WO2024122434A1 - 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板 - Google Patents

樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板 Download PDF

Info

Publication number
WO2024122434A1
WO2024122434A1 PCT/JP2023/042807 JP2023042807W WO2024122434A1 WO 2024122434 A1 WO2024122434 A1 WO 2024122434A1 JP 2023042807 W JP2023042807 W JP 2023042807W WO 2024122434 A1 WO2024122434 A1 WO 2024122434A1
Authority
WO
WIPO (PCT)
Prior art keywords
silica particles
hollow silica
resin
resin composition
mass
Prior art date
Application number
PCT/JP2023/042807
Other languages
English (en)
French (fr)
Inventor
博道 加茂
Original Assignee
Agc株式会社
Agcエスアイテック株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agc株式会社, Agcエスアイテック株式会社 filed Critical Agc株式会社
Publication of WO2024122434A1 publication Critical patent/WO2024122434A1/ja

Links

Definitions

  • This disclosure relates to a resin composition, a prepreg, a resin-coated metal substrate, and a wiring board.
  • the electrical insulation layer of a printed wiring board is required to have properties such as a low dielectric constant, a low dielectric loss tangent, and a low linear expansion coefficient.
  • a resin composition containing a thermosetting resin and silica particles has been used to manufacture an electrical insulation layer of a metal clad laminate that can be processed into a printed wiring board (see Patent Documents 1 and 2).
  • a metal clad laminate is used in which a semi-cured product of the above resin composition is laminated as an electrical insulation layer on the surface of a metal substrate layer.
  • a metal clad laminate is used in which a glass cloth impregnated with a resin composition is laminated as an electrical insulation layer on the surface of a metal substrate layer.
  • a filler (filling material) is used as a material for a prepreg using a thermosetting resin, and the filler itself usually tends to increase the relative dielectric constant of the obtained prepreg.
  • a metal clad laminate using a hollow filler can reduce the relative dielectric constant compared to when a solid filler is used, and is therefore being considered as described in Patent Documents 3 to 5.
  • glass balloons and the like have been used as hollow fillers.
  • cracks may occur during the production of prepregs or cured products using the resin composition, and the relative dielectric constant may not be reduced sufficiently.
  • Prepregs, cured products, and the like made using conventional resin compositions containing hollow particles and resins are required to have excellent bending strength.
  • the problem that one embodiment of the present disclosure aims to solve is to provide a resin composition that can be used to produce a prepreg and a cured product with a low dielectric constant.
  • the problem that another embodiment of the present disclosure aims to solve is to provide a prepreg, a resin-coated metal substrate, and a wiring board that use the resin composition.
  • the problem that one embodiment of the present disclosure aims to solve is to provide a resin composition that can be used to produce a prepreg and cured product with excellent bending strength and that has low adhesion to devices.
  • the problem that another embodiment of the present disclosure aims to solve is to provide a prepreg, a resin-coated metal substrate, and a wiring board that use the resin composition.
  • Means for solving the above problems include the following aspects.
  • a resin composition comprising a resin and hollow silica particles, wherein the hollow silica particles have a 20% collapse pressure of 120 MPa or more as measured by mercury intrusion porosimetry.
  • a resin composition comprising a resin and hollow silica particles, wherein the hollow silica particles have a charge amount of 0.005 to 0.080 ⁇ C/g.
  • ⁇ 3> The resin composition according to ⁇ 1> or ⁇ 2> above, wherein the hollow silica particles contain at least one selected from an alkali metal and an alkaline earth metal, and the sum of the contents of the alkali metal and the alkaline earth metal relative to the total mass of the shell layer of the hollow silica particles is 30 ppm by mass to 1% by mass.
  • ⁇ 4> The resin composition according to any one of ⁇ 1> to ⁇ 3> above, wherein the density of the hollow silica particles is 0.35 to 2.00 g/ cm3 .
  • ⁇ 8> The resin composition according to any one of ⁇ 1> to ⁇ 7>, wherein the resin comprises at least one selected from the group consisting of an epoxy resin, a polyimide resin, a polyphenylene ether resin, a resin containing a divinylbenzene skeleton, and a resin containing a pyrimidine skeleton.
  • a prepreg comprising the resin composition or a semi-cured product thereof according to any one of ⁇ 1> to ⁇ 9> above, and a fibrous base material.
  • ⁇ 11> The prepreg according to ⁇ 8> above, wherein the fibrous base material contains a glass component.
  • a resin-coated metal substrate comprising the resin composition or a semi-cured product thereof according to any one of ⁇ 1> to ⁇ 9> above, or the prepreg according to ⁇ 10> or ⁇ 11> above, and a metal substrate layer.
  • a wiring board comprising a cured product of the resin composition according to any one of ⁇ 1> to ⁇ 9> above and a metal wiring.
  • a resin composition that can be used to produce a prepreg and a cured product with a low dielectric constant can be provided.
  • a prepreg, a resin-coated metal substrate, and a wiring board can be provided using the resin composition.
  • each component may contain multiple types of the corresponding substance.
  • the content or amount of each component means the total content or amount of the multiple substances present in the composition, unless otherwise specified.
  • multiple types of particles corresponding to each component may be included.
  • the particle size of each component means the value for a mixture of the multiple types of particles present in the composition, unless otherwise specified.
  • laminate refers to stacking layers, where two or more layers may be bonded together or two or more layers may be removable.
  • the term “hollow silica particles” refers to a group of multiple hollow silica particles, unless otherwise specified.
  • the "BET specific surface area” is determined by the BET method based on the nitrogen adsorption method using a specific surface area/pore distribution measuring device (for example, "Tristar II” manufactured by Micromeritics, etc.).
  • “sphericity” refers to the average value obtained by measuring the maximum diameter (DL) and the minor diameter (DS) perpendicular to the maximum diameter (DL) of each of 100 random particles in a photographic projection obtained by photographing with a scanning electron microscope (SEM) and calculating the ratio (DS/DL) of the minimum diameter (DS) to the maximum diameter (DL).
  • the "dielectric tangent” and the “relative dielectric constant” are measured by a perturbation resonator method using a dedicated device (for example, "Vector Network Analyzer E5063A" manufactured by Keycom Corporation).
  • the term "semi-cured product” refers to a cured product in a state where an exothermic peak associated with the curing of a thermosetting resin appears when the cured product of a resin composition is measured by differential scanning calorimetry.
  • the term “semi-cured product” refers to a cured product in a state where uncured thermosetting resin remains.
  • the term “cured product” refers to a cured product in a state where no exothermic peak associated with the curing of a thermosetting resin appears when the cured product of a resin composition is measured by differential scanning calorimetry.
  • the term "cured product” refers to a cured product in a state where no uncured thermosetting resin remains.
  • the "maximum height roughness Rz” is measured in accordance with JIS B 0601 (2013) (corresponding ISO: ISO 4287 1997).
  • the "weight average molecular weight” is determined using gel permeation chromatography (GPC) in terms of polystyrene.
  • GPC gel permeation chromatography
  • the "20% burst pressure” refers to the burst pressure measured by mercury porosimetry, and is the minimum pressure that indicates a 20% decrease in capacity from the maximum integrated capacity when pressure is applied from 0 to 400 MPa by mercury porosimetry.
  • the 20% collapse pressure of the hollow silica particles as measured by mercury intrusion porosimeter (for example, AutoPore IV 9500 manufactured by MICROMERITICS INSTRUMENT) is measured in accordance with ASTM D 3102-78.
  • composition 1 contains a resin and hollow silica particles, and the 20% collapse pressure of the hollow silica particles measured by mercury intrusion porosimetry is 120 MPa or more.
  • a prepreg and a cured product having a low dielectric constant can be produced by using Composition 1.
  • the reason for this is not entirely clear, but is presumed to be as follows.
  • the hollow silica particles contained in the present composition 1 have a 20% burst pressure of 120 MPa or more as measured by mercury intrusion porosimetry. This is believed to suppress the occurrence of cracks in the hollow silica particles during the production of prepregs and the like, thereby achieving the above-mentioned effects.
  • composition 2 contains a resin and hollow silica particles, and the charge amount of the hollow silica particles is 0.005 to 0.080 ⁇ C/g.
  • Composition 2 can be used to prepare prepregs and cured products with excellent bending strength and exhibits low adhesion to devices. The reason for this is not entirely clear, but is presumed to be as follows.
  • the charge amount of the hollow silica particles contained in composition 2 is 0.005 to 0.080 ⁇ C/g. It is presumed that the charge amount of the hollow silica particles is 0.005 ⁇ C/g or more, thereby increasing the electrostatic interaction with the resin contained in composition 2, and enabling the production of a prepreg and a cured product with excellent bending strength. It is also presumed that the charge amount of the hollow silica particles is 0.080 ⁇ C/g or less, thereby suppressing adhesion of composition 2 to equipment during production, etc.
  • Composition 1 and Composition 2 may be collectively referred to as “Composition.”
  • the viscosity of the composition is preferably 100 to 10,000 mPa ⁇ s, more preferably 130 to 5,000 mPa ⁇ s, even more preferably 150 to 3,000 mPa ⁇ s, particularly preferably 180 to 1,500 mPa ⁇ s, and most preferably 200 to 1,000 mPa ⁇ s.
  • “viscosity” refers to a value obtained by measuring the viscosity at 30 seconds at 25°C using a rotational rheometer (e.g., Modular Rheometer Physica MCR-301 manufactured by Anton Paar) at a shear rate of 1 rpm.
  • the composition is preferably liquid at 25°C.
  • the composition may contain one type of resin or two or more types.
  • the resin contained in the composition is preferably a thermosetting resin.
  • the composition may contain two or more types of thermosetting resin, but preferably contains one type.
  • the thermosetting resin include epoxy resin, polyphenylene ether resin, polyester resin, polyimide resin, phenol resin, resin containing a divinylbenzene skeleton, resin containing a pyrimidine skeleton, etc.
  • the thermosetting resin is preferably one or more selected from the group consisting of epoxy resin, polyimide resin, polyphenylene ether resin, resin containing a divinylbenzene skeleton, and resin containing a pyrimidine skeleton.
  • epoxy resin examples include bisphenol A type epoxy resins, bisphenol F type epoxy resins, bisphenol S type epoxy resins, alicyclic epoxy resins, phenol novolac type epoxy resins, cresol novolac type epoxy resins, bisphenol A novolac type epoxy resins, diglycidyl ethers of polyfunctional phenols, and diglycidyl ethers of polyfunctional alcohols.
  • polyimide resin examples include aromatic polyimide and aromatic polyamic acid.
  • the polyphenylene ether resin may be modified polyphenylene ether or unmodified polyphenylene ether, but from the viewpoint of adhesion, modified polyphenylene ether is preferred.
  • the modified polyphenylene ether has a polyphenylene ether chain and a substituent bonded to the end of the polyphenylene ether chain.
  • the substituent preferably has a carbon-carbon double bond.
  • the substituent is preferably represented by the following formula (1) or (2), more preferably represented by the following formula (2).
  • n is an integer of 0 to 10
  • Z is an arylene group
  • R 1 to R 3 are each independently hydrogen or an alkyl group.
  • Z is directly bonded to the end of the polyphenylene ether chain in the modified polyphenylene ether.
  • R 4 is hydrogen or an alkyl group.
  • the alkyl group preferably has 1 to 10 carbon atoms, more preferably 1 to 6 carbon atoms.
  • the polyphenylene ether chain is preferably represented by the following formula (3):
  • m is a number within the range of 1 to 50
  • R 5 to R 8 are each independently a hydrogen atom, an alkyl group, an alkenyl group, an alkynyl group, a formyl group, an alkylcarbonyl group, an alkenylcarbonyl group, or an alkynylcarbonyl group, with a hydrogen atom or an alkyl group being preferred.
  • the alkyl group preferably has 1 to 10 carbon atoms, and more preferably 1 to 6 carbon atoms.
  • An example of a resin containing a divinylbenzene skeleton is ODV-XET manufactured by Nippon Steel Chemical & Material Co., Ltd.
  • resins containing a pyrimidine skeleton include the ELPAC HC-F series manufactured by JSR Corporation.
  • the weight average molecular weight (Mw) of the thermosetting resin is preferably from 1,000 to 7,000, more preferably from 1,000 to 5,000, and even more preferably from 1,000 to 3,000.
  • improving the dielectric properties of the semi-cured product and the cured product means decreasing the relative dielectric constant and dielectric loss tangent thereof.
  • the content of the curable resin relative to the total mass of the composition is preferably 10 to 40 mass%, more preferably 15 to 35 mass%, and even more preferably 20 to 30 mass%.
  • the composition may contain resins other than thermosetting resins (hereinafter, also referred to as "other resins").
  • other resins include polytetrafluoroethylene, polyethylene terephthalate, polyolefins, silicones, etc.
  • the content of the other resins relative to the total mass of the composition is not particularly limited, and is, for example, 1 to 50 mass%.
  • the density of the resin determined by a constant volume expansion method using argon gas and a dry pycnometer is preferably 0.5 to 3.0 g/ cm3 , and more preferably 0.8 to 2.3 g/ cm3 .
  • the density of the resin is measured at 25° C. after drying. In the case of a thermosetting resin, the density is measured after curing. The density can be measured by measuring the density of the cured resin with a dry pycnometer as described above.
  • the density of the resin is determined by measuring the density of the composition after drying or, in the case of a thermosetting resin, after heat curing, using an Ar pycnometer.
  • the hollow silica particles have a shell layer containing silica and have a space inside the shell layer.
  • the space can be confirmed by observation with a transmission electron microscope (TEM), a scanning electron microscope (SEM), or the like.
  • TEM transmission electron microscope
  • SEM scanning electron microscope
  • "having a space inside the shell layer” means that when a cross-section of a single hollow silica particle is observed, a hollow state exists in which a single space is surrounded by a shell layer.
  • the shell layer may have a single-layer structure or a multi-layer structure having two or more layers.
  • the content of silica in the shell layer is preferably 50% by mass or more, more preferably 80% by mass or more, and even more preferably 95% by mass or more, with the upper limit of the content being 100% by mass, and preferably 99.99% by mass.
  • the shell layer contains at least one selected from alkali metals belonging to Group 1 or 2 of the periodic table and silicates thereof.
  • the content of alkali metals belonging to Group 1 or 2 of the periodic table relative to the total mass of the shell layer is preferably 30 ppm by mass or more, more preferably 100 ppm by mass or more, even more preferably 150 ppm by mass or more, and particularly preferably 300 ppm by mass or more, and is preferably 1% by mass or less, more preferably 5000 ppm by mass or less, and most preferably 1000 ppm by mass or less.
