WO2024122276A1 - ポリマーフィルム、積層体及び金属付き積層体 - Google Patents

ポリマーフィルム、積層体及び金属付き積層体 Download PDF

Info

Publication number
WO2024122276A1
WO2024122276A1 PCT/JP2023/040817 JP2023040817W WO2024122276A1 WO 2024122276 A1 WO2024122276 A1 WO 2024122276A1 JP 2023040817 W JP2023040817 W JP 2023040817W WO 2024122276 A1 WO2024122276 A1 WO 2024122276A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
laminate
polymer
polymer film
group
Prior art date
Application number
PCT/JP2023/040817
Other languages
English (en)
French (fr)
Inventor
美代子 柴野
泰行 佐々田
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024122276A1 publication Critical patent/WO2024122276A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/02Compositions of unspecified macromolecular compounds characterised by the presence of specified groups, e.g. terminal or pendant functional groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L53/00Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers
    • C08L53/02Compositions of block copolymers containing at least one sequence of a polymer obtained by reactions only involving carbon-to-carbon unsaturated bonds; Compositions of derivatives of such polymers of vinyl-aromatic monomers and conjugated dienes
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L77/00Compositions of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Compositions of derivatives of such polymers
    • C08L77/12Polyester-amides
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • This disclosure relates to polymer films, laminates and metal laminates.
  • Copper-clad laminates are preferably used as components for circuit boards, and polymer films are preferably used to manufacture copper-clad laminates.
  • JP 2022-126429 A describes a polymer film having a layer A and a layer B provided on at least one surface of the layer A, in which the layer A contains a polymer having a dielectric tangent of 0.01 or less, and the layer B has a moisture permeability of 100 g/( m2 ⁇ day) or less at a temperature of 40° C. and a relative humidity of 90%.
  • a copper-clad laminate is manufactured by laminating a copper foil on the surface of a polymer film.
  • a wiring board is manufactured by stacking a copper-clad laminate and a wiring substrate so that the polymer film of the copper-clad laminate and the wiring substrate are in contact with each other.
  • the polymer film deforms to follow the steps formed on the surface of the wiring substrate from the viewpoint of adhesion.
  • a polymer film having excellent step conformability to a wiring substrate is used for a copper-clad laminate, delamination may occur during the reflow soldering process performed when mounting electronic components. For this reason, there has been a demand for a material that has both step conformability to a wiring substrate and excellent adhesion during reflow soldering (i.e., excellent heat resistance).
  • An object of one embodiment of the present disclosure is to provide a polymer film that is excellent in step conformability and heat resistance.
  • Another problem to be solved by another embodiment of the present disclosure is to provide a laminate and a laminate with metal that are excellent in step conformability and heat resistance.
  • Means for solving the above problems include the following aspects.
  • ⁇ 1> Contains a polymer, has an elastic modulus of 10 MPa or less at 160°C, The elastic modulus at 260°C is 0.1 MPa or more, The equilibrium moisture absorption rate at 85° C. and a relative humidity of 85% is 2.5% by mass or less; The dielectric tangent is 0.01 or less.
  • ⁇ 2> The polymer film according to ⁇ 1> above, wherein the polymer comprises a liquid crystal polymer.
  • ⁇ 3> The polymer film according to ⁇ 1> or ⁇ 2> above, wherein the polymer comprises an aromatic polyester amide.
  • ⁇ 4> The polymer film according to any one of ⁇ 1> to ⁇ 3> above, comprising a thermoplastic resin containing a structural unit based on a monomer having an aromatic hydrocarbon group.
  • ⁇ 5> A curing agent, or at least one of the cured product of the curing agent and the thermoplastic resin, The polymer film according to the above item ⁇ 4>, wherein the curing agent has at least one of an epoxy group and a maleimide group.
  • ⁇ 6> The polymer film according to any one of ⁇ 1> to ⁇ 5> above, further comprising at least one inorganic filler selected from the group consisting of silica, aluminum hydroxide, and boron nitride.
  • the layer B contains a polymer and has an elastic modulus of 10 MPa or less at 160° C. and an elastic modulus of 0.1 MPa or more at 260° C.;
  • the laminate has an equilibrium moisture absorption rate of 2.5% by mass or less at 85° C. and a relative humidity of 85%, and a dielectric loss tangent of 0.01 or less.
  • ⁇ 8> The laminate according to ⁇ 7> above, wherein a ratio of the elastic modulus of the Layer A at 160°C to the elastic modulus of the Layer B at 160°C is 50 or more.
  • ⁇ 9> The laminate according to the above ⁇ 7> or ⁇ 8>, wherein the polymer comprises a liquid crystal polymer.
  • the polymer comprises an aromatic polyesteramide.
  • ⁇ 11> The laminate according to any one of the above ⁇ 7> to ⁇ 10>, comprising a thermoplastic resin containing a structural unit based on a monomer having an aromatic hydrocarbon group.
  • ⁇ 12> A composition comprising at least one of a curing agent and a cured product of the curing agent and the thermoplastic resin, The laminate according to the above-mentioned ⁇ 11>, wherein the curing agent has at least one of an epoxy group and a maleimide group.
  • the laminate further comprises a Layer C, The laminate according to any one of ⁇ 7> to ⁇ 13> above, comprising the Layer B, the Layer A, and the Layer C in this order.
  • a metal-attached laminate comprising the polymer film according to any one of the above ⁇ 1> to ⁇ 6> or the laminate according to any one of the above ⁇ 7> to ⁇ 14>, and a metal layer or metal wiring disposed on at least one surface of the polymer film or the laminate.
  • ⁇ 16> The metal-attached laminate according to ⁇ 15> above, wherein a peel strength between the polymer film or the laminate and the metal layer or the metal wiring at 260° C. is 0.02 kN/m or more.
  • a polymer film having excellent step conformability and heat resistance can be provided. Furthermore, according to another embodiment of the present disclosure, it is possible to provide a laminate and a laminate with metal that are excellent in step conformability and heat resistance.
  • the use of "to" indicating a range of values means that the values before and after it are included as the lower limit and upper limit.
  • the upper or lower limit value described in one numerical range may be replaced with the upper or lower limit value of another numerical range described in stages.
  • the upper or lower limit value of the numerical range may be replaced with a value shown in the examples.
  • an "alkyl group” includes not only an alkyl group that has no substituents (unsubstituted alkyl groups) but also an alkyl group that has a substituent (substituted alkyl groups).
  • the term "process” in this specification includes not only an independent process but also a process that cannot be clearly distinguished from other processes, as long as the intended purpose of the process is achieved. Furthermore, in the present disclosure, combinations of two or more preferred aspects are more preferred aspects.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) in the present disclosure are molecular weights detected by a gel permeation chromatography (GPC) analyzer using columns of TSKgel GMHxL, TSKgel G4000HxL, or TSKgel G2000HxL (all product names manufactured by Tosoh Corporation) in a differential refractometer using THF (tetrahydrofuran) as a solvent, and converted using polystyrene as a standard substance.
  • a "polymer” is a compound having a weight average molecular weight of 3000 or more and a glass transition temperature of higher than 25°C.
  • an "elastomer” is a compound having a weight average molecular weight of 3000 or more and a glass transition temperature of 25° C. or less.
  • the glass transition temperature is measured by differential scanning calorimetry (DSC).
  • DSC differential scanning calorimetry
  • the glass transition temperature can be measured using a product named "DSC-60A Plus” (manufactured by Shimadzu Corporation). The temperature rise rate in the measurement is 10°C/min.
  • the polymer film according to the present disclosure contains a polymer, and has an elastic modulus of 10 MPa or less at 160° C. and an elastic modulus of 0.1 MPa or more at 260° C., an equilibrium moisture absorption rate of 2.5 mass% or less at 85° C. and a relative humidity of 85%, and a dielectric loss tangent of 0.01 or less.
  • the present inventors have found that the above-mentioned structure makes it possible to provide a polymer film having excellent step conformability and heat resistance.
  • the elastic modulus of Layer B at 160°C is 10 MPa or less, and it is presumed that this allows the layer to deform to conform to the shape of the steps when laminated by hot pressing, thereby improving the step-following ability.
  • the polymer film according to the present disclosure has an equilibrium moisture absorption rate of 2.5% by mass or less at 85° C. and a relative humidity of 85%, so it is less susceptible to moisture absorption and less susceptible to delamination due to heating. In other words, it has excellent heat resistance.
  • the elastic modulus of the polymer film at 160°C is preferably 0.1 MPa to 8 MPa, more preferably 0.3 MPa to 5 MPa, and even more preferably 0.5 MPa to 4 MPa.
  • the elastic modulus of a polymer film at 160° C. is measured by the following method. First, a film cross-section sample (length 2 mm ⁇ width 2 mm) was prepared by obliquely cutting with a microtome so that the cross-section had a size of 50 ⁇ m. Next, the 160°C elastic modulus of the film cross-section sample is measured as the indentation elastic modulus using a nanoindentation method.
  • the indentation elastic modulus is measured by applying a load at a loading rate of 0.5 mN/sec with a Vickers indenter using a microhardness tester (for example, product name "DUH-W201" manufactured by Shimadzu Corporation), holding the maximum load of 10 mN for 10 seconds, and then unloading at a loading rate of 0.5 mN/sec.
  • a microhardness tester for example, product name "DUH-W201" manufactured by Shimadzu Corporation
  • the elastic modulus at 160°C of the layer B in the laminate described below is measured by etching the support and then obliquely cutting the cross section of Layer B with a microtome to 50 ⁇ m to prepare a film cross section sample (length 2 mm ⁇ width 2 mm).
  • the elastic modulus of the polymer film at 260°C is preferably 10 MPa to 0.1 MPa, more preferably 9.5 MPa to 0.1 MPa, and even more preferably 1.5 MPa to 0.1 MPa.
  • the elastic modulus of a polymer film at 260° C. is measured by the following method. First, a film cross-section sample (length 2 mm ⁇ width 2 mm) was prepared by obliquely cutting with a microtome so that the cross-section had a size of 50 ⁇ m. Next, the 260°C elastic modulus of the film cross-section sample is measured as the indentation elastic modulus using a nanoindentation method.
  • the indentation elastic modulus is measured by applying a load with a Vickers indenter at a loading rate of 0.28 mN/sec using a microhardness tester (for example, product name "DUH-W201" manufactured by Shimadzu Corporation), holding the maximum load of 10 mN for 10 seconds, and then unloading at a loading rate of 0.28 mN/sec.
  • a microhardness tester for example, product name "DUH-W201" manufactured by Shimadzu Corporation
  • the elastic modulus at 260°C of the layer B in the laminate described below is measured by etching the support and then obliquely cutting the cross section of Layer B with a microtome to 50 ⁇ m to prepare a film cross section sample (length 2 mm ⁇ width 2 mm).
  • the equilibrium moisture absorption rate of the polymer film at 85°C and a relative humidity of 85% is preferably 2.2% by mass or less, more preferably 1.5% by mass or less, even more preferably 0.8% by mass or less, particularly preferably 0.5% by mass or less, and most preferably 0.25% by mass or less.
  • the lower limit of the equilibrium moisture absorption rate may be 0% by mass.
  • the equilibrium moisture absorption rate is measured as follows.
  • the polymer film is left to stand at a temperature of 85°C and a relative humidity of 85% for 24 hours to reach equilibrium, after which the Karl Fischer moisture content of 0.1 g of the sample is measured at a temperature of 150°C using a Karl Fischer moisture measuring apparatus and an attached moisture vaporizer.
  • the moisture absorption rate is calculated by dividing the measured moisture amount by the mass of the laminate x 100 (%).
  • “CA-03", “VA-05” or the like manufactured by Mitsubishi Chemical Corporation
  • the parallel moisture absorption rate of the laminate described later is measured by leaving the laminate instead of the polymer film.
  • the dielectric tangent of the polymer film is preferably 0.005 or less, and more preferably greater than 0 and 0.003 or less.
  • the dielectric tangent is measured by the following method.
  • the dielectric loss tangent is measured by a resonance perturbation method at a frequency of 10 GHz.
  • a 10 GHz cavity resonator e.g., "CP531” manufactured by Kanto Electronics Application Development Co., Ltd.
  • a network analyzer e.g., "E8363B” manufactured by Agilent Technology Co., Ltd.
  • a polymer film is inserted into the cavity resonator
  • the dielectric loss tangent is measured from the change in the resonance frequency before and after insertion for 96 hours in an environment of a temperature of 25°C and a humidity of 60% RH.
  • the dielectric loss tangent of the laminate described below is measured by inserting the laminate in place of the polymer film.
  • the average thickness of the polymer film is preferably 5 ⁇ m to 90 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, and even more preferably 15 ⁇ m to 50 ⁇ m.
  • the method for measuring the average thickness is as follows.
  • the polymer film is cut in a plane perpendicular to the plane direction of the polymer film, the thickness is measured at five or more points on the cross section, and the average value of the measurements is taken as the average thickness.
