WO2024124703A1 - 一种磷酸锰铁锂正极材料及其制备方法 - Google Patents

一种磷酸锰铁锂正极材料及其制备方法 Download PDF

Info

Publication number
WO2024124703A1
WO2024124703A1 PCT/CN2023/079173 CN2023079173W WO2024124703A1 WO 2024124703 A1 WO2024124703 A1 WO 2024124703A1 CN 2023079173 W CN2023079173 W CN 2023079173W WO 2024124703 A1 WO2024124703 A1 WO 2024124703A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
iron
manganese
source
positive electrode
Prior art date
Application number
PCT/CN2023/079173
Other languages
English (en)
French (fr)
Inventor
李爱霞
余海军
谢英豪
李长东
Original Assignee
广东邦普循环科技有限公司
湖南邦普循环科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN202211618903.7A external-priority patent/CN115849327B/zh
Application filed by 广东邦普循环科技有限公司, 湖南邦普循环科技有限公司 filed Critical 广东邦普循环科技有限公司
Publication of WO2024124703A1 publication Critical patent/WO2024124703A1/zh

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the technical field of lithium-ion batteries, and in particular to a lithium iron manganese phosphate positive electrode material and a preparation method thereof.
  • lithium iron phosphate As a widely used lithium battery cathode material, lithium iron phosphate has the advantages of low price and long cycle life. With its wide application, its own defects are gradually exposed, such as low operating voltage and low battery energy density, which cannot meet people's requirements for the endurance of new energy vehicles. Therefore, how to further improve its energy density is the research focus of lithium iron phosphate material modification.
  • Lithium manganese phosphate is a material with an ordered olivine structure. Its theoretical specific capacity is the same as that of lithium iron phosphate, but its discharge platform is higher than that of lithium iron phosphate, and it has the potential advantage of high energy density. And it has the characteristics of high stability and safety. At present, there are many means that can be used to synthesize lithium manganese iron phosphate positive electrode materials, such as sol-gel method, liquid phase method, high temperature solid phase method, etc. In the above method, divalent iron is often used as the iron source, but the divalent iron source is very unstable and easily oxidized. When preparing the precursor, it is easy to form a multivalent mixture, which affects the stoichiometric ratio of the iron source.
  • CN102738465B When preparing the precursor, it is necessary to pass a protective gas and add a certain amount of reducing agent.
  • CN102738465B directly uses carbon for reduction during the preparation process, avoiding the use of hydrogen, ammonia or other mixed gases. And adding a carbon source at the same time during sintering can also play a coating role, so that the preparation process and carbon coating are completed in one step.
  • carbon when carbon is directly used as a reducing agent, it is easy to cause excessive carbon coating, affecting the battery capacity.
  • the purpose of the present application is to overcome the deficiencies of the above-mentioned prior art and provide a lithium iron manganese phosphate positive electrode material and a preparation method thereof.
  • the lithium iron manganese phosphate positive electrode material has good conductivity, and the battery prepared with the positive electrode material has a higher gram capacity.
  • a method for preparing a lithium manganese iron phosphate positive electrode material comprising the following steps:
  • the reducing agent contains a reducing agent A that sublimates at 500 to 800° C. and has reducing properties within this temperature range, and may or may not contain a carbon source, and the iron in the iron source is trivalent iron;
  • the powder is heated to 400-500° C. in a protective atmosphere, kept at this temperature for 0.5-2 h, and then heated to 500-800° C. and sintered for 5-12 h to obtain the lithium manganese iron phosphate positive electrode material.
  • the present application uses a substance that sublimates at 500-800°C and has reducing properties within this temperature range as a reducing agent, thereby avoiding the residual impurities on the surface of the positive electrode material due to excessive use, which affects its conductivity and reduces the gram capacity of the battery.
  • Trivalent iron is relatively stable and will not affect the stoichiometric ratio of the product.
  • the reducing agent A is at least one of arsenic sulfide, molybdenum sulfide, and sulfur. Further, the reducing agent A is arsenic sulfide.
  • Arsenic sulfide can slowly decompose to produce reducing substances, ensuring the stability and uniformity of the valence states of iron and manganese during the reaction; arsenic sulfide is converted into a gaseous state after heating, which can make the material have a porous structure, which is beneficial for its contact with the electrolyte and improves the electrochemical performance; in addition, the addition of a small amount of arsenic can improve the conductivity of the positive electrode material; excess arsenic sulfide can be directly removed by controlling the temperature, and no impurities will remain.
  • This method is simple and efficient, and overcomes the problem of using carbon as a reducing agent in the prior art that easily leads to a decrease in gram capacity.
  • the amount of the carbon source is a
  • the amount of the reducing agent A is b