  • the content of alkali metals belonging to Group 1 or 2 of the periodic table relative to the total mass of the shell layer is preferably 30 ppm by mass to 1 mass%, more preferably 100 ppm by mass to 5000 ppm by mass, and even more preferably 150 ppm by mass to 1000 ppm by mass.
  • the composition of the shell layer is measured by ICP emission spectrometry, flame atomic absorption spectrometry, or the like.
  • the shell layer preferably contains one or more selected from sodium, potassium, magnesium, calcium, and strontium, and more preferably contains one or more selected from sodium, magnesium, and calcium.
  • the average thickness of the shell layer is preferably 0.01 to 0.3, more preferably 0.02 to 0.2, and even more preferably 0.03 to 0.1, relative to the diameter of the primary particle of the hollow silica particles being 1.
  • the average thickness of the shell layer is an average value of the thicknesses of the shell layers of 20 hollow silica particles measured by TEM observation.
  • the 20% burst pressure of the hollow silica particles as measured by mercury porosimetry is preferably 150 MPa or more, more preferably 200 MPa or more, and even more preferably 250 MPa or more.
  • the upper limit of the 20% burst pressure is not particularly limited, and can be, for example, 600 MPa or less.
  • the 20% burst pressure of the hollow silica particles as measured by mercury porosimetry is preferably 120 MPa or more, more preferably 150 MPa or more, even more preferably 200 MPa or more, and particularly preferably 250 MPa or more.
  • the upper limit of the 20% burst pressure is not particularly limited, and can be, for example, 600 MPa or less.
  • the average primary particle diameter of the hollow silica particles is preferably 10 nm to 10 ⁇ m, more preferably 20 nm to 7 ⁇ m, even more preferably 50 nm to 5 ⁇ m, particularly preferably 70 nm to 3 ⁇ m, and most preferably 100 nm to 1 ⁇ m.
  • the average primary particle size of hollow silica particles is determined by directly observing the particle diameter (diameter, the average value of the long and short sides if the particle is not spherical) by SEM observation. Specifically, the primary particle sizes of 100 hollow silica particles are measured from an SEM image, and the value at which the cumulative distribution of the primary particle sizes obtained by averaging them is 50% is estimated to be the average primary particle size of all primary particles.
  • the median diameter of the hollow silica particles is preferably 0.1 to 10.0 ⁇ m, more preferably 0.2 to 10.0 ⁇ m, even more preferably 0.25 to 8.0 ⁇ m, particularly preferably 0.3 to 7.0 ⁇ m, most preferably 0.3 to 5.0 ⁇ m, and may be 0.3 to 3.0 ⁇ m.
  • d50 refers to the volume-based cumulative 50% diameter of hollow silica particles determined by a laser diffraction particle size distribution measuring device (e.g., "MT3300EXII” manufactured by Microtrack Bell Co., Ltd.). That is, d50 refers to the particle diameter at the point on the cumulative curve where the cumulative volume is 50% when the particle size distribution is measured by a laser diffraction/scattering method and a cumulative curve is calculated with the total volume of the hollow silica particles set to 100%. In the present disclosure, the d50 of the hollow silica particles is measured in a state including primary particles and secondary particles.
  • the d10 of the hollow silica particles is preferably 0.1 to 2.0 ⁇ m, more preferably 0.2 to 2.0 ⁇ m, further preferably 0.3 to 1.8 ⁇ m, and particularly preferably 0.3 to 1.5 ⁇ m. Furthermore, by setting the d10 of the hollow silica particles to the above numerical range, the smoothness of the prepreg and the cured product can be improved, and the transmission loss in the circuit when an insulating layer is formed can be reduced.
  • d10 is the volume-based cumulative 10% diameter of hollow silica particles obtained by a laser diffraction particle size distribution measuring device (e.g., "MT3300EXII” manufactured by Microtrack-Bell Co., Ltd.). That is, d10 is the particle diameter at the point where the cumulative volume is 10% on a cumulative curve obtained by measuring the particle size distribution by a laser diffraction/scattering method and assuming the total volume of the hollow silica particles to be 100%. In the present disclosure, the d10 of the hollow silica particles is measured in a state including primary particles and secondary particles.
  • the d90 of the hollow silica particles is preferably 0.7 to 15.0 ⁇ m, more preferably 0.8 to 12.0 ⁇ m, even more preferably 0.9 to 10.0 ⁇ m, particularly preferably 0.9 to 8.0 ⁇ m, most preferably 0.9 to 6.0 ⁇ m, and may be 0.9 to 5.0 ⁇ m.
  • the smoothness of the prepreg and the cured product can be improved, and the transmission loss in the circuit when an insulating layer is formed can be reduced.
  • the d90 of the hollow silica particles is measured in a state including primary particles and secondary particles.
  • "d90" refers to the volume-based cumulative 90% diameter of hollow silica particles determined by a laser diffraction particle size distribution measuring device (e.g., "MT3300EXII" manufactured by Microtrack-Bell Co., Ltd.).
  • d90 refers to the particle diameter at the point on the cumulative curve where the cumulative volume is 90% when the particle size distribution is measured by a laser diffraction/scattering method and a cumulative curve is calculated with the total volume of the hollow silica particles being 100%.
  • d50/d10 is preferably 6.0 or less, more preferably 5.0 or less, even more preferably 3.0 or less, and particularly preferably 2.5 or less.
  • the lower limit of d50/d10 is not particularly limited, and can be 1.3.
  • the content of hollow silica particles having an average particle size of 10 ⁇ m or more relative to the total mass of the composition as measured by the Coulter Counter method is preferably 500 ppm by mass or less, more preferably 200 ppm by mass or less, even more preferably 100 ppm by mass or less, and may be 0 ppm by mass.
  • the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer is preferably 0.35 to 2.00 g/ cm3 , more preferably 0.35 to 1.50 g/ cm3 , and even more preferably 0.40 to 1.00 g/ cm3 .
  • the density of the hollow silica particles is determined by taking a weighted average of the densities of the individual hollow silica particles.
  • the dry pycnometer an AccuPycII 1340 manufactured by Micromeritics or an equivalent device can be used.
  • the composition contains a resin and hollow silica particles, and when the densities of the hollow silica particles and the resin determined by a constant volume expansion method using argon gas and a dry pycnometer are A (g/cm 3 ) and B (g/cm 3 ), respectively, A/B is preferably 0.3 to 1.5, and more preferably 0.4 to 1.0.
  • the BET specific surface area of the hollow silica particles is preferably from 1.0 to 100.0 m 2 /g, more preferably from 1.0 to 50.0 m 2 /g, and even more preferably from 1.0 to 30.0 m 2 /g.
  • the product of the density of the hollow silica particles determined by a constant volume expansion method using argon gas and a dry pycnometer and the BET specific surface area of the hollow silica particles is preferably 1.0 to 120.0 m 2 /cm 3 , more preferably 2.0 to 80.0 m 2 /cm 3 , even more preferably 2.5 to 40.0 m 2 /cm 3 , and particularly preferably 3.0 to 20.0 m 2 /cm 3 .
  • the porosity of the hollow silica particles is preferably 30 to 90%, more preferably 40 to 90%, and even more preferably 50 to 85%.
  • the porosity of hollow silica particles is calculated by dividing the density of hollow silica particles by the true density of hollow silica particles and multiplying the result by 100.
  • the true density of hollow silica particles is measured using He gas with an AccuPycII 1340 manufactured by Micromeritics or an equivalent device.
  • each hollow silica particle contained in the hollow silica particles is not particularly limited and may be spherical or non-spherical, but from the viewpoint of a low dielectric tangent, a spherical shape is preferred.
  • the sphericity of the spherical hollow silica particles is preferably 0.75 or more, more preferably 0.90 or more, even more preferably 0.93 or more, and particularly preferably 1.00.
  • the hollow silica particles are preferably non-porous particles.
  • the dielectric tangent of the hollow silica particles is preferably 0.0020 or less at a frequency of 1 GHz, more preferably 0.0015 or less, and even more preferably 0.0012 or less.
  • the oil absorption of the hollow silica particles is preferably from 20 to 500 mL/100 g, more preferably from 25 to 200 mL/100 g, even more preferably from 30 to 150 mL/100 g, particularly preferably from 30 to 100 mL/100 g, and most preferably from 30 to 80 mL/100 g.
  • oil absorption is measured in accordance with JIS K 5101-13-1 (2004) (corresponding ISO: ISO 787-5 1980).
  • oil absorption in the present disclosure is a value obtained by multiplying the value measured in accordance with JIS K 5101-13-1 (2004) by the value of density/true density (i.e., oil absorption measured in accordance with JIS K 5101-13-1 (2004) ⁇ (density/true density)).
  • the charge amount of the hollow silica particles is preferably 0.005 ⁇ C/g or more, more preferably 0.010 ⁇ C/g or more, even more preferably 0.015 ⁇ C/g or more, and particularly preferably 0.020 ⁇ C/g or more.
  • the upper limit of the charge amount is not particularly limited, and can be 0.080 ⁇ C/g or less.
  • the charge amount of the hollow silica particles is preferably 0.010 ⁇ C/g or more, more preferably 0.015 ⁇ C/g or more, and even more preferably 0.020 ⁇ C/g or more.
  • the upper limit of the charge amount is not particularly limited, and can be 0.080 ⁇ C/g or less.
  • the charge amount is measured by the following method.
  • a measuring device for example, a powder triboelectric charge measuring device NS-K100 type (manufactured by Nano Seeds Corporation) can be used.
  • the charge amount of the hollow silica particles can be adjusted by adjusting the sum of the contents of alkali metals belonging to Groups 1 and 2 of the periodic table relative to the total mass of the shell layer, the specific surface area, the primary particle size, and the like.
  • the charge amount can be reduced by subjecting the hollow silica particles to a surface treatment with a silane coupling agent, or by increasing the sum of the content of alkali metals belonging to Groups 1 and 2 of the periodic table relative to the total mass of the shell layer.
  • each hollow silica particle may be treated with a silane coupling agent.
  • a silane coupling agent By treating the surface of the hollow silica particle with a silane coupling agent, the amount of remaining silanol groups on the surface is reduced, the surface is hydrophobicized, and moisture adsorption is suppressed, improving the dielectric loss, and the affinity with the resin in the present composition is improved, improving the dispersibility and the strength after the resin film is formed.
  • the silane coupling agent include aminosilane coupling agents, methacrylsilane coupling agents, epoxysilane coupling agents, mercaptosilane coupling agents, silane coupling agents, organosilazane compounds, etc.
  • the silane coupling agents may be used alone or in combination of two or more.
  • the amount of the silane coupling agent attached is preferably 0.01 to 5 parts by mass, more preferably 0.02 to 5 parts by mass, and even more preferably 0.10 to 2 parts by mass, based on 100 parts by mass of the hollow silica particles.
  • the fact that the surface of the hollow silica particles has been treated with a silane coupling agent can be confirmed by detecting a peak due to a substituent of the silane coupling agent by IR.
  • the amount of the silane coupling agent attached can be measured by the carbon amount.
  • the obtained silica particles may be surface-treated with a conventionally known silane coupling agent, but from the viewpoint of the toughness of molded products such as prepregs, it is preferable not to perform the surface treatment.
  • the hollow silica particles may contain impurity elements to the extent that the effects of the present disclosure are not hindered.
  • impurity elements include Al, Fe, Ti, etc.
  • the content of hollow silica particles relative to the total volume of the composition is preferably 10 to 70 volume %, more preferably 15 to 65 volume %, and even more preferably 18 to 60 volume %.
  • the hollow silica particles may be commercially available or may be prepared by a conventional method.
  • hollow silica particles prepared by the methods described in WO 2019/131658, WO 2021/006697, WO 2021/172294, etc. may be used.
  • the composition may contain one or more solvents.
  • the solvent include acetone, methanol, ethanol, butanol, 2-propanol, 2-methoxyethanol, 2-ethoxyethanol, toluene, xylene, methyl ethyl ketone, N,N-dimethylformamide, methyl isobutyl ketone, N-methyl-2-pyrrolidone, n-hexane, and cyclohexane.
  • the solvent contains at least one selected from the group consisting of toluene, cyclohexanone, methyl ethyl ketone, and N-methyl-2-pyrrolidone.
  • the content of the solvent relative to the total mass of the composition is not particularly limited, and may be, for example, 10 to 60% by mass.
  • the surface tension of the solvent is preferably 40 mN/m or less, more preferably 35 mN/m or less, and even more preferably 30 mN/m or less.
  • the lower limit of the surface tension is not particularly limited and may be, for example, 5 mN/m.
  • surface tension is measured by the Wilhelmy method using a surface tensiometer for a solvent at 25°C.
  • the viscosity of the solvent is preferably 10 mPa ⁇ s or less at 25°C, and more preferably 5 mPa ⁇ s or less.
  • the lower limit of the viscosity of the solvent is not particularly limited, and can be 2 mPa ⁇ s or more.
  • the content of the solvent relative to the total mass of the composition is not particularly limited, and can be, for example, 10% by mass to 90% by mass.
  • the composition may contain one or more polymerization initiators.
  • polymerization initiators include ⁇ , ⁇ '-bis(t-butylperoxy-m-isopropyl)benzene, 2,5-dimethyl-2,5-di(t-butylperoxy)-3-hexyne, benzoyl peroxide, 3,3',5,5'-tetramethyl-1,4-diphenoquinone, chloranil, 2,4,6-tri-t-butylphenoxyl, t-butylperoxyisopropyl monocarbonate, and azobisisobutyronitrile.
  • the content of the polymerization initiator per 100 parts by mass of resin is preferably 0.1 to 5 parts by mass.
  • the composition may contain one or more polymerization accelerators.
  • polymerization accelerators include trialkenyl isocyanurate compounds such as triallyl isocyanurate, polyfunctional acrylic compounds having two or more acryloyl or methacryloyl groups in the molecule, polyfunctional vinyl compounds having two or more vinyl groups in the molecule, and vinylbenzyl compounds such as styrene having a vinylbenzyl group in the molecule.
  • the content of the polymerization accelerator per 100 parts by mass of the resin is preferably 10 to 100 parts by mass.
  • the composition may contain one or more plasticizers.
  • plasticizers include butadiene-styrene copolymers.
  • the content of the plasticizer per 100 parts by mass of resin is preferably 10 to 50 parts by mass, and more preferably 20 to 40 parts by mass.
  • the composition may further contain other components such as surfactants, thixotropy imparting agents, pH adjusters, pH buffers, viscosity regulators, defoamers, silane coupling agents, dehydrating agents, plasticizers, weather resistance agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brightening agents, colorants, conductive materials, release agents, surface treatment agents, flame retardants, and various organic or inorganic fillers, to the extent that the effects of the composition are not impaired.
  • other components such as surfactants, thixotropy imparting agents, pH adjusters, pH buffers, viscosity regulators, defoamers, silane coupling agents, dehydrating agents, plasticizers, weather resistance agents, antioxidants, heat stabilizers, lubricants, antistatic agents, brightening agents, colorants, conductive materials, release agents, surface treatment agents, flame retardants, and various organic or inorganic fillers, to the extent that the effects of the composition are not impaired.
  • This composition can be suitably used as a resin composition for producing electronic substrates for use in electronic devices such as personal computers, notebook computers, and digital cameras, and communication devices such as smartphones and game consoles.