  • the average thickness of each layer in the laminate described below is determined by cutting the laminate in a plane perpendicular to the plane direction, measuring the thickness at five or more points on each cross section, and averaging the measurements.
  • the polymer film according to the present disclosure preferably has a phase-separated structure containing at least two phases.
  • phase-separated structure refers to a structure in which at least two parts containing different components are present in a polymer film or layer.
  • phase separation structures include an island-in-the-sea structure, a cocontinuous structure, a cylindrical structure, and a lamellar structure.
  • An island-in-the-sea structure means a structure in which one of at least two phases forms a continuous phase and the other phase is present in a discontinuously dispersed state.
  • a cocontinuous structure means a structure in which at least two phases both form continuous phases.
  • a cylindrical structure means a structure in which at least one of at least two phases has multiple rod-shaped phases, which are the other phase.
  • a lamellar structure means a layered structure in which at least two phases are alternately stacked. Both the cylindrical structure and the lamellar structure are structures in which at least two phases both form continuous phases, but are distinguished from the cocontinuous structure because they have the above-mentioned characteristics (rod-shaped or layered).
  • the polymer film according to the present disclosure preferably has a phase separation structure in which at least two phases each form a continuous phase.
  • the phase separation structure in the polymer film according to the present disclosure is preferably a co-continuous structure, a cylindrical structure, or a lamellar structure.
  • phase separation structure can be confirmed by using means such as morphological observation, material distribution evaluation, and mechanical property distribution evaluation for the film surface, film cross section, or both the film surface and cross section.
  • Morphological observation can be performed using a known optical microscope, electron microscope, or the like.
  • Material distribution evaluation can be performed using imaging such as infrared spectroscopy, Raman spectroscopy, and X-ray photoelectron spectroscopy.
  • Mechanical property distribution evaluation can be performed using an atomic force microscope, or the like.
  • whether or not the polymer film has a phase-separated structure can be confirmed by performing differential scanning calorimetry (DSC) on the entire surface. Specifically, when a glass transition temperature (Tg) below room temperature (25° C.) and a Tg above room temperature are detected, it can be determined that the polymer film has a phase separation.
  • DSC differential scanning calorimetry
  • the phase separation structure can be formed from at least one of a polymer described below, a thermoplastic resin such as an elastomer, and a cured product of a thermoplastic resin and a curing agent.
  • the polymer examples include thermoplastic resins such as liquid crystal polymers, fluororesins, polymers of compounds having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond, polyether ether ketone, polyolefin, polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether and modified products thereof, and polyether imide; and thermosetting resins such as phenol resins, epoxy resins, polyimides, and cyanate resins.
  • the polymer preferably includes a liquid crystal polymer from the viewpoint of decreasing the dielectric loss tangent.
  • liquid crystal polymer The type of liquid crystal polymer is not particularly limited, and any known liquid crystal polymer can be used.
  • the liquid crystal polymer may be a thermotropic liquid crystal polymer that exhibits liquid crystallinity in a molten state, or a lyotropic liquid crystal polymer that exhibits liquid crystallinity in a solution state. In the case of a thermotropic liquid crystal, it is preferable that the liquid crystal polymer melts at a temperature of 450° C. or less.
  • liquid crystal polymers examples include liquid crystal polyester, liquid crystal polyester amide in which an amide bond has been introduced into liquid crystal polyester, liquid crystal polyester ether in which an ether bond has been introduced into liquid crystal polyester, and liquid crystal polyester carbonate in which a carbonate bond has been introduced into liquid crystal polyester.
  • the liquid crystal polymer is preferably a polymer having an aromatic ring, and is more preferably an aromatic polyester or an aromatic polyester amide.
  • the liquid crystal polymer may be a polymer in which an isocyanate-derived bond such as an imide bond, a carbodiimide bond, or an isocyanurate bond has been introduced into an aromatic polyester or an aromatic polyester amide.
  • an isocyanate-derived bond such as an imide bond, a carbodiimide bond, or an isocyanurate bond has been introduced into an aromatic polyester or an aromatic polyester amide.
  • liquid crystal polymer is preferably a fully aromatic liquid crystal polymer made using only aromatic compounds as raw material monomers.
  • liquid crystal polymer examples include the following liquid crystal polymers. 1) A compound obtained by polycondensation of (i) an aromatic hydroxycarboxylic acid, (ii) an aromatic dicarboxylic acid, and (iii) at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine. 2) Those obtained by polycondensation of multiple types of aromatic hydroxycarboxylic acids. 3) (i) a polycondensation product of an aromatic dicarboxylic acid and (ii) at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine and an aromatic diamine.
  • Polyester such as polyethylene terephthalate
  • aromatic hydroxycarboxylic acid are polycondensed.
  • the aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol, aromatic hydroxyamine and aromatic diamine may each independently be replaced with a derivative capable of undergoing polycondensation.
  • the melting point of the liquid crystal polymer is preferably 250°C or higher, more preferably 250°C to 350°C, and even more preferably 260°C to 330°C.
  • the melting point is measured using a differential scanning calorimeter.
  • a differential scanning calorimeter For example, it is measured using a product called "DSC-60A Plus" (manufactured by Shimadzu Corporation).
  • the heating rate in the measurement is 10°C/min.
  • the weight average molecular weight of the liquid crystal polymer is preferably 1,000,000 or less, more preferably 3,000 to 300,000, even more preferably 5,000 to 100,000, and particularly preferably 5,000 to 30,000.
  • the liquid crystal polymer preferably contains an aromatic polyesteramide from the viewpoint of further reducing the dielectric tangent.
  • An aromatic polyesteramide is a resin having at least one aromatic ring and having an ester bond and an amide bond.
  • the aromatic polyesteramide is preferably a fully aromatic polyesteramide.
  • the aromatic polyester amide is preferably a crystalline polymer.
  • the polymer film according to the present disclosure preferably contains a crystalline aromatic polyester amide.
  • the aromatic polyester amide contained in the film is crystalline, the dielectric loss tangent is further reduced.
  • crystalline polymer refers to a polymer that has a clear endothermic peak, not a stepwise change in endothermic amount, in differential scanning calorimetry (DSC). Specifically, for example, it means that the half-width of the endothermic peak is within 10°C when measured at a heating rate of 10°C/min. Polymers with a half-width exceeding 10°C and polymers without a clear endothermic peak are classified as amorphous polymers and are distinguished from crystalline polymers.
  • the aromatic polyester amide preferably contains a constitutional unit represented by the following formula 1, a constitutional unit represented by the following formula 2, and a constitutional unit represented by the following formula 3.
  • Formula 2 -NH-Ar3-O- ...
  • Ar1, Ar2, and Ar3 each independently represent a phenylene group, a naphthylene group, or a biphenylylene group.
  • the structural unit represented by formula 1 will also be referred to as "unit 1", etc.
  • the unit 1 can be introduced, for example, by using an aromatic hydroxycarboxylic acid as a raw material.
  • the unit 2 can be introduced, for example, by using an aromatic dicarboxylic acid as a raw material.
  • Unit 3 can be introduced, for example, by using an aromatic hydroxylamine as a raw material.
  • aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol, and aromatic hydroxylamine may each be independently replaced with a derivative capable of polycondensation.
  • aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids can be replaced with aromatic hydroxycarboxylic acid esters and aromatic dicarboxylic acid esters by converting the carboxy group to an alkoxycarbonyl group or an aryloxycarbonyl group.
  • Aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids can be replaced with aromatic hydroxycarboxylic acid halides and aromatic dicarboxylic acid halides by converting the carboxy groups to haloformyl groups.
  • Aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids can be replaced by aromatic hydroxycarboxylic acid anhydrides and aromatic dicarboxylic acid anhydrides by converting the carboxy groups to acyloxycarbonyl groups.
  • polycondensable derivatives of compounds having a hydroxy group such as aromatic hydroxycarboxylic acids and aromatic hydroxyamines
  • examples of polycondensable derivatives of compounds having a hydroxy group include those obtained by acylation of a hydroxy group into an acyloxy group (acylated products).
  • aromatic hydroxycarboxylic acids and aromatic hydroxylamines can be replaced with their acylated counterparts by acylation of the hydroxy group to convert it to an acyloxy group.
  • polycondensable derivatives of aromatic hydroxylamines include those obtained by acylation of the amino group to an acylamino group (acylated product).
  • aromatic hydroxyamines can be replaced with acylated products by converting the amino group into an acylamino group through acylation.
  • Ar1 is preferably a p-phenylene group, a 2,6-naphthylene group, or a 4,4'-biphenylylene group, and more preferably a 2,6-naphthylene group.
  • unit 1 is, for example, a constitutional unit derived from p-hydroxybenzoic acid.
  • unit 1 is, for example, a constitutional unit derived from 6-hydroxy-2-naphthoic acid.
  • Ar1 is a 4,4'-biphenylylene group
  • unit 1 is, for example, a constitutional unit derived from 4'-hydroxy-4-biphenylcarboxylic acid.
  • Ar2 is preferably a p-phenylene group, an m-phenylene group, or a 2,6-naphthylene group, and more preferably an m-phenylene group.
  • unit 2 is, for example, a constitutional unit derived from terephthalic acid.
  • unit 2 is, for example, a constitutional unit derived from isophthalic acid.
  • Ar2 is a 2,6-naphthylene group
  • unit 2 is, for example, a constitutional unit derived from 2,6-naphthalenedicarboxylic acid.
  • Ar3 is preferably a p-phenylene group or a 4,4'-biphenylylene group, and more preferably a p-phenylene group.
  • unit 2 is, for example, a constitutional unit derived from p-aminophenol.
  • unit 2 is, for example, a constitutional unit derived from 4-amino-4'-hydroxybiphenyl.
  • the content of units 1 is preferably 30 mol % or more, the content of units 2 is preferably 35 mol % or less, and the content of units 3 is preferably 35 mol % or less.
  • the content of unit 1 is more preferably 30 mol % to 80 mol %, further preferably 30 mol % to 60 mol %, and particularly preferably 30 mol % to 40 mol %, based on the total content of unit 1, unit 2, and unit 3.
  • the content of unit 2 is preferably 10 mol % to 35 mol %, more preferably 20 mol % to 35 mol %, and particularly preferably 30 mol % to 35 mol %, based on the total content of unit 1, unit 2, and unit 3.
  • the content of unit 3 is preferably 10 mol % to 35 mol %, more preferably 20 mol % to 35 mol %, and particularly preferably 30 mol % to 35 mol %, based on the total content of unit 1, unit 2, and unit 3.
  • the total content of each structural unit is the sum of the amounts (moles) of each structural unit, which is calculated by dividing the mass of each structural unit constituting the aromatic polyesteramide by the formula weight of the structural unit.
  • the ratio of the content of unit 2 to the content of unit 3, expressed as [content of unit 2]/[content of unit 3] (mol/mol), is preferably 0.9/1 to 1/0.9, more preferably 0.95/1 to 1/0.95, and even more preferably 0.98/1 to 1/0.98.
  • the aromatic polyesteramide may have two or more types of units 1 to 3, each of which is independent.
  • the aromatic polyesteramide may also have other structural units in addition to units 1 to 3.
  • the content of the other structural units is preferably 10 mol % or less, more preferably 5 mol % or less, based on the total content of all structural units.
  • Aromatic polyesteramides are preferably produced by melt polymerizing raw material monomers that correspond to the structural units that make up the aromatic polyesteramide.
  • the weight average molecular weight of the aromatic polyester amide is preferably 1,000,000 or less, more preferably 3,000 to 300,000, even more preferably 5,000 to 100,000, and particularly preferably 5,000 to 30,000.
  • the polymer may contain a fluororesin from the viewpoints of heat resistance and mechanical strength.
  • the type of fluororesin is not particularly limited, and any known fluororesin can be used.
  • Fluororesins include homopolymers and copolymers that contain structural units derived from fluorinated ⁇ -olefin monomers, i.e., ⁇ -olefin monomers that contain at least one fluorine atom. Fluororesins also include copolymers that contain structural units derived from fluorinated ⁇ -olefin monomers and structural units derived from non-fluorinated ethylenically unsaturated monomers that are reactive with fluorinated ⁇ -olefin monomers.
  • Fluorinated ⁇ -olefin monomers include CF 2 ⁇ CF 2 , CHF ⁇ CF 2 , CH 2 ⁇ CF 2 , CHCl ⁇ CHF, CCIF ⁇ CF 2 , CCl 2 ⁇ CF 2 , CCIF ⁇ CCIF, CHF ⁇ CCl 2 , CH 2 ⁇ CCIF, CCl 2 ⁇ CCIF, CF 3 CF ⁇ CF 2 , CF 3 CF ⁇ CHF, CF 3 CH ⁇ CF 2 , CHF 2 CH ⁇ CHF, CF 3 CF ⁇ CF 2 , and perfluoro ( alkyl having 2 to 8 carbon atoms)vinyl ethers (e.g., perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, and perfluorooctyl vinyl ether ) .
