WO2024128877A1 - 공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법 - Google Patents

공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법 Download PDF

Info

Publication number
WO2024128877A1
WO2024128877A1 PCT/KR2023/020814 KR2023020814W WO2024128877A1 WO 2024128877 A1 WO2024128877 A1 WO 2024128877A1 KR 2023020814 W KR2023020814 W KR 2023020814W WO 2024128877 A1 WO2024128877 A1 WO 2024128877A1
Authority
WO
WIPO (PCT)
Prior art keywords
weight
conjugated diene
graft copolymer
parts
added
Prior art date
Application number
PCT/KR2023/020814
Other languages
English (en)
French (fr)
Inventor
석재민
정영환
이진형
김기현
박창홍
채민수
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Publication of WO2024128877A1 publication Critical patent/WO2024128877A1/ko

Links

Definitions

  • the present invention relates to a method for producing conjugated diene polymers and a method for producing graft copolymers.
  • ABS copolymer is manufactured by graft copolymerizing styrene and acrylonitrile to a butadiene rubbery polymer.
  • ABS copolymer has superior impact resistance, chemical resistance, thermal stability, coloring, fatigue resistance, rigidity, and processability compared to existing high-impact polystyrene (HIPS), and is used in interior and exterior materials for automobiles, office equipment, and various electrical appliances.
  • HIPS high-impact polystyrene
  • ⁇ It is used in parts such as electronic products or toys.
  • Rubberous polymers included in ABS copolymers are generally manufactured through emulsion polymerization of conjugated diene monomers.
  • the particle size of the rubbery polymer in the rubbery polymer latex which includes rubbery polymers manufactured by emulsion polymerization, has a very important influence on the final physical properties. It will cause harm.
  • the impact strength of the resin composition containing the ABS copolymer increases. Therefore, much effort is being made to improve the particle size of the rubbery polymer.
  • Methods for increasing the particle size of the rubbery polymer include polymerizing a small-diameter rubbery polymer and then improving the particle size through an additional process such as enlargement through agglomeration or increasing the polymerization time when manufacturing the rubbery polymer.
  • an additional process such as enlargement through agglomeration or increasing the polymerization time when manufacturing the rubbery polymer.
  • Patent Document 1 JP 1996-259777 A
  • the present invention was developed to solve the problems of the prior art, and provides a method for producing a conjugated diene-based polymer that can improve the particle size of the conjugated diene-based polymer without additional processes such as thickening through agglomeration or increasing the polymerization time.
  • the purpose is to
  • the purpose of the present invention is to provide a method for producing a graft copolymer that can further improve the impact strength of a resin composition from a conjugated diene-based polymer with an improved particle size.
  • the present invention provides a method for producing a conjugated diene polymer and a method for producing a graft copolymer.
  • the present invention includes a step (S10) of polymerizing a conjugated diene monomer in the presence of sulfate and carbonate, wherein the sulfate and carbonate are added at a weight ratio of 1:0.08 or more and 9.2 or less. Manufacturing method is provided.
  • the present invention provides a method for producing a conjugated diene-based polymer according to (1) above, wherein the sulfate and carbonate are added at a weight ratio of 1:0.1 or more and 9.0 or less.
  • the present invention provides a method for producing a conjugated diene-based polymer according to (1) or (2) above, wherein the sulfate is an alkali metal sulfate salt.
  • the present invention provides a method for producing a conjugated diene-based polymer according to any one of (1) to (3) above, wherein the carbonate is an alkali metal carbonate salt.
  • the present invention is a method for producing a conjugated diene-based polymer according to any one of (1) to (5) above, wherein the conjugated diene-based polymer prepared in the step (S10) has an average particle diameter of 50 nm or more and 500 nm or less. provides.
  • the present invention is a method for producing a conjugated diene-based polymer according to any one of (1) to (6) above, wherein the conjugated diene-based polymer prepared in step (S10) has an average particle diameter of 300 nm or more and 500 nm or less. provides.
  • the present invention includes a graft copolymer obtained by adding and polymerizing an aromatic vinyl monomer and a vinyl cyan monomer in the presence of the conjugated diene polymer latex prepared according to any one of (1) to (7) above. It provides a method for producing a graft copolymer including the step (S20) of producing a graft copolymer latex.
  • the step (S20) is performed by adding 50% by weight of the conjugated diene polymer latex based on solids based on the total content of the conjugated diene polymer, aromatic vinyl monomer, and vinyl cyanide monomer.
  • a method for producing a graft copolymer which is carried out by adding more than 70% by weight or less, 10% by weight or more and 40% by weight or less of aromatic vinyl monomer, and 1% by weight or more and 20% by weight or less of vinyl cyanide monomer. .
  • the present invention provides a conjugated diene-based polymer prepared according to any one of (1) to (7) above.
  • the present invention provides a graft copolymer prepared according to (8) or (9) above.
  • the present invention provides a graft copolymer comprising a conjugated diene polymer, an aromatic vinyl monomer unit, and a vinyl cyan monomer unit according to (10) above.
  • the present invention provides a resin composition comprising the graft copolymer and styrene-based copolymer according to (11) or (12) above.
  • the particle size of the conjugated diene-based polymer can be improved without additional processes such as thickening through agglomeration or increasing polymerization time.
  • the impact strength of the resin composition can be further improved from the conjugated diene-based polymer with an improved particle size.
  • the term 'monomer unit' may refer to a component, structure, or the substance itself derived from a monomer.
  • the input monomer participates in the polymerization reaction and forms a repeating unit within the polymer. It could mean something.
  • composition' used in the present invention includes mixtures of materials containing the composition as well as reaction products and decomposition products formed from the materials of the composition.
  • the present invention provides a method for producing a conjugated diene-based polymer.
  • the method for producing the conjugated diene-based polymer includes the step (S10) of polymerizing the conjugated diene-based monomer in the presence of sulfate and carbonate, wherein the sulfate and carbonate are 1:0.08 or more and 9.2 or less. It may be input at a weight ratio of .
  • the polymerization in the (S10) step is a step for producing a conjugated diene-based polymer latex containing a conjugated diene-based polymer, and the polymerization in the (S10) step is carried out by emulsion polymerization. You can.
  • the conjugated diene monomer is 1,3-butadiene, 2,3-dimethyl-1,3-butadiene, piperylene, 3-butyl-1,3-octadiene, isoprene, and 2 -phenyl-1,3-butadiene may be one or more selected from the group consisting of, and a more specific example may be 1,3-butadiene.
  • the entire amount of the conjugated diene monomer may be added in bulk before the start of polymerization, or a portion may be added before the start of polymerization, and the remainder may be added during polymerization.
  • the conjugated diene monomer when the conjugated diene monomer is added separately into before and during polymerization, the average particle diameter of the conjugated diene polymer is increased and the particle size uniformity of the produced conjugated diene polymer is maintained. It has an improving effect.
  • step (S10) 30% to 70% by weight or 40% to 60% by weight of the conjugated diene monomer is added before the start of polymerization, and 30% to 70% by weight or 40% by weight during polymerization. % to 60% by weight may be added.
  • 30% to 70% by weight or 40% to 60% by weight of the conjugated diene monomer is added before the start of polymerization, and the polymerization conversion rate is 40% to 60%. 15% to 35% by weight or 20% to 30% by weight may be added, and 15% to 35% by weight or 20% to 30% by weight may be added when the polymerization conversion rate is 65% to 80%. there is.
  • the emulsion polymerization in step (S10) may be performed in the presence of an emulsifier, and the emulsifier may be a fatty acid-based emulsifier or a fatty acid dimer-based emulsifier.
  • the content of the emulsifier in the step (S10) is 0.1 parts by weight to 10.0 parts by weight, 0.8 parts by weight to 8.0 parts by weight, or 1.0 parts by weight to 6.0 parts by weight, based on 100 parts by weight of the conjugated diene monomer. It may be in parts by weight, and within this range, there is an effect of producing a conjugated diene-based polymer having an average particle diameter suitable for ensuring impact resistance.
  • the entire amount of the emulsifier may be added at once before the start of polymerization, or a portion may be added before the start of polymerization, and the remainder may be added during polymerization.
  • the emulsifier when the emulsifier is added separately before starting polymerization and during polymerization, the average particle diameter of the conjugated diene polymer is increased while the particle size uniformity of the produced conjugated diene polymer is improved.
  • a portion of the emulsifier may be added before the start of polymerization, and the remainder may be added during polymerization.
  • the step (S10) is carried out by radical polymerization using an initiator that can be used during emulsion polymerization, specifically a water-soluble initiator, peroxide-based, redox, or azo-based initiator.
  • the water-soluble initiator may be potassium persulfate or ammonium persulfate
  • the redox initiator may be, for example, a group consisting of t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, and cumene hydroperoxide. There may be more than one selected type, and in this case, it has the effect of providing a stable polymerization environment.
  • ferrous sulfate, dextrose, and sodium pyrrole phosphate may be further included as a redox catalyst.
