  18. 如权利要求16所述的涂层,其特征在于,所述涂层对所述基材增透1%以上。
  19. 如权利要求16所述的涂层,其特征在于,所述涂层为防雾涂层。
  20. 如权利要求16所述的涂层,其特征在于,所述涂层的厚度在20-300纳米的范围。
  21. 一种器件,其特征在于,所述器件的至少部分表面包括如权利要求16-20中任一项所述的涂层。
  22. 如权利要求21所述的器件,其特征在于,包括手机镜头盖板、滑雪镜、浴室玻璃、眼镜、泳镜、摄像机镜头、汽车玻璃、红外显微镜、手术内窥镜、太阳能电池板中至少之一。
PCT/CN2023/129044 2022-12-20 2023-11-01 制备涂层的方法、涂层、以及器件 WO2024131325A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211641733.4A CN118218225A (zh) 2022-12-20 2022-12-20 制备涂层的方法、涂层、以及器件
CN202211641733.4 2022-12-20

Publications (1)

Publication Number Publication Date
WO2024131325A1 true WO2024131325A1 (zh) 2024-06-27

Family

ID=91513018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/129044 WO2024131325A1 (zh) 2022-12-20 2023-11-01 制备涂层的方法、涂层、以及器件

Country Status (2)

Country Link
CN (1) CN118218225A (zh)
WO (1) WO2024131325A1 (zh)

Also Published As

Publication number Publication date
CN118218225A (zh) 2024-06-21

Similar Documents

Publication Publication Date Title
US11180410B2 (en) Optical coating method, apparatus and product
JP4495463B2 (ja) 眼用レンズの処理方法
AU2002313976B2 (en) Hybrid film, antireflection film comprising it, optical product, and method for restoring the defogging property of hybrid film
JP5135753B2 (ja) 光学物品
JP3808917B2 (ja) 薄膜の製造方法及び薄膜
CN105859153B (zh) 一种防雾减反射可见光双功能镀膜玻璃及其制备方法
US20230303888A1 (en) Super hydrophobic film layer, preparation method thereof,and product thereof
JP2006126782A (ja) 光学物品の防汚層処理方法
JP2008180795A (ja) 光学物品およびその製造方法
JP2006175438A (ja) 防汚層の形成方法
TWI706921B (zh) 光學鍍膜的方法、裝置及產品
JPH0798414A (ja) 偏光板および偏光板の製造方法
JP2010237637A (ja) 光学物品およびその製造方法
WO2024131325A1 (zh) 制备涂层的方法、涂层、以及器件
JP3128554B2 (ja) 酸化物光学薄膜の形成方法及び酸化物光学薄膜の形成装置
JPH0415179B2 (zh)
US20230321686A1 (en) Transparent wear-resistant film layer, plastic surface modification method, and product
JP2010538816A (ja) 基体を大気圧でプラズマで透明コーティングする方法
JPH08319109A (ja) 無機質組成物及び積層体の製造方法
JPH10139474A (ja) 光学ガラス素子及びその製造方法
JP2002080970A (ja) 反射防止層を有する光学物品の製造方法
JP2002148402A (ja) 光学物品及びその製造方法
JP3987169B2 (ja) 光学薄膜の製造方法
JP3760570B2 (ja) 防汚性薄膜の形成方法
JPH03162561A (ja) プラスチック基板への成膜方法