  • perfluoro ( alkyl having 2 to 8 carbon atoms)vinyl ethers e.g., perfluoromethyl vinyl ether, perfluoropropyl
  • the fluorinated ⁇ -olefin monomer is preferably at least one monomer selected from the group consisting of tetrafluoroethylene (CF 2 ⁇ CF 2 ), chlorotrifluoroethylene (CCIF ⁇ CF 2 ), (perfluorobutyl)ethylene, vinylidene fluoride (CH 2 ⁇ CF 2 ), and hexafluoropropylene (CF 2 ⁇ CFCF 3 ).
  • Non-fluorinated ethylenically unsaturated monomers include ethylene, propylene, butene, ethylenically unsaturated aromatic monomers (eg, styrene and ⁇ -methylstyrene), and the like.
  • the fluorinated ⁇ -olefin monomers may be used alone or in combination of two or more kinds.
  • the non-fluorinated ethylenically unsaturated monomers may be used alone or in combination of two or more kinds.
  • fluororesins include polychlorotrifluoroethylene (PCTFE), poly(chlorotrifluoroethylene-propylene), poly(ethylene-tetrafluoroethylene) (ETFE), poly(ethylene-chlorotrifluoroethylene) (ECTFE), poly(hexafluoropropylene), poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-ethylene-propylene), poly(tetrafluoroethylene-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-propylene) (FEPM), poly(tetrafluoroethylene-perfluoropropylene vinyl ether), poly(tetrafluoroethylene-perfluoroalkyl vinyl ether) (PFA) (e.g., poly(tetrafluoroethylene-perfluoropropyl vinyl ether)), polyvinyl fluoride (PVF), polyvinylidene fluoride (PVDF), poly((
  • the fluororesin may have a structural unit derived from fluorinated ethylene or fluorinated propylene.
  • the fluororesin may be used alone or in combination of two or more kinds.
  • the fluororesin is preferably FEP, PFA, ETFE, or PTFE.
  • FEP is available from DuPont under the trade name TEFLON FEP, or from Daikin Industries, Ltd. under the trade name NEOFLON FEP.
  • PFA is available from Daikin Industries, Ltd. under the trade name NEOFLON PFA, from DuPont under the trade name TEFLON PFA, or from Solvay Solexis under the trade name HYFLON PFA.
  • the fluororesin contains PTFE.
  • the PTFE may be a PTFE homopolymer, a partially modified PTFE homopolymer, or a combination containing one or both of these.
  • the partially modified PTFE homopolymer preferably contains less than 1% by mass of structural units derived from comonomers other than tetrafluoroethylene, based on the total mass of the polymer.
  • the fluororesin may be a crosslinkable fluoropolymer having a crosslinkable group.
  • the crosslinkable fluoropolymer can be crosslinked by a conventionally known crosslinking method.
  • One representative crosslinkable fluoropolymer is a fluoropolymer having (meth)acryloyloxy.
  • R is an oligomer chain containing constitutional units derived from a fluorinated ⁇ -olefin monomer
  • R′ is H or —CH3
  • n is 1 to 4.
  • R may also be a fluorine-based oligomer chain containing constitutional units derived from tetrafluoroethylene.
  • a crosslinked fluoropolymer network can be formed by exposing a fluoropolymer having (meth)acryloyloxy groups to a free radical source to initiate a radical crosslinking reaction via the (meth)acryloyloxy groups on the fluororesin.
  • the free radical source is not particularly limited, but suitable examples include a photoradical polymerization initiator or an organic peroxide. Suitable photoradical polymerization initiators and organic peroxides are well known in the art.
  • Crosslinkable fluoropolymers are commercially available, such as Viton B manufactured by DuPont.
  • the polymer may include a polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • polymers of compounds having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond include thermoplastic resins having structural units derived from cyclic olefin monomers such as norbornene or polycyclic norbornene monomers.
  • the polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be a ring-opening polymer of the above-mentioned cyclic olefin or a hydrogenated product of a ring-opening copolymer using two or more kinds of cyclic olefins, or may be an addition polymer of a cyclic olefin and an aromatic compound having an ethylenically unsaturated bond such as a chain olefin or a vinyl group.
  • a polar group may be introduced into the polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • the polymer of the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be used alone or in combination of two or more types.
  • the ring structure of the cyclic aliphatic hydrocarbon group may be a monocyclic ring, a condensed ring in which two or more rings are condensed, or a bridged ring.
  • Examples of the ring structure of the cyclic aliphatic hydrocarbon group include a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, an isoborone ring, a norbornane ring, and a dicyclopentane ring.
  • the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is not particularly limited, and may be a (meth)acrylate compound having a cyclic aliphatic hydrocarbon group, a (meth)acrylamide compound having a cyclic aliphatic hydrocarbon group, or a vinyl compound having a cyclic aliphatic hydrocarbon group. Among them, a (meth)acrylate compound having a cyclic aliphatic hydrocarbon group is preferably used.
  • the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be a monofunctional ethylenically unsaturated compound or a polyfunctional ethylenically unsaturated compound.
  • the number of cycloaliphatic hydrocarbon groups in the compound having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be one or more, and may be two or more.
  • the polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be a polymer obtained by polymerizing a compound having at least one type of cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond, and may be a polymer of a compound having two or more types of cyclic aliphatic hydrocarbon groups and a group having an ethylenically unsaturated bond, or may be a copolymer with another ethylenically unsaturated compound that does not have a cyclic aliphatic hydrocarbon group.
  • the polymer of a compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is preferably a cycloolefin polymer.
  • the polymer may include a polyphenylene ether.
  • the polyphenylene ether preferably has an average number of phenolic hydroxyl groups at the molecular terminals per molecule (number of terminal hydroxyl groups) of 1 to 5, and more preferably 1.5 to 3, from the viewpoints of dielectric tangent and heat resistance.
  • the number of terminal hydroxyl groups of polyphenylene ether can be known from, for example, the specification value of the polyphenylene ether product.
  • the number of terminal hydroxyl groups is expressed, for example, as the average number of phenolic hydroxyl groups per molecule of all polyphenylene ethers present in 1 mole of polyphenylene ether.
  • the polyphenylene ether may be used alone or in combination of two or more kinds.
  • polyphenylene ethers examples include polyphenylene ethers made of 2,6-dimethylphenol and at least one of a difunctional phenol and a trifunctional phenol, and poly(2,6-dimethyl-1,4-phenylene oxide). More specifically, the polyphenylene ether is preferably a compound having a structure represented by the formula (PPE).
  • X represents an alkylene group having 1 to 3 carbon atoms or a single bond
  • m represents an integer of 0 to 20
  • n represents an integer of 0 to 20
  • the sum of m and n represents an integer of 1 to 30.
  • the alkylene group for X is, for example, a dimethylmethylene group.
  • the weight average molecular weight (Mw) is preferably 500 to 5,000, and more preferably 500 to 3,000, from the viewpoints of heat resistance and film formability. If the polyphenylene ether is not thermally cured, the weight average molecular weight (Mw) is not particularly limited, but is preferably 3,000 to 100,000, and more preferably 5,000 to 50,000.
  • Aromatic polyether ketone The polymer having a dielectric loss tangent of 0.01 or less may be an aromatic polyether ketone.
  • the aromatic polyether ketone is not particularly limited, and any known aromatic polyether ketone can be used.
  • the aromatic polyether ketone is preferably polyether ether ketone.
  • Polyetheretherketone is a type of aromatic polyetherketone, and is a polymer in which bonds are arranged in the following order: ether bond, ether bond, and carbonyl bond. Each bond is preferably linked by a divalent aromatic group.
  • the aromatic polyether ketones may be used alone or in combination of two or more kinds.
  • aromatic polyetherketones examples include polyetheretherketone (PEEK) having a chemical structure represented by the following formula (P1), polyetherketone (PEK) having a chemical structure represented by the following formula (P2), polyetherketoneketone (PEKK) having a chemical structure represented by the following formula (P3), polyetheretherketoneketone (PEEKK) having a chemical structure represented by the following formula (P4), and polyetherketoneetherketoneketone (PEKEKK) having a chemical structure represented by the following formula (P5).
  • n in each of formulas (P1) to (P5) is preferably 10 or more, and more preferably 20 or more.
  • n is preferably 5,000 or less, and more preferably 1,000 or less. In other words, n is preferably 10 to 5,000, and more preferably 20 to 1,000.
  • the polymer content relative to the total mass of the polymer film is preferably 10 mass% or more, more preferably 15 mass% or more, even more preferably 20 mass% to 60 mass%, and particularly preferably 20 mass% to 40 mass%.
  • the content of the liquid crystal polymer relative to the total mass of the polymer is preferably 50 mass% or more, more preferably 70 mass% or more, even more preferably 90 mass% or more, and may be 100 mass%.
  • the polymer film preferably contains a thermoplastic resin containing a structural unit derived from a monomer having an aromatic hydrocarbon group, and more preferably contains a polystyrene-based elastomer.
  • styrene-based elastomers include styrene-butadiene-styrene block copolymers (SBS), styrene-isoprene-styrene block copolymers (SIS), polystyrene-poly(ethylene-propylene) diblock copolymers (SEP), polystyrene-poly(ethylene-propylene)-polystyrene triblock copolymers (SEPS), styrene-ethylene-butylene-styrene block copolymers (SEBS), polystyrene-poly(ethylene/ethylene-propylene)-polystyrene triblock copolymers (SEEPS), styrene-isobutylene-styrene block copolymers (SIBS), and hydrogenated products thereof.
  • SBS styrene-butadiene-styrene block copolymers
  • SIS poly
  • the content of the above-mentioned thermoplastic resin relative to the total mass of the polymer film is preferably 40% by mass to 85% by mass, more preferably 40% by mass to 80% by mass, and even more preferably 60% by mass to 80% by mass.
  • the polymer film preferably contains at least one of a curing agent and a cured product of the thermoplastic resin and the curing agent.
  • the curing agent may be a compound having a maleimide group, an allyl group, a vinyl group, an epoxy group, an oxetanyl group, a cyanate group, a benzoxazine group, or the like.
  • the thermosetting compound preferably has at least one group selected from the group consisting of a maleimide group, an allyl group, a vinyl group, a cyanate group, and a benzoxazine group, and from the viewpoint of heat resistance, it is more preferable for the thermosetting compound to contain a resin having at least one group selected from the group consisting of a maleimide group and an epoxy group.
  • the content of the hardener relative to the total mass of the polymer film is preferably 1% by mass to 20% by mass, more preferably 3% by mass to 15% by mass, and even more preferably 5% by mass to 13% by mass.
  • the polymer film preferably contains a filler.
  • the filler may be particulate or fibrous.
  • the filler may be inorganic or organic. From the viewpoints of the dielectric loss tangent, heat resistance, and step conformability of the polymer film, the filler is preferably inorganic.
  • organic filler a known organic filler can be used.
  • the organic filler material include polyethylene, polystyrene, urea-formalin filler, polyester, cellulose, acrylic resin, fluororesin, hardened epoxy resin, crosslinked benzoguanamine resin, crosslinked acrylic resin, liquid crystal polymer, and materials containing two or more of these.
  • the organic filler may also be in the form of fibers such as nanofibers, or may be hollow resin particles.
  • the organic filler is preferably fluororesin particles, polyester-based resin particles, polyethylene particles, liquid crystal polymer particles, or nanofibers of cellulose-based resin, more preferably polytetrafluoroethylene particles, polyethylene particles, or liquid crystal polymer particles, and particularly preferably liquid crystal polymer particles.
  • the liquid crystal polymer particles refer to, but are not limited to, liquid crystal polymers polymerized and pulverized with a pulverizer or the like to form powdered liquid crystal. It is preferable that the liquid crystal polymer particles are smaller than the thickness of each layer.
  • the average particle size of the organic filler is preferably 5 nm to 20 ⁇ m, and more preferably 100 nm to 10 ⁇ m, from the viewpoint of the dielectric tangent, heat resistance, and step conformability of the polymer film.
  • the inorganic filler a known inorganic filler can be used.
  • inorganic filler materials include boron nitride (BN), Al 2 O 3 , aluminum nitride (AlN), TiO 2 , silica (SiO 2 ), barium titanate, strontium titanate, aluminum hydroxide, calcium carbonate, and materials containing two or more of these.
  • the inorganic filler is preferably at least one selected from the group consisting of silica, aluminum hydroxide, and boron nitride.
  • the average particle size of the inorganic filler is preferably about 20% to about 40% of the thickness of Layer A, and may be selected to be, for example, 25%, 30%, or 35% of the thickness of Layer A. In the case where the particles or fibers are flat, the average particle size indicates the length in the direction of the short side. Moreover, from the viewpoints of the dielectric tangent, heat resistance, and step conformability of the polymer film, the average particle size of the inorganic filler is preferably 5 nm to 20 ⁇ m, more preferably 10 nm to 10 ⁇ m, even more preferably 20 nm to 1 ⁇ m, and particularly preferably 25 nm to 500 nm.