  • the content of the initiator in the step (S10) is 0.01 to 5.00 parts by weight, 0.05 to 3.00 parts by weight, or 0.1 to 1.0 parts by weight, based on 100 parts by weight of the conjugated diene monomer. It may be in parts by weight, and within this range, there is an effect of producing a conjugated diene-based polymer having an average particle diameter suitable for ensuring impact resistance.
  • the entire amount of the initiator may be added at once before the start of polymerization, or a portion may be added before the start of polymerization, and the remainder may be added during polymerization.
  • the average particle diameter of the conjugated diene polymer is increased while the particle size uniformity of the produced conjugated diene polymer is improved. There is.
  • the step (S10) may be performed in the presence of a molecular weight regulator, and the molecular weight regulator may be a mercaptan-based molecular weight regulator, and a specific example may be t-dodecyl mercaptan.
  • the molecular weight regulator may be a mercaptan-based molecular weight regulator, and a specific example may be t-dodecyl mercaptan.
  • the content of the molecular weight regulator in the step (S10) is 0.01 parts by weight to 5.00 parts by weight, 0.05 parts by weight to 3.00 parts by weight, or 0.1 parts by weight to 100 parts by weight of the conjugated diene monomer. It may be 1.0 parts by weight, and within this range, there is an effect of producing a conjugated diene-based polymer having an average particle size suitable for ensuring impact resistance.
  • the molecular weight regulator in the step (S10), may be added in its entirety before the start of polymerization, or a portion may be added before the start of polymerization, and the remainder may be added during polymerization.
  • the molecular weight regulator when the molecular weight regulator is added separately before the start of polymerization and during polymerization, the average particle size of the conjugated diene-based polymer is increased and the particle size uniformity of the produced conjugated diene-based polymer is improved. It works.
  • a portion of the molecular weight regulator may be added before the start of polymerization, and the remainder may be added during polymerization.
  • the emulsion polymerization in the step (S10) may be performed in an aqueous solvent, and the aqueous solvent may be ion-exchanged water. Accordingly, the conjugated diene system emulsion polymerized in the step (S10) The polymer can be obtained in the form of latex in which conjugated diene-based polymer particles are dispersed in a colloidal form in an aqueous solvent.
  • the step (S10) may be performed in the presence of sulfate and carbonate, where the sulfate and carbonate serve as electrolytes, It can play a role in controlling the stability of the conjugated diene polymer latex and the average particle size of the conjugated diene polymer.
  • sulfate and carbonate serve as electrolytes
  • the sulfate and carbonate may be added at a weight ratio of 1:0.08 or more and 9.2 or less.
  • the sulfate and carbonate may be added at a weight ratio of 1:0.08 or more, 0.09 or more, 0.10 or more, or 0.11 or more based on the weight ratio (sulfate:carbonate), and may also be 1:9.20 or less, 9.15 or less, or 9.10 or less.
  • the sulfate may be an alkali metal sulfate salt.
  • the alkali metal sulfate salt may be one or more selected from the group consisting of sodium sulfate, potassium sulfate, sodium hydrogen sulfate, and potassium hydrogen sulfate.
  • a specific example may be sodium sulfate.
  • the carbonate may be an alkali metal carbonate salt.
  • the alkali metal carbonate salt may be at least one selected from the group consisting of sodium carbonate and potassium carbonate, and as a specific example, it may be potassium carbonate.
  • the sulfate and carbonate may be sodium sulfate and potassium carbonate, respectively, and in this case, the latex stability is further improved and the average particle size of the conjugated diene polymer can be easily adjusted according to the desired level. do.
  • the sulfate and carbonate may be added in an amount of 0.3 parts by weight or more and 1.5 parts by weight or less based on 100 parts by weight of the conjugated diene monomer.
  • the sulfate and carbonate may be added in an amount of 0.1 part by weight or more, 0.2 part by weight or more, 0.3 part by weight, 0.4 part by weight, or 0.5 part by weight or more, based on 100 parts by weight of the conjugated diene monomer, In addition, it may be added in an amount of 1.5 parts by weight or less, 1.4 parts by weight or less, 1.3 parts by weight or less, 1.2 parts by weight or less, 1.1 parts by weight or less, or 1.0 parts by weight or less, and within this range, the particle size of the conjugated diene polymer can be further improved.
  • the content of sulfate and carbonate may be the content of each sulfate and carbonate, or may be the combined content of sulfate and carbon
  • the conjugated diene-based polymer may have an average particle diameter of 50 nm or more and 500 nm or less.
  • the conjugated diene-based polymer may have an average particle diameter of 50 nm or more, 100 nm or more, 150 nm or more, 200 nm or more, 250 nm or more, or 300 nm or more, and may also have an average particle diameter of 500 nm or less, 490 nm or less, or 480 nm or more.
  • the conjugated diene-based polymer is a large-diameter conjugated diene-based polymer, and can exhibit a large diameter by being manufactured through the step (S10).
  • the present invention provides a method for producing graft copolymers.
  • the graft copolymer production method involves adding an aromatic vinyl monomer and a vinyl cyanide monomer and polymerizing the graft copolymer in the presence of the conjugated diene polymer latex prepared according to the conjugated diene polymer production method.
  • it may include a step (S20) of producing a graft copolymer latex containing the graft copolymer.
  • a step (S20) in order to prepare a graft copolymer, an aromatic vinyl monomer and a vinyl cyanide monomer are grafted to the conjugated diene polymer contained in the conjugated diene polymer latex prepared in step (S10). This may be a polymerization step.
  • the graft polymerization in step (S20) may be performed by graft emulsion polymerization. Additionally, the graft polymerization in step (S20) may be performed on the latex of the conjugated diene polymer latex prepared in step (S10).
  • the step (S20) may be performed by radical polymerization using a peroxide-based, redox-based, or azo-based initiator that can be used during graft emulsion polymerization
  • the redox initiator may be one or more selected from the group consisting of t-butyl hydroperoxide, diisopropylbenzene hydroperoxide, and cumene hydroperoxide, and in this case, it has the effect of providing a stable polymerization environment.
  • ferrous sulfate, dextrose, and sodium pyrrole phosphate may be further included as a redox catalyst.
  • the graft emulsion polymerization in the step (S20) may be performed in an aqueous solvent, and the aqueous solvent may be ion-exchanged water, and thus the graft polymerization in the step (S20)
  • the graft copolymer can be obtained in the form of latex in which graft copolymer particles are dispersed in a colloidal form in an aqueous solvent.
  • the aromatic vinyl monomer is styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, 1-vinylnaphthalene, 4-cyclohexylstyrene, 4- It may be one or more selected from the group consisting of (p-methylphenyl)styrene and 1-vinyl-5-hexylnaphthalene, and a specific example may be styrene.
  • the vinyl cyanide monomer may be one or more selected from the group consisting of acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, and ⁇ -chloroacrylonitrile, , a specific example may be acrylonitrile.
  • the content of the conjugated diene polymer latex added in the step (S20) is 50% by weight or more, based on the total content of the conjugated diene polymer, aromatic vinyl monomer, and vinyl cyanide monomer. It may be 70% by weight or less, and as a specific example, it may be 50% by weight or more, 55% by weight or more, or 60% by weight or more, and may also be 70% by weight or less, 65% by weight or less, or 60% by weight or less, and this range Impact strength and fluidity can be further improved by the graft copolymer.
  • the content of the aromatic vinyl monomer added in the step (S20) is 10% by weight or more, based on the total content of the conjugated diene polymer, aromatic vinyl monomer, and vinyl cyanide monomer. It may be % by weight or less, and as specific examples, it may be 10% by weight or more, 15% by weight or more, 20% by weight or more, 25% by weight or more, or 30% by weight or more, and also 40% by weight or less, 35% by weight or less, or It may be 30% by weight or less, and within this range, it has the effect of securing the mechanical properties of the graft copolymer and improving the dispersibility of the graft copolymer within the resin composition.
  • the content of vinyl cyanide monomer added in the step (S20) is 1% by weight or more and 20% by weight, based on the total content of the conjugated diene polymer, aromatic vinyl monomer, and vinylcyan monomer. It may be % by weight or less, and specific examples include 1% by weight or more, 2% by weight or more, 3% by weight or more, 4% by weight or more, 5% by weight or more, 6% by weight or more, 7% by weight or more, 8% by weight or more, 9% by weight or more.
  • the present invention provides a conjugated diene-based polymer prepared according to the conjugated diene-based polymer manufacturing method and a graft copolymer prepared according to the graft copolymer manufacturing method.
  • the graft copolymer may include a conjugated diene polymer, an aromatic vinyl monomer unit, and a vinyl cyan monomer unit.
  • the conjugated diene-based polymer may be the same as the conjugated diene-based polymer described in the graft copolymer production method, and the aromatic vinyl-based monomer unit and the vinyl cyan-based monomer unit are previously grafted. It may refer to a repeating unit formed by the aromatic vinyl monomer and vinyl cyan monomer described in the copolymer production method participating in a graft polymerization reaction.
  • the content of each of the conjugated diene polymer, aromatic vinyl monomer unit, and vinyl cyan monomer unit may be the same as the content of each component added during production of the graft copolymer.
  • the present invention provides a resin composition containing the graft copolymer.