  • the resin composition of the present invention is also expected to be applied to prepregs, metal foil-clad laminates, printed wiring boards, resin sheets, adhesive layers, adhesive films, solder resists, resin compositions for bump reflow, rewiring insulating layers, die bond materials, encapsulants, underfills, mold underfills, and laminated inductors, etc., in order to reduce dielectric constant, transmission loss, moisture absorption, and improve peel strength.
  • the prepreg of the present disclosure includes the present composition or a semi-cured product thereof, and a fibrous substrate.
  • the fibrous substrate include glass cloth, aramid cloth, polyester cloth, glass nonwoven fabric, aramid nonwoven fabric, polyester nonwoven fabric, and pulp paper.
  • the fibrous substrate preferably contains a glass component.
  • the thickness of the fibrous substrate is not particularly limited, and can be 12 ⁇ m to 1000 ⁇ m.
  • the present composition has been described above, so a description thereof will be omitted here.
  • the prepreg of the present disclosure can be produced by applying or impregnating the present composition to a fibrous substrate. After applying or impregnating the present composition, the resin composition may be heated and semi-cured.
  • the resin-coated metal substrate of the present disclosure includes the present composition or a semi-cured product thereof, or the prepreg, and a metal substrate layer.
  • the metal substrate layer may be provided on one surface or both surfaces of the present composition or a semi-cured product thereof, or the prepreg.
  • the type of the metal substrate layer is not particularly limited, and examples of metals constituting the metal substrate layer include copper, copper alloys, stainless steel, nickel, nickel alloys (including alloy 42), aluminum, aluminum alloys, titanium, and titanium alloys.
  • the metal substrate layer is preferably a metal foil, and more preferably a copper foil such as rolled copper foil or electrolytic copper foil.
  • the surface of the metal foil may be rust-proofed (oxide film such as chromate) or may be roughened.
  • a carrier-attached metal foil consisting of a carrier copper foil (thickness: 10 ⁇ m to 35 ⁇ m) and an ultra-thin copper foil (thickness: 2 ⁇ m to 5 ⁇ m) laminated on the carrier copper foil surface via a peeling layer may be used.
  • the surface of the metal substrate layer may be treated with a silane coupling agent.
  • the entire surface of the metal substrate layer may be treated with a silane coupling agent, or a part of the surface of the metal substrate layer may be treated with a silane coupling agent.
  • the silane coupling agent the above-mentioned ones can be used.
  • the thickness of the metal substrate layer is preferably 1 to 40 ⁇ m, and more preferably 2 to 20 ⁇ m. From the viewpoint of reducing transmission loss when the resin-coated metal substrate is used as a printed wiring board, the maximum height roughness (Rz) of the metal substrate layer is preferably 6 ⁇ m or less, and more preferably 4 ⁇ m or less.
  • the resin-attached metal substrate of the present disclosure can be produced by applying the present composition to the surface of a metal substrate layer. After applying the present composition, the resin composition may be heated to be semi-cured.
  • the resin-coated metal substrate of the present disclosure can be produced by laminating a metal substrate layer and a prepreg. Examples of a method for laminating the metal substrate layer and the prepreg include a method of thermocompression bonding them.
  • the wiring board of the present disclosure includes a cured product of the present composition and metal wiring.
  • the metal wiring can be produced by etching the above-mentioned metal substrate layer, etc.
  • the wiring board of the present disclosure can be manufactured by a method of etching the metal substrate layer of the resin-coated metal substrate, or by a method of forming a pattern circuit on the cured surface of the present composition by electrolytic plating (semi-additive method (SAP method), modified semi-additive method (MSAP method), etc.).
  • SAP method spin-additive method
  • MSAP method modified semi-additive method
  • Examples 1-1 to 1-3 are examples of the first embodiment, and Examples 1-4 to 1-5 are comparative examples of the first embodiment.
  • the hollow silica particles and hollow particles used in each example were dried under reduced pressure at 230° C. to completely remove moisture, and used as samples.
  • the specific surface area of each sample was measured by a multipoint BET method using nitrogen gas with an automatic specific surface area/pore distribution measuring device "Tristar II" manufactured by Micromeritics.
  • the d50 of the hollow silica particles and hollow particles used in each example was measured by a laser diffraction/scattering method using a particle size distribution measuring device (MT3300EXII, manufactured by Microtrack Bell Co., Ltd.). Specifically, the secondary particles of the hollow silica particles were dispersed by irradiating with ultrasonic waves for 120 seconds, and then the measurement was performed, and the value at which the cumulative distribution of the particle sizes obtained was 50% was taken as d50.
  • a particle size distribution measuring device M3300EXII, manufactured by Microtrack Bell Co., Ltd.
  • the hollow silica particles and the average primary particle diameter of the hollow particles used in each example were obtained by directly observing the particle diameter (diameter, the average value of the long side and the short side if the particle is not spherical) by SEM observation. Specifically, the primary particle sizes of 100 hollow silica particles were measured from the SEM image, and the value at which the cumulative distribution of the primary particle sizes obtained by averaging them was 50% was estimated as the average primary particle diameter of the entire primary particles.
  • the sphericity of the hollow silica particles and hollow particles was determined by measuring the maximum diameter (DL) and the minor diameter (DS) perpendicular to the maximum diameter (DL) of any 100 particles in a photographic projection obtained by photographing with a scanning electron microscope (SEM), calculating the ratio (DS/DL) of the minimum diameter (DS) to the maximum diameter (DL), and calculating the average.
  • SEM scanning electron microscope
  • the dielectric loss tangent of the hollow silica particles and the hollow particles at a frequency of 1 GHz was measured by a perturbation resonator method using a vector network analyzer E5063A manufactured by Keycom Corporation.
  • the porosity of the hollow silica particles was calculated by dividing the density of the hollow silica particles by the true density of the hollow silica particles and multiplying the result by 100.
  • the true density of the hollow silica particles was measured using an AccuPycII 1340 manufactured by Micromeritics.
  • the porosity of the hollow particles was calculated in the same manner.
  • the charged hollow silica particles or hollow particles were put into a Faraday cage, and the charge amount of the hollow silica particles or hollow particles was measured and converted into the charge amount per mass (charge amount of hollow silica particles or hollow particles/10 g of hollow silica particles or hollow particles).
  • the measurement was performed using a powder triboelectric charge measuring device (NS-K100, manufactured by Nano Seeds Corporation).
  • the density of the resin used in each example was measured as follows. - Density measurement of polyphenylene ether resin - 59 parts by mass of polyphenylene ether, 16 parts by mass of butadiene-styrene random copolymer, 25 parts by mass of triallyl isocyanurate, 1 part by mass of ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, and 60 parts by mass of toluene were placed in a polyvinyl bottle and kneaded with a planetary disperser to obtain a resin. The resin obtained was vacuum dried at 120°C to remove the solvent, and then pulverized using a cutter mill. The density was measured with an Ar pycnometer, and was found to be 1.1 g/ cm3 .
  • the hollow silica particles A1 were prepared as follows.
  • the entire amount of the hollow silica precursor dispersion was neutralized with 2M hydrochloric acid to pH 2, and then filtered using quantitative filter paper 5C. Then, 350 ml of 80° C. ion-exchanged water was added and pressure filtered again to wash the hollow silica cake. The cake after filtration was dried in a nitrogen atmosphere at 100° C. for 1 hour and then at 400° C. for 2 hours (heating rate: 10° C./min) to remove the organic matter, thereby obtaining a hollow silica precursor. The obtained hollow silica precursor was baked at 1000° C. for 1 hour (heating rate: 10° C./min) to bake and tighten the shell, thereby obtaining baked hollow silica particles.
  • TEM images were obtained by scattering hollow silica particles on a hydrophilically treated polyvinyl formal film, and observing the particles using a Hitachi HT7700 microscope at an accelerating voltage of 100 kV.
  • the average shell thickness of 50 randomly selected particles was taken as the shell thickness.
  • Table 1 The sodium content relative to the total mass of the first shell layer and the second shell layer was 500 ppm by mass.
  • Hollow silica particles A2 were obtained in the same manner as in the preparation of hollow silica particles A1, except that the amount of the aqueous sodium silicate solution used in the formation of the second shell layer was changed to 500 g.
  • Hollow silica particles A2 were obtained in the same manner as in the preparation of hollow silica particles A1, except that the amount of the aqueous sodium silicate solution used in the second shell layer formation was changed to 650 g.
  • Example 1-1 59 parts by mass of polyphenylene ether resin, 16 parts by mass of butadiene-styrene random copolymer, 25 parts by mass of triallyl isocyanurate, 1 part by mass of ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, parts by mass of hollow silica particles A1 accounting for 20% by volume of the total, and 80 parts by mass of toluene were placed in a polyvinyl chloride bottle and kneaded using a planetary dispenser to obtain a resin composition. The resin composition was applied to a glass cloth of IPC spec 2116 by impregnation, and then heated and dried at 160° C.
  • Examples 1-2 to 1-5 A resin composition, a prepreg, and a resin-coated metal substrate were produced in the same manner as in Example 1, except that the hollow silica particles A1 were changed to the hollow silica particles or hollow particles shown in Table 1.
  • the prepreg obtained using composition 1 has a reduced dielectric constant.
  • Examples 2-1 to 2-10 are working examples, and Examples 2-7 to 2-10 are comparative examples.
  • thermosetting resin Polyphenylene ether: Modified polyphenylene ether in which the terminal hydroxyl groups of polyphenylene ether are modified with methacrylic groups, manufactured by SABIC, Noryl SA9000, Mw 1700, two functional groups per molecule
  • the hollow silica particles C1 were prepared as follows.
  • the entire amount of the hollow silica precursor dispersion was neutralized with 2M hydrochloric acid to pH 2, and then filtered using quantitative filter paper 5C. Then, 350 ml of 80° C. ion-exchanged water was added and pressure filtered again to wash the hollow silica cake. The cake after filtration was dried in a nitrogen atmosphere at 100° C. for 1 hour and then at 400° C. for 2 hours (heating rate: 10° C./min) to remove the organic matter, thereby obtaining a hollow silica precursor. The obtained hollow silica precursor was baked at 1000° C.
  • the content of the alkali metal (Na) contained in the shell layer of the hollow silica particles C1 relative to the total mass of the shell layer was 500 ppm by mass.
  • Hollow silica particles C2 were obtained in the same manner as hollow silica particles C1, except that the amount of EO-PO-EO block copolymer used was changed to 2 g and the amount of sorbitan acid monooleate used was changed to 2 g.
  • the content of the alkali metal (Na) contained in the shell layer of the hollow silica particles C2 relative to the total mass of the shell layer was 500 ppm by mass.
  • Hollow silica particles C3 were obtained in the same manner as hollow silica particles C1, except that the amount of EO-PO-EO block copolymer ("Pluronic (registered trademark) F68" manufactured by ADEKA Corporation) was changed to 20 g, sorbitan acid monooleate (IONET (registered trademark) S-80 manufactured by Sanyo Chemical Industries, Ltd.) was not used, and the pressure in emulsification was changed to 100 bar.
  • the content of the alkali metal (Na) contained in the shell layer of the hollow silica particles C3 relative to the total mass of the shell layer was 50 ppm by mass.
  • Hollow silica particles C4 were obtained in the same manner as hollow silica particles C1, except that the amount of EO-PO-EO block copolymer ("Pluronic (registered trademark) F68" manufactured by ADEKA Corporation) was changed to 40 g, sorbitan acid monooleate (IONET (registered trademark) S-80 manufactured by Sanyo Chemical Industries, Ltd.) was not used, and the emulsification pressure was changed to 100 bar.
  • the content of the alkali metal (Na) contained in the shell layer of the hollow silica particles C4 relative to the total mass of the shell layer was 300 ppm by mass.
  • Hollow silica particles C5 were obtained in the same manner as in the preparation of hollow silica particles C4, except that the hollow silica cake was washed with 350 ml of tap water instead of ion-exchanged water.
  • the content of the alkali metal (Na) contained in the shell layer of the hollow silica particles C5 relative to the total mass of the shell layer was 300 ppm by mass.
  • ⁇ Hollow Silica Particles C6> A solution of 0.1 g of hexamethyldisilazane dissolved in 100 ml of toluene was added to 10 g of hollow silica particles C1, and the mixture was placed in a 200 ml beaker and stirred with a propeller for 60 minutes. The solvent was removed from the resulting solution to 0.1% or less using a rotary evaporator to obtain surface-treated hollow silica particles C6.
  • the content of the alkali metal (Na) contained in the shell layer of the hollow silica particles C6 relative to the total mass of the shell layer was 500 ppm by mass.
  • ⁇ Hollow Particles D1> Aluminosilicate hollow particles were obtained in accordance with the method of Example 1 of JP 2021-143089 A.
  • Hollow particles D3 were obtained in the same manner as hollow silica particles C4, except that the hollow silica cake was washed with 3,500 ml of tap water instead of ion-exchanged water.
  • the content of alkali metal (Na) contained in the shell layer of hollow particle D3 relative to the total mass of the shell layer was 1500 ppm by mass or more.
  • Hollow particles D4 were obtained in the same manner as hollow silica particles C1, except that the amount of EO-PO-EO block copolymer ("Pluronic F68" manufactured by ADEKA CORPORATION) was changed to 50 g, sorbitan acid monooleate (IONET S-80 manufactured by Sanyo Chemical Industries, Ltd.) was not used, and the pressure in emulsification was changed to 100 bar.
  • the content of alkali metal (Na) contained in the shell layer of hollow particle D4 relative to the total mass of the shell layer was 1500 ppm by mass or more.
  • Example 2-1 59 parts by mass of polyphenylene ether resin, 16 parts by mass of butadiene-styrene random copolymer, 25 parts by mass of triallyl isocyanurate, 1 part by mass of ⁇ , ⁇ '-di(t-butylperoxy)diisopropylbenzene, parts by mass of hollow silica particles C1 accounting for 20% by volume of the total, and 80 parts by mass of toluene were placed in a polyvinyl chloride bottle and kneaded using a planetary dispenser to obtain a resin composition. After standing, the resin composition was applied to impregnate a glass cloth of IPC spec 2116, and then heated and dried at 160° C.
  • Example 2-2 to 2-10 Except for changing the hollow silica particles C1 to the hollow silica particles or hollow particles shown in Table 1, a resin composition, a prepreg, and a metal substrate with a resin were produced in the same manner as in Example 2-1. In Example 2-10, adhesion of hollow particles D4 to the planetary dispatcher and the like was observed in greater amounts than in Examples 2-1 to 2-6.
  • Composition 2 has low adhesion to the equipment during production, and the cured prepreg obtained using this composition has excellent bending strength.