  • the polymer film may contain only one type of filler, or may contain two or more types of fillers.
  • the content of the filler is preferably 3 mass % to 25 mass %, more preferably 5 mass % to 23 mass %, and even more preferably 10 mass % to 20 mass %, relative to the total mass of the polymer film, from the viewpoints of the dielectric tangent, heat resistance, and step-following ability of the polymer film.
  • the polymer film may contain other additives in addition to the above-mentioned components.
  • known additives can be used, specifically, for example, a leveling agent, a defoaming agent, an antioxidant, an ultraviolet absorbing agent, a flame retardant, a colorant, etc.
  • the laminate according to the present disclosure is a laminate having a layer B on at least one surface of a layer A, the layer B including a polymer and having an elastic modulus of 10 MPa or less at 160° C. and an elastic modulus of 0.1 MPa or more at 260° C.;
  • the laminate has an equilibrium moisture absorption rate of 2.5 mass % or less at 85° C. and a relative humidity of 85%, and a dielectric loss tangent of 0.01 or less.
  • the equilibrium moisture absorption rate of the laminate at 85°C and a relative humidity of 85% is preferably 2.2% by mass or less, more preferably 1.5% by mass or less, even more preferably 0.8% by mass or less, particularly preferably 0.5% by mass or less, and most preferably 0.25% by mass or less.
  • the above equilibrium moisture absorption rate may be 0% by mass.
  • the dielectric tangent of the laminate is preferably 0.005 or less, and more preferably greater than 0 and 0.003 or less.
  • the layer A may contain a polymer.
  • the polymer is as described in the polymer film, and the preferred type, content, etc. of the polymer are not described here.
  • Layer A may contain a thermoplastic resin containing a structural unit derived from a monomer having an aromatic hydrocarbon group, a curing agent, a cured product of the thermoplastic resin and the curing agent, a filler, other additives, etc. These are as described for the polymer film, and will not be described here.
  • the average thickness of layer A is not particularly limited, but from the viewpoints of dielectric tangent, heat resistance, and step conformability, it is preferably 5 ⁇ m to 90 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, and particularly preferably 15 ⁇ m to 50 ⁇ m.
  • the elastic modulus of layer A at 160° C. is preferably 50 MPa to 2000 MPa, more preferably 70 MPa to 1500 MPa, and even more preferably 150 MPa to 950 MPa.
  • the ratio of the elastic modulus of Layer A at 160°C to the elastic modulus of Layer B at 160°C is preferably 50 or more, more preferably 100 or more, even more preferably 200 or more, and particularly preferably 1000 or more. The upper limit of the ratio may be 2000.
  • the elastic modulus of Layer A at 160° C. is measured by the following method.
  • the polymer film or laminate is obliquely cut with a microtome so that the cross section of layer A is 50 ⁇ m to prepare a cross-sectional sample (length 2 mm ⁇ width 2 mm).
  • the indentation modulus at 160° C. is measured using a microhardness tester equipped with a Vickers indenter (product name “DUH-W201”, manufactured by Shimadzu Corporation) using a nanoindentation method.
  • the layer B may contain a polymer.
  • the polymer is as described in the polymer film, and the preferred type, content, etc. of the polymer are not described here.
  • Layer B may contain a thermoplastic resin containing a structural unit derived from a monomer having an aromatic hydrocarbon group, a curing agent, a cured product of the thermoplastic resin and the curing agent, a filler, other additives, etc. These are as described in the polymer film, and will not be described here.
  • the elastic modulus at 160° C., the elastic modulus at 260° C., the equilibrium moisture absorption rate at 85° C. and a relative humidity of 85%, the dielectric tangent, the average thickness, etc. of Layer B are similar to those of the polymer film, and therefore are not described here. Moreover, it is preferable that Layer B has the above-mentioned phase-separated structure.
  • the laminate according to the present disclosure may have a layer C, and may have a layer B, a layer A, and a layer C in this order.
  • Layer C is preferably an adhesive layer and is also preferably a surface layer (outermost layer).
  • Layer C may contain a polymer.
  • the polymer is as described in the polymer film, and preferred types are not described here.
  • the polymer content relative to the total mass of layer C is preferably 50% by mass to 100% by mass, more preferably 60% by mass to 99.8% by mass, and even more preferably 70% by mass to 99.7% by mass.
  • Layer C may contain a thermoplastic resin containing a structural unit derived from a monomer having an aromatic hydrocarbon group, a curing agent, a cured product of the thermoplastic resin and the curing agent, a filler, other additives, etc. These are as described for the polymer film, and will not be described here.
  • the average thickness of layer C is not particularly limited, but from the viewpoints of dielectric tangent, heat resistance, and step conformability, it is preferably 0.1 ⁇ m to 10 ⁇ m, more preferably 0.5 ⁇ m to 8 ⁇ m, and particularly preferably 1 ⁇ m to 5 ⁇ m.
  • the method for producing the laminate according to the present disclosure is not particularly limited, and any known film-forming method can be used.
  • Suitable film-forming methods include, for example, co-casting, multi-layer coating, and co-extrusion. Among these, the co-casting method is preferred.
  • the multilayer structure of the laminate is produced by the co-casting method or the multi-layer coating method
  • Solvents include, for example, halogenated hydrocarbons such as dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1-chlorobutane, chlorobenzene, and o-dichlorobenzene; halogenated phenols such as p-chlorophenol, pentachlorophenol, and pentafluorophenol; ethers such as diethyl ether, tetrahydrofuran, and 1,4-dioxane; ketones such as acetone and cyclohexanone; esters such as ethyl acetate and ⁇ -butyrolactone; and ethylene carbonate.
  • halogenated hydrocarbons such as dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1-
  • organic solvent examples include carbonates such as propylene carbonate and propylene carbonate; amines such as triethylamine; nitrogen-containing heterocyclic aromatic compounds such as pyridine; nitriles such as acetonitrile and succinonitrile; amides such as N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone, and urea compounds such as tetramethylurea; nitro compounds such as nitromethane and nitrobenzene; sulfur compounds such as dimethyl sulfoxide and sulfolane; and phosphorus compounds such as hexamethylphosphoramide and tri-n-butylphosphoric acid, and two or more of these may be used.
  • carbonates such as propylene carbonate and propylene carbonate
  • amines such as triethylamine
  • nitrogen-containing heterocyclic aromatic compounds such as pyridine
  • nitriles such as acetonitrile and succinon
  • the solvent is preferably a solvent mainly composed of an aprotic compound, particularly an aprotic compound without halogen atoms, because it is less corrosive and easier to handle, and the ratio of the aprotic compound to the entire solvent is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • amides such as N,N-dimethylformamide, N,N-dimethylacetamide, tetramethylurea, and N-methylpyrrolidone, or esters such as ⁇ -butyrolactone, because they easily dissolve liquid crystal polymers, and N,N-dimethylformamide, N,N-dimethylacetamide, and N-methylpyrrolidone are more preferable.
  • a solvent mainly composed of a compound having a dipole moment of 3 to 5 is preferred because it easily dissolves the liquid crystal polymer, and the proportion of the compound having a dipole moment of 3 to 5 in the entire solvent is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the aprotic compound it is preferable to use a compound having a dipole moment of 3 to 5.
  • the solvent is preferably a solvent mainly composed of a compound having a boiling point of 220° C. or lower at 1 atmospheric pressure, because it is easy to remove.
  • the proportion of the compound having a boiling point of 220° C. or lower at 1 atmospheric pressure in the entire solvent is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, and particularly preferably 90% by mass to 100% by mass.
  • the aprotic compound it is preferable to use a compound having a boiling point of 220° C. or lower at 1 atmospheric pressure.
  • a support may be used when the film is produced by the co-casting method, multi-layer coating method, co-extrusion method, or the like.
  • the support include a metal drum, a metal band, a glass plate, a resin film, and a metal foil.
  • the support is preferably a metal drum, a metal band, or a resin film.
  • resin films include polyimide (PI) films, and examples of commercially available products include U-PIREX S and U-PIREX R manufactured by Ube Industries, Ltd., Kapton manufactured by DuPont-Toray Co., Ltd., and IF30, IF70, and LV300 manufactured by SKC Kolon PI.
  • the support may have a surface treatment layer formed on its surface so that it can be easily peeled off.
  • the surface treatment layer may be made of hard chrome plating, fluororesin, or the like.
  • the average thickness of the resin film support is not particularly limited, but is preferably from 25 to 75 ⁇ m, and more preferably from 50 to 75 ⁇ m.
  • the method for removing at least a portion of the solvent from the cast or applied film-like composition (coating film) is not particularly limited, and any known drying method can be used.
  • the laminate according to the present disclosure can be appropriately combined with stretching in terms of controlling molecular orientation and adjusting the thermal expansion coefficient and mechanical properties.
  • the stretching method is not particularly limited, and known methods can be referred to. It may be performed in a state containing a solvent or in a dry film state. Stretching in a state containing a solvent may be performed by gripping the film and stretching it, or it may be performed by utilizing autogenous shrinkage due to drying without stretching it. Stretching is particularly effective for the purpose of improving the breaking elongation and breaking strength when the film brittleness is reduced by adding an inorganic filler or the like.
  • the polymer films and laminates according to the present disclosure can be used for various applications, and among others, can be suitably used as films for electronic components such as printed wiring boards, and can be even more suitably used for flexible printed circuit boards. Furthermore, the polymer film and laminate according to the present disclosure can be suitably used as a liquid crystal polymer film and laminate for metal bonding.
  • the metal-attached laminate according to the present disclosure includes a polymer film according to the present disclosure or a laminate according to the present disclosure, and a metal layer or metal wiring disposed on at least one surface of the polymer film or the laminate.
  • the metal layer or metal wiring may be made of a conventionally known material, and is preferably made of silver or copper, and more preferably made of copper.
  • Metal layers or metal wiring may be disposed on both sides of the polymer film or the laminate.
  • the two metal layers or metal wiring may be metal layers or metal wirings of the same material, thickness and shape, or metal layers or metal wirings of different materials, thicknesses and shapes. From the viewpoint of characteristic impedance adjustment, the two metal layers or metal wirings may be metal layers or metal wirings of different materials and thicknesses.
  • the metal layer is a rolled metal foil formed by a rolling method, or an electrolytic metal foil formed by an electrolytic method.
  • the peel strength at 260°C between the polymer film or laminate and the metal layer or metal wiring is preferably 0.02 kN/m or more, more preferably 0.05 kN/m or more, and even more preferably 0.08 kN/m or more.
  • the upper limit of the peel strength may be 3 kN/m.
  • the peel strength at 260° C. between a polymer film or laminate and a metal layer or metal wiring is measured by the following method.
  • a peel test piece having a width of 1.0 cm is prepared from a laminate (laminate with metal) of a polymer film or laminate and a metal layer or metal wiring, and the peel test piece is fixed to a flat plate with double-sided adhesive tape.
  • the strength (kN/m) is measured when peeled at a speed of 50 mm/min by the 180° method in accordance with JIS C 5016 (1994).
  • the average thickness of the metal layer is not particularly limited, but is preferably 2 ⁇ m to 20 ⁇ m, more preferably 3 ⁇ m to 18 ⁇ m, and even more preferably 5 ⁇ m to 12 ⁇ m.
  • the copper foil may be a carrier-attached copper foil that is formed releasably on a support (carrier).
  • the carrier may be a known one.
  • the average thickness of the carrier is not particularly limited, but is preferably 10 ⁇ m to 100 ⁇ m, and more preferably 18 ⁇ m to 50 ⁇ m.
  • the average thickness of layer B is preferably greater than the average thickness of the metal in order to suppress distortion of the metal wiring when bonded to the metal wiring.
  • the metal layer may be a metal layer having a circuit pattern. It is also preferable to process the metal layer into a desired circuit pattern, for example, by etching, to form a flexible printed circuit board. There are no particular limitations on the etching method, and any known etching method can be used.
  • the metal-attached laminate according to the present disclosure can be produced by using a metal layer or metal wiring as the support in the laminate production method according to the present disclosure.
  • a metal layer or metal wiring may be provided by thermocompression bonding or the like on the surface of the laminate opposite to the side on which the support is provided.
  • the polymers and additives (components other than polymers) used to form each layer of the laminate, as well as the copper foil, are detailed below.
  • Aromatic polyesteramide P1 synthesized according to the following synthesis method (referred to as "P1" in Table 1).
  • the aromatic polyesteramide A1a was heated from room temperature to 160°C over 2 hours and 20 minutes in a nitrogen atmosphere, then heated from 160°C to 180°C over 3 hours and 20 minutes, and held at 180°C for 5 hours to carry out solid-state polymerization, and then cooled.
  • the aromatic polyesteramide A1b was then pulverized in a pulverizer to obtain a powdered aromatic polyesteramide A1b.
  • the flow-initiation temperature of the aromatic polyesteramide A1b was 220°C.