  • the resin composition may include the graft copolymer and the styrene-based copolymer.
  • the styrene-based copolymer may be a non-grafted copolymer containing an aromatic vinyl-based monomer unit, and as a specific example, may be a copolymer containing an aromatic vinyl-based monomer unit and a vinyl cyanide-based monomer unit.
  • the styrene-based copolymer may be a matrix resin that is kneaded with the graft copolymer in the resin composition to form a matrix.
  • the aromatic vinyl monomer forming the aromatic vinyl monomer unit of the styrene copolymer is styrene, ⁇ -methylstyrene, 3-methylstyrene, 4-methylstyrene, 4-propylstyrene, It may be one or more selected from the group consisting of 1-vinylnaphthalene, 4-cyclohexylstyrene, 4-(p-methylphenyl)styrene, and 1-vinyl-5-hexylnaphthalene, and a specific example may be styrene.
  • the vinyl cyan-based monomers forming the vinyl cyan-based monomer unit of the styrene-based copolymer include acrylonitrile, methacrylonitrile, ethacrylonitrile, phenylacrylonitrile, and ⁇ -chloro. It may be one or more types selected from the group consisting of acrylonitrile, and a specific example may be acrylonitrile.
  • the resin composition contains 10% to 40% by weight, 15% to 35% by weight, or 20% to 30% by weight of the graft copolymer; and 60% to 90% by weight, 65% to 85% by weight, or 70% to 80% by weight of a copolymer containing an aromatic vinyl monomer unit and a vinyl cyanide monomer unit, and may be within this range.
  • the graft copolymer and the styrene-based copolymer each include an aromatic vinyl-based monomer unit and a vinyl cyan-based monomer unit, and the aromatic vinyl-based monomer unit and vinyl forming each copolymer
  • the types of cyanide-based monomer units are the same, they are mixed and dispersed as the same components during the extrusion process of the resin composition, so in the actual resin composition and molded products made therefrom, the aromatic vinyl-based monomer units and the vinyl cyan-based monomer units are present in the matrix formed by the aromatic vinyl-based monomer units.
  • the conjugated diene-based polymer may exist in dispersed form.
  • the respective contents of the graft copolymer and the styrene-based copolymer in the resin composition can be confirmed from the content of the fully aromatic vinyl monomer unit and vinyl cyanide monomer unit in the resin composition, and the content of the conjugated diene polymer.
  • the resin composition has an impact strength of 24.0 kgf ⁇ cm/cm or more, 24.5 kgf ⁇ cm/cm, as measured at 1/4 inch thickness according to ASTM D256. or more, or 24.8 It may be more than kgf ⁇ cm/cm, and also 30.0 It may be kgf ⁇ cm/cm or less, and within this range, the impact resistance of the resin composition containing the graft copolymer is excellent.
  • the internal temperature of the polymerization reactor was raised to 75°C, and when the polymerization conversion rate was 40%, 0.1 part by weight of potassium persulfate salt was added, the temperature was raised to 85°C to perform a polymerization reaction, and the polymerization conversion rate was 50%. After adding 20 parts by weight of 1,3-butadiene at this point, the reaction was terminated when the polymerization conversion rate was 90% to obtain conjugated diene-based polymer latex (average particle size: 4,013 ⁇ , solid content: 55.3% by weight).
  • an activator mixture containing 0.01 part by weight of dextrose, 0.01 part by weight of tetrasodium pyrophosphate, and 0.001 part by weight of ferrous sulfate was prepared.
  • magnesium sulfate MgSO 4
  • 100 parts by weight of the prepared graft copolymer latex based on solid content was added to 100 parts by weight of the prepared graft copolymer latex based on solid content, and coagulated at 85°C. Afterwards, it was aged for 10 minutes while raising the temperature from 85°C to 95°C, washed, dehydrated, and dried to prepare a graft copolymer powder.
  • Example 1 when producing the conjugated diene polymer latex, potassium carbonate was added at 0.5 parts by weight instead of 0.1 part by weight, and sodium sulfate was added at 0.5 parts by weight instead of 0.9 parts by weight. The same method as Example 1. Using this method, conjugated diene polymer latex, graft copolymer latex, and graft copolymer powder were produced.
  • Example 1 when producing the conjugated diene polymer latex, potassium carbonate was added at 0.9 parts by weight instead of 0.1 part by weight, and sodium sulfate was added at 0.1 parts by weight instead of 0.9 parts by weight. The same method as Example 1. Using this method, conjugated diene polymer latex, graft copolymer latex, and graft copolymer powder were produced.
  • Example 1 when producing the conjugated diene polymer latex, 1.0 parts by weight of potassium carbonate was added instead of 0.1 part by weight, and sodium sulfate was not added, and the same method as Example 1 was performed to produce conjugated diene.
  • Systemic polymer latex, graft copolymer latex, and graft copolymer powder were prepared.
  • Example 1 when producing the conjugated diene polymer latex, potassium carbonate was added at 0.95 parts by weight instead of 0.1 part by weight, and sodium sulfate was added at 0.05 parts by weight instead of 0.9 parts by weight. The same as Example 1. Using this method, conjugated diene polymer latex, graft copolymer latex, and graft copolymer powder were produced.
  • Example 1 when producing the conjugated diene polymer latex, potassium carbonate was added at 0.05 parts by weight instead of 0.1 part by weight, and sodium sulfate was added at 0.95 parts by weight instead of 0.9 parts by weight. The same as Example 1. However, when producing the conjugated diene polymer latex, coagulation occurred due to decreased stability of the latex, making it impossible to produce the graft copolymer.
  • Example 1 when producing the conjugated diene-based polymer latex, potassium carbonate was not added and sodium sulfate was added at 1.0 parts by weight instead of 0.9 parts by weight, and the conjugated diene was prepared in the same manner as in Example 1. Although a polymer latex was produced, a coagulation phenomenon occurred due to a decrease in latex stability during the production of the conjugated diene polymer latex, making it impossible to produce a graft copolymer.
  • Example 1 when producing the conjugated diene polymer latex, 0.5 parts by weight of potassium carbonate was added instead of 0.1 part by weight, and potassium chloride (KCl) was added at 0.5 parts by weight instead of 0.9 parts by weight of sodium sulfate. Conjugated diene polymer latex, graft copolymer latex, and graft copolymer powder were prepared in the same manner as in Example 1.
  • Example 1 when producing the conjugated diene polymer latex, 0.5 parts by weight of potassium carbonate was added instead of 0.1 part by weight, and potassium bicarbonate (KHCO 3 ) was added at 0.5 parts by weight instead of 0.9 parts by weight of sodium sulfate. Conjugated diene-based polymer latex, graft copolymer latex, and graft copolymer powder were prepared in the same manner as in Example 1.
  • Example 1 when producing the conjugated diene polymer latex, 0.5 parts by weight of potassium carbonate was added instead of 0.1 part by weight, and potassium bisulfite (KHSO 3 ) was added at 0.5 parts by weight instead of 0.9 parts by weight of sodium sulfate. Conjugated diene-based polymer latex, graft copolymer latex, and graft copolymer powder were prepared in the same manner as in Example 1 above.
  • Example 1 when producing the conjugated diene polymer latex, 0.5 parts by weight of potassium carbonate was added instead of 0.1 part by weight, and tripotassium phosphate (K 3 PO 4 ) was added at 0.5 parts by weight instead of 0.9 parts by weight of sodium sulfate. Then, conjugated diene polymer latex, graft copolymer latex, and graft copolymer powder were prepared in the same manner as in Example 1.
  • Example 1 except that when producing the conjugated diene polymer latex, 0.5 parts by weight of sodium sulfate was added instead of 0.9 parts by weight, and potassium chloride (KCl) was added at 0.5 parts by weight instead of 0.1 part by weight of potassium carbonate.
  • Conjugated diene polymer latex, graft copolymer latex, and graft copolymer powder were prepared in the same manner as in Example 1.
  • Example 1 when producing the conjugated diene polymer latex, 0.5 parts by weight was added instead of 0.9 parts by weight of sodium sulfate, and potassium bicarbonate (KHCO 3 ) was added at 0.5 parts by weight instead of 0.1 part by weight of potassium carbonate.
  • Conjugated diene-based polymer latex, graft copolymer latex, and graft copolymer powder were prepared in the same manner as in Example 1.
  • Example 1 when producing the conjugated diene polymer latex, 0.5 parts by weight was added instead of 0.9 parts by weight of sodium sulfate, and potassium bisulfite (KHSO 3 ) was added at 0.5 parts by weight instead of 0.1 part by weight of potassium carbonate.
  • Conjugated diene-based polymer latex, graft copolymer latex, and graft copolymer powder were prepared in the same manner as in Example 1 above.
  • Example 1 when producing the conjugated diene polymer latex, 0.5 parts by weight of sodium sulfate was added instead of 0.9 parts by weight, and tripotassium phosphate (K 3 PO 4 ) was added at 0.5 parts by weight instead of 0.1 part by weight of potassium carbonate. Then, conjugated diene polymer latex, graft copolymer latex, and graft copolymer powder were prepared in the same manner as in Example 1.
  • the average particle diameter was measured by the method below and is shown in Table 1 below along with the content of the electrolyte added when producing the conjugated diene-based polymer latex. It was.
  • Average particle diameter ( ⁇ ) 1 g of conjugated diene polymer latex was diluted in 100 g of distilled water, and then measured by dynamic light scattering using a Nicomp 370 HPL equipment from PSS (Particle Sizing Systems).
  • a resin composition was prepared in the following manner, and the prepared resin composition pellets were injected at 210° C. and produced by the following method.
  • the impact strength was measured and shown in Table 2 below.
  • the particle size of the conjugated diene-based polymer can be improved without additional processes such as thickening through agglomeration or an increase in polymerization time. Furthermore, it was confirmed that when producing a graft copolymer, the impact strength of the resin composition can be further improved from the conjugated diene-based polymer with an improved particle size.