  • the use of carbon and arsenic sulfide as reducing agents can greatly improve the conductivity of the positive electrode material. Carbon and arsenic can form a multiple conductive network. The above-mentioned restrictions on the amount of the two and their ratio with iron can avoid the problem of incomplete reduction and can also increase the gram capacity of the positive electrode material.
  • the lithium source is at least one of lithium carbonate, lithium hydroxide, lithium phosphate, lithium chloride, lithium nitrate, lithium dihydrogen phosphate, and dilithium hydrogen phosphate
  • the manganese source is at least one of manganese phosphate, manganese oxalate, manganese carbonate, manganese chloride, manganese sulfate, and manganese nitrate
  • the phosphorus source is at least one of phosphoric acid, ammonium phosphate, ammonium dihydrogen phosphate, diammonium hydrogen phosphate, lithium dihydrogen phosphate, and dilithium hydrogen phosphate
  • the iron source is at least one of iron oxide, iron nitrate, iron chloride, iron iodide, iron bromide, iron sulfide, and iron hydroxide.
  • the wet grinding method is: adding water, ethanol or a mixture thereof to a mixture of a lithium source, a manganese source, a phosphorus source, an iron source and a reducing agent for wet grinding, and stopping grinding after the powder particle size is less than 5 ⁇ m; the drying condition is: drying under vacuum at 50 to 65° C. for 5 to 12 hours.
  • step (3) the temperature is increased to 400-500° C. at a rate of 5-10° C./min, and the temperature is increased to 500-800° C. at a rate of 1-5° C./min.
  • step (3) after sintering, the product is subjected to air flow pulverization to obtain the lithium manganese iron phosphate positive electrode material, and the particle size of the lithium manganese iron phosphate positive electrode material is D10 ⁇ 0.4 ⁇ m, D50: 0.5 to 0.8 ⁇ m, and D90 ⁇ 1 ⁇ m.
  • the present application also discloses a lithium manganese iron phosphate positive electrode material prepared by the above method.
  • the present application uses a substance that sublimates at 600-800°C and has reducing properties as a reducing agent, so that the valence states of iron and manganese can be stabilized during the preparation of lithium manganese iron phosphate positive electrode materials, and no other impurities will remain on the surface of the prepared positive electrode material; the battery prepared with the positive electrode material has a higher gram capacity.
  • FIG1 is a flow chart of the preparation of the lithium iron manganese phosphate positive electrode material described in the present application.
  • FIG1 An embodiment of the lithium iron manganese phosphate positive electrode material described in the present application, the preparation process of the positive electrode material is shown in FIG1 , and the preparation method is as follows:
  • step (3) The powder of step (3) is subjected to air flow pulverization to control the particle size D10 ⁇ 0.4 ⁇ m, D50: 0.5-0.8 ⁇ m, and D90 ⁇ 1 ⁇ m to obtain the lithium manganese iron phosphate positive electrode material.
  • the preparation method of the lithium iron manganese phosphate positive electrode material is different from that of Example 1 only in that arsenic sulfide is replaced by molybdenum sulfide.
  • the preparation method of the lithium iron manganese phosphate positive electrode material is different from that of Example 1 only in that arsenic sulfide is replaced by sulfur.
  • the preparation method of the lithium iron manganese phosphate positive electrode material is different from that of Example 1 in that, in step (2), arsenic sulfide is replaced by a mixture of carbon and arsenic sulfide, and the ratio of the amount of carbon, arsenic sulfide and iron is 0.1:0.3:1.
  • the preparation method of the lithium iron manganese phosphate positive electrode material is different from that of Example 1 in that, in step (2), arsenic sulfide is replaced by a mixture of carbon and arsenic sulfide, and the ratio of the amount of carbon, arsenic sulfide and iron is 1:5:16.
  • the preparation method of the lithium iron manganese phosphate positive electrode material is different from that of Example 1 in that, in step (2), arsenic sulfide is replaced by a mixture of carbon and arsenic sulfide, and the ratio of the amount of carbon, arsenic sulfide and iron is 3:3:12.
  • the preparation method of the lithium iron manganese phosphate positive electrode material is different from that of Example 1 in that, in step (2), arsenic sulfide is replaced by a mixture of carbon and arsenic sulfide, and the ratio of the amount of carbon, arsenic sulfide and iron is 0.4:0.2:1.
  • a lithium iron manganese phosphate positive electrode material, a preparation method of the lithium iron manganese phosphate positive electrode material and an embodiment 1 only differs in that citric acid is used instead of arsenic sulfide.
  • a lithium iron manganese phosphate positive electrode material The preparation method of the lithium iron manganese phosphate positive electrode material is different from that of Example 1 only in that carbon is used instead of arsenic sulfide.
  • the lithium manganese iron phosphate positive electrode material was made into a button battery and the charge and discharge cycle performance test was carried out.
  • the charge and discharge voltage range was controlled to be 2.5-4.5V, the charge and discharge current was 0.1C, and the first discharge gram capacity was recorded.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)