  • the aromatic polyester amide A1b was heated in a nitrogen atmosphere from room temperature to 180°C over 1 hour 25 minutes, then heated from 180°C to 255°C over 6 hours 40 minutes, and held at 255°C for 5 hours to carry out solid-state polymerization, and then cooled to obtain a powdered aromatic polyester amide P1.
  • the flow initiation temperature of the aromatic polyesteramide P1 was 302° C.
  • the melting point of the aromatic polyesteramide P1 was measured using a differential scanning calorimeter and found to be 311° C.
  • the solubility of the aromatic polyesteramide P1 in N-methylpyrrolidone at 140° C. was 1 mass% or more.
  • ODPA 4,4'-oxydiphthalic anhydride
  • PMDA pyromellitic dianhydride
  • BAPP 2,2-bis[4-(4-aminophenoxy)phenyl]propane
  • BAPB 4,4'-bis(4-aminophenoxy)biphenyl
  • acetic anhydride 1.6 mol per mol of amic acid units in the polyamic acid PA-A
  • isoquinoline 0.5 mol per mol of amic acid units in the polyamic acid PA-A
  • DMF the total mass of acetic anhydride, isoquinoline, and DMF was 45% of the polyamic acid PA-A
  • PI-A polyimide precursor
  • SEBS Hydrogenated styrene-ethylene-butylene-styrene block copolymer
  • Liquid crystal polymer particles PP-1 synthesized according to the following synthesis method (referred to as "PP-1" in Table 1).
  • acetic anhydride (1.08 molar equivalent relative to the hydroxyl group) was further added. Under a nitrogen gas stream, the temperature was raised from room temperature to 150°C over 15 minutes while stirring, and refluxed at 150°C for 2 hours. Next, while distilling off the by-produced acetic acid and unreacted acetic anhydride, the temperature was raised from 150°C to 310°C over 5 hours, and the polymer was taken out and cooled to room temperature. The obtained polymer was heated from room temperature to 295°C over 14 hours, and solid-phase polymerized at 295°C for 1 hour.
  • the liquid crystal polymer particles PP-1 had a median diameter (D50) of 7 ⁇ m, a dielectric dissipation factor of 0.0007, and a melting point of 334°C.
  • Elastomer particles PP-2 (referred to as "PP-2” in Table 1): Hydrogenated styrene-ethylene-butylene-styrene block copolymer (SEBS, product name “Tuftec M1913", manufactured by Asahi Kasei Chemicals Corporation) frozen and ground (average particle size 5.0 ⁇ m (D50)); Thermoplastic resin/elastomer particles PP-3 (referred to as “PP-3” in Table 1): Hydrogenated styrene-isobutylene-styrene block copolymer particles, frozen and ground SIBSTAR 103T-UL manufactured by Kaneka Corporation (average particle size 5.0 ⁇ m (D50)); Thermoplastic resin/curing agent C1 (referred to as "C1” in Table 1): jER YX8800, manufactured by Mitsubishi Chemical Corporation; Condensation polycondensation type epoxy resin/curing agent C2 (referred to as "C2” in Table 1): Maleimide curing agent; Cur
  • Silica particles A1 (referred to as “A1” in Table 1): SC2050-MB, manufactured by Admatechs Co., Ltd..
  • Aluminum hydroxide particles A2 (referred to as “A2” in Table 1): AO-502, manufactured by Admatechs Co., Ltd..
  • Boron nitride particles A3 (referred to as “A3” in Table 1): HP40MF100, manufactured by Mizushima Ferroalloy Co., Ltd.
  • Copper foil M1 (referred to as "M1" in Table 1): CF-T9DA-SV-18, manufactured by Fukuda Metal Foil & Powder Co., Ltd., average thickness 18 ⁇ m
  • Copper foil M2 (referred to as “M2” in Table 1): MT18FL, manufactured by Mitsui Mining & Smelting Co., Ltd., average thickness 1.5 ⁇ m
  • Copper foil M3 (referred to as "M3” in Table 1): CF-T4X-SV-18, manufactured by Fukuda Metal Foil and Powder Co., Ltd., average thickness 18 ⁇ m
  • thermocompression bonder product name "MP-SNL", manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • MP-SNL manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • thermocompression bonding machine product name "MP-SNL", manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • MP-SNL manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • Example 12 to 17 Fabrication of single-sided copper-clad laminate -
  • the obtained solution for layer B was sent to a slot die coater equipped with a slide coater, and applied in a one-layer configuration (layer B) on the treated surface of the copper foil (first metal layer) shown in Table 1, adjusting the flow rate so that the thickness after drying would be the average thickness shown in Table 1.
  • the solvent was removed from the coating film by drying at 40°C for 4 hours. Further, the temperature was raised from room temperature to 300°C at a rate of 1°C/min under a nitrogen atmosphere, and a heat treatment was performed by holding at that temperature for 2 hours to obtain a laminate (single-sided copper-clad laminate) having a first metal layer (copper layer).
  • thermocompression bonder product name "MP-SNL", manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • MP-SNL manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the indentation elastic modulus was measured by applying a load at a loading rate of 0.5 mN/sec with a Vickers indenter using a microhardness tester (product name "DUH-W201", manufactured by Shimadzu Corporation), holding the maximum load of 10 mN for 10 seconds, and then unloading at a loading rate of 0.5 mN/sec.
  • the results are shown in Table 2.
  • the first and second metal layers were etched from a double sided copper clad laminate.
  • the dielectric loss tangent of the laminate taken out was measured by the following method. The results are shown in Table 1.
  • the dielectric constant was measured by a resonance perturbation method at a frequency of 10 GHz.
  • a 10 GHz cavity resonator (CP531, manufactured by Kanto Electronics Application Development Co., Ltd.) was connected to a network analyzer (E8363B, manufactured by Agilent Technology), and the laminate was inserted into the cavity resonator.
  • the laminate dielectric loss tangent was measured from the change in resonance frequency before and after insertion for 96 hours under an environment of a temperature of 25° C. and a humidity of 60% RH. The results are shown in Table 2.
  • the first and second metal layers were etched from a double sided copper clad laminate.
  • the equilibrium moisture absorption rate of the laminate at 85° C. and a relative humidity of 85% was measured by the following method. The results are shown in Table 2.
  • the laminate was left for 24 hours under constant temperature and humidity conditions of 85°C and 85% relative humidity to reach equilibrium, and then 0.1 g of the sample was used to measure the Karl Fischer moisture content at 150°C using a Karl Fischer moisture meter and an attached moisture vaporizer (both manufactured by Mitsubishi Chemical).
  • the moisture absorption rate was calculated by measuring the amount of moisture, dividing the mass of the laminate, and multiplying the mass by 100 (%).
  • a laminator (product name "Vacuum Laminator V-130", manufactured by Nikko Materials Co., Ltd.), lamination was performed for 1 minute under conditions of 140°C and a lamination pressure of 0.4 MPa to obtain a precursor of a double-sided copper foil laminate.
  • the obtained precursor of the double-sided copper-clad laminate was subjected to thermocompression bonding for 10 minutes under conditions of 300° C. and 4.5 MPa using a thermocompression bonding machine (product name "MP-SNL”, manufactured by Toyo Seiki Seisakusho Co., Ltd.), to produce a double-sided copper-clad laminate.
  • MP-SNL manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the copper foils on both sides of the double-sided copper-clad laminate were roughened, and a dry film resist was attached to the copper foil.
  • the copper foil was exposed to light, developed, etched, and the dry film was removed to leave a wiring pattern.
  • a substrate A with a wiring pattern was produced, which had a line/space of 100 ⁇ m/100 ⁇ m including a ground line and three pairs of signal lines on both sides of the substrate.
  • the length of the signal line was 50 mm, and the width was set so that the characteristic impedance was 50 ⁇ .
  • substrate B having wiring pattern--- A copper foil (product name "MT18FL”, average thickness 1.5 ⁇ m, with carrier copper foil (thickness 18 ⁇ m), manufactured by Mitsui Mining & Smelting Co., Ltd.) and a liquid crystal polymer film (product name "CTQ-50", average thickness 50 ⁇ m, manufactured by Kuraray Co., Ltd.) were prepared as a substrate.
  • the copper foil, the substrate, and the copper foil were stacked in this order so that the treated surface of the copper foil was in contact with the substrate.
  • thermocompression bonding machine product name "MP-SNL”, manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the substrate of the single-sided copper-clad laminate and the carrier copper foil on the opposite side were peeled off, and the exposed 1.5 ⁇ m copper foil was surface roughened and a dry film resist was attached.
  • the wiring pattern was exposed and developed, and the area where the resist pattern was not arranged was plated. Furthermore, the dry film resist was peeled off, and the copper exposed by the peeling process was removed by flash etching to produce a substrate B with a wiring pattern having a line/space of 20 ⁇ m/20 ⁇ m.
  • a wiring pattern-bearing substrate A or a wiring pattern-bearing substrate B was superimposed on the layer A side of the single-sided copper-clad laminate prepared in the examples and comparative examples, and a wiring board was obtained by performing a heat press for 1 hour under conditions of 160°C and 4 MPa.
  • the obtained wiring board had a wiring pattern (ground line and signal line) embedded therein, and when substrate A with a wiring pattern was used, the thickness of the wiring pattern was 18 ⁇ m, and when substrate B with a wiring pattern was used, the thickness of the wiring pattern was 12 ⁇ m.
  • the wiring board was cut in the thickness direction with a microtome, and the cross section was observed with an optical microscope.
  • the length L of the gap between the resin layer and the wiring pattern in the in-plane direction was measured.
  • the average value at 10 points was calculated, and the step conformability was evaluated based on the following evaluation criteria.