Landscapes

  • Graft Or Block Polymers (AREA)

Abstract

본 발명은 공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법에 관한 것으로, 응집을 통한 비대화 등의 추가 공정 또는 중합 시간의 증가 없이 공액디엔계 중합체의 입자 크기를 향상시킬 수 있는 공액디엔계 중합체 제조방법 및 입자 크기가 향상된 공액디엔계 중합체로부터 수지 조성물의 충격강도를 더욱 향상시킬 수 있는 그라프트 공중합체 제조방법에 관한 것이다.

Description

공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법
[관련출원과의 상호인용]
본 발명은 2022년 12월 16일에 출원된 한국 특허 출원 제10-2022-0176493호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용을 본 명세서의 일부로서 포함한다.
[기술분야]
본 발명은 공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법에 관한 것이다.
아크릴로니트릴-부타디엔-스티렌(Acrylonitrile-butadiene-styrene, ABS) 공중합체는 부타디엔 고무질 중합체에 스티렌과 아크릴로니트릴을 그라프트 공중합하여 제조된다. ABS 공중합체는 기존의 고강도 폴리스티렌(High-Impact polystyrene, HIPS)과 비교하여 내충격성, 내화학성, 열안정성, 착색성, 내피로성, 강성 및 가공성 등이 우수하여, 자동차용 내외장재, 사무용 기기, 각종 전기·전자제품 등의 부품 또는 완구류 등에서 사용되고 있다.
ABS 공중합체에 포함되는 고무질 중합체는 일반적으로 공액디엔계 단량체의 유화 중합을 통하여 제조되는데, 유화 중합에 의해 제조된 고무질 중합체를 포함하는 고무질 중합체 라텍스 내 고무질 중합체의 입자 크기가 최종 물성에 매우 중요한 영향을 끼치게 된다.
통상적으로 고무질 중합체의 입자 크기가 커질수록 ABS 공중합체를 포함하는 수지 조성물의 충격강도가 상승하기 때문에, 고무질 중합체의 입자 크기를 향상시키기 위해 많은 노력이 이어지고 있다. 고무질 중합체의 입자 크기를 위한 방법으로는 소구경 고무질 중합체를 중합한 후, 응집을 통한 비대화 등의 추가 공정을 통하여 입자 크기를 향상시키거나, 고무질 중합체 제조 시 중합 시간을 늘려야 한다. 그러나, 이와 같이 고무질 중합체를 제조하는 경우, 추가 공정 및 중합 시간 증가로 인해 생산성을 증가시키는데 제약이 되고, 또한, 고무질 중합체의 입자 크기를 향상시키는데 한계점을 보이는 문제가 있다.
[선행기술문헌]
[특허문헌]
(특허문헌 1) JP 1996-259777 A
본 발명은 상기 종래기술의 문제점을 해결하기 위하여 안출된 것으로, 응집을 통한 비대화 등의 추가 공정 또는 중합 시간의 증가 없이 공액디엔계 중합체의 입자 크기를 향상시킬 수 있는 공액디엔계 중합체 제조방법을 제공하는 것을 목적으로 한다.
또한, 본 발명은 입자 크기가 향상된 공액디엔계 중합체로부터 수지 조성물의 충격강도를 더욱 향상시킬 수 있는 그라프트 공중합체 제조방법을 제공하는 것을 목적으로 한다.
상기 과제를 해결하기 위하여, 본 발명은 공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법을 제공한다.
(1) 본 발명은 황산염 및 탄산염의 존재 하에, 공액디엔계 단량체를 중합하는 단계(S10)를 포함하고, 상기 황산염 및 탄산염은 1:0.08 이상 9.2 이하의 중량비로 투입되는 것인 공액디엔계 중합체 제조방법을 제공한다.
(2) 본 발명은 상기 (1)에 있어서, 상기 황산염 및 탄산염은 1:0.1 이상 9.0 이하의 중량비로 투입되는 것인 공액디엔계 중합체 제조방법을 제공한다.
(3) 본 발명은 상기 (1) 또는 (2)에 있어서, 상기 황산염은 황산 알칼리 금속염인 공액디엔계 중합체 제조방법을 제공한다.
(4) 본 발명은 상기 (1) 내지 (3) 중 어느 하나에 있어서, 상기 탄산염은 탄산 알칼리 금속염인 공액디엔계 중합체 제조방법을 제공한다.
(5) 본 발명은 상기 (1) 내지 (4) 중 어느 하나에 있어서, 상기 황산염 및 탄산염은 공액디엔계 단량체 100 중량부에 대하여, 0.3 중량부 이상 1.5 중량부 이하의 함량으로 투입되는 것인 공액디엔계 중합체 제조방법을 제공한다.
(6) 본 발명은 상기 (1) 내지 (5) 중 어느 하나에 있어서, 상기 (S10) 단계에서 제조된 공액디엔계 중합체는 평균 입경이 50 nm 이상 500 nm 이하인 것인 공액디엔계 중합체 제조방법을 제공한다.
(7) 본 발명은 상기 (1) 내지 (6) 중 어느 하나에 있어서, 상기 (S10) 단계에서 제조된 공액디엔계 중합체는 평균 입경이 300 nm 이상 500 nm 이하인 것인 공액디엔계 중합체 제조방법을 제공한다.
(8) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 따라 제조된 공액디엔계 중합체 라텍스의 존재 하에, 방향족 비닐계 단량체 및 비닐시안계 단량체를 투입하고 중합하여 그라프트 공중합체를 포함하는 그라프트 공중합체 라텍스를 제조하는 단계(S20)를 포함하는 그라프트 공중합체 제조방법을 제공한다.
(9) 본 발명은 상기 (8)에 있어서, 상기 (S20) 단계는 공액디엔계 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체 전체 함량을 기준으로, 공액디엔계 중합체 라텍스를 고형분 기준 50 중량% 이상 70 중량% 이하, 방향족 비닐계 단량체를 10 중량% 이상 40 중량% 이하, 및 비닐시안계 단량체를 1 중량% 이상 20 중량% 이하로 투입하여 실시되는 것인 그라프트 공중합체 제조방법을 제공한다.
(10) 본 발명은 상기 (1) 내지 (7) 중 어느 하나에 따라 제조된 공액디엔계 중합체를 제공한다.
(11) 본 발명은 상기 (8) 또는 (9)에 따라 제조된 그라프트 공중합체를 제공한다.
(12) 본 발명은 상기 (10)에 따른 공액디엔계 중합체, 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위를 포함하는 그라프트 공중합체를 제공한다.
(13) 본 발명은 상기 (11) 또는 (12)에 따른 그라프트 공중합체 및 스티렌계 공중합체를 포함하는 수지 조성물을 제공한다.
본 발명의 공액디엔계 중합체 제조방법에 따라 공액디엔계 중합체를 제조하는 경우, 응집을 통한 비대화 등의 추가 공정 또는 중합 시간의 증가 없이 공액디엔계 중합체의 입자 크기를 향상시킬 수 있다.
또한, 본 발명의 그라프트 공중합체 제조방법에 따라 그라프트 공중합체를 제조하는 경우, 입자 크기가 향상된 공액디엔계 중합체로부터 수지 조성물의 충격강도를 더욱 향상시킬 수 있다.
이하, 본 발명에 대한 이해를 돕기 위하여 본 발명을 더욱 상세하게 설명한다.
본 발명의 설명 및 청구범위에서 사용된 용어나 단어는, 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니 되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여, 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 발명에서 용어 '단량체 단위'는 단량체로부터 기인한 성분, 구조 또는 그 물질 자체를 나타내는 것일 수 있고, 구체적인 예로, 중합체의 중합 시, 투입되는 단량체가 중합 반응에 참여하여 중합체 내에서 이루는 반복단위를 의미하는 것일 수 있다.
본 발명에서 사용하는 용어 '조성물'은 해당 조성물의 재료로부터 형성된 반응 생성물 및 분해 생성물뿐만 아니라 해당 조성물을 포함하는 재료들의 혼합물을 포함한다.
본 발명은 공액디엔계 중합체 제조방법을 제공한다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 중합체 제조방법은 황산염 및 탄산염의 존재 하에, 공액디엔계 단량체를 중합하는 단계(S10)를 포함하고, 상기 황산염 및 탄산염은 1:0.08 이상 9.2 이하의 중량비로 투입되는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 중합은 공액디엔계 중합체를 포함하는 공액디엔계 중합체 라텍스를 제조하기 위한 단계로서, 상기 (S10) 단계의 중합은 유화 중합에 의해 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 단량체는 1,3-부타디엔, 2,3-디메틸-1,3-부타디엔, 피페릴렌, 3-부틸-1,3-옥타디엔, 이소프렌 및 2-페닐-1,3-부타디엔으로 이루어진 군으로부터 선택된 1종 이상일 수 있으며, 더욱 구체적인 예로 1,3-부타디엔일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계에서 상기 공액디엔계 단량체는 중합 개시 전에 전량 일괄 투입될 수 있고, 또는 중합 개시 전에 일부가 투입되고, 중합 실시 중에 잔부가 투입될 수 있다. 상기 (S10) 단계를 실시함에 있어서, 상기 공액디엔계 단량체를 중합 개시 전 및 중합 실시 중으로 나누어 분할 투입하는 경우, 공액디엔계 중합체의 평균 입경을 증가시키면서도, 제조되는 공액디엔계 중합체의 입경 균일도를 향상시키는 효과가 있다. 구체적인 예로, 상기 (S10) 단계에서 상기 공액디엔계 단량체는 중합 개시 전에 30 중량% 내지 70 중량% 또는 40 중량% 내지 60 중량%가 투입되고, 중합 실시 중에 30 중량% 내지 70 중량% 또는 40 중량% 내지 60 중량%가 투입될 수 있다. 더욱 구체적인 예로, 상기 상기 (S10) 단계에서 상기 공액디엔계 단량체는 중합 개시 전에 30 중량% 내지 70 중량% 또는 40 중량% 내지 60 중량%가 투입되고, 중합 전환율이 40 % 내지 60 %인 시점에 15 중량% 내지 35 중량% 또는 20 중량% 내지 30 중량%가 투입되며, 중합 전환율이 65 % 내지 80 %인 시점에 15 중량% 내지 35 중량% 또는 20 중량% 내지 30 중량%가 투입되는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 유화 중합는 유화제의 존재 하에 실시될 수 있고, 상기 유화제는 지방산계 유화제 또는 지방산의 다이머계 유화제일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 유화제의 함량은 공액디엔계 단량체 100 중량부에 대하여 0.1 중량부 내지 10.0 중량부, 0.8 중량부 내지 8.0 중량부, 또는 1.0 중량부 내지 6.0 중량부일 수 있고, 이 범위 내에서 내충격성의 확보에 적합한 평균 입경을 갖는 공액디엔계 중합체를 제조할 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계에서 상기 유화제는 중합 개시 전에 전량 일괄 투입될 수 있고, 또는 중합 개시 전에 일부가 투입되고, 중합 실시 중에 잔부가 투입될 수 있다. 