Landscapes

  • Reinforced Plastic Materials (AREA)

Abstract

本開示の樹脂組成物は、樹脂及び中空シリカ粒子を含み、水銀圧入法により測定される中空シリカ粒子の20%破壊圧力が、120MPa以上であるか、又は、中空シリカ粒子の帯電量が0.005~0.080μC/gである。

Description

樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
 本開示は、樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板に関する。
 プリント配線板が備える電気絶縁層には、低誘電率、低誘電正接、低線膨張率等の特性が要求される。近年、熱硬化性樹脂及びシリカ粒子を含む樹脂組成物は、プリント配線板に加工可能な金属張積層体が備える電気絶縁層の製造に使用されている(特許文献1及び2参照)。具体的には、金属基材層の表面に、上記樹脂組成物の半硬化物を電気絶縁層として積層した金属張積層体が使用されている。他の例としては、樹脂組成物を含浸させたガラスクロス等を電気絶縁層として、金属基材層の表面に積層した金属張積層体が使用されている。ここで、フィラー(充填材)は、熱硬化性樹脂を用いたプリプレグの材料として用いられるが、フィラー自体は、通常、得られるプリプレグの比誘電率を高くする傾向にある。その中でも、中空フィラーを用いた金属張積層体は、中実フィラーを用いた場合と比べて比誘電率を低下させることができるため、特許文献3~5に記載されているように、検討されている。
 従来より、中空フィラーとして、ガラスバルーン等が使用されている。しかしながら、ガラスバルーンの種類によっては、樹脂組成物を用いたプリプレグ又は硬化物の作製時において、割れが発生してしまい、比誘電率の低下が十分とならないことがあった。
特開2013-212956号公報 特開2015-36357号公報 特開2008-31409号公報 特表2017-522580号公報 国際公開第2019-230661号
 中空粒子及び樹脂を含む従来公知の樹脂組成物を用いて作製される、プリプレグ、硬化物等には、優れた曲げ強度を有することが求められる。また、上記樹脂組成物には、生産性等の観点から、製造時等において装置への付着が少ないことが望まれる。
 本開示の一実施形態が解決しようとする課題は、低比誘電率である、プリプレグ及び硬化物を作製可能な樹脂組成物を提供することである。また、本開示の他の実施形態が解決しようとする課題は、上記樹脂組成物を用いたプリプレグ、樹脂付き金属基材、及び配線板を提供することである。
 本開示の一実施形態が解決しようとする課題は、曲げ強度に優れるプリプレグ及び硬化物を作製可能であり、装置への付着が少ない樹脂組成物を提供することである。また、本開示の他の実施形態が解決しようとする課題は、上記樹脂組成物を用いたプリプレグ、樹脂付き金属基材、及び配線板を提供することである。
 上記課題を解決するための手段は、以下の態様を含む。
<1> 樹脂及び中空シリカ粒子を含む樹脂組成物であって、水銀圧入法により測定される上記中空シリカ粒子の20%破壊圧力が、120MPa以上である、樹脂組成物。
<2> 樹脂及び中空シリカ粒子を含む樹脂組成物であって、中空シリカ粒子の帯電量が0.005~0.080μC/gである、樹脂組成物。
<3> 上記中空シリカ粒子が、アルカリ金属及びアルカリ土類金属から選択される少なくとも1つを含み、上記中空シリカ粒子のシェル層の総質量に対する上記アルカリ金属及び上記アルカリ土類金属の含有率の和が、30質量ppm~1質量%である、上記<1>又は<2>に記載の樹脂組成物。<4> 上記中空シリカ粒子の密度が、0.35~2.00g/cmである、上記<1>~<3>のいずれか1つに記載の樹脂組成物。
<5> 上記中空シリカ粒子のBET比表面積が、1.0~100.0m/gである、上記<1>~<4>のいずれか1つに記載の樹脂組成物。
<6> 上記中空シリカ粒子のメジアン径(d50)が0.1~10.0μmである、上記<1>~<5>のいずれか1つに記載の樹脂組成物。
<7> 上記中空シリカ粒子が、シリカを含むシェル層を備え、上記中空シリカ粒子の一次粒子の直径を1としたとき、上記シェル層の厚みが、0.01~0.3である、上記<1>~<6>のいずれか1つに記載の樹脂組成物。
<8> 上記樹脂が、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂、ジビニルベンゼン骨格を含む樹脂、及びピリミジン骨格を含む樹脂からなる群より選択される少なくとも1つを含む、上記<1>~<7>のいずれか1つに記載の樹脂組成物。
<9> 樹脂組成物の総体積に対する上記中空シリカ粒子の含有量が10~70体積%である、上記<1>~<8>のいずれか1つに記載の樹脂組成物。
<10> 上記<1>~<9>のいずれか1つに記載の樹脂組成物又はその半硬化物と、繊維質基材と、を含むプリプレグ。
<11> 上記繊維質基材が、ガラス成分を含む、上記<8>に記載のプリプレグ。
<12> 上記<1>~<9>のいずれか1つに記載の樹脂組成物若しくはその半硬化物、又は上記<10>若しくは<11>に記載のプリプレグと、金属基材層と、を含む樹脂付き金属基材。
<13> 上記金属基材層が、銅箔である、上記<12>に記載の樹脂付き金属基材。
<14> 上記<1>~<9>のいずれか1つに記載の樹脂組成物の硬化物と、金属配線と、を含む配線板。
 本開示の一実施形態によれば、低比誘電率である、プリプレグ及び硬化物を作製可能な樹脂組成物を提供できる。また、本開示の他の実施形態によれば、上記樹脂組成物を用いたプリプレグ、樹脂付き金属基材、及び配線板を提供できる。
 本開示の一実施形態によれば、曲げ強度に優れるプリプレグ及び硬化物を作製可能であり、装置への付着が少ない樹脂組成物を提供できる。また、本開示の他の実施形態によれば、上記樹脂組成物を用いたプリプレグ、樹脂付き金属基材、及び配線板を提供できる。
 以下、本開示の実施形態を実施するための形態について詳細に説明する。但し、本開示の実施形態は以下の実施形態に限定されるものではない。以下の実施形態において、その構成要素(要素ステップ等も含む)は、特に明示した場合を除き、必須ではない。数値及びその範囲についても同様であり、本開示の実施形態を制限するものではない。
 本開示において「~」を用いて示された数値範囲には、「~」の前後に記載される数値がそれぞれ最小値及び最大値として含まれる。本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。
 本開示において各成分は該当する物質を複数種含んでいてもよい。組成物中に各成分に該当する物質が複数種存在する場合、各成分の含有率又は含有量は、特に記載しない限り、組成物中に存在する当該複数種の物質の合計の含有率又は含有量を意味する。
 本開示において各成分に該当する粒子は複数種含まれていてもよい。組成物中に各成分に該当する粒子が複数種存在する場合、各成分の粒子径は、特に記載しない限り、組成物中に存在する当該複数種の粒子の混合物についての値を意味する。
 本開示において「積層」との語は、層を積み重ねることを示し、二以上の層が結合されていてもよく、二以上の層が着脱可能であってもよい。
 本開示において、「中空シリカ粒子」とは、特に断りがない限り、複数の中空シリカ粒子の群を指す。
 本開示において、「BET比表面積」は、比表面積・細孔分布測定装置(例えば、マイクロメリティック社製「トライスターII」等)を用いた窒素吸着法に基づくBET法により求める。
 本開示において、「真球度」は、走査型電子顕微鏡(SEM)により写真撮影して得られる写真投影図における任意の100個の粒子について、それぞれの最大径(DL)と、これと直交する短径(DS)とを測定し、最大径(DL)に対する最小径(DS)の比(DS/DL)を算出した平均値で表す。
 本開示において、「誘電正接」及び「比誘電率」は、専用の装置(例えば、キーコム株式会社製「ベクトルネットワークアナライザ E5063A」)を用い、摂動方式共振器法にて測定する。
 本開示において、「半硬化物」とは、樹脂組成物の硬化物を示査走査熱分析測定した際に、熱硬化性樹脂の硬化に伴う発熱ピークが現れる状態にある硬化物を意味する。すなわち、半硬化物とは、未硬化の熱硬化性樹脂が残存している状態の硬化物を意味する。
 本開示において、「硬化物」とは、樹脂組成物の硬化物を示査走査熱分析測定した際に、熱硬化性樹脂の硬化に伴う発熱ピークが現れない状態にある硬化物を意味する。すなわち、硬化物とは、未硬化の熱硬化性樹脂が残存していない状態の硬化物を意味する。
 本開示において、「最大高さ粗さRz」は、JIS B 0601(2013)(対応ISO:ISO 4287 1997)に準拠して測定する。
 本開示において、「重量平均分子量」は、ゲルパーミエーションクロマトグラフィー(GPC)を用いて、ポリスチレン換算により求める。
 本開示において、「20%破壊圧力」とは、水銀圧入法によって測定される破壊圧力のことで、水銀圧入法で0~400MPaまで圧力をかけていった際、積算容量の最大値から20%減少した容量を示す最小の圧力のことである。
 中空シリカ粒子の水銀圧入法による20%破壊圧力は、ASTM D 3102-78に準拠して、水銀圧入ポロシメーター(例えば、MICROMERITICS INSTRUMENT社製のAutoPore IV 9500)を用いて測定する。
 本開示の第1の実施形態に係る樹脂組成物(以下、「本組成物1」とも記す。)は、樹脂及び中空シリカ粒子を含み、水銀圧入法により測定される中空シリカ粒子の20%破壊圧力が、120MPa以上である。
 本組成物1によれば、低比誘電率であるプリプレグ及び硬化物が作製可能である。この理由は必ずしも明らかではないが、以下のように推測される。
 本組成物1に含まれる中空シリカ粒子は、水銀圧入法により測定される20%破壊圧力が、120MPa以上である。これにより、プリプレグ等の作製時における中空シリカ粒子の割れが生じることを抑制できる結果、上記効果が奏されると推測される。
 本開示の第2の実施形態に係る樹脂組成物(以下、「本組成物2」とも記す。)は、樹脂及び中空シリカ粒子を含み、中空シリカ粒子の帯電量が0.005~0.080μC/gである。
 本組成物2は、曲げ強度に優れるプリプレグ及び硬化物を作製可能であり、装置への付着が少ない。この理由は必ずしも明らかではないが、以下のように推測される。
 本組成物2に含まれる中空シリカ粒子の帯電量は0.005~0.080μC/gである。中空シリカ粒子の帯電量が0.005μC/g以上であることにより、本組成物2に含まれる樹脂との静電相互作用を増大でき、曲げ強度に優れるプリプレグ及び硬化物の作製が可能になると推測される。また、中空シリカ粒子の帯電量が0.080μC/g以下であることにより、製造等における本組成物2の装置への付着が抑制されると推測される。
 以下、本組成物1及び本組成物2を包括的に「本組成物」と記すことがある。
 本組成物1において、比誘電率をより低下させる観点から、又は、本組成物2において、比誘電率を低下させ、基材との密着性を向上する観点から、本組成物の粘度は、100~10,000mPa・sが好ましく、130~5,000mPa・sがより好ましく、150~3,000mPa・sが更に好ましく、180~1,500mPa・sが特に好ましく、200~1,000mPa・sが最も好ましい。
 本開示において「粘度」は、25℃において、回転式レオメータ(例えば、アントンパール(Anton paar)社製、モジュラーレオメーター PhysicaMCR-301)を用いて、せん断速度1rpmで30秒測定し、得られた30秒時点での粘度を測定して得られる値である。
 本組成物は、25℃において、液状であることが好ましい。
 本組成物は、樹脂を1種含んでもよく、2種以上含んでもよい。本組成物が含む樹脂としては、熱硬化性樹脂が好ましい。本組成物は、熱硬化性樹脂を2種以上含んでもよいが、1種を含むことが好ましい。
 熱硬化性樹脂としては、エポキシ樹脂、ポリフェニレンエーテル樹脂、ポリエステル樹脂、ポリイミド樹脂、フェノール樹脂、ジビニルベンゼン骨格を含む樹脂、ピリミジン骨格を含む樹脂等が挙げられる。密着性、耐熱性等の観点から、熱硬化性樹脂は、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂、ジビニルベンゼン骨格を含む樹脂、及びピリミジン骨格を含む樹脂からなる群より選択される1つ以上が好ましい。
 エポキシ樹脂としては、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、脂環式エポキシ樹脂、フェノールノボラック型エポキシ樹脂、クレゾールノボラック型エポキシ樹脂、ビスフェノールAノボラック型エポキシ樹脂、多官能フェノールのジグリシジルエーテル化物、多官能アルコールのジグリシジルエーテル化物等が挙げられる。
 ポリイミド樹脂としては、芳香族ポリイミド、芳香族ポリアミック酸等が挙げられる。
 ポリフェニレンエーテル樹脂は、変性ポリフェニレンエーテルであってもよく、未変性ポリフェニレンエーテルであってもよいが、密着性の観点からは、変性ポリフェニレンエーテルが好ましい。変性ポリフェニレンエーテルは、ポリフェニレンエーテル鎖及びポリフェニレンエーテル鎖の末端に結合する置換基を有する。置換基は、炭素-炭素二重結合を有することが好ましい。置換基は、下記式(1)又は下記式(2)で表されることが好ましく、下記式(2)で表されることがより好ましい。
 式(1)において、nは0~10の整数であり、Zはアリーレン基であり、R~Rは各々独立に水素又はアルキル基である。なお、式(1)におけるnが0である場合は、Zは変性ポリフェニレンエーテルにおけるポリフェニレンエーテル鎖の末端に直接結合する。式(2)において、Rは水素又はアルキル基である。式(1)及び(2)において、アルキル基は、炭素数1~10が好ましく、1~6がより好ましい。
 ポリフェニレンエーテル鎖は、下記式(3)で表されることが好ましい。
 式(3)において、mは1~50の範囲内の数であり、R~Rは、各々独立に、水素原子、アルキル基、アルケニル基、アルキニル基、ホルミル基、アルキルカルボニル基、アルケニルカルボニル基又はアルキニルカルボニル基であり、水素原子又はアルキル基が好ましい。式(3)において、アルキル基は、炭素数1~10が好ましく、1~6がより好ましい。
 ジビニルベンゼン骨格を含む樹脂としては、日鉄ケミカル&マテリアル株式会社製の、ODV―XET等が挙げられる。
 ピリミジン骨格を含む樹脂としては、JSR社製ELPAC HC-Fシリーズ等が挙げられる。
 半硬化物及び硬化物の密着性及び誘電特性を向上する観点から、熱硬化性樹脂の重量平均分子量(Mw)は、1,000~7,000が好ましく、1,000~5,000がより好ましく、1,000~3,000が更に好ましい。
 なお、本開示において、半硬化物及び硬化物の誘電特性を向上するとは、これらの比誘電率及び誘電正接を低下することを意味する。
 半硬化物及び硬化物の密着性及び誘電特性を向上する観点から、本組成物の総質量に対する硬化性樹脂の含有率は、10~40質量%が好ましく、15~35質量%がより好ましく、20~30質量%が更に好ましい。
 本組成物は、熱硬化性樹脂以外の樹脂(以下、「その他の樹脂」とも記す。)を含んでいてもよい。その他の樹脂としては、ポリテトラフルオロエチレン、ポリエチレンテレフタラート、ポリオレフィン、シリコーン等が挙げられる。
 本組成物の総質量に対するその他の樹脂の含有率は、特に限定されるものではなく、例えば、1~50質量%である。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点から、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた樹脂の密度は、0.5~3.0g/cmが好ましく、0.8~2.3g/cmがより好ましい。
 なお、樹脂の密度測定は、25℃において、乾燥後の樹脂に対して行う。熱硬化性樹脂の場合は、硬化後の樹脂に対して行う。密度測定の方法としては、硬化後の樹脂を上記のように乾式ピクノメーターで測定する方法が挙げられる。
 なお、本組成物が、2種以上の樹脂を含む場合、樹脂の密度は、乾燥後又は熱硬化性樹脂の場合は熱硬化後の組成物の密度を、Arピクノメーターによって実測して求める。
 中空シリカ粒子は、シリカを含むシェル層を備え、シェル層の内側に空間部を有する。上記空間部は、透過型電子顕微鏡(TEM)観察、走査型電子顕微鏡(SEM)等により確認できる。
 本開示において、「シェル層の内側に空間部を有する」とは、1個の中空シリカ粒子の断面を観察した際に、1個の空間部の周囲をシェル層が囲んでいる中空状態が存在することを意味する。
 シェル層は、単層構造を有するものであっても、2層以上の多層構造を有するものであってもよい。
 シェル層の総質量に対するシリカの含有率は、50質量%以上が好ましく、80質量%以上がより好ましく、95質量%以上が更に好ましい。上記含有率の上限は、100質量%であるが、99.99質量%が好ましい。
 中空シリカ粒子の耐久性を向上する観点、並びに半硬化物及び硬化物の密着性及び誘電特性を向上する観点から、シェル層は、周期表の第1族又は第2族に属するアルカリ金属分、及びこれらのケイ酸塩から選択される少なくとも1つを含むことが好ましい。
 シェル層の総質量に対する周期表の第1族又は第2族に属するアルカリ金属分の含有率は、30質量ppm以上が好ましく、100質量ppm以上がより好ましく、150質量ppm以上が更に好ましく、300質量ppm以上が特に好ましい。また、1質量%以下が好ましく、5000質量ppm以下がより好ましく、1000質量ppm以下が最も好ましい。
 すなわち、シェル層の総質量に対する周期表の第1族又は第2族に属するアルカリ金属分の含有率は、30質量ppm~1質量%が好ましく、100質量ppm~5000質量ppmがより好ましく、150質量ppm~1000質量ppmがさらに好ましい。
 シェル層の組成は、ICP発光分析法、フレーム原子吸光法等により測定する。
 周期表の第1族又は第2族に属するアルカリ金属分(アルカリ金属及びアルカリ土類金属)の中でも、入手の容易さの観点から、シェル層は、ナトリウム、カリウム、マグネシウム、カルシウム及びストロンチウムより選択される1つ以上を含むことが好ましく、ナトリウム、マグネシウム及びカルシウムより選択される1つ以上を含むことがより好ましい。
 中空シリカ粒子の耐久性を向上する観点、並びに半硬化物及び硬化物の密着性及び誘電特性を向上する観点から、シェル層の平均厚みは、中空シリカ粒子の一次粒子の直径を1としたとき、0.01~0.3が好ましく、0.02~0.2がより好ましく、0.03~0.1が更に好ましい。
 シェル層の平均厚さは、TEM観察により測定する20個の中空シリカ粒子のシェル層の厚さの平均値である。
 本組成物1において、半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子の水銀圧入法による20%破壊圧力は、150MPa以上が好ましく、200MPa以上がより好ましく、250MPa以上が更に好ましい。20%破壊圧力の上限は、特に限定されるものではなく、例えば、600MPa以下とすることができる。
 本組成物2において、半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子の水銀圧入法による20%破壊圧力は、120MPa以上が好ましく、150MPa以上がより好ましく、200MPa以上が更に好ましく、250MPa以上が特に好ましい。20%破壊圧力の上限は、特に限定されるものではなく、例えば、600MPa以下とすることができる。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子の平均一次粒子径は、10nm~10μmが好ましく、20nm~7μmがより好ましく、50nm~5μmが更に好ましく、70nm~3μmが特に好ましく、100nm~1μmが最も好ましい。