Abstract

本申请公开了一种磷酸锰铁锂正极材料及其制备方法,涉及锂离子电池技术领域。本申请所述磷酸锰铁锂正极材料的制备方法包括如下步骤:(1)根据LiMnxFe1-xPO4中锂、锰、铁、磷的化学计量比称取锂源、锰源、磷源和铁源,其中,0.1≤x≤0.8;(2)将所述锂源、锰源、磷源、铁源与还原剂混合,进行湿法研磨,随后干燥,得到粉料;所述还原剂含有在500~800℃下发生升华、且在此温度范围内具有还原性的还原剂A,还含有或不含碳源;(3)将所述粉料在保护气氛下升温至400~500℃,保温0.5~2h,随后升温至500~800℃,烧结5~12h,得到所述磷酸锰铁锂正极材料。本申请所述磷酸锰铁锂正极材料具有较高的克容量。

Description

一种磷酸锰铁锂正极材料及其制备方法 技术领域
本申请涉及锂离子电池技术领域,尤其涉及一种磷酸锰铁锂正极材料及其制备方法。
背景技术
磷酸铁锂作为一种广泛使用的锂电正极材料具有价格低廉、循环寿命长等优点。随着其广泛应用,其自身的缺陷也逐渐暴露,比如工作电压偏低、电池能量密度偏低等,满足不了人们对新能源汽车的续航要求。因此如何进一步提高其能量密度是磷酸铁锂材料改性的研究重点。
磷酸锰锂是一种具有有序橄榄石结构的材料,其理论比容量与磷酸铁锂相同,但放电平台高于磷酸铁锂,具有潜在的高能量密度的优势。并且具有高稳定性和安全性的特点。目前已有许多手段可以用于合成磷酸锰铁锂正极材料,比如溶胶凝胶法、液相法、高温固相法等。上述方法中多采用二价铁作为铁源,但是二价的铁源很不稳定,极易被氧化,在制备前驱体时易形成多价混合,影响铁源的化学计量比,在制备前驱体时就需要通入保护性气体并加入一定量的还原剂。CN102738465B在制备过程中直接用碳进行还原,避免了氢气、氨气或是其他混合性气体的使用。并且在烧结时同时加入碳源、还可以起到包覆的作用,使得制备过程和碳包覆一步完成。但是直接利用碳作为还原剂时,容易造成碳包覆过量,影响电池克容量。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本申请的目的在于克服上述现有技术的不足之处而提供一种磷酸锰铁锂正极材料及其制备方法,所述磷酸锰铁锂正极材料具有良好的导电性,并且以所述正极材料制备的电池具有较高的克容量。
为实现上述目的,本申请所采取的技术方案为:
一种磷酸锰铁锂正极材料的制备方法,所述方法包括如下步骤:
(1)根据LiMnxFe1-xPO4中锂、锰、铁、磷的化学计量比称取锂源、锰源、磷源和铁源,其中,0.1≤x≤0.8;
(2)将所述锂源、锰源、磷源、铁源与还原剂混合,进行湿法研磨,随后干燥,得到粉料;所述还原剂含有在500~800℃下发生升华、且在此温度范围内具有还原性的还原剂A,还含有或不含碳源,所述铁源中的铁为三价铁;
(3)将所述粉料在保护气氛下升温至400~500℃,保温0.5~2h,随后升温至500~800℃,烧结5~12h,得到所述磷酸锰铁锂正极材料。
本申请通过选用在500~800℃下发生升华,并且在此温度范围内具有还原性的物质作为还原剂,可以避免因用量过多导致在正极材料表面残留杂质,影响其导电性,降低电池的克容量。三价铁较稳定,不会影响产物的化学计量比。