상기 (S10) 단계를 실시함에 있어서, 상기 유화제를 중합 개시 전 및 중합 실시 중으로 나누어 분할 투입하는 경우, 공액디엔계 중합체의 평균 입경을 증가시키면서도, 제조되는 공액디엔계 중합체의 입경 균일도를 향상시키는 효과가 있다. 구체적인 예로, 상기 (S10) 단계에서 상기 유화제는 중합 개시 전에 일부가 투입되고, 중합 실시 중에 잔부가 투입될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계는 유화 중합 시 이용될 수 있는 개시제, 구체적인 예로 수용성 개시제, 퍼옥사이드계, 레독스(redox), 또는 아조계 개시제를 이용하여 라디칼 중합에 의해 실시될 수 있고, 상기 수용성 개시제는 과황산 칼륨 또는 과황산 암모늄일 수 있으며, 상기 레독스 개시제는 일례로 t-부틸 하이드로퍼옥사이드, 디이소프로필벤젠 하이드로퍼옥사이드 및 큐멘 하이드로퍼옥사이드로 이루어진 군으로 선택된 1종 이상일 수 있으며, 이 경우 안정된 중합 환경을 제공하는 효과가 있다. 또한, 상기 레독스 개시제의 이용 시, 레독스 촉매로 황산제1철, 덱스트로즈 및 피롤인산나트륨을 더 포함하여 실시할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 개시제의 함량은 공액디엔계 단량체 100 중량부에 대하여 0.01 중량부 내지 5.00 중량부, 0.05 중량부 내지 3.00 중량부, 또는 0.1 중량부 내지 1.0 중량부일 수 있고, 이 범위 내에서 내충격성의 확보에 적합한 평균 입경을 갖는 공액디엔계 중합체를 제조할 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계에서 상기 개시제는 중합 개시 전에 전량 일괄 투입될 수 있고, 또는 중합 개시 전에 일부가 투입되고, 중합 실시 중에 잔부가 투입될 수 있다. 상기 (S10) 단계를 실시함에 있어서, 상기 개시제를 중합 개시 전 및 중합 실시 중으로 나누어 분할 투입하는 경우, 공액디엔계 중합체의 평균 입경을 증가시키면서도, 제조되는 공액디엔계 중합체의 입경 균일도를 향상시키는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계는 분자량 조절제의 존재 하에 실시될 수 있고, 상기 분자량 조절제는 머캅탄계 분자량 조절제일 수 있으며, 구체적인 예로 t-도데실 머캅탄일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 분자량 조절제의 함량은 공액디엔계 단량체 100 중량부에 대하여 0.01 중량부 내지 5.00 중량부, 0.05 중량부 내지 3.00 중량부, 또는 0.1 중량부 내지 1.0 중량부일 수 있고, 이 범위 내에서 내충격성의 확보에 적합한 평균 입경을 갖는 공액디엔계 중합체를 제조할 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계에서 상기 분자량 조절제는 중합 개시 전에 전량 일괄 투입될 수 있고, 또는 중합 개시 전에 일부가 투입되고, 중합 실시 중에 잔부가 투입될 수 있다. 상기 (S10) 단계를 실시함에 있어서, 상기 분자량 조절제를 중합 개시 전 및 중합 실시 중으로 나누어 분할 투입하는 경우, 공액디엔계 중합체의 평균 입경을 증가시키면서도, 제조되는 공액디엔계 중합체의 입경 균일도를 향상시키는 효과가 있다. 구체적인 예로, 상기 (S10) 단계에서 상기 분자량 조절제는 중합 개시 전에 일부가 투입되고, 중합 실시 중에 잔부가 투입될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계의 유화 중합은 수계 용매에서 실시될 수 있고, 상기 수계 용매는 이온 교환수일 수 있으며, 이에 따라 상기 (S10) 단계에서 유화 중합된 공액디엔계 중합체는 공액디엔계 중합체 입자가 수계 용매 상에 콜로이드상으로 분산된 라텍스의 형태로 수득될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S10) 단계는 황산염 및 탄산염의 존재 하에 실시될 수 있는데, 이 때, 상기 황산염 및 탄산염은 전해질로서, 공액디엔계 중합체 라텍스의 안정성과 공액디엔계 중합체의 평균 입경을 조절하는 역할을 수행할 수 있다. 특히, 상기 황산염 및 탄산염을 동시에 포함하여 중합을 실시하는 경우 라텍스 안정성을 더욱 향상시키면서, 공액디엔계 중합체의 평균 입경을 목적하는 수준에 따라 쉽게 조절할 수 있게 된다.
본 발명의 일 실시예에 따르면, 상기 황산염 및 탄산염은 1:0.08 이상 9.2 이하의 중량비로 투입되는 것일 수 있다. 구체적인 예로, 상기 황산염 및 탄산염은 중량비(황산염:탄산염)를 기준으로 1:0.08 이상, 0.09 이상, 0.10 이상, 또는 0.11 이상의 중량비로 투입될 수 있고, 또한, 1:9.20 이하, 9.15 이하, 9.10 이하, 9.05 이하, 또는 9.00 이하의 중량비로 투입될 수 있으며, 이 범위 내에서 공액디엔계 중합체의 입자 크기를 적정 수준으로 조절하면서도, 충격강도를 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 황산염은 황산 알칼리 금속염일 수 있다. 구체적인 예로, 상기 황산 알칼리 금속염은 소듐 설페이트, 포타슘 설페이트, 소듐 히드로겐설페이트 및 포타슘 히드로겐설페이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로, 소듐 설페이트일 수 있다.
본 발명의 일 실시예에 따르면, 상기 탄산염은 탄산 알칼리 금속염일 수 있다. 구체적인 예로, 상기 탄산 알칼리 금속염은 소듐 카보네이트 및 포타슘 카보네이트로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로, 포타슘 카보네이트일 수 있다.
본 발명의 일 실시예에 따르면, 상기 황산염 및 탄산염은 각각 소듐 설페이트 및 포타슘 카보네이트일 수 있고, 이 경우 라텍스 안정성을 더욱 향상시키면서, 공액디엔계 중합체의 평균 입경을 목적하는 수준에 따라 쉽게 조절할 수 있게 된다.
본 발명의 일 실시예에 따르면, 상기 황산염 및 탄산염은 공액디엔계 단량체 100 중량부에 대하여, 0.3 중량부 이상 1.5 중량부 이하의 함량을 투입될 수 있다. 구체적인 예로, 상기 황산염 및 탄산염은 공액디엔계 단량체 100 중량부에 대하여, 0.1 중량부 이상, 0.2 중량부 이상, 0.3 중량부 이상, 0.4 중량부 이상, 또는 0.5 중량부 이상의 함량으로 투입될 수 있고, 또한, 1.5 중량부 이하, 1.4 중량부 이하, 1.3 중량부 이하, 1.2 중량부 이하, 1.1 중량부 이하 또는 1.0 중량부 이하의 함량으로 투입될 수 있으며, 이 범위 내에서 공액디엔계 중합체의 입자 크기를 더욱 향상시킬 수 있다. 여기서, 상기 황산염 및 탄산염의 함량은 황산염 및 탄산염 각각의 함량일 수 있고, 또한, 황산염 및 탄산염의 함량을 합한 함량일 수 있다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 중합체는 평균 입경이 50 nm 이상 500 nm 이하인 것일 수 있다. 구체적인 예로, 상기 공액디엔계 중합체는 평균 입경이 50 nm 이상, 100 nm 이상, 150 nm 이상, 200 nm 이상, 250 nm 이상, 또는 300 nm 이상일 수 있고, 또한, 500 nm 이하, 490 nm 이하, 480 nm 이하, 470 nm 이하, 460 nm 이하, 450 nm 이하, 440 nm 이하, 430 nm 이하, 420 nm 이하, 또는 410 nm 이하일 수 있다. 상기 공액디엔계 중합체는 대구경 공액디엔계 중합체로서, 상기 (S10) 단계에 의해 제조됨으로써, 대구경을 나타낼 수 있다.
본 발명은 그라프트 공중합체 제조방법을 제공한다.
본 발명의 일 실시예에 따르면, 상기 그라프트 공중합체 제조방법은 상기 공액디엔계 중합체 제조방법에 따라 제조된 공액디엔게 중합체 라텍스의 존재 하에, 방향족 비닐계 단량체 및 비닐시안계 단량체를 투입하고 중합하여 그라프트 공중합체를 포함하는 그라프트 공중합체 라텍스를 제조하는 단계(S20)를 포함하는 것일 수 있다. 구체적인 예로, 상기 (S20) 단계는 그라프트 공중합체를 제조하기 위하여, 상기 (S10) 단계에서 제조된 공액디엔계 중합체 라텍스에 포함된 공액디엔계 중합체에 방향족 비닐계 단량체 및 비닐시안계 단량체를 그라프트 중합하는 단계일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계의 그라프트 중합은 그라프트 유화 중합에 의해 실시될 수 있다. 또한, 상기 (S20) 단계의 그라프트 중합은, 상기 (S10) 단계에서 제조된 공액디엔계 중합체 라텍스의 라텍스 상에서 실시될 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계는 그라프트 유화 중합 시 이용될 수 있는 퍼옥사이드계, 레독스(redox), 또는 아조계 개시제를 이용하여 라디칼 중합에 의해 실시될 수 있고, 상기 레독스 개시제는 일례로 t-부틸 하이드로퍼옥사이드, 디이소프로필벤젠 하이드로퍼옥사이드 및 큐멘 하이드로퍼옥사이드로 이루어진 군으로 선택된 1종 이상일 수 있으며, 이 경우 안정된 중합 환경을 제공하는 효과가 있다. 또한, 상기 레독스 개시제의 이용 시, 레독스 촉매로 황산제1철, 덱스트로즈 및 피롤인산 나트륨을 더 포함하여 실시할 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계의 그라프트 유화 중합은 수계 용매에서 실시될 수 있고, 상기 수계 용매는 이온 교환수일 수 있으며, 이에 따라 상기 (S20) 단계에서 그라프트 중합된 그라프트 공중합체는 그라프트 공중합체 입자가 수계 용매 상에 콜로이드상으로 분산된 라텍스의 형태로 수득될 수 있다.
본 발명의 일 실시예에 따르면, 상기 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-시클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 스티렌일 수 있다.