 中空シリカ粒子の平均一次粒子の大きさは、SEM観察によりその粒子径(直径、球状でない場合は長辺と短辺の平均値)を直接観察することによって求められる。具体的には、SEM画像より100個の中空シリカ粒子の一次粒子の大きさを測定し、それらを平均して得られた一次粒子の大きさの累積分布が50%になる値を、全体の一次粒子の平均一次粒子径と推定する。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子のメジアン径(以下、単に「d50」とも記す。)は、0.1~10.0μmが好ましく、0.2~10.0μmがより好ましく、0.25~8.0μmが更に好ましく、0.3~7.0μmが特に好ましく、0.3~5.0μmが最も好ましく、0.3~3.0μmであってもよい。また、中空シリカ粒子のd50を上記数値範囲とすることにより、プリプレグ及び硬化物の平滑性を向上でき、絶縁層を形成したときの回路における伝送損失を低下できる。
 本開示において、「d50」は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)により求められる中空シリカ粒子の体積基準累積50%径である。すなわち、d50は、レーザー回折・散乱法によって粒度分布を測定し、中空シリカ粒子の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が50%となる点の粒子径である。
 なお、本開示において、中空シリカ粒子のd50は、一次粒子及び二次粒子を含む状態で測定する。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子のd10は、0.1~2.0μmが好ましく、0.2~2.0μmがより好ましく、0.3~1.8μmが更に好ましく、0.3~1.5μmが特に好ましい。また、中空シリカ粒子のd10を上記数値範囲とすることにより、プリプレグ及び硬化物の平滑性を向上でき、絶縁層を形成したときの回路における伝送損失を低下できる。
 本開示において、「d10」は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)により求められる中空シリカ粒子の体積基準累積10%径である。すなわち、d10は、レーザー回折・散乱法によって粒度分布を測定し、中空シリカ粒子の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が10%となる点の粒子径である。
 なお、本開示において、中空シリカ粒子のd10は、一次粒子及び二次粒子を含む状態で測定する。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子のd90は、0.7~15.0μmが好ましく、0.8~12.0μmがより好ましく、0.9~10.0μmが更に好ましく、0.9~8.0μmが特に好ましく、0.9~6.0μmが最も好ましく、0.9~5.0μmであってもよい。また、中空シリカ粒子のd90を上記数値範囲とすることにより、プリプレグ及び硬化物の平滑性を向上でき、絶縁層を形成したときの回路における伝送損失を低下できる。
 なお、本開示において、中空シリカ粒子のd90は、一次粒子及び二次粒子を含む状態で測定する。
 本開示において、「d90」は、レーザー回折式の粒度分布測定装置(例えば、マイクロトラック・ベル株式会社製「MT3300EXII」)により求められる中空シリカ粒子の体積基準累積90%径である。すなわち、d90は、レーザー回折・散乱法によって粒度分布を測定し、中空シリカ粒子の全体積を100%として累積カーブを求め、その累積カーブ上で累積体積が90%となる点の粒子径である。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、d50/d10は、6.0以下が好ましく、5.0以下がより好ましく、3.0以下が更に好ましく、2.5以下が特に好ましい。d50/d10の下限値は、特に限定されるものではなく、1.3とすることができる。
 半硬化物及び硬化物の平滑性を向上する観点から、 中空シリカ粒子のコールターカウンター法により測定した本組成物の総質量に対する、平均粒子径10μm以上の粒子の含有率は、500質量ppm以下が好ましく、200質量ppm以下がより好ましく、100質量ppm以下が更に好ましく、0質量ppmであってもよい。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた中空シリカ粒子の密度は、0.35~2.00g/cmが好ましく、0.35~1.50g/cmがより好ましく、0.40~1.00g/cmが更に好ましい。
 なお、本組成物が、2種以上の中空シリカ粒子を含む場合、中空シリカ粒子の密度は、各中空シリカ粒子の密度を加重平均することにより求める。
 乾式ピクノメーターとしては、Micromeritics社製AccuPycII 1340又はこれと同等の装置を使用できる。
 プリプレグ、硬化物等の比誘電率のばらつきを低くする観点から、本組成物は、樹脂及び中空シリカ粒子を含み、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた中空シリカ粒子及び樹脂の密度を、それぞれ、A(g/cm)、及びB(g/cm)としたとき、A/Bが、0.3~1.5であることが好ましく、0.4~1.0がより好ましい。
 半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子のBET比表面積は、1.0~100.0m/gが好ましく、1.0~50.0m/gがより好ましく、1.0~30.0m/gが更に好ましい。
 半硬化物及び硬化物の密着強度を向上する観点、及び比誘電率を低下させる観点から、アルゴンガス及び乾式ピクノメーターを用いた定容積膨張法により求めた中空シリカ粒子の密度と、中空シリカ粒子のBET比表面積との積は、1.0~120.0m/cmが好ましく、2.0~80.0m/cmがより好ましく、2.5~40.0m/cmが更に好ましく、3.0~20.0m/cmが特に好ましい。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子の空隙率は、30~90%が好ましく、40~90%がより好ましく、50~85%が更に好ましい。
 本開示において、中空シリカ粒子の空隙率は、中空シリカ粒子の真密度により、中空シリカ粒子の密度を除し、100倍することにより算出する。なお、中空シリカ粒子の真密度は、Micromeritics社製AccuPycII 1340又はこれと同等の装置により、Heガスを用いて測定する。
 中空シリカ粒子に含まれる個々の中空シリカ粒子の形状は、特に限定されるものではなく、球状であってもよく、非球状であってもよいが、低誘電正接の観点から、球状が好ましい。低誘電正接の観点から、球状中空シリカ粒子の真球度は、0.75以上が好ましく、0.90以上がより好ましく、0.93以上が更に好ましく、1.00が特に好ましい。また、中空シリカ粒子は、低誘電正接の観点から、無孔質粒子が好ましい。
 絶縁層を形成したときの回路における伝送損失を低下させる観点から、中空シリカ粒子の誘電正接は、周波数1GHzにおいて0.0020以下が好ましく、0.0015以下がより好ましく、0.0012以下が更に好ましい。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、並びに半硬化物及び硬化物の誘電特性を向上する観点から、中空シリカ粒子の吸油量は、20~500mL/100gが好ましく、25~200mL/100gがより好ましく、30~150mL/100gが更に好ましく、30~100mL/100gが特に好ましく、30~80mL/100gが最も好ましい。
 本開示において、「吸油量」は、JIS K 5101-13-1(2004)(対応ISO:ISO 787-5 1980)に従って測定する。なお、本開示における吸油量は、JIS K 5101-13-1(2004)に従って測定される値に、密度/真密度の値を乗じた値(すなわち、JIS K 5101-13-1(2004)に従って測定される吸油量×(密度/真密度))とする。
 本組成物1において、半硬化物及び硬化物の曲げ強度を向上する観点から、中空シリカ粒子の帯電量は、0.005μC/g以上が好ましく、0.010μC/g以上がより好ましく、0.015μC/g以上が更に好ましく、0.020μC/g以上が特に好ましい。帯電量の上限値は、特に限定されるものではなく、0.080μC/g以下にできる。
 本組成物2において、半硬化物及び硬化物の曲げ強度を向上する観点から、中空シリカ粒子の帯電量は、0.010μC/g以上が好ましく、0.015μC/g以上がより好ましく、0.020μC/g以上が更に好ましい。帯電量の上限値は、特に限定されるものではなく、0.080μC/g以下にできる。
 本開示において、帯電量は、以下の方法により測定する。なお、測定装置としては、例えば、粉体摩擦帯電量測定装置 NS-K100型(ナノシーズ社製)を使用できる。
 中空シリカ粒子10gをアルミ容器(内寸Φ42mm、深さ70mm)に入れ、試料回転用アームに固定して取り付ける。左右振り角は、左150度、右210度(左右振り速度は540deg/s)として12往復で1クールとする(中間の6往復終了時に2回転の粉払い落とし回転動作を加える)。3クールの摩擦攪拌を加えた後、帯電した中空シリカ粒子をファラデーケージに投入し、中空シリカ粒子の帯電量を測定し、質量当たりの帯電量に換算する(中空シリカ粒子の帯電量/中空シリカ粒子仕込み量10g)。
 なお、中空シリカ粒子の帯電量は、シェル層の総質量に対する周期表の第1族および第2族に属するアルカリ金属分の含有率の和、比表面積、一次粒子径等を調整することにより調整できる。
 例えば、中空シリカ粒子に対するシランカップリング剤による表面処理を施す、又はシェル層の総質量に対する周期表の第1族および第2族に属するアルカリ金属分の含有率の和を増やすことにより、帯電量を低下させることができる。
 本組成物1において、個々の中空シリカ粒子はシランカップリング剤によって処理されていてもよい。中空シリカ粒子の表面がシランカップリング剤によって処理されていることで、表面のシラノール基の残存量が少なくなり、表面が疎水化され、水分吸着を抑えて誘電損失を向上できるとともに、本組成物において樹脂との親和性が向上し、分散性、及び樹脂製膜後の強度を向上できる。
 シランカップリング剤の種類としては、アミノシラン系カップリング剤、メタクリルシラン系シランカップリング剤、エポキシシラン系カップリング剤、メルカプトシラン系カップリング剤、シラン系カップリング剤、オルガノシラザン化合物等が挙げられる。シランカップリング剤は1種類を用いてもよいし2種類以上を組み合わせて用いてもよい。
 シランカップリング剤の付着量は、中空シリカ粒子100質量部に対して、0.01~5質量部が好ましく、0.02~5質量部がより好ましく、0.10~2質量部が更に好ましい。
 中空シリカ粒子の表面がシランカップリング剤で処理されていることはIRによるシランカップリング剤の置換基によるピークの検出により確認できる。また、シランカップリング剤の付着量は、炭素量により測定できる。
 また、本組成物2において、得られたシリカ粒子を従来公知のシランカップリング剤で表面処理してもよいが、プリプレグ等の成形物の靱性の観点からは、表面処理を施さないことが好ましい。
 本組成物1において、中空シリカ粒子は、本開示の効果を妨げない範囲において、不純物元素を含んでいてもよい。不純物元素としては、例えば、Al、Fe、Ti等が挙げられる。
 比誘電率のばらつきが小さいプリプレグ及び硬化物を作製する観点、半硬化物及び硬化物の誘電特性及び密着性を向上する観点、並びに本組成物の吸水性を低下する観点から、本組成物の総体積に対する中空シリカ粒子の含有量は、10~70体積%が好ましく、15~65体積%がより好ましく、18~60体積%が更に好ましい。
 中空シリカ粒子は、市販されるものを使用してもよく、従来公知の方法により作製したものを使用してもよい。例えば、国際公開第2019/131658号、国際公開第2021/006697号、国際公開第2021/172294号等に記載の方法により作製した中空シリカ粒子を使用できる。
 本組成物は、1種又は2種以上の溶剤を含んでもよい。溶剤としては、アセトン、メタノール、エタノール、ブタノール、2-プロパノール、2-メトキシエタノール、2-エトキシエタノール、トルエン、キシレン、メチルエチルケトン、N,N-ジメチルホルムアミド、メチルイソブチルケトン、N-メチル-2-ピロリドン、n-ヘキサン、シクロヘキサン等が挙げられる。密着性等の観点から、溶剤は、トルエン、シクロヘキサノン、メチルエチルケトン、及びN-メチル-2-ピロリドンからなる群より選択される少なくとも1つを含むことが好ましい。本組成物の総質量に対する溶剤の含有率は、特に限定されず、例えば10~60質量%であってもよい。
 中空シリカ粒子の凝集抑制等の観点から、溶剤の表面張力は、40mN/m以下が好ましく、35mN/m以下がより好ましく、30mN/m以下が更に好ましい。表面張力の下限は、特に限定されず、例えば5mN/mでもよい。
 本開示において、「表面張力」は、表面張力計を用いて、25℃の溶剤に対してウィルヘルミー法により測定する。
 溶媒の粘度は、25℃において、10mPa・s以下が好ましく、5mPa・s以下がより好ましい。溶媒の粘度の下限は、特に限定されるものではなく、2mPa・s以上にできる。
 本組成物の総質量に対する溶媒の含有率は、特に限定されるものではなく、例えば、10質量%~90質量%にできる。
 本組成物は、重合開始剤を1種又は2種以上含有してもよい。重合開始剤としては、α,α’-ビス(t-ブチルパーオキシ-m-イソプロピル)ベンゼン、2,5-ジメチル-2,5-ジ(t-ブチルパーオキシ)-3-ヘキシン、過酸化ベンゾイル、3,3’,5,5’-テトラメチル-1,4-ジフェノキノン、クロラニル、2,4,6-トリ-t-ブチルフェノキシル、t-ブチルペルオキシイソプロピルモノカーボネート、アゾビスイソブチロニトリル等が挙げられる。樹脂100質量部に対する重合開始剤の含有量は、0.1~5質量部が好ましい。
 本組成物は、重合促進剤を1種又は2種以上含有してもよい。重合促進剤としては、トリアリルイソシアヌレート等のトリアルケニルイソシアヌレート化合物、分子中にアクリロイル基又はメタクリロイル基を2個以上有する多官能アクリル系化合物、分子中にビニル基を2個以上有する多官能ビニル化合物、分子中にビニルベンジル基を有するスチレン等のビニルベンジル化合物等が挙げられる。樹脂100質量部に対する重合促進剤の含有量は、10~100質量部が好ましい。
 本組成物は、可塑剤を1種又は2種以上含有してもよい。可塑剤としては、ブタジエン・スチレンコポリマー等が挙げられる。樹脂100質量部に対する可塑剤の含有量は、10~50質量部が好ましく、20~40質量部がより好ましい。
 本組成物は、上記成分以外にも、その効果を損なわない範囲で、界面活性剤、チキソ性付与剤、pH調整剤、pH緩衝剤、粘度調節剤、消泡剤、シランカップリング剤、脱水剤、可塑剤、耐候剤、酸化防止剤、熱安定剤、滑剤、帯電防止剤、増白剤、着色剤、導電材、離型剤、表面処理剤、難燃剤、各種有機又は無機フィラー等の他の成分を更に含んでいてもよい。
 本組成物は、パソコン、ノートパソコン、デジタルカメラ等の電子機器や、スマートフォン、ゲーム機等の通信機器等に用いられる電子基板の作製に用いられる樹脂組成物として好適に使用できる。また、本発明の樹脂組成物は、低誘電率化、低伝送損失化、低吸湿化、剥離強度向上のために、プリプレグ、金属箔張積層板、プリント配線板、樹脂シート、接着層、接着フィルム、ソルダーレジスト、バンプリフロー用樹脂組成物、再配線絶縁層、ダイボンド材、封止材、アンダーフィル、モールドアンダーフィル及び積層インダクタ等への応用も期待される。
 本開示のプリプレグは、本組成物又はその半硬化物と、繊維質基材と、を含む。繊維質基材としては、ガラスクロス、アラミドクロス、ポリエステルクロス、ガラス不織布、アラミド不織布、ポリエステル不織布、パルプ紙等が挙げられる。繊維質基材としては、ガラス成分を含むものが好ましい。繊維質基材の厚さは、特に限定されるものではなく、12μm~1000μmとできる。なお、本組成物については上記したため、ここでは記載を省略する。
 本開示のプリプレグは、繊維質基材に、本組成物を塗布又は含浸させることにより製造できる。本組成物の塗布又は含浸後に、樹脂組成物を加熱し、半硬化させてもよい。
 本開示の樹脂付き金属基材は、本組成物若しくはその半硬化物又は上記プリプレグと、金属基材層と、を含む。金属基材層は、本組成物若しくはその半硬化物又は上記プリプレグの一方の表面に設けられてもよく、両面に設けられてもよい。
 金属基材層の種類は特に限定されるものではなく、金属基材層を構成する金属としては、銅、銅合金、ステンレス鋼、ニッケル、ニッケル合金(42合金も含む。)、アルミニウム、アルミニウム合金、チタン、チタン合金等が挙げられる。金属基材層は、金属箔であるのが好ましく、圧延銅箔、電解銅箔等の銅箔であるのがより好ましい。金属箔の表面は、防錆処理(クロメート等の酸化物皮膜等)されていてもよく、粗化処理されていてもよい。金属箔として、キャリア銅箔(厚さ:10μm~35μm)と、剥離層を介してキャリア銅箔表面に積層された極薄銅箔(厚さ:2μm~5μm)とからなるキャリア付金属箔を使用してもよい。金属基材層の表面は、シランカップリング剤により処理されていてもよい。この場合、金属基材層の表面の全体がシランカップリング剤により処理されていてもよく、金属基材層の表面の一部がシランカップリング剤により処理されていてもよい。シランカップリング剤としては、上記したものを使用できる。
 金属基材層の厚さは1~40μmが好ましく、2~20μmがより好ましい。樹脂付き金属基材をプリント配線板として使用した場合の伝送損失を低下できる観点から、金属基材層の最大高さ粗さ(Rz)は、6μm以下が好ましく、4μm以下がより好ましい。
 一実施形態において、本開示の樹脂付き金属基材は、金属基材層の表面に、本組成物を塗布することにより製造できる。本組成物の塗布後に、樹脂組成物を加熱し、半硬化させてもよい。
 他の実施形態において、本開示の樹脂付き金属基材は、金属基材層とプリプレグとを積層することにより製造できる。金属基材層とプリプレグとの積層方法としては、これらを熱圧着する方法等が挙げられる。
 本開示の配線板は、本組成物の硬化物と、金属配線とを含む。金属配線としては、上記した金属基材層をエッチング等することにより製造したものを使用できる。
 本開示の配線板は、上記樹脂付き金属基材が備える金属基材層をエッチングする方法、本組成物の硬化物表面に電解めっき法(セミアディティブ法(SAP法)、モディファイドセミアディティブ法(MSAP法)等)によってパターン回路に形成する方法等により製造できる。
 次に本開示の実施形態を実施例により具体的に説明するが、本開示の実施形態はこれらの実施例に限定されるものではない。
 例1-1~1-3は第1の実施形態における実施例であり、例1-4~1-5は第1の実施形態における比較例である。
(中空シリカ粒子及び中空粒子の20%破壊圧力の測定方法)
 各例で用いた中空シリカ粒子及び中空粒子の20%破壊圧力を、ASTM D 3102-78に準拠して、水銀圧入ポロシメーター(MICROMERITICS INSTRUMENT社製のAutoPore IV 9500)を用いて測定した。