  • the results are shown in Table 2. (Evaluation criteria) A: No gaps were found. B: L was less than 1 ⁇ m. C:L was 1 ⁇ m or more.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Laminated Bodies (AREA)

Abstract

本発明は、段差追従性及び耐熱性に優れるポリマーフィルムを提供することを課題とする。 ポリマーを含み、160℃における弾性率が10MPa以下であり、260℃における弾性率が0.1MPa以上であり、85℃、相対湿度85%における平衡吸湿率が2.5質量%以下であり、誘電正接が0.01以下である、ポリマーフィルムに関するものである。

Description

ポリマーフィルム、積層体及び金属付き積層体
 本開示は、ポリマーフィルム、積層体金属付き積層体に関する。
 近年、通信機器に使用される周波数は非常に高くなる傾向にある。高周波帯域における伝送損失を抑えるため、回路基板に用いられる絶縁材料の比誘電率と誘電正接とを低くすることが要求されている。回路基板を構成する部材として銅張積層板が好適に用いられ、銅張積層板の製造には、ポリマーフィルムが好適に用いられる。
 例えば、特開2022-126429号公報には、層Aと、層Aの少なくとも一方の面に設けられた層Bとを有し、層Aは、誘電正接が0.01以下であるポリマーを含み、層Bは、温度40℃、相対湿度90%における透湿度が100g/(m・day)以下である、ポリマーフィルムが記載されている。
 通常、銅張積層板は、ポリマーフィルムの表面に銅箔を積層することによって製造される。また、配線基板は、銅張積層板と配線基材とを、銅張積層板におけるポリマーフィルムと配線基材とが接するように重ね合わせることによって製造される。配線基板を製造する場合には、密着性の観点から、配線基材の表面に形成されている段差に対してポリマーフィルムが追従して変形することが求められている。
 一方、銅張積層板に、配線基材に対する段差追従性に優れるポリマーフィルムを用いた場合に、電子部品を実装する際に行うリフローはんだ付け工程において、層間剥離が生ずる場合があった。このため、配線基材に対する段差追従性を有することと、リフローはんだ付けの際の密着性に優れること(すなわち、耐熱性に優れること)との両立が求められていた。
 本開示の一実施形態が解決しようとする課題は、段差追従性及び耐熱性に優れるポリマーフィルムを提供することである。
 また、本開示の他の実施形態が解決しようとする課題は、段差追従性及び耐熱性に優れる積層体及び金属付き積層体を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> ポリマーを含み、160℃における弾性率が10MPa以下であり、
 260℃における弾性率が0.1MPa以上であり、
 85℃、相対湿度85%における平衡吸湿率が2.5質量%以下であり、
 誘電正接が0.01以下である、
 ポリマーフィルム。
<2> 上記ポリマーが、液晶ポリマーを含む、上記<1>に記載のポリマーフィルム。<3> 上記ポリマーが、芳香族ポリエステルアミドを含む、上記<1>又は<2>に記載のポリマーフィルム。
<4> 芳香族炭化水素基を有する単量体に基づく構成単位を含む熱可塑性樹脂を含む、上記<1>~<3>のいずれか1つに記載のポリマーフィルム。
<5> 硬化剤、及び上記硬化剤と上記熱可塑性樹脂との硬化物の少なくとも一方を含み、
 上記硬化剤が、エポキシ基及びマレイミド基の少なくとも一方を有する、上記<4>に記載のポリマーフィルム。
<6> シリカ、水酸化アルミニウム及び窒化ホウ素からなる群より選択される少なくとも1種の無機フィラーを含む、上記<1>~<5>のいずれか1つに記載のポリマーフィルム。
<7> 層Aの少なくとも一方の面に、層Bを有する積層体であって、
 上記層Bが、ポリマーを含み、160℃における弾性率が10MPa以下であり、260℃における弾性率が0.1MPa以上であり、
 上記積層体の85℃、相対湿度85%における平衡吸湿率が2.5質量%以下であり、誘電正接が0.01以下である、積層体。
<8> 上記層Bの160℃における弾性率に対する、上記層Aの160℃における弾性率の比が、50以上である、上記<7>に記載の積層体。
<9> 上記ポリマーが、液晶ポリマーを含む、上記<7>又は<8>に記載の積層体。<10> 上記ポリマーが、芳香族ポリエステルアミドを含む、上記<7>又は<8>に記載の積層体。
<11> 芳香族炭化水素基を有する単量体に基づく構成単位を含む熱可塑性樹脂を含む、上記<7>~<10>のいずれか1つに記載の積層体。
<12> 硬化剤、及び上記硬化剤と上記熱可塑性樹脂との硬化物の少なくとも一方を含み、
 上記硬化剤が、エポキシ基及びマレイミド基の少なくとも一方を有する、上記<11>に記載の積層体。
<13> シリカ、水酸化アルミニウム及び窒化ホウ素からなる群より選択される少なくとも1種の無機フィラーを含む、上記<7>~<12>のいずれか1つに記載の積層体。<14> 層Cを有し、
 上記層B、上記層A、上記層Cをこの順に有する、上記<7>~<13>のいずれか1つに記載の積層体。
<15> 上記<1>~<6>のいずれか1つに記載のポリマーフィルム又は上記<7>~<14>のいずれか1つに記載の積層体と、上記ポリマーフィルム又は上記積層体の少なくとも一方の面に配置された金属層又は金属配線と、を含む金属付き積層体。
<16> 上記ポリマーフィルム又は上記積層体と、上記金属層又は上記金属配線との260℃におけるピール強度が、0.02kN/m以上である、上記<15>に記載の金属付き積層体。
 本開示の一実施形態によれば、段差追従性及び耐熱性に優れるポリマーフィルムを提供することできる。
 また、本開示の他の実施形態によれば、段差追従性及び耐熱性に優れる積層体及び金属付き積層体を提供することできる。
 以下において、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 なお、本明細書において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 また、本明細書中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。
 更に、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 また、本開示における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel GMHxL、TSKgel G4000HxL、TSKgel G2000HxL(何れも東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶剤THF(テトラヒドロフラン)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
 本開示において、「ポリマー」とは、重量平均分子量が3000以上であり、かつ、ガラス転移温度が25℃より高い化合物である。
 本開示において、「エラストマー」とは、重量平均分子量が3000以上であり、かつ、ガラス転移温度が25℃以下である化合物である。
 なお、本開示において、ガラス転移温度は、示差走査熱量測定(DSC)により測定する。例えば、製品名「DSC-60A Plus」(島津製作所製)等を用いて測定することができる。なお、測定における昇温速度は10℃/分とする。
[ポリマーフィルム]
 本開示に係るポリマーフィルムは、ポリマーを含み、160℃における弾性率が10MPa以下であり、260℃における弾性率が0.1MPa以上であり、85℃、相対湿度85%における平衡吸湿率が2.5質量%以下であり、誘電正接が0.01以下である。
 本発明者らが鋭意検討した結果、上記構成をとることにより、段差追従性及び耐熱性に優れるポリマーフィルムを提供できることを見出した。
 上記効果が得られる詳細なメカニズムは不明であるが、以下のように推測される。
 本開示に係るポリマーフィルムでは、層Bの、160℃における弾性率が10MPa以下であり、これにより、熱プレスにより積層される際に段差形状にあわせて変形されることにより、段差追従性が向上すると推察される。
 また、本開示に係るポリマーフィルムでは、85℃、相対湿度85%における平衡吸湿率が2.5質量%以下であるため、吸湿しにくく、加熱による層間剥離が生じにくい。すなわち、耐熱性に優れる。
 段差追従性の観点から、ポリマーフィルムの160℃における弾性率は、0.1MPa~8MPaであることが好ましく、0.3MPa~5MPaであることがより好ましく、0.5MPa~4MPaであることが更に好ましい。
 本開示において、ポリマーフィルムの160℃における弾性率は、以下の方法により測定する。
 まず、断面が50μmになるようにミクロトームで斜め切削して作製したフィルム断面サンプル(長さ2mm×幅2mm)を用意する。
 次に、フィルム断面サンプルの160℃弾性率を、ナノインデンテーション法を用いて、押し込み弾性率として測定する。押し込み弾性率は、微小硬度計(例えば、製品名「DUH-W201」、(株)島津製作所製)を用い、ビッカース圧子により0.5mN/秒の荷重速度で負荷をかけ、最大荷重10mNを10秒間保持した後に、0.5mN/秒の荷重速度で除荷を行うことにより、測定する。
 なお、後述する積層体が備える層Bの160℃における弾性率は、積層体が金属層等の支持体を有する場合には、これをエッチングした後、層Bの断面が50μmになるようにミクロトームで斜め切削して作製したフィルム断面サンプル(長さ2mm×幅2mm)を用意し、測定する。
 耐熱性の観点から、ポリマーフィルムの260℃における弾性率は、10MPa~0.1MPaであることが好ましく、9.5MPa~0.1MPaであることがより好ましく、1.5MPa~0.1MPaであることが更に好ましい。
 本開示において、ポリマーフィルムの260℃における弾性率は、以下の方法により測定する。
 まず、断面が50μmになるようにミクロトームで斜め切削して作製したフィルム断面サンプル(長さ2mm×幅2mm)を用意する。
 次に、フィルム断面サンプルの260℃弾性率を、ナノインデンテーション法を用いて、押し込み弾性率として測定する。押し込み弾性率は、微小硬度計(例えば、製品名「DUH-W201」、(株)島津製作所製)を用い、ビッカース圧子により0.28mN/秒の荷重速度で負荷をかけ、最大荷重10mNを10秒間保持した後に、0.28mN/秒の荷重速度で除荷を行うことにより、測定する。
 なお、後述する積層体が備える層Bの260℃における弾性率は、積層体が金属層等の支持体を有する場合には、これをエッチングした後、層Bの断面が50μmになるようにミクロトームで斜め切削して作製したフィルム断面サンプル(長さ2mm×幅2mm)を用意し、測定する。
 ポリマーフィルムの85℃、相対湿度85%における平衡吸湿率は、耐熱性の観点から、2.2質量%以下であることが好ましく、1.5質量%以下であることがより好ましく、0.8質量%以下であることが更に好ましく、0.5質量%以下であることが特に好ましく、0.25質量%以下であることが最も好ましい。上記平衡吸湿率の下限は0質量%であってもよい。
 本開示において、平衡吸湿率は以下のようにして測定する。
 ポリマーフィルムを温度85℃、相対湿度85%にて24時間放置し、平衡状態にした後、その試料0.1gをカールフィッシャー水分測定装置及びそれに付属した水分気化装置を用いて150℃の温度でカールフィッシャー水分量を測定する。
 そして、吸湿率は、測定水分量÷積層体質量×100(%)から算出する。
 測定装置としては、“CA-03”、“VA-05”等(三菱ケミカル(株)製)を使用することができる。
 なお、後述する積層体の平行吸湿率は、ポリマーフィルムに代えて積層体を放置して測定する。
 ポリマーフィルムの誘電正接は、0.005以下であることが好ましく、0を超え、0.003以下であることがより好ましい。
 本開示において、誘電正接は、以下の方法により測定するものとする。
 誘電正接の測定は、周波数10GHzで共振摂動法により実施する。ネットワークアナライザ(例えば、Agilent Technology社製「E8363B」)に10GHzの空洞共振器(例えば、(株)関東電子応用開発製「CP531」)を接続し、空洞共振器にポリマーフィルムを挿入し、温度25℃、湿度60%RH環境下、96時間の挿入前後の共振周波数の変化から測定する。
 なお、後述する積層体の誘電正接は、ポリマーフィルムに代えて積層体を挿入して測定する。
 ポリマーフィルムの平均厚みは、誘電正接、耐熱性、及び段差追従性の観点から、5μm~90μmであることが好ましく、10μm~70μmであることがより好ましく、15μm~50μmであることが更に好ましい。
 本開示において、平均厚みの測定方法は、以下のとおりである。
 ポリマーフィルムを、ポリマーフィルムの面方向に垂直な面で切断し、その断面において、5点以上厚みを測定し、それらの平均値を平均厚みとする。
 なお、後述する積層体における各層の平均厚みは、積層体の面方向に垂直な面で切断し、その断面において、各槽の5点以上厚みを測定し、それらの平均値を平均厚みとする。
 耐熱性及び段差追従性の観点から、本開示に係るポリマーフィルムは、少なくとも2つの相を含む相分離構造を有することが好ましい。
 本開示において、「相分離構造」とは、ポリマーフィルム又は層中に、互いに異なる成分を含む少なくとも2つの部分が存在する構造を意味する。
 相分離構造としては、例えば、海島構造、共連続構造、シリンダー構造、及びラメラ構造が挙げられる。海島構造は、少なくとも2つの相のうち1つの相が連続相を形成しており、他の相が非連続に分散して存在する構造を意味する。また、共連続構造とは、少なくとも2つの相がいずれも連続相を形成している構造を意味する。シリンダー構造とは、少なくとも2つの相のうち少なくとも1つの相中に他の相である複数の棒状である相を有する構造を意味する。ラメラ構造とは、少なくとも2つの相が交互に重なり合った層状の構造を意味する。シリンダー構造及びラメラ構造はいずれも、少なくとも2つの相がいずれも連続相を形成している構造であるが、上記のような特徴(棒状又は層状)を有するため、共連続構造とは区別される。
 本開示に係るポリマーフィルムでは、少なくとも2つの相がいずれも連続相を形成している相分離構造を有することが好ましい。具体的には、本開示に係るポリマーフィルムにおける相分離構造は、共連続構造、シリンダー構造、又はラメラ構造であることが好ましい。
 相分離構造を有することは、フィルム表面、フィルム断面、又はフィルム表面と断面の両方について、形態観察、素材分布評価、力学特性分布評価等の手段を用いることにより確認することができる。形態観察は、公知の光学顕微鏡、電子顕微鏡等を用いて行うことができる。素材分布評価は、赤外分光法、ラマン分光法、X線光電子分光分析装置等のイメージングを用いて行うことができる。力学特性分布評価は、原子間力顕微鏡等を用いて行うことができる。
 一実施形態において、ポリマーフィルムが相分離構造を有しているか否かは、表面全体の示差走査熱量測定(DSC)を行うことにより確認することができる。具体的には、室温(25℃)以下のガラス転移温度(Tg)と、室温以上のTgとが検出された場合は、相分離していると判断することができる。