可选地,所述还原剂A为硫化砷、硫化钼、硫中的至少一种。进一步地,所述还原剂A为硫化砷。硫化砷可以缓慢分解,产生还原性物质,保证反应过程中铁、锰价态的稳定和均一;硫化砷升温后转化为气态,可以使材料产生多孔结构,有利于其与电解液的接触,提高电化学性能;另外,少量砷的掺入能够提高正极材料的导电性;多余的硫化砷可通过控制温度直接去除,不会有杂质残留,该方法简单高效,克服了现有技术中使用碳作为还原剂容易导致克容量降低的问题。
可选地,所述碳源的物质的量为a,所述还原剂A的物质的量为b,所述铁 源的物质的量为c,(a+3b):c=1:(1~1.5);所述a:b=(0~0.3):(0.3~0.5)。进一步优选的,a:b=(0.1~0.3):(0.3~0.5),选用碳和硫化砷两种成分作为还原剂可以大幅改善所述正极材料的导电性,碳和砷可以形成多重导电网络,对两者的用量及其与铁的配比作上述限定可以避免还原不完全的问题,同时还可以提高正极材料的克容量。
可选地,所述锂源为碳酸锂、氢氧化锂、磷酸锂、氯化锂、硝酸锂、磷酸二氢锂、磷酸氢二锂中的至少一种;所述锰源为磷酸锰、草酸锰、碳酸锰、氯化锰、硫酸锰、硝酸锰中的至少一种;所述磷源为磷酸、磷酸铵、磷酸二氢铵、磷酸氢二铵、磷酸二氢锂、磷酸氢二锂中的至少一种;所述铁源为氧化铁、硝酸铁、氯化铁、碘化铁、溴化铁、硫化铁、氢氧化铁中的至少一种。
可选地,步骤(2)中,所述湿法研磨方法为:在锂源、锰源、磷源、铁源、还原剂的混合物料中加水、乙醇或其混合物进行湿法研磨,待粉末粒径<5μm后停止研磨;所述干燥的条件为:在50~65℃的真空下干燥5~12h。
可选地,步骤(3)中,以5~10℃/min的速率升温至400~500℃,以1~5℃/min的速率升温至500~800℃。
可选地,步骤(3)中,烧结完成后对产物进行气流粉碎,得到所述磷酸锰铁锂正极材料,所述磷酸锰铁锂正极材料的粒径D10≥0.4μm、D50:0.5~0.8μm、D90≤1μm。
此外,本申请还公开了一种由上述方法制备而成的磷酸锰铁锂正极材料。
相比于现有技术,本申请的有益效果为:
本申请通过选用在600~800℃下升华并且具有还原性的物质作为还原剂,可以在磷酸锰铁锂正极材料的制备过程中稳定铁、锰的价态,并且制备的正极材料表面不会残留其他杂质;以所述正极材料制备的电池具有较高的克容量。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本文技术方案的进一步理解,并且构成说明书的一部分,与本申请的实施例一起用于解释本文的技术方案,并不构成对本文技术方案的限制。
图1为本申请所述磷酸锰铁锂正极材料的制备流程图。
具体实施方式
为更好地说明本申请的目的、技术方案和优点,下面将结合附图和具体实施例对本申请作进一步说明。
实施例1
本申请所述磷酸锰铁锂正极材料的一种实施例,所述正极材料的制备流程如图1所示,具备制备方法如下:
(1)按LiMn0.2Fe0.8PO4中锂、锰、铁、磷元素的化学计量比称取0.05mol电池级碳酸锂、0.02mol分析纯碳酸锰、0.04mol分析纯氧化铁、0.1mol电池级磷酸氢二铵;