본 발명의 일 실시예에 따르면, 상기 비닐시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 아크릴로니트릴일 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계에서 투입되는 공액디엔계 중합체 라텍스의 함량은, 공액디엔계 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체 전체 함량을 기준으로, 50 중량% 이상 70 중량% 이하일 수 있고, 구체적인 예로, 50 중량% 이상, 55 중량% 이상, 또는 60 중량% 이상일 수 있으며, 또한, 70 중량% 이하, 65 중량% 이하, 또는 60 중량% 이하일 수 있고, 이 범위 내에서 그라프트 공중합체에 의한 충격강도 및 유동성을 더욱 향상시킬 수 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계에서 투입되는 방향족 비닐계 단량체의 함량은, 공액디엔계 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체 전체 함량을 기준으로, 10 중량% 이상 40 중량% 이하일 수 있고, 구체적인 예로, 10 중량% 이상, 15 중량% 이상, 20 중량% 이상, 25 중량% 이상, 또는 30 중량% 이상일 수 있으며, 또한, 40 중량% 이하, 35 중량% 이하, 또는 30 중량% 이하일 수 있고, 이 범위 내에서 그라프트 공중합체의 기계적 물성을 확보하면서도, 수지 조성물 내에서 그라프트 공중합체의 분산성을 향상시키는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 (S20) 단계에서 투입되는 비닐시안계 단량체의 함량은, 공액디엔계 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체 전체 함량을 기준으로, 1 중량% 이상 20 중량% 이하일 수 있고, 구체적인 예로, 1 중량% 이상, 2 중량% 이상, 3 중량% 이상, 4 중량% 이상, 5 중량% 이상, 6 중량% 이상, 7 중량% 이상, 8 중량% 이상, 9 중량% 이상, 또는 10 중량% 이상일 수 있으며, 또한, 20 중량% 이하, 19 중량% 이하, 18 중량% 이하, 17 중량% 이하, 16 중량% 이하, 15 중량% 이하, 14 중량% 이하, 13 중량% 이하, 12 중량% 이하, 11 중량% 이하, 또는 10 중량% 이하일 수 있고, 이 범위 내에서 그라프트 공중합체의 기계적 물성을 확보하면서도, 수지 조성물 내에서 그라프트 공중합체의 분산성을 향상시키는 효과가 있다.
본 발명은 상기 공액디엔계 중합체 제조방법에 따라 제조된 공액디엔계 중합체 및 상기 그라프트 공중합체 제조방법에 따라 제조된 그라프트 공중합체를 제공한다.
본 발명의 일 실시예에 따르면, 상기 그라프트 공중합체는 공액디엔계 중합체, 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위를 포함하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 중합체는 앞서 그라프트 공중합체 제조방법에서 기재한 공액디엔계 중합체와 동일한 것일 수 있고, 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위는 앞서 그라프트 공중합체 제조방법에 기재한 방향족 비닐계 단량체 및 비닐시안계 단량체가 그라프트 중합 반응에 참여하여 형성된 반복 단위를 의미하는 것일 수 있다.
본 발명의 일 실시예에 따르면, 상기 공액디엔계 중합체, 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위의 각각의 함량도, 그라프트 공중합체 제조 시 투입된 각 성분의 함량과 동일한 것일 수 있다.
본 발명은 상기 그라프트 공중합체를 포함하는 수지 조성물을 제공한다.
본 발명의 일 실시예에 따르면, 상기 수지 조성물은 상기 그라프트 공중합체 및 스티렌계 공중합체를 포함하는 것일 수 있다. 상기 스티렌계 공중합체는 방향족 비닐계 단량체 단위를 포함하는 비그라프트 공중합체일 수 있고, 구체적인 예로 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위를 포함하는 공중합체일 수 있다. 여기서, 상기 스티렌계 공중합체는 수지 조성물 내에서 그라프트 공중합체와 함께 혼련되어, 매트릭스를 형성하는 매트릭스 수지일 수 있다.
본 발명의 일 실시예에 따르면, 상기 스티렌계 공중합체의 방향족 비닐계 단량체 단위를 형성하는 방향족 비닐계 단량체는 스티렌, α-메틸스티렌, 3-메틸스티렌, 4-메틸스티렌, 4-프로필스티렌, 1-비닐나프탈렌, 4-시클로헥실스티렌, 4-(p-메틸페닐)스티렌 및 1-비닐-5-헥실나프탈렌으로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 스티렌일 수 있다.
본 발명의 일 실시예에 따르면, 상기 스티렌계 공중합체의 비닐시안계 단량체 단위를 형성하는 비닐시안계 단량체는 아크릴로니트릴, 메타크릴로니트릴, 에타크릴로니트릴, 페닐아크릴로니트릴 및 α-클로로아크릴로니트릴로 이루어진 군으로부터 선택된 1종 이상일 수 있고, 구체적인 예로 아크릴로니트릴일 수 있다.
본 발명의 일 실시예에 따르면, 상기 수지 조성물은 상기 그라프트 공중합체 10 중량% 내지 40 중량%, 15 중량% 내지 35 중량%, 또는 20 중량% 내지 30 중량%; 및 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위를 포함하는 공중합체 60 중량% 내지 90 중량%, 65 중량% 내지 85 중량%, 또는 70 중량% 내지 80 중량%를 포함하는 것일 수 있으며, 이 범위 내에서 그라프트 공중합체를 포함하는 수지 조성물의 가공성의 저하를 방지하면서도 기계적 물성, 특히 내충격성을 극대화할 수 있는 효과가 있다.
본 발명의 일 실시예에 따르면, 상기 그라프트 공중합체 및 스티렌계 공중합체는 각각 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위를 포함하고, 각각의 공중합체를 형성하는 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위의 종류가 동일한 경우, 수지 조성물의 압출 공정에서 동일한 성분으로 혼합 및 분산되기 때문에, 실제 수지 조성물 및 이로부터 성형된 성형품에서는 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위로 형성된 매트릭스 내에 공액디엔계 중합체가 분산된 형태로 존재할 수 있다. 따라서, 수지 조성물 내의 그라프트 공중합체 및 스티렌계 공중합체의 각 함량은 수지 조성물 내 전체 방향족 비닐계 단량체 단위 및 비닐시안계 단량체 단위의 함량과, 공액디엔계 중합체의 함량으로부터 확인할 수 있다.
본 발명의 일 실시예에 따르면, 상기 수지 조성물은 ASTM D256에 의하여 1/4 inch 두께에서 측정한 충격강도가 24.0 kgf·cm/cm 이상, 24.5 kgf·cm/cm 이상, 또는 24.8 kgf·cm/cm 이상인 것일 수 있고, 또한, 30.0 kgf·cm/cm 이하인 것일 수 있으며, 이 범위 내에서 그라프트 공중합체를 포함하는 수지 조성물의 내충격성을 우수한 효과가 있다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다.
실시예
실시예 1
<공액디엔계 중합체 라텍스 제조>
질소로 치환된 중합 반응기에 이온교환수 70 중량부, 1,3-부타디엔 80 중량부, 올레인산 칼륨염 1.7 중량부, t-도데실 머캅탄 0.3 중량부, 전해질인 포타슘 카보네이트(K2CO3) 0.1 중량부 및 소듐 설페이트(Na2SO4) 0.9 중량부, 과황산 칼륨염 0.3 중량부를 투입한 후, 교반하여 충분히 혼합하였다. 이어서, 상기 중합반응기의 내부 온도를 75 ℃로 승온한 후, 중합전환율이 40 %인 시점에서 과황산 칼륨염 0.1 중량부를 투입한 후, 85 ℃로 승온하여 중합 반응시킨 다음, 중합전환율이 50 %인 시점에서 1,3-부타디엔 20 중량부를 투입한 후, 중합전환율이 90 %인 시점에서 반응을 종료하여 공액디엔계 중합체 라텍스(평균 입경: 4,013 Å, 고형분 함량: 55.3 중량%)를 수득하였다.
<그라프트 공중합체 라텍스 제조>
스티렌 30 중량부, 아크릴로니트릴 10 중량부, 이온교환수 100 중량부, t-부틸 하이드로퍼옥사이드 0.05 중량부, 로진산 칼륨염 0.5 중량부 및 t-도데실 머캅탄 0.5 중량부를 포함하는 단량체 혼합물을 제조하였다.
이와 별개로, 덱스트로즈 0.01 중량부, 피로인산 사나트륨 0.01 중량부 및 황산제1철 0.001 중량부를 포함하는 활성화제 혼합물을 제조하였다.
질소로 치환된 중합 반응기에 상기 제조된 공액디엔계 중합체 라텍스 60 중량부(고형분 기준)와, 이온교환수 10 중량부를 투입하고, 상기 중합 반응기의 내부 온도를 55 ℃로 승온하였다. 이어서, 상기 중합 반응기에 상기 단량체 혼합물과 활성화제 혼합물을 2 시간 동안 연속 투입하면서 중합 반응을 실시하였다. 연속 투입이 완료된 후, 상기 중합 반응기에, 덱스트로즈 0.005 중량부, 피로인산 사나트륨 0.005 중량부 및 황산제1철 0.0005 중량부 및 t-부틸 하이드로퍼옥사이드 0.1 중량부를 투입하고, 상기 중합 반응기의 내부 온도를 80 ℃로 1시간에 걸쳐 승온한 후, 중합을 종료하여 그라프트 공중합체를 포함하는 그라프트 공중합체 라텍스를 제조하였다.
<그라프트 공중합체 분체 제조>
상기 제조된 그라프트 공중합체 라텍스의 고형분 기준 100 중량부에, 황산 마그네슘(MgSO4) 2.0 중량부를 투입하고, 85 ℃에서 응집시켰다. 이 후, 85 ℃에서 95 ℃까지 승온하면서 10 분 동안 숙성시키고, 세척, 탈수 및 건조하여 그라프트 공중합체 분체를 제조하였다.
실시예 2
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 0.1 중량부 대신 0.5 중량부로 투입하고, 소듐 설페이트를 0.9 중량부 대신 0.5 중량부로 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
실시예 3
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 0.1 중량부 대신 0.9 중량부로 투입하고, 소듐 설페이트를 0.9 중량부 대신 0.1 중량부로 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 1