(中空シリカ粒子及び中空粒子の密度の測定方法)
 各例で用いた中空シリカ粒子及び中空粒子を230℃で減圧乾燥して水分を完全に除去し、試料とした。この試料について、乾式ピクノメーター(Micromeritics社製AccuPycII 1340)を用いて密度を測定した。測定条件は下記の通りである。(測定条件)
・試料セル:10cmセル
・試料重量:1.0g
・測定ガス:アルゴンガス
・パージ回数:10回
・パージ処理充填圧力:135kPag
・サイクル回数:10回
・サイクル充填圧力:135kPag
・圧力平衡を終了するレート:0.05kPag/分
(中空シリカ粒子及び中空粒子のBET比表面積の測定方法)
 各例で用いた中空シリカ粒子及び中空粒子を230℃で減圧乾燥して水分を完全に除去し、試料とした。この試料について、マイクロメリティック社製の自動比表面積・細孔分布測定装置「トライスターII」にて、窒素ガスを用いて多点BET法により比表面積を求めた。
(中空シリカ粒子及び中空粒子のd50の測定方法)
 各例で用いた中空シリカ粒子及び中空粒子のd50は、レーザー回折・散乱法により、粒度分布測定装置(マイクロトラック・ベル社製、MT3300EXII)を用いて測定した。具体的には、超音波照射を120秒間行うことで中空シリカ粒子の二次粒子を分散させてから測定を行い、得られた粒子の大きさの累積分布が50%になる値をd50とした。
(中空シリカ粒子及び中空粒子の平均一次粒子径の測定方法)
 各例で用いた中空シリカ粒子及び中空粒子の平均一次粒子径は、SEM観察によりその粒子径(直径、球状でない場合は長辺と短辺の平均値)を直接観察することによって求めた。具体的には、SEM画像より100個の中空シリカ粒子の一次粒子の大きさを測定し、それらを平均して得られた一次粒子の大きさの累積分布が50%になる値を、全体の一次粒子の平均一次粒子径と推定した。
(中空シリカ粒子及び中空粒子の真球度の測定方法)
 中空シリカ粒子及び中空粒子の真球度は、走査型電子顕微鏡(SEM)により写真撮影して得られる写真投影図における任意の100個の粒子について、それぞれの最大径(DL)と、これと直交する短径(DS)とを測定し、最大径(DL)に対する最小径(DS)の比(DS/DL)を算出し、その平均を算出することにより求めた。
(中空シリカ粒子及び中空粒子の誘電正接の測定方法)
 中空シリカ粒子及び中空粒子の周波数1GHzにおける誘電正接は、キーコム株式会社製「ベクトルネットワークアナライザ E5063A」)を用い、摂動方式共振器法にて測定した。
(中空シリカ粒子及び中空粒子の空隙率の測定方法)
 中空シリカ粒子の空隙率は、中空シリカ粒子の真密度により、中空シリカ粒子の密度を除し、100倍することにより算出した。中空シリカ粒子の真密度は、Micromeritics社製AccuPycII 1340により測定した。中空粒子の空隙率についても同様に算出した。
(中空シリカ粒子及び中空粒子の吸油量の測定方法)
 中空シリカ粒子及び中空粒子の吸油量は、JIS K 5101-13-1(2004)に従って測定した。
(中空シリカ粒子及び中空粒子の帯電量の測定方法)
 各例で用いた中空シリカ粒子又は中空粒子10gを、アルミ容器(内寸Φ42mm、深さ70mm)に入れ、試料回転用アームに固定して取り付けた。左右振り角は、左150度、右210度(左右振り速度は540deg/s)として12往復で1クールとした(中間の6往復終了時に2回転の粉払い落とし回転動作を加える)。3クールの摩擦攪拌を加えた後、帯電した中空シリカ粒子又は中空粒子をファラデーケージに投入し、中空シリカ粒子又は中空粒子の帯電量を測定し、質量当たりの帯電量に換算した(中空シリカ粒子又は中空粒子の帯電量/中空シリカ粒子又は中空粒子の仕込み量10g)。
 なお、測定装置は、粉体摩擦帯電量測定装置(NS-K100型、ナノシーズ社製)を使用した。
(樹脂の密度の測定方法)
 各例で用いた樹脂の密度は、下記のように測定した。
-ポリフェニレンエーテル樹脂の密度測定-
 ポリフェニレンエーテルの59質量部、ブタジエン・スチレンランダムコポリマーの16質量部、トリアリルイソシアヌレートの25質量部、α,α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼンの1質量部、トルエンの60質量部をポリビンに入れ、プラネタリーディスパで混練して樹脂を得た。得られた樹脂を120℃で真空乾燥し、溶媒を除いた後、カッターミルを用いて粉砕し、Arピクノメーターで密度を測定したところ、密度は1.1g/cmであった。
1.樹脂組成物を製造するための各成分の準備
<熱硬化性樹脂>
・ポリフェニレンエーテル:ポリフェニレンエーテルの末端水酸基をメタクリル基で変性した変性ポリフェニレンエーテル、SABIC社製、Noryl SA9000、Mw1700、1分子あたりの官能基数2個
<中空シリカ粒子A1>
 中空シリカ粒子A1は以下のようにして作製した。
(エマルションの作製)
 純水1250gにEO-PO-EOブロックコポリマー(ADEKA社製、プルロニック(登録商標)F68)を2g添加し溶解するまで撹拌し、水溶液を得た。この水溶液にソルビタン酸モノオレート(三洋化成社製、イオネット(登録商標)S-80)2gを溶解したn-デカン42gを加え、IKA社製ホモジナイザーを使って液全体が均一になるまで撹拌し、粗エマルションを作製した。
 この粗エマルションを、高圧乳化機(エスエムテー社製、LAB1000)を使い、圧力50barで乳化を行い、エマルション径が1μmのエマルションを作製した。
(エージング)
 得られたエマルションを40℃で12時間静置した。
(1段目シェル層形成)
 静置後、エマルション1300gに、pHが2となるよう、希釈したケイ酸ナトリウム水溶液(SiO濃度10.4質量%、NaO濃度3.6質量%)23g及び2M塩酸を加え、30℃で保持しながら撹拌し、混合液を得た。
 次いで、混合液を撹拌しながら1M水酸化ナトリウム水溶液をpHが6となるようゆっくり滴下し、オイルコア-シリカシェル粒子分散液を得た。得られたオイルコア-シリカシェル粒子分散液を保持し、熟成させた。
(2段目シェル層形成)
 オイルコア-シリカシェル粒子分散液を70℃に加熱し、撹拌しながら1M水酸化ナトリウム水溶液をゆっくり添加し、pHを9とした。
 次に、希釈したケイ酸ナトリウム水溶液(SiO濃度10.4質量%、NaO濃度3.6質量%)330gを、pH9になるように0.5M塩酸とともに徐々に添加した。
 この懸濁液を80℃で1日間保持した後、室温(25℃)まで冷却し、中空シリカ前駆体分散液を得た。
(ろ過、洗浄、乾燥、焼成)
 中空シリカ前駆体分散液全量を、2M塩酸でpH2まで中和後、定量ろ紙5Cを用いてろ過を行った。その後、80℃のイオン交換水350mlを加えて再度加圧濾過し、中空シリカケーキを洗浄した。
 ろ過後のケーキを、窒素雰囲気下で、100℃で1時間、続けて400℃で2時間乾燥し(昇温時間10℃/min)、有機分を除去することで中空シリカ前駆体を得た。
 得られた中空シリカ前駆体を、1000℃で1時間焼成(昇温時間10℃/min)することでシェルの焼き締めを行い、中空シリカ焼成粒子を得た。
(表面処理)
 200mlガラスビーカーに、中空シリカ焼成粒子10g、イソプロパノール150ml、ビニルトリメトキシシラン0.1gを添加し、100℃で1時間還流した。その後、疎水性PTFEメンブレンフィルターを用いて減圧濾過し、イソプロパノール20mlで洗浄後、150℃に温度調整した真空乾燥機で2時間真空乾燥し、表面処理された中空シリカ粒子A1を得た。
 1段目シェル層形成及び2段目シェル層形成において形成されたシェル層の厚みは、透過型電子顕微鏡(TEM)によって個々の粒子のシェル厚さを測定することによって求めた。TEM像は中空シリカ粒子を親水化処理したポリビニルフォルマール膜上に散布し、HITACHI社製のHT7700を用いて、加速電圧100kVで観察した。任意の50個の粒子のシェル厚の平均値をシェルの厚みとした。結果を表1に示す。
 1段目シェル層及び2段目シェル層の総質量に対するナトリウムの含有率は、500質量ppmであった。
<中空シリカ粒子A2>
 2段目シェル層形成において、使用したケイ酸ナトリウム水溶液の量を500gに変更した以外は、中空シリカ粒子A1と同様にして、中空シリカ粒子A2を得た。
<中空シリカ粒子A3>
 2段目シェル層形成において、使用したケイ酸ナトリウム水溶液の量を650gに変更した以外は、中空シリカ粒子A1と同様にして、中空シリカ粒子A2を得た。
<中空粒子B1>
 特開2021-143089号公報の実施例1の方法に準拠して、アルミノシリケート中空粒子を得た。
<中空粒子B2>
 グラスバブルスiM16K(メジアン径17μmのガラスバルーン、3M社)をそのまま用いた。
[例1-1]
 ポリフェニレンエーテル樹脂の59質量部、ブタジエン・スチレンランダムコポリマーの16質量部、トリアリルイソシアヌレートの25質量部、α,α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼンの1質量部、中空シリカ粒子A1を全体の20体積%となる質量部、トルエンの80質量部をポリビンに入れ、プラネタリーディスパで混練して樹脂組成物を得た。
 樹脂組成物を、IPCスペック2116のガラスクロスに含浸塗工し、160℃で4分間加熱乾燥してプリプレグを得た。
 プリプレグを3枚重ね、上下にロープロファイル銅箔(厚さ:18μm、Rz:3.5μm、三井金属社製、3EC-M3-V-18)を積層し、230℃、圧力30kg/cmで120分間加熱成形し、樹脂付き金属基材を得た。
[例1-2~1-5]
 中空シリカ粒子A1を、表1に記載の中空シリカ粒子又は中空粒子に変更した以外は、例1と同様にして、樹脂組成物、プリプレグ及び樹脂付き金属基材を製造した。
<比誘電率及び誘電正接の測定>
 例1-1~1-5において製造した樹脂付き金属基材を、エッチング液(サンハヤト社製、H-1000A、塩化第二鉄水溶液)に浸漬し、片面の銅箔を完全に除去した後、オーブンにて100℃で10分乾燥した。得られたプレス済プリプレグを、縦スプリットポスト誘電体共振器(Agilent Technologies社製)にて、比誘電率と誘電正接(測定周波数:10GHz)とを測定した。結果を表1に示す。
 表1に示されるように、本組成物1を用いて得られたプリプレグは、比誘電率が低下している。
[例2-1~2-10]
 例2-1~2-6は実施例であり、例2-7~2-10は比較例である。
1.樹脂組成物を製造するための各成分の準備
[熱硬化性樹脂]
・ポリフェニレンエーテル:ポリフェニレンエーテルの末端水酸基をメタクリル基で変性した変性ポリフェニレンエーテル、SABIC社製、Noryl SA9000、Mw1700、1分子あたりの官能基数2個
<中空シリカ粒子C1>
 中空シリカ粒子C1は以下のようにして作製した。
(エマルションの作製)
 純水1250gにEO-PO-EOブロックコポリマー(ADEKA社製、プルロニック(登録商標)F68)を4g添加し溶解するまで撹拌し、水溶液を得た。この水溶液にソルビタン酸モノオレート(三洋化成社製、イオネット(登録商標)S-80)4gを溶解したn-デカン42gを加え、IKA社製ホモジナイザーを使って液全体が均一になるまで撹拌し、粗エマルションを作製した。
 この粗エマルションを、高圧乳化機(エスエムテー社製、LAB1000)を使い、圧力50barで乳化を行い、エマルション径が1μmのエマルションを作製した。
(エージング)
 得られたエマルションを40℃で12時間静置した。
(1段目シェル層形成)
 静置後、エマルション1300gに、pHが2となるよう、希釈したケイ酸ナトリウム水溶液(SiO濃度10.4質量%、NaO濃度3.6質量%)23g及び2M塩酸を加え、30℃で保持しながら撹拌し、混合液を得た。
 次いで、混合液を撹拌しながら1M水酸化ナトリウム水溶液をpHが6となるようゆっくり滴下し、オイルコア-シリカシェル粒子分散液を得た。得られたオイルコア-シリカシェル粒子分散液を保持し、熟成させた。
(2段目シェル層形成)
 オイルコア-シリカシェル粒子分散液を70℃に加熱し、撹拌しながら1M水酸化ナトリウム水溶液をゆっくり添加し、pHを9とした。
 次に、希釈したケイ酸ナトリウム水溶液(SiO濃度10.4質量%、NaO濃度3.6質量%)330gを、pH9になるように0.5M塩酸とともに徐々に添加した。
 この懸濁液を80℃で1日間保持した後、室温(25℃)まで冷却し、中空シリカ前駆体分散液を得た。
(ろ過、洗浄、乾燥、焼成)
 中空シリカ前駆体分散液全量を、2M塩酸でpH2まで中和後、定量ろ紙5Cを用いてろ過を行った。その後、80℃のイオン交換水350mlを加えて再度加圧濾過し、中空シリカケーキを洗浄した。
 ろ過後のケーキを、窒素雰囲気下で、100℃で1時間、続けて400℃で2時間乾燥し(昇温時間10℃/min)、有機分を除去することで中空シリカ前駆体を得た。
 得られた中空シリカ前駆体を、1000℃で1時間焼成(昇温時間10℃/min)することでシェルの焼き締めを行い、中空シリカ焼成粒子を得た。
 中空シリカ粒子C1のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na)の含有率は500質量ppmであった。
<中空シリカ粒子C2>
 EO-PO-EOブロックコポリマーの使用量を2gに、ソルビタン酸モノオレートの使用量を2gに変更した以外は、中空シリカ粒子C1と同様にして、中空シリカ粒子C2を得た。
 中空シリカ粒子C2のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na)の含有率は500質量ppmであった。
<中空シリカ粒子C3>
 EO-PO-EOブロックコポリマー(ADEKA社製「プルロニック(登録商標)F68」)を20gに変更し、ソルビタン酸モノオレート(三洋化成社製イオネット(登録商標)S-80)を使用せず、乳化における圧力を100barに変更したこと以外は、中空シリカ粒子C1と同様にして、中空シリカ粒子C3を得た。
 中空シリカ粒子C3のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na)の含有率は50質量ppmであった。
<中空シリカ粒子C4>
 EO-PO-EOブロックコポリマー(ADEKA社製「プルロニック(登録商標)F68」)を40gに変更し、ソルビタン酸モノオレート(三洋化成社製イオネット(登録商標)S-80)を使用せず、乳化における圧力を100barに変更したこと以外は、中空シリカ粒子C1と同様にして、中空シリカ粒子C4を得た。
 中空シリカ粒子C4のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na)の含有率は300質量ppmであった。
<中空シリカ粒子C5>
 イオン交換水の代わりに水道水350mlを用いて、中空シリカケーキを洗浄した以外は、中空シリカ粒子C4と同様にして、中空シリカ粒子C5を得た。
 中空シリカ粒子C5のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na)の含有率は300質量ppmであった。
<中空シリカ粒子C6>
 10gの中空シリカ粒子C1に、ヘキサメチルジシラザン0.1gをトルエン100ml溶解した溶液を加え、200mlビーカーに入れて、プロペラ撹拌翼で60分攪拌した。得られた溶液を、ロータリーエバポレーターで溶剤を0.1%以下に留去し、表面処理を施した中空シリカ粒子C6を得た。
 中空シリカ粒子C6のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na)の含有率は500質量ppmであった。
<中空粒子D1>
 特開2021-143089号公報の実施例1の方法に準拠して、アルミノシリケート中空粒子を得た。
 中空粒子D1のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na、K、Ca、Mg)の含有率は1質量%以上であった。
<中空粒子D2>
 グラスバブルスiM16K(メジアン径17μmのガラスバルーン、3M社)をそのまま用いた。
 中空粒子D2のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na、K、Ca、Mg)の含有率は1質量%以上であった。
<中空粒子D3>
 イオン交換水の代わりに水道水3500mlを用いて、中空シリカケーキを洗浄した以外は、中空シリカ粒子C4と同様にして、中空粒子D3を得た。
 中空粒子D3のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na)の含有率は1500質量ppm以上であった。
<中空粒子D4>
 EO-PO-EOブロックコポリマー(ADEKA社製「プルロニックF68」)を50gに変更し、ソルビタン酸モノオレート(三洋化成社製イオネットS-80)を使用せず、乳化における圧力を100barに変更したこと以外は、中空シリカ粒子C1と同様にして、中空粒子D4を得た。
 中空粒子D4のシェル層の総質量に対するシェル層に含まれるアルカリ金属(Na)の含有率は1500質量ppm以上であった。
[例2-1]
 ポリフェニレンエーテル樹脂の59質量部、ブタジエン・スチレンランダムコポリマーの16質量部、トリアリルイソシアヌレートの25質量部、α,α’-ジ(t-ブチルペルオキシ)ジイソプロピルベンゼンの1質量部、中空シリカ粒子C1を全体の20体積%となる質量部、トルエンの80質量部をポリビンに入れ、プラネタリーディスパで混練して樹脂組成物を得た。
 静置後、樹脂組成物を、IPCスペック2116のガラスクロスに含浸塗工し、160℃で4分間加熱乾燥してプリプレグを得た。
 プリプレグを3枚重ね、上下にロープロファイル銅箔(厚さ:18μm、Rz:3.5μm、三井金属社製、3EC-M3-V-18)を積層し、230℃、圧力30kg/cmで120分間加熱成形し、樹脂付き金属基材を得た。
[例2-2~2-10]
 中空シリカ粒子C1を、表1に記載の中空シリカ粒子又は中空粒子に変更した以外は、例2-1と同様にして、樹脂組成物、プリプレグ及び樹脂付き金属基材を製造した。
 例2-10については、例2-1~2-6に比べ、プラネタリーディスパ等への中空粒子D4の付着が多く観察された。
<曲げ強度の測定>
 例2-1~2-10において製造した樹脂付き金属基材の曲げ弾性率を、TENSILON(エー・アンド・デイ社製、RTF-1350)を用い、JIS K 7171(2016)(対応ISO:ISO 178 2010)に準じて、ロードセル定格:10kN、支点間距離:64mm、速度:2mm/分の条件で測定した。測定結果を表1に示す。
 例10については装置への付着が多く、測定できなかったため、表2では、「-」と記す。
<比誘電率及び誘電正接の測定>
 例2-1~2-10において製造した樹脂付き金属基材を、エッチング液(サンハヤト社製、H-1000A、塩化第二鉄水溶液)に浸漬し、片面の銅箔を完全に除去した後、オーブンにて100℃で10分乾燥した。得られたプレス済プリプレグを、縦スプリットポスト誘電体共振器(Agilent Technologies社製)にて、比誘電率と誘電正接(測定周波数:10GHz)とを測定した。結果を表2に示す。
 表2に示されるように、本組成物2は、製造における装置への付着が少なく、また、本組成物を用いて得られたプリプレグの硬化物は、優れた曲げ強度を有する。
 2022年12月5日に出願された日本国特許出願第2022-194211号及び日本国特許出願第2022-194213号の開示は、その全体が参照により本明細書に取り込まれる。本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (16)