 相分離構造は、後述するポリマーと、エラストマー等の熱可塑性樹脂、並びに熱可塑性樹脂及び硬化剤の硬化物の少なくとも一方と、により形成されうる。
-ポリマー-
 ポリマーとしては、液晶ポリマー、フッ素樹脂、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物、ポリエーテルエーテルケトン、ポリオレフィン、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の熱可塑性樹脂;フェノール樹脂、エポキシ樹脂、ポリイミド、シアネート樹脂等の熱硬化性樹脂が挙げられる。
 上記した中でも、ポリマーは、誘電正接を低下させる観点から、液晶ポリマーを含むことが好ましい。
-液晶ポリマー-
 液晶ポリマーの種類は特に限定されず、公知の液晶ポリマーを用いることができる。
 また、液晶ポリマーは、溶融状態で液晶性を示すサーモトロピック液晶ポリマーであってもよく、溶液状態で液晶性を示すリオトロピック液晶ポリマーであってもよい。また、サーモトロピック液晶の場合は、450℃以下の温度で溶融するものであることが好ましい。
 液晶ポリマーとしては、例えば、液晶ポリエステル、液晶ポリエステルにアミド結合が導入された液晶ポリエステルアミド、液晶ポリエステルにエーテル結合が導入された液晶ポリエステルエーテル、及び、液晶ポリエステルにカーボネート結合が導入された液晶ポリエステルカーボネートが挙げられる。
 また、液晶ポリマーは、液晶性の観点から、芳香環を有するポリマーであることが好ましく、芳香族ポリエステル又は芳香族ポリエステルアミドであることがより好ましい。
 更に、液晶ポリマーは、芳香族ポリエステル又は芳香族ポリエステルアミドに、更にイミド結合、カルボジイミド結合、イソシアヌレート結合等のイソシアネート由来の結合等が導入されたポリマーであってもよい。
 また、液晶ポリマーは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリマーであることが好ましい。
 液晶ポリマーとしては、例えば、以下の液晶ポリマーが挙げられる。
 1)(i)芳香族ヒドロキシカルボン酸と、(ii)芳香族ジカルボン酸と、(iii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンよりなる群から選ばれる少なくとも1種の化合物と、を重縮合させてなるもの。
 2)複数種の芳香族ヒドロキシカルボン酸を重縮合させてなるもの。
 3)(i)芳香族ジカルボン酸と、(ii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンよりなる群から選ばれる少なくとも1種の化合物と、を重縮合させてなるもの。
 4)(i)ポリエチレンテレフタレート等のポリエステルと、(ii)芳香族ヒドロキシカルボン酸と、を重縮合させてなるもの。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンは、それぞれ独立に、重縮合可能な誘導体に置き換えてもよい。
 液晶ポリマーの融点は、250℃以上であることが好ましく、250℃~350℃であることがより好ましく、260℃~330℃であることが更に好ましい。
 本開示において、融点は、示差走査熱量分析装置を用いて測定される。例えば、製品名「DSC-60A Plus」(島津製作所製)を用いて測定される。なお、測定における昇温速度は10℃/分とする。
 液晶ポリマーの重量平均分子量は、1,000,000以下であることが好ましく、3,000~300,000であることがより好ましく、5,000~100,000であることが更に好ましく、5,000~30,000であることが特に好ましい。
 液晶ポリマーは、誘電正接をより低下させる観点から、芳香族ポリエステルアミドを含むことが好ましい。芳香族ポリエステルアミドとは、少なくとも1つの芳香環を有し、かつ、エステル結合及びアミド結合を有する樹脂である。中でも、耐熱性の観点から、芳香族ポリエステルアミドは、全芳香族ポリエステルアミドであることが好ましい。
 芳香族ポリエステルアミドは、結晶性ポリマーであることが好ましい。本開示に係るポリマーフィルムは、結晶性の芳香族ポリエステルアミドを含むことが好ましい。フィルムに含まれる芳香族ポリエステルアミドが結晶性であることで、誘電正接がより低下する。
 なお、結晶性ポリマーとは、示差走査熱量測定(DSC)において、階段状の吸熱量変化ではなく、明確な吸熱ピークを有するものをいう。具体的には、例えば、昇温速度10℃/分で測定した際の吸熱ピークの半値幅が10℃以内であることを意味する。半値幅が10℃を超えるポリマー及び明確な吸熱ピークが認められないポリマーは、非晶性ポリマーとして結晶性ポリマーと区別される。
 芳香族ポリエステルアミドは、下記式1で表される構成単位、下記式2で表される構成単位、及び下記式3で表される構成単位を含むことが好ましい。
 -O-Ar1-CO-  …式1
 -CO-Ar2-CO- …式2
 -NH-Ar3-O-  …式3
 式1~式3中、Ar1、Ar2、及びAr3はそれぞれ独立に、フェニレン基、ナフチレン基又はビフェニリレン基を表す。
 以下、式1で表される構成単位等を、「単位1」等ともいう。
 単位1は、例えば、原料として芳香族ヒドロキシカルボン酸を用いることにより、導入することができる。
 単位2は、例えば、原料として芳香族ジカルボン酸を用いることにより、導入することができる。
 単位3は、例えば、原料として芳香族ヒドロキシルアミンを用いることにより、導入することができる。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、及び芳香族ヒドロキシルアミンはそれぞれ独立に、重縮合可能な誘導体に置き換えてもよい。
 例えば、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸エステル及び芳香族ジカルボン酸エステルに置き換えることができる。
 カルボキシ基をハロホルミル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸ハロゲン化物及び芳香族ジカルボン酸ハロゲン化物に置き換えることができる。
 カルボキシ基をアシルオキシカルボニル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸無水物及び芳香族ジカルボン酸無水物に置き換えることができる。
 芳香族ヒドロキシカルボン酸及び芳香族ヒドロキシアミンのようなヒドロキシ基を有する化合物の重縮合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシ基に変換してなるもの(アシル化物)が挙げられる。
 例えば、ヒドロキシ基をアシル化してアシルオキシ基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ヒドロキシルアミンをそれぞれ、アシル化物に置き換えることができる。
 芳香族ヒドロキシルアミンの重縮合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
 例えば、アミノ基をアシル化してアシルアミノ基に変換することにより、芳香族ヒドロキシアミンをアシル化物に置き換えることができる。
 式1中、Ar1は、p-フェニレン基、2,6-ナフチレン基、又は4,4’-ビフェニリレン基であることが好ましく、2,6-ナフチレン基であることがより好ましい。
 Ar1がp-フェニレン基である場合、単位1は、例えば、p-ヒドロキシ安息香酸に由来する構成単位である。
 Ar1が2,6-ナフチレン基である場合、単位1は、例えば、6-ヒドロキシ-2-ナフトエ酸に由来する構成単位である。
 Ar1が、4,4’-ビフェニリレン基である場合、単位1は、例えば、4’-ヒドロキシ-4-ビフェニルカルボン酸に由来する構成単位である。
 式2中、Ar2は、p-フェニレン基、m-フェニレン基、又は2,6-ナフチレン基であることが好ましく、m-フェニレン基であることがより好ましい。
 Ar2がp-フェニレン基である場合、単位2は、例えば、テレフタル酸に由来する構成単位である。
 Ar2がm-フェニレン基である場合、単位2は、例えば、イソフタル酸に由来する構成単位である。
 Ar2が2,6-ナフチレン基である場合、単位2は、例えば、2,6-ナフタレンジカルボン酸に由来する構成単位である。
 式3中、Ar3は、p-フェニレン基又は4,4’-ビフェニリレン基であることが好ましく、p-フェニレン基であることがより好ましい。
 Ar3がp-フェニレン基である場合、単位2は、例えば、p-アミノフェノールに由来する構成単位である。
 Ar3が4,4’-ビフェニリレン基である場合、単位2は、例えば、4-アミノ-4’-ヒドロキシビフェニルに由来する構成単位である。
 単位1、単位2、及び単位3の合計含有量に対して、単位1の含有量は、30モル%以上であることが好ましく、単位2の含有量は、35モル%以下であることが好ましく、単位3の含有量は35モル%以下であることが好ましい。
 単位1の含有量は、単位1、単位2、及び単位3の合計含有量に対して、30モル%~80モル%であることがより好ましく、30モル%~60モル%であることが更に好ましく、30モル%~40モル%であることが特に好ましい。
 単位2の含有量は、単位1、単位2、及び単位3の合計含有量に対して、10モル%~35モル%であることが好ましく、20モル%~35モル%であることが更に好ましく、30モル%~35モル%であることが特に好ましい。
 単位3の含有量は、単位1、単位2、及び単位3の合計含有量に対して、10モル%~35モル%であることが好ましく、20モル%~35モル%であることが更に好ましく、30モル%~35モル%であることが特に好ましい。
 なお、各構成単位の合計含有量は、各構成単位の物質量(モル)を合計した値である。各構成単位の物質量は、芳香族ポリエステルアミドを構成する各構成単位の質量を、各構成単位の式量で割ることにより算出される。
 単位2の含有量と単位3の含有量との比率は、[単位2の含有量]/[単位3の含有量](モル/モル)で表した場合に、好ましくは0.9/1~1/0.9、より好ましくは0.95/1~1/0.95、更に好ましくは0.98/1~1/0.98である。
 なお、芳香族ポリエステルアミドは、単位1~単位3をそれぞれ独立に、2種以上有してもよい。また、芳香族ポリエステルアミドは、単位1~単位3以外の他の構成単位を有してもよい。他の構成単位の含有量は、全構成単位の合計含有量に対して、好ましくは10モル%以下、より好ましくは5モル%以下である。
 芳香族ポリエステルアミドは、芳香族ポリエステルアミドを構成する構成単位に対応する原料モノマーを溶融重合させることにより製造することが好ましい。
 芳香族ポリエステルアミドの重量平均分子量は、1,000,000以下であることが好ましく、3,000~300,000であることがより好ましく、5,000~100,000であることが更に好ましく、5,000~30,000であることが特に好ましい。
--フッ素樹脂--
 ポリマーは、耐熱性、及び、力学的強度の観点から、フッ素樹脂を含んでいてもよい。
 本開示において、フッ素樹脂の種類は特に限定されず、公知のフッ素樹脂を用いることができる。
 フッ素樹脂としては、フッ素化α-オレフィンモノマー、すなわち、少なくとも1つのフッ素原子を含むα-オレフィンモノマーに由来する構成単位を含むホモポリマー、及び、コポリマーが挙げられる。また、フッ素樹脂としては、フッ素化α-オレフィンモノマーに由来する構成単位と、フッ素化α-オレフィンモノマーに対して反応性の非フッ素化エチレン性不飽和モノマーに由来する構成単位と、を含むコポリマーが挙げられる。
 フッ素化α-オレフィンモノマーとしては、CF=CF、CHF=CF、CH=CF、CHCl=CHF、CClF=CF、CCl=CF、CClF=CClF、CHF=CCl、CH=CClF、CCl=CClF、CFCF=CF、CFCF=CHF、CFCH=CF、CFCH=CH、CHFCH=CHF、CFCF=CF、及びパーフルオロ(炭素数2~8のアルキル)ビニルエーテル(例えば、パーフルオロメチルビニルエーテル、パーフルオロプロピルビニルエーテル、及びパーフルオロオクチルビニルエーテル)が挙げられる。中でも、フッ素化α-オレフィンモノマーは、テトラフルオロエチレン(CF=CF)、クロロトリフルオロエチレン(CClF=CF)、(パーフルオロブチル)エチレン、フッ化ビニリデン(CH=CF)、及び、ヘキサフルオロプロピレン(CF=CFCF)よりなる群から選ばれた少なくとも1種のモノマーであることが好ましい。
 非フッ素化エチレン性不飽和モノマーとしては、エチレン、プロピレン、ブテン、エチレン性不飽和芳香族モノマー(例えば、スチレン及びα-メチルスチレン)等が挙げられる。
 フッ素化α-オレフィンモノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、非フッ素化エチレン性不飽和モノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 フッ素樹脂としては、例えば、ポリクロロトリフルオロエチレン(PCTFE)、ポリ(クロロトリフルオロエチレン-プロピレン)、ポリ(エチレン-テトラフルオロエチレン)(ETFE)、ポリ(エチレン-クロロトリフルオロエチレン)(ECTFE)、ポリ(ヘキサフルオロプロピレン)、ポリ(テトラフルオロエチレン)(PTFE)、ポリ(テトラフルオロエチレン-エチレン-プロピレン)、ポリ(テトラフルオロエチレン-ヘキサフルオロプロピレン)(FEP)、ポリ(テトラフルオロエチレン-プロピレン)(FEPM)、ポリ(テトラフルオロエチレン-パーフルオロプロピレンビニルエーテル)、ポリ(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル)(PFA)(例えば、ポリ(テトラフルオロエチレン-パーフルオロプロピルビニルエーテル))、ポリビニルフルオリド(PVF)、ポリフッ化ビニリデン(PVDF)、ポリ(フッ化ビニリデン-クロロトリフルオロエチレン)、パーフルオロポリエーテル、パーフルオロスルホン酸、及びパーフルオロポリオキセタンが挙げられる。
 フッ素樹脂は、フッ素化エチレン又はフッ素化プロピレンに由来する構成単位を有していてもよい。
 フッ素樹脂は、1種単独で使用してもよいし、2種以上を併用してもよい。
 フッ素樹脂は、FEP、PFA、ETFE、又は、PTFEであることが好ましい。
 FEPは、デュポン(DuPont)社よりテフロン(登録商標)FEP(TEFLON(登録商標)FEP)の商品名、又は、ダイキン工業(株)よりネオフロンFEP(NEOFLON FEP)の商品名で入手可能である。PFAは、ダイキン工業(株)よりネオフロンPFA(NEOFLON PFA)の商品名、デュポン(DuPont)社よりテフロン(登録商標)PFA(TEFLON(登録商標)PFA)の商品名、又は、ソルベイ・ソレクシス(Solvay Solexis)社よりハイフロンPFA(HYFLON PFA)の商品名で入手可能である。