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 0.1 중량부 대신 1.0 중량부로 투입하고, 소듐 설페이트를 투입하지 않은 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 2
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 0.1 중량부 대신 0.95 중량부로 투입하고, 소듐 설페이트를 0.9 중량부 대신 0.05 중량부로 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 3
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 0.1 중량부 대신 0.05 중량부로 투입하고, 소듐 설페이트를 0.9 중량부 대신 0.95 중량부로 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스를 제조하였으나, 공액디엔계 중합체 라텍스 제조 시, 라텍스 안정성 저하로 인해 응고 현상이 발생하여, 그라프트 공중합체를 제조할 수 없었다.
비교예 4
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 투입하지 않고, 소듐 설페이트를 0.9 중량부 대신 1.0 중량부로 투입한 것을 제외하고는, 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스를 제조하였으나, 공액디엔계 중합체 라텍스 제조 시, 라텍스 안정성 저하로 인해 응고 현상이 발생하여, 그라프트 공중합체를 제조할 수 없었다.
비교예 5
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 0.1 중량부 대신 0.5 중량부로 투입하고, 소듐 설페이트 0.9 중량부 대신 포타슘 클로라이드(KCl)를 0.5 중량부로 투입한 것을 제외하고는, 상기 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 6
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 0.1 중량부 대신 0.5 중량부로 투입하고, 소듐 설페이트 0.9 중량부 대신 포타슘 바이카보네이트(KHCO3)를 0.5 중량부로 투입한 것을 제외하고는, 상기 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 7
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 0.1 중량부 대신 0.5 중량부로 투입하고, 소듐 설페이트 0.9 중량부 대신 포타슘 바이설파이트(KHSO3)를 0.5 중량부로 투입한 것을 제외하고는, 상기 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 8
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 포타슘 카보네이트를 0.1 중량부 대신 0.5 중량부로 투입하고, 소듐 설페이트 0.9 중량부 대신 트리포타슘 포스페이트(K3PO4)를 0.5 중량부로 투입한 것을 제외하고는, 상기 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 9
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 소듐 설페이트를 0.9 중량부 대신 0.5 중량부로 투입하고, 포타슘 카보네이트 0.1 중량부 대신 포타슘 클로라이드(KCl)를 0.5 중량부로 투입한 것을 제외하고는, 상기 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 10
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 소듐 설페이트를 0.9 중량부 대신 0.5 중량부로 투입하고, 포타슘 카보네이트 0.1 중량부 대신 포타슘 바이카보네이트(KHCO3)를 0.5 중량부로 투입한 것을 제외하고는, 상기 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 11
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 소듐 설페이트를 0.9 중량부 대신 0.5 중량부로 투입하고, 포타슘 카보네이트 0.1 중량부 대신 포타슘 바이설파이트(KHSO3)를 0.5 중량부로 투입한 것을 제외하고는, 상기 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
비교예 12
상기 실시예 1에서, 공액디엔계 중합체 라텍스 제조 시, 소듐 설페이트를 0.9 중량부 대신 0.5 중량부로 투입하고, 포타슘 카보네이트 0.1 중량부 대신 트리포타슘 포스페이트(K3PO4)를 0.5 중량부로 투입한 것을 제외하고는, 상기 상기 실시예 1과 동일한 방법으로 실시하여 공액디엔계 중합체 라텍스, 그라프트 공중합체 라텍스 및 그라프트 공중합체 분체를 제조하였다.
실험예
실험예 1
상기 실시예 1 내지 3 및 비교예 1 내지 12에서 제조된 공액디엔계 중합체 라텍스에 대해, 아래와 같은 방법으로 평균 입경을 측정하여 공액디엔계 중합체 라텍스 제조 시 투입된 전해질의 함량과 함께 하기 표 1에 나타내었다.
* 평균입경(Å): 공액디엔계 중합체 라텍스 1 g을 증류수 100 g에 희석시킨 후, PSS(Particle Sizing Systems)社의 Nicomp 370 HPL 장비를 이용하여 동적 광산란법으로 측정하였다.
구분 K2CO3 Na2SO4 KCl KHCO3 KHSO3 K3PO4 평균입경
(중량부) (중량부) (중량부) (중량부) (중량부) (중량부) (Å)
실시예 1 0.1 0.9 - - - - 4,013
실시예 2 0.5 0.5 - - - - 3,488
실시예 3 0.9 0.1 - - - - 3,196
비교예 1 1.0 - - - - - 2,997
비교예 2 0.95 0.05 - - - - 3,025
비교예 3 0.05 0.95 - - - - -
비교예 4 - 1.0 - - - - -
비교예 5 0.5 - 0.5 - - - 2,205
비교예 6 0.5 - - 0.5 - - 2,711
비교예 7 0.5 - - - 0.5 - 2,944
비교예 8 0.5 - - - - 0.5 2,221
비교예 9 - 0.5 0.5 - - - 2,405
비교예 10 - 0.5 - 0.5 - - 2,718
비교예 11 - 0.5 - - 0.5 - 2,881
비교예 12 - 0.5 - - - 0.5 2,455
상기 표 1에 나타낸 바와 같이, 본 발명에 따라 제조된 실시예 1 내지 3의 공액디엔계 중합체는 응집을 통한 비대화 등의 추가 공정 또는 중합 시간의 증가 없이 입자 크기가 향상된 것을 확인할 수 있었다.
반면, 중합 시, 탄산염만을 투입한 비교예 1이나, 황산염 및 탄산염을 동시에 투입하더라도, 탄산염의 비율이 과도하게 높은 비교예 2의 경우, 공액디엔계 중합체의 입자 크기 향상이 충분하지 못한 것을 확인할 수 있었다.
또한, 황산염 및 탄산염을 동시에 투입하더라도, 황산염의 비율이 과도하게 높은 비교예 3이나, 황산염만을 투입한 비교예 4의 경우, 라텍스 안정성 저하로 인해 응고 현상이 발생한 것을 확인할 수 있었다.
또한, 황산염 및 탄산염이 아니라, 탄산염과 염화물, 중탄산염, 중아황산염 및 삼인산염을 투입한 비교예 5 내지 8과, 황산염과 염화물, 중탄산염, 중아황산염 및 삼인산염을 투입한 비교예 9 내지 12의 경우에서도, 공액디엔계 중합체의 입자 크기 향상이 충분하지 못한 것을 확인할 수 있었다.
실험예 2
상기 실시예 1 내지 3 및 비교예 1 내지 12에서 제조된 그라프트 공중합체 분체를 이용하여, 아래와 같은 방법으로 수지 조성물을 제조하고, 제조된 수지 조성물 펠렛을 210 ℃에서 사출하여, 하기의 방법으로 충격강도를 측정하여 하기 표 2에 나타내었다.
<수지 조성물 제조>
상기 제조된 그라프트 공중합체 분체 23 중량부, 스티렌-아크릴로니트릴 공중합체(엘지화학社 제조, 제품명 92HR) 77 중량부, 활제 1.5 중량부 및 열 안정제 0.3 중량부를 이축 압출기에 투입하고, 210 ℃에서 혼련 및 압출하여 수지 조성물 펠렛을 제조하였다.
* 충격강도(kgf·cm/cm): ASTM D256 방법에 의하여, 1/4 inch 두께의 시편에 노치를 내어 상온(23 ℃)에서 충격강도 측정기(TINIUS OLSEN社)를 이용하여 노치드 아이조드 충격강도(notched izod impact strength)를 측정하였다.
구분 충격강도
(kgf·cm/cm)
실시예 1 25.2
실시예 2 25.8
실시예 3 24.8
비교예 1 15.3
비교예 2 15.1
비교예 3 -
비교예 4 -
비교예 5 11.4
비교예 6 16.5
비교예 7 17.1
비교예 8 13.0
비교예 9 13.3
비교예 10 15.4
비교예 11 16.1
비교예 12 16.0
상기 표 2에 나타낸 바와 같이, 본 발명에 따라 제조된 실시예 1 내지 3의 공액디엔계 중합체를 포함하여 제조된 그라프트 공중합체를 포함하는 수지 조성물은 충격강도가 모두 우수한 것을 확인할 수 있었다.
반면, 공액디엔계 중합체 라텍스 제조 시, 전해질로 탄산염만을 투입한 비교예 1과, 황산염을 함께 투입하더라도 그 함량이 충분하지 못한 비교예 2에서 제조된 공액디엔계 중합체를 포함하여 제조된 그라프트 공중합체를 포함하는 수지 조성물은 충격강도가 열악한 것을 확인할 수 있었다.
또한, 공액디엔계 중합체 라텍스 제조 시, 전해질로 탄산염 및 황산염을 함께 투입하더라도, 황산염을 과량으로 투입한 비교예 3과, 황산염만을 투입한 비교예 4의 경우, 공액디엔계 중합체 라텍스 제조 시, 라텍스 안정성 저하로 인해 응고 현상이 발생하였고, 이에 따라 그라프트 공중합체 및 수지 조성물의 제조가 불가하여 충격강도를 측정할 수 없었다.
또한, 공액디엔계 중합체 라텍스 제조 시, 전해질로 황산염 및 탄산염이 아니라, 탄산염과 염화물, 중탄산염, 중아황산염 및 삼인산염을 투입한 비교예 5 내지 8과, 황산염과 염화물, 중탄산염, 중아황산염 및 삼인산염을 투입한 비교예 9 내지 12에서 제조된 공액디엔계 중합체를 포함하여 제조된 그라프트 공중합체를 포함하는 수지 조성물은 모두 충격강도가 열악한 것을 확인할 수 있었다.
이와 같은 결과로부터, 본 발명의 공액디엔계 중합체 제조방법에 따라 공액디엔계 중합체를 제조하는 경우, 응집을 통한 비대화 등의 추가 공정 또는 중합 시간의 증가 없이 공액디엔계 중합체의 입자 크기를 향상시킬 수 있고, 나아가, 그라프트 공중합체 제조 시, 입자 크기가 향상된 공액디엔계 중합체로부터 수지 조성물의 충격강도를 더욱 향상시킬 수 있음을 확인할 수 있었다.