(2)将上述成分与0.04mol硫化砷在常温下加入去离子水和乙醇体积比为1:1的混合物中进行湿法研磨,固液体积比为1:3,待粉末粒径<5μm后停止研磨,在60℃下真空干燥12h,得到前驱体粉末;
(3)将前驱体粉末在保护性气氛下升温至400℃,升温速率为5℃/min,保温1h;随后升温至800℃,升温速率为5℃/min,烧结10h,得到粉末;
(4)对步骤(3)所述粉末进行气流粉碎,控制粒径D10≥0.4μm、D50:0.5~0.8μm、D90≤1μm,得到所述磷酸锰铁锂正极材料。
实施例2
本申请所述磷酸锰铁锂正极材料的一种实施例,所述磷酸锰铁锂正极材料的制备方法与实施例1的区别仅在于,将硫化砷替换为硫化钼。
实施例3
本申请所述磷酸锰铁锂正极材料的一种实施例,所述磷酸锰铁锂正极材料的制备方法与实施例1的区别仅在于,将硫化砷替换为硫。
实施例4
本申请所述磷酸锰铁锂正极材料的一种实施例,所述磷酸锰铁锂正极材料的制备方法与实施例1的区别在于,步骤(2)中,以碳和硫化砷的混合物替代硫化砷,碳、硫化砷、铁的物质的量之比为0.1:0.3:1。
实施例5
本申请所述磷酸锰铁锂正极材料的一种实施例,所述磷酸锰铁锂正极材料的制备方法与实施例1的区别在于,步骤(2)中,以碳和硫化砷的混合物替代硫化砷,碳、硫化砷、铁的物质的量之比为1:5:16。
实施例6
本申请所述磷酸锰铁锂正极材料的一种实施例,所述磷酸锰铁锂正极材料的制备方法与实施例1的区别在于,步骤(2)中,以碳和硫化砷的混合物替代硫化砷,碳、硫化砷、铁的物质的量之比为3:3:12。
实施例7
本申请所述磷酸锰铁锂正极材料的一种实施例,所述磷酸锰铁锂正极材料的制备方法与实施例1的区别在于,步骤(2)中,以碳和硫化砷的混合物替代硫化砷,碳、硫化砷、铁的物质的量之比为0.4:0.2:1。
对比例1
一种磷酸锰铁锂正极材料,所述磷酸锰铁锂正极材料的制备方法与实施例 1的区别仅在于,以柠檬酸替代硫化砷。
对比例2
一种磷酸锰铁锂正极材料,所述磷酸锰铁锂正极材料的制备方法与实施例1的区别仅在于,以碳替代硫化砷。
对实施例和对比例进行性能测试,测试方法如下,测试结果如表1所示。
将磷酸锰铁锂正极材料制成扣式电池并进行充放电循环性能测试,控制充放电电压范围为2.5~4.5V,充放电电流为0.1C,记录首次放电克容量。
表1
由表1可知,实施例1~7的克容量均可达到150mAh/g以上,该结果表明本申请所述磷酸锰铁锂正极材料有助于提高电池能量密度,适合应用于制备锂离子电池。对比例1~2中以碳源作为还原剂,克容量明显低于本申请。
对比实施例1~3的测试结果可以发现,选用硫化砷作为还原剂可以改善电 池克容量。对比实施例1与实施例4~6的测试结果可以发现,选用碳和硫化砷两种成分作为还原剂可以协同提升电池的克容量。
最后所应当说明的是,以上实施例仅用以说明本申请的技术方案而非对本申请保护范围的限制,尽管参照较佳实施例对本申请作了详细说明,本领域的普通技术人员应当理解,可以对本申请的技术方案进行修改或者等同替换,但并不脱离本申请技术方案的实质和范围。