  1.  樹脂及び中空シリカ粒子を含む樹脂組成物であって、水銀圧入法により測定される前記中空シリカ粒子の20%破壊圧力が、120MPa以上である、樹脂組成物。
  2.  樹脂及び中空シリカ粒子を含む樹脂組成物であって、前記中空シリカ粒子の帯電量が0.005~0.080μC/gである、樹脂組成物。
  3.  前記中空シリカ粒子が、アルカリ金属及びアルカリ土類金属から選択される少なくとも1つを含み、前記中空シリカ粒子のシェル層の総質量に対する前記アルカリ金属及び前記アルカリ土類金属の含有率の和が、30質量ppm~1質量%である、請求項1又は2に記載の樹脂組成物。
  4.  前記中空シリカ粒子の密度が、0.35~2.00g/cmである、請求項1又は2に記載の樹脂組成物。
  5.  前記中空シリカ粒子のBET比表面積が、1.0~100.0m/gである、請求項1又は2に記載の樹脂組成物。
  6.  前記中空シリカ粒子のメジアン径(d50)が0.1~10.0μmである、請求項1又は2に記載の樹脂組成物。
  7.  前記中空シリカ粒子が、シリカを含むシェル層を備え、前記中空シリカ粒子の一次粒子の直径を1としたとき、前記シェル層の厚みが、0.01~0.3である、請求項1又は2に記載の樹脂組成物。
  8.  前記樹脂が、エポキシ樹脂、ポリイミド樹脂、ポリフェニレンエーテル樹脂、ジビニルベンゼン骨格を含む樹脂、及びピリミジン骨格を含む樹脂からなる群より選択される少なくとも1つを含む、請求項1又は2に記載の樹脂組成物。
  9.  樹脂組成物の総体積に対する前記中空シリカ粒子の含有量が10~70体積%である、請求項1又は2に記載の樹脂組成物。
  10.  請求項1又は2に記載の樹脂組成物又はその半硬化物と、繊維質基材と、を含むプリプレグ。
  11.  前記繊維質基材が、ガラス成分を含む、請求項10に記載のプリプレグ。
  12.  請求項1若しくは2に記載の樹脂組成物又はその半硬化物と、金属基材層と、を含む樹脂付き金属基材。
  13.  請求項10に記載のプリプレグと、金属基材層と、を含む樹脂付き金属基材。
  14.  前記金属基材層が、銅箔である、請求項12に記載の樹脂付き金属基材。
  15.  前記金属基材層が、銅箔である、請求項13に記載の樹脂付き金属基材。
  16.  請求項1又は2に記載の樹脂組成物の硬化物と、金属配線と、を含む配線板。
PCT/JP2023/042807 2022-12-05 2023-11-29 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板 WO2024122434A1 (ja)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2022194211 2022-12-05
JP2022-194213 2022-12-05
JP2022194213 2022-12-05
JP2022-194211 2022-12-05