Claims (9)

  1. 황산염 및 탄산염의 존재 하에, 공액디엔계 단량체를 중합하는 단계(S10)를 포함하고,
    상기 황산염 및 탄산염은 1:0.08 이상 9.2 이하의 중량비로 투입되는 것인 공액디엔계 중합체 제조방법.
  2. 제1항에 있어서,
    상기 황산염 및 탄산염은 1:0.1 이상 9.0 이하의 중량비로 투입되는 것인 공액디엔계 중합체 제조방법.
  3. 제1항에 있어서,
    상기 황산염은 황산 알칼리 금속염인 공액디엔계 중합체 제조방법.
  4. 제1항에 있어서,
    상기 탄산염은 탄산 알칼리 금속염인 공액디엔계 중합체 제조방법.
  5. 제1항에 있어서,
    상기 황산염 및 탄산염은 공액디엔계 단량체 100 중량부에 대하여, 0.3 중량부 이상 1.5 중량부 이하의 함량으로 투입되는 것인 공액디엔계 중합체 제조방법.
  6. 제1항에 있어서,
    상기 (S10) 단계에서 제조된 공액디엔계 중합체는 평균 입경이 50 nm 이상 500 nm 이하인 것인 공액디엔계 중합체 제조방법.
  7. 제1항에 있어서,
    상기 (S10) 단계에서 제조된 공액디엔계 중합체는 평균 입경이 300 nm 이상 500 nm 이하인 것인 공액디엔계 중합체 제조방법.
  8. 제1항에 따라 제조된 공액디엔계 중합체 라텍스의 존재 하에, 방향족 비닐계 단량체 및 비닐시안계 단량체를 투입하고 중합하여 그라프트 공중합체를 포함하는 그라프트 공중합체 라텍스를 제조하는 단계(S20)를 포함하는 그라프트 공중합체 제조방법.
  9. 제8항에 있어서,
    상기 (S20) 단계는 공액디엔계 중합체, 방향족 비닐계 단량체 및 비닐시안계 단량체 전체 함량을 기준으로,
    공액디엔계 중합체 라텍스를 고형분 기준 50 중량% 이상 70 중량% 이하,
    방향족 비닐계 단량체를 10 중량% 이상 40 중량% 이하, 및
    비닐시안계 단량체를 1 중량% 이상 20 중량% 이하로 투입하여 실시되는 것인 그라프트 공중합체 제조방법.
PCT/KR2023/020814 2022-12-16 2023-12-15 공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법 WO2024128877A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2022-0176493 2022-12-16
KR20220176493 2022-12-16

Publications (1)

Publication Number Publication Date
WO2024128877A1 true WO2024128877A1 (ko) 2024-06-20

Family

ID=91486165

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2023/020814 WO2024128877A1 (ko) 2022-12-16 2023-12-15 공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법

Country Status (1)

Country Link
WO (1) WO2024128877A1 (ko)

Similar Documents

Publication Publication Date Title
WO2016093616A1 (ko) 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 열가소성 수지
WO2016052832A1 (ko) 내화학성 및 투명성이 우수한 열가소성 수지 조성물, 이의 제조방법 및 이를 포함하는 성형품
WO2017039157A1 (ko) 열가소성 수지 조성물 및 이의 제조방법
WO2016093649A1 (ko) 대구경의 디엔계 고무 라텍스 제조 방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체
WO2012087056A2 (en) Graft monomer composition for thermoplastic transparent resin, composition for theremoplastic transparent resin using the same, and theremoplastic transparent resin having good transparency and color with low rubber amounts
WO2019066375A2 (ko) 열가소성 수지 조성물 및 이로부터 제조된 열가소성 수지 성형품
WO2017099409A1 (ko) 열가소성 그라프트 공중합체 수지, 이를 제조하는 방법, 및 이를 포함하는 열가소성 수지 조성물
WO2020122499A1 (ko) 열가소성 공중합체의 제조방법, 이로부터 제조된 열가소성 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2018084436A1 (ko) 충격강도가 향상된 abs계 그라프트 공중합체의 제조방법 및 이를 포함하는 abs계 사출성형품의 제조방법
WO2022145727A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2017082649A1 (ko) 저광 특성, 내후성 및 기계적 물성이 우수한 열가소성 수지 조성물 및 이로부터 제조되는 압출 물품
WO2017095059A1 (ko) 열가소성 수지, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2016085222A1 (ko) 열가소성 수지 조성물 및 이를 적용한 성형품
WO2019059452A1 (ko) 열가소성 수지 조성물, 이의 제조방법 및 성형품
WO2017116042A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2016108461A1 (ko) 친환경적이며 도금 특성이 우수한 열가소성 수지 조성물
WO2024128877A1 (ko) 공액디엔계 중합체 제조방법 및 그라프트 공중합체 제조방법
WO2017105007A1 (ko) 고무변성 비닐계 그라프트 공중합체 및 이를 포함하는 열가소성 수지 조성물
WO2018124562A1 (ko) Abs계 그라프트 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2018043930A1 (ko) 방향족 비닐계 공중합체, 이의 제조방법 및 이를 포함하는 열가소성 수지 조성물
WO2017160011A1 (ko) 열가소성 수지 조성물 및 이로부터 제조된 성형품
WO2015047026A1 (ko) 고무질 중합체, 그라프트 공중합체와 이들의 제조방법, 내충격 내열수지 조성물
WO2021060833A1 (ko) 공액 디엔계 중합체의 제조방법
WO2023014154A1 (ko) 그라프트 공중합체 제조방법, 그라프트 공중합체 및 이를 포함하는 수지 조성물
WO2016105171A1 (ko) 디엔계 고무 라텍스의 제조방법 및 이를 포함하는 아크릴로니트릴-부타디엔-스티렌 그라프트 공중합체