Claims (10)

  1. 一种磷酸锰铁锂正极材料的制备方法,其中,包括如下步骤:
    (1)根据LiMnxFe1-xPO4中锂、锰、铁、磷的化学计量比称取锂源、锰源、磷源和铁源,其中,0.1≤x≤0.8;
    (2)将所述锂源、锰源、磷源、铁源与还原剂混合,进行湿法研磨,随后干燥,得到粉料;所述还原剂含有在500~800℃下发生升华、且在此温度范围内具有还原性的还原剂A;
    (3)将所述粉料在保护气氛下升温至400~500℃,保温0.5~2h,随后升温至500~800℃,烧结5~12h,得到所述磷酸锰铁锂正极材料;
    其中,步骤(2)含有或不含碳源。
  2. 如权利要求1所述磷酸锰铁锂正极材料的制备方法,其中,所述还原剂A为硫化砷、硫化钼、硫中的至少一种。
  3. 如权利要求2所述磷酸锰铁锂正极材料的制备方法,其中,所述还原剂A为硫化砷。
  4. 如权利要求3所述磷酸锰铁锂正极材料的制备方法,其中,所述碳源的物质的量为a,所述还原剂A的物质的量为b,所述铁源的物质的量为c,(a+3b):c=1:(1~1.5);所述a:b=(0~0.3):(0.3~0.5)。
  5. 如权利要求4所述磷酸锰铁锂正极材料的制备方法,其中,所述a:b=(0.1~0.3):(0.3~0.5)。
  6. 如权利要求1所述磷酸锰铁锂正极材料的制备方法,其中,所述锂源为碳酸锂、氢氧化锂、磷酸锂、氯化锂、硝酸锂、磷酸二氢锂、磷酸氢二锂中的至少一种;所述锰源为磷酸锰、草酸锰、碳酸锰、氯化锰、硫酸锰、硝酸锰中的至少一种;所述磷源为磷酸、磷酸铵、磷酸二氢铵、磷酸氢二铵、磷酸二氢锂、磷酸氢二锂中的至少一种;所述铁源为氧化铁、硝酸铁、氯化铁、碘化铁、 溴化铁、硫化铁、氢氧化铁中的至少一种。
  7. 如权利要求1所述磷酸锰铁锂正极材料的制备方法,其中,步骤(2)中,所述湿法研磨方法为:在锂源、锰源、磷源、铁源、还原剂的混合物料中加水、乙醇或其混合物进行湿法研磨,待粉末粒径<5μm后停止研磨;所述干燥的条件为:在50~65℃的真空下干燥5~12h。
  8. 如权利要求1所述磷酸锰铁锂正极材料的制备方法,其中,步骤(3)中,以5~10℃/min的速率升温至400~500℃,以1~5℃/min的速率升温至500~800℃。
  9. 如权利要求1所述磷酸锰铁锂正极材料的制备方法,其中,步骤(3)中,烧结完成后对产物进行气流粉碎,得到所述磷酸锰铁锂正极材料,所述磷酸锰铁锂正极材料的粒径D10≥0.4μm、D50:0.5~0.8μm、D90≤1μm。
  10. 一种磷酸锰铁锂正极材料,其中,由如权利要求1~9任一项所述方法制备而成。
PCT/CN2023/079173 2022-12-13 2023-03-02 一种磷酸锰铁锂正极材料及其制备方法 WO2024124703A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202211618903.7A CN115849327B (zh) 2022-12-13 一种磷酸锰铁锂正极材料及其制备方法
CN202211618903.7 2022-12-13

Publications (1)

Publication Number Publication Date
WO2024124703A1 true WO2024124703A1 (zh) 2024-06-20

Family

ID=85673442

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2023/079173 WO2024124703A1 (zh) 2022-12-13 2023-03-02 一种磷酸锰铁锂正极材料及其制备方法

Country Status (2)