Publications (1)

Publication Number Publication Date
WO2024122434A1 true WO2024122434A1 (ja) 2024-06-13

Family

ID=91379447

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/042807 WO2024122434A1 (ja) 2022-12-05 2023-11-29 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板

Country Status (1)

Country Link
WO (1) WO2024122434A1 (ja)

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206436A (ja) * 2004-01-26 2005-08-04 Denki Kagaku Kogyo Kk 球状無機質中空粉体およびその製造方法、樹脂組成物
JP2012136363A (ja) * 2010-12-24 2012-07-19 Kao Corp 中空シリカ粒子
JP2012240864A (ja) * 2011-05-17 2012-12-10 Konica Minolta Holdings Inc 中空粒子、赤外線反射フィルム及び赤外線反射体
JP2013043791A (ja) * 2011-08-23 2013-03-04 Nof Corp 変性中空シリカ微粒子
JP2019177347A (ja) * 2018-03-30 2019-10-17 地方独立行政法人神奈川県立産業技術総合研究所 浄化モジュールおよび浄化ユニット
WO2020138106A1 (ja) * 2018-12-25 2020-07-02 Agc株式会社 球状中空シリカ粒子群、内包剤、分散液及び水分散液
WO2021172293A1 (ja) * 2020-02-27 2021-09-02 Agc株式会社 中空シリカ粒子及び中空シリカ粒子の製造方法
JP2022052497A (ja) * 2020-09-23 2022-04-04 三菱ケミカル株式会社 造粒シリカ粉体及び造粒シリカ粉体の製造方法
JP2022172938A (ja) * 2021-05-07 2022-11-17 協和化学工業株式会社 中空粒子、該中空粒子の製造方法、樹脂組成物、ならびに該樹脂組成物を用いた樹脂成形体および積層体
WO2023100676A1 (ja) * 2021-11-30 2023-06-08 Agc株式会社 中空シリカ粒子及びその製造方法
WO2023210545A1 (ja) * 2022-04-28 2023-11-02 Agc株式会社 液状組成物、プリプレグ、樹脂付き金属基材、配線板及びシリカ粒子
JP2023164341A (ja) * 2022-04-28 2023-11-10 Agc株式会社 液状組成物、プリプレグ、樹脂付き金属基材、配線板及びシリカ粒子
WO2023218948A1 (ja) * 2022-05-09 2023-11-16 Agc株式会社 シリカ粒子分散液

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005206436A (ja) * 2004-01-26 2005-08-04 Denki Kagaku Kogyo Kk 球状無機質中空粉体およびその製造方法、樹脂組成物
JP2012136363A (ja) * 2010-12-24 2012-07-19 Kao Corp 中空シリカ粒子
JP2012240864A (ja) * 2011-05-17 2012-12-10 Konica Minolta Holdings Inc 中空粒子、赤外線反射フィルム及び赤外線反射体
JP2013043791A (ja) * 2011-08-23 2013-03-04 Nof Corp 変性中空シリカ微粒子
JP2019177347A (ja) * 2018-03-30 2019-10-17 地方独立行政法人神奈川県立産業技術総合研究所 浄化モジュールおよび浄化ユニット
WO2020138106A1 (ja) * 2018-12-25 2020-07-02 Agc株式会社 球状中空シリカ粒子群、内包剤、分散液及び水分散液
WO2021172293A1 (ja) * 2020-02-27 2021-09-02 Agc株式会社 中空シリカ粒子及び中空シリカ粒子の製造方法
WO2021172294A1 (ja) * 2020-02-27 2021-09-02 Agc株式会社 中空シリカ粒子及びその製造方法
JP2022052497A (ja) * 2020-09-23 2022-04-04 三菱ケミカル株式会社 造粒シリカ粉体及び造粒シリカ粉体の製造方法
JP2022172938A (ja) * 2021-05-07 2022-11-17 協和化学工業株式会社 中空粒子、該中空粒子の製造方法、樹脂組成物、ならびに該樹脂組成物を用いた樹脂成形体および積層体
WO2023100676A1 (ja) * 2021-11-30 2023-06-08 Agc株式会社 中空シリカ粒子及びその製造方法
WO2023210545A1 (ja) * 2022-04-28 2023-11-02 Agc株式会社 液状組成物、プリプレグ、樹脂付き金属基材、配線板及びシリカ粒子
JP2023164341A (ja) * 2022-04-28 2023-11-10 Agc株式会社 液状組成物、プリプレグ、樹脂付き金属基材、配線板及びシリカ粒子
WO2023218948A1 (ja) * 2022-05-09 2023-11-16 Agc株式会社 シリカ粒子分散液

Similar Documents

Publication Publication Date Title
US8227361B2 (en) Prepreg and printed wiring board using thin quartz glass cloth
EP2860219B1 (en) Resin composition, prepreg, metal foil-clad laminate and printed wiring board
JP5040092B2 (ja) 安定性の優れた低誘電正接樹脂ワニスおよびそれを用いた配線板材料
EP3315560B1 (en) Polyphenyl ether resin composition and use thereof in high-frequency circuit substrate
EP3315555A1 (en) Polyphenyl ether resin composition and use thereof in high-frequency circuit substrate
EP2762507B1 (en) Resin composition, prepreg, and metal foil-clad laminate
EP3689969B1 (en) Thermosetting resin composition, prepreg, laminate, and printed circuit board
KR20210130710A (ko) 소수성화된 용융 실리카를 포함하는 저 손실 유전체 복합재
JP2010138366A (ja) 樹脂組成物、プリプレグおよび金属箔張り積層板
JP6981634B2 (ja) 樹脂組成物、これを含むプリプレグ、これを含む積層板、およびこれを含む樹脂付着金属箔
CN114174411A (zh) 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板、以及布线板
JP2015199905A (ja) 印刷回路基板用絶縁樹脂組成物及びそれを用いた製品
JP2023164341A (ja) 液状組成物、プリプレグ、樹脂付き金属基材、配線板及びシリカ粒子
WO2023210545A1 (ja) 液状組成物、プリプレグ、樹脂付き金属基材、配線板及びシリカ粒子
WO2024122433A1 (ja) 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
WO2024122435A1 (ja) 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
WO2024122434A1 (ja) 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
CN114174433A (zh) 树脂组合物、预浸料、带树脂的膜、带树脂的金属箔、覆金属箔层压板以及布线板
JP2024081136A (ja) 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
JP2024081137A (ja) 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
JP2024081138A (ja) 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
JP2024081135A (ja) 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
JP2024081139A (ja) 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
JP2024081140A (ja) 樹脂組成物、プリプレグ、樹脂付き金属基材、及び配線板
JP7289074B2 (ja) 樹脂組成物、並びに、それを用いたプリプレグ、樹脂付きフィルム、樹脂付き金属箔、金属張積層板及び配線基板