Country Link
FR (1) FR3143209A1 (zh)
WO (1) WO2024124703A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764203A (zh) * 2009-10-14 2010-06-30 孙琦 一种锂离子电池正极材料高密度磷酸锰铁锂的制备方法
JP2011100592A (ja) * 2009-11-05 2011-05-19 Tayca Corp 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
CN102364726A (zh) * 2011-10-21 2012-02-29 济宁市无界科技有限公司 碳还原制备锂离子电池用磷酸锰铁锂复合正极材料的方法
US9343745B1 (en) * 2013-02-07 2016-05-17 A123 Systems Llc Surface passivation of active material particles for use in electrochemical cells
CN115849327A (zh) * 2022-12-13 2023-03-28 广东邦普循环科技有限公司 一种磷酸锰铁锂正极材料及其制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101764203A (zh) * 2009-10-14 2010-06-30 孙琦 一种锂离子电池正极材料高密度磷酸锰铁锂的制备方法
JP2011100592A (ja) * 2009-11-05 2011-05-19 Tayca Corp 炭素−オリビン型リン酸マンガン鉄リチウム複合体の製造方法、およびリチウムイオン電池用正極材料
CN102364726A (zh) * 2011-10-21 2012-02-29 济宁市无界科技有限公司 碳还原制备锂离子电池用磷酸锰铁锂复合正极材料的方法
US9343745B1 (en) * 2013-02-07 2016-05-17 A123 Systems Llc Surface passivation of active material particles for use in electrochemical cells
CN115849327A (zh) * 2022-12-13 2023-03-28 广东邦普循环科技有限公司 一种磷酸锰铁锂正极材料及其制备方法

Also Published As

Publication number Publication date
FR3143209A1 (fr) 2024-06-14
CN115849327A (zh) 2023-03-28

Similar Documents

Publication Publication Date Title
CN110224129B (zh) 一种MOFs衍生物包覆NCM三元正极材料及其制备方法
WO2021190559A1 (zh) 正极材料及其制备方法和二次锂电池
CN107591519A (zh) 改性锂镍钴锰正极材料及其制备方法
JP2018098161A (ja) 正極活物質の製造方法
CN114497527B (zh) 一种富锂锰基正极材料及其制备方法和锂离子电池
WO2022198843A1 (zh) 一种锂离子电池三元正极材料及其制备方法
WO2024055517A1 (zh) 一种磷铁类锂离子电池正极材料及其制备方法和应用
CN114094068A (zh) 钴包覆的正极材料及其制备方法、正极片和锂离子电池
CN111933904A (zh) 双金属硫化物及其制备方法、复合物及其制备方法、锂硫正极材料及锂硫电池
CN116986572A (zh) 一种改性磷酸锰铁锂正极材料及其制备方法与锂离子电池
CN114094060A (zh) 一种核壳结构的高电压正极材料的制备方法
CN117525391A (zh) 一种钠离子电池聚阴离子正极材料及其制备方法
CN112786859A (zh) 一种钽掺杂/多孔金属纳米粒子包覆改性的磷酸铁锂材料的制备方法
CN116845191A (zh) 一种自补锂型三元材料、制备方法及应用
CN108023079B (zh) 一种混合过渡金属硼酸盐负极材料及其制备方法
WO2024124703A1 (zh) 一种磷酸锰铁锂正极材料及其制备方法
CN116093300A (zh) 一种简单预锂金属掺杂硅氧碳负极材料及其制备方法
CN115241435A (zh) 一种层状Na3M2XO6氧化物包覆改性的锰酸钠正极材料及其制备方法
CN114566647A (zh) 一种磷酸钙包覆高镍三元正极材料及其制备方法与应用
CN113488645A (zh) 一种磷酸铁/碳复合材料作为锂离子电池负极材料的应用
CN113526552A (zh) 一种锂离子电池复合正极活性材料及其制备方法
CN115849327B (zh) 一种磷酸锰铁锂正极材料及其制备方法
CN114436234B (zh) 一种使用FePO4/C复合材料制备的磷酸铁锂材料及其制备方法
CN115036509B (zh) 一种固态电池用正极材料及其制备方法与应用
TWI487175B (zh) 鋰鎳錳氧化物複合材料及其製備方法以及鋰離子電池