 フッ素樹脂は、PTFEを含むことがより好ましい。PTFEは、PTFEホモポリマー、一部が変性されたPTFEホモポリマー、又は、これらの一方若しくは両方を含む組合せであってもよい。一部が変性されたPTFEホモポリマーは、ポリマーの全質量を基準として、テトラフルオロエチレン以外のコモノマーに由来する構成単位を1質量%未満含むことが好ましい。
 フッ素樹脂は、架橋性基を有する架橋性フルオロポリマーであってもよい。架橋性フルオロポリマーは、従来公知の架橋方法によって架橋させることができる。代表的な架橋性フルオロポリマーの1つは、(メタ)アクリロイルオキシを有するフルオロポリマーである。例えば、架橋性フルオロポリマーは、
式:HC=CR’COO-(CH-R-(CH-OOCR’=CH
で表すことができる。式中、Rは、フッ素化α-オレフィンモノマーに由来する構成単位を含むオリゴマー鎖であり、R’はH又は-CHであり、nは1~4である。Rは、テトラフルオロエチレンに由来する構成単位を含むフッ素系オリゴマー鎖であってもよい。
 フッ素樹脂上の(メタ)アクリロイルオキシ基を介してラジカル架橋反応を開始するために、(メタ)アクリロイルオキシ基を有するフルオロポリマーをフリーラジカル源に曝露することによって、架橋フルオロポリマー網目構造を形成することができる。フリーラジカル源は、特に制限はないが、光ラジカル重合開始剤、又は、有機過酸化物が好適に挙げられる。適切な光ラジカル重合開始剤及び有機過酸化物は当技術分野においてよく知られている。架橋性フルオロポリマーは市販されており、例えば、デュポン社製のバイトンBが挙げられる。
--環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物--
 ポリマーは、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物を含んでいてもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物としては、例えば、ノルボルネン又は多環ノルボルネン系モノマーのような環状オレフィンモノマーに由来する構成単位を有する熱可塑性樹脂が挙げられる。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、上記環状オレフィンの開環重合体や2種以上の環状オレフィンを用いた開環共重合体の水素添加物であってもよく、環状オレフィンと、鎖状オレフィン又はビニル基の如きエチレン性不飽和結合を有する芳香族化合物などとの付加重合体であってもよい。また、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物には、極性基が導入されていてもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 環状脂肪族炭化水素基の環構造としては、単環であっても、2以上の環が縮合した縮合環であっても、橋掛け環であってもよい。
 環状脂肪族炭化水素基の環構造としては、シクロペンタン環、シクロヘキサン環、シクロオクタン環、イソボロン環、ノルボルナン環、ジシクロペンタン環等が挙げられる。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物としては、特に制限はなく、環状脂肪族炭化水素基を有する(メタ)アクリレート化合物、環状脂肪族炭化水素基を有する(メタ)アクリルアミド化合物、環状脂肪族炭化水素基を有するビニル化合物等が挙げられる。中でも、環状脂肪族炭化水素基を有する(メタ)アクリレート化合物が好ましく挙げられる。また、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物は、単官能エチレン性不飽和化合物であっても、多官能エチレン性不飽和化合物であってもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物における環状脂肪族炭化水素基の数は、1以上であればよく、2以上有していてもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、少なくとも1種の環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物を重合してなる重合体であればよく、2種以上環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物であってもよいし、環状脂肪族炭化水素基を有しない他のエチレン性不飽和化合物との共重合体であってもよい。
 また、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、シクロオレフィンポリマーであることが好ましい。
-ポリフェニレンエーテル-
 ポリマーは、ポリフェニレンエーテルを含んでいてもよい。
 ポリフェニレンエーテルは、分子末端のフェノール性水酸基の1分子当たりの平均個数(末端水酸基数)が、誘電正接、及び、耐熱性の観点から、1個~5個であることが好ましく、1.5個~3個であることがより好ましい。
 ポリフェニレンエーテルの末端水酸基数は、例えば、ポリフェニレンエーテルの製品の規格値からわかる。また、末端水酸基数は、例えば、ポリフェニレンエーテル1モル中に存在する全てのポリフェニレンエーテルの1分子当たりのフェノール性水酸基の個数の平均値として表される。
 ポリフェニレンエーテルは、1種単独で使用してもよいし、2種以上を併用してもよい。
 ポリフェニレンエーテルとしては、例えば、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテル、並びに、ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)が挙げられる。ポリフェニレンエーテルは、より具体的には、式(PPE)で表される構造を有する化合物であることが好ましい。
 式(PPE)中、Xは、炭素数1~3のアルキレン基又は単結合を表し、mは、0~20の整数を表し、nは、0~20の整数を表し、mとnとの合計は、1~30の整数を表す。
 上記Xにおける上記アルキレン基としては、例えば、ジメチルメチレン基が挙げられる。
 ポリフェニレンエーテルの重量平均分子量(Mw)は、製膜後に熱硬化する場合には、耐熱性、及び、膜形成性の観点から、500~5,000であることが好ましく、500~3,000であることがより好ましい。また、熱硬化しない場合には、特に限定されないが、3,000~100,000であることが好ましく、5,000~50,000であることがより好ましい。
-芳香族ポリエーテルケトン-
 誘電正接が0.01以下であるポリマーは、芳香族ポリエーテルケトンであってもよい。
 芳香族ポリエーテルケトンとしては、特に限定されず、公知の芳香族ポリエーテルケトンを用いることができる。
 芳香族ポリエーテルケトンは、ポリエーテルエーテルケトンであることが好ましい。
 ポリエーテルエーテルケトンは、芳香族ポリエーテルケトンの1種であり、エーテル結合、エーテル結合、及びカルボニル結合の順に結合が配置されたポリマーである。各結合間は、2価の芳香族基により連結されていることが好ましい。
 芳香族ポリエーテルケトンは、1種単独で使用してもよいし、2種以上を併用してもよい。
 芳香族ポリエーテルケトンとしては、例えば、下記式(P1)で表される化学構造を有するポリエーテルエーテルケトン(PEEK)、下記式(P2)で表される化学構造を有するポリエーテルケトン(PEK)、下記式(P3)で表される化学構造を有するポリエーテルケトンケトン(PEKK)、下記式(P4)で表される化学構造を有するポリエーテルエーテルケトンケトン(PEEKK)、及び下記式(P5)で表される化学構造を有するポリエーテルケトンエーテルケトンケトン(PEKEKK)が挙げられる。
 式(P1)~(P5)の各々のnは、機械的特性の観点から、10以上が好ましく、20以上がより好ましい。一方、芳香族ポリエーテルケトンを容易に製造できる点では、nは、5,000以下が好ましく、1,000以下がより好ましい。すなわち、nは、10~5,000が好ましく、20~1,000がより好ましい。
 ポリマーフィルムの誘電正接の観点から、ポリマーフィルムの全質量に対するポリマーの含有率は、10質量%以上であることが好ましく、15質量%以上であることがより好ましく、20質量%~60質量%であることが更に好ましく、20質量%~40質量%であることが特に好ましい。
 ポリマーが、液晶ポリマー(好ましくは芳香族ポリエステルアミド)を含む場合、誘電正接を低下させる観点から、ポリマーの全質量に対する液晶ポリマーの含有率は、50質量%以上であることが好ましく、70質量%以上であることがより好ましく、90質量%以上であることが更に好ましく、100質量%であってもよい。
-芳香族炭化水素基を有する単量体に由来する構成単位を含む熱可塑性樹脂-
 誘電正接、耐熱性、及び段差追従性の観点から、ポリマーフィルムは、芳香族炭化水素基を有する単量体に由来する構成単位を含む熱可塑性樹脂を含むことが好ましく、ポリスチレン系エラストマーを含むことがより好ましい。
 スチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、ポリスチレン-ポリ(エチレン-プロピレン)ジブロック共重合体(SEP)、ポリスチレン-ポリ(エチレン-プロピレン)-ポリスチレントリブロック共重合体(SEPS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、及びポリスチレン-ポリ(エチレン/エチレン-プロピレン)-ポリスチレントリブロック共重合体(SEEPS)、スチレン-イソブチレン―スチレンブロック共重合体(SIBS)、並びに、これらの水添物が挙げられる。
 誘電正接、耐熱性、及び段差追従性の観点から、ポリマーフィルムの全質量に対する上記した熱可塑性樹脂の含有率は、40質量%~85質量%であることが好ましく、40質量%~80質量%であることがより好ましく、60質量%~80質量%であることが更に好ましい。
-硬化剤-
 誘電正接、耐熱性、及び段差追従性の観点から、ポリマーフィルムは、硬化剤、及び上記熱可塑性樹脂と硬化剤との硬化物の少なくとも一方を含むことが好ましい。
 硬化剤は、マレイミド基、アリル基、ビニル基、エポキシ基、オキセタニル基、シアネート基、ベンゾオキサジン基等を有する化合物が挙げられる。
 上記熱硬化性化合物としては、レーザー加工適性、及び、段差追従性の観点から、マレイミド基、アリル基、ビニル基、シアネート基、及び、ベンゾオキサジン基よりなる群から選ばれた少なくとも1種の基を有することが好ましく、耐熱性の観点から、マレイミド基、エポキシ基よりなる群から選ばれた少なくとも1種の基を有する樹脂を含むことがより好ましい。
 誘電正接、耐熱性、及び段差追従性の観点から、ポリマーフィルムの全質量に対する硬化剤の含有率は、1質量%~20質量%であることが好ましく、3質量%~15質量%であることがより好ましく、5質量%~13質量%であることが更に好ましい。
-フィラー-
 ポリマーフィルムは、誘電正接、耐熱性、及び段差追従性の観点から、フィラーを含むことが好ましい。
 フィラーとしては、粒子状であってもよく、繊維状あってもよい。また、フィラーは、無機フィラーであってもよく、有機フィラーであってもよい。フィラーは、ポリマーフィルムの誘電正接、耐熱性、及び段差追従性の観点から、無機フィラーであることが好ましい。
 有機フィラーとしては、公知の有機フィラーを用いることができる。
 有機フィラーの材質としては、例えば、ポリエチレン、ポリスチレン、尿素-ホルマリンフィラー、ポリエステル、セルロース、アクリル樹脂、フッ素樹脂、硬化エポキシ樹脂、架橋ベンゾグアナミン樹脂、架橋アクリル樹脂、液晶ポリマー、及び、これらを2種以上含む材質が挙げられる。
 また、有機フィラーは、ナノファイバーのような繊維状であってもよく、中空樹脂粒子であってもよい。
 中でも、有機フィラーとしては、ポリマーフィルムの誘電正接、耐熱性、及び段差追従性の観点から、フッ素樹脂粒子、ポリエステル系樹脂粒子、ポリエチレン粒子、液晶ポリマー粒子、又は、セルロース系樹脂のナノファイバーであることが好ましく、ポリテトラフルオロエチレン粒子、ポリエチレン粒子、又は、液晶ポリマー粒子であることがより好ましく、液晶ポリマー粒子であることが特に好ましい。ここで、液晶ポリマー粒子とは、限定的ではないが、液晶ポリマーを重合させ、粉砕機等で粉砕して、粉末状の液晶としたものをいう。液晶ポリマー粒子は、各層の厚みよりも小さいことが好ましい。
 有機フィラーの平均粒径は、ポリマーフィルムの誘電正接、耐熱性、及び段差追従性の観点から、5nm~20μmであることが好ましく、100nm~10μmであることがより好ましい。
 無機フィラーとしては、公知の無機フィラーを用いることができる。
 無機フィラーの材質としては、例えば、窒化ホウ素(BN)、Al、窒化アルミニウム(AlN)、TiO、シリカ(SiO)、チタン酸バリウム、チタン酸ストロンチウム、水酸化アルミニウム、炭酸カルシウム、及び、これらを2種以上含む材質が挙げられる。
 中でも、無機フィラーとしては、シリカ、水酸化アルミニウム、及び窒化ホウ素からなる群より選択される少なくとも1種であることが好ましい。
 無機フィラーの平均粒径は、層Aの厚みの約20%~約40%であることが好ましく、例えば、層Aの厚みの25%、30%又は35%にあるものを選択してもよい。粒子、又は、繊維が扁平状の場合には、短辺方向の長さを示す。
 また、無機フィラーの平均粒径は、ポリマーフィルムの誘電正接、耐熱性、及び段差追従性の観点から、5nm~20μmであることが好ましく、10nm~10μmであることがより好ましく、20nm~1μmであることが更に好ましく、25nm~500nmであることが特に好ましい。
 ポリマーフィルムは、フィラーを1種のみ含んでいても、2種以上含んでいてもよい。
 ポリマーフィルムがフィラーを含む場合、フィラーの含有率は、ポリマーフィルムの誘電正接、耐熱性、及び段差追従性の観点から、ポリマーフィルムの全質量に対し、3質量%~25質量%であることが好ましく、5質量%~23質量%であることがより好ましく、10質量%~20質量%であることが更に好ましい。
-その他の添加剤-
 ポリマーフィルムは、上述した成分以外のその他の添加剤を含んでいてもよい。
 その他の添加剤としては、公知の添加剤を用いることができる。具体的には、例えば、レベリング剤、消泡剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤等が挙げられる。
[積層体]
 本開示に係る積層体は、層Aの少なくとも一方の面に、層Bを有する積層体であって、層Bが、ポリマーを含み、160℃における弾性率が10MPa以下であり、260℃における弾性率が0.1MPa以上であり、
 積層体の85℃、相対湿度85%における平衡吸湿率が2.5質量%以下であり、誘電正接が0.01以下である。
 積層体の85℃、相対湿度85%における平衡吸湿率は、2.2質量%以下であることが好ましく、1.5質量%以下であることがより好ましく、0.8質量%以下であることが更に好ましく、0.5質量%以下であることが特に好ましく、0.25質量%以下であることが最も好ましい。上記平衡吸湿率は0質量%であってもよい。
 積層体の誘電正接は、0.005以下であることが好ましく、0を超え、0.003以下であることがより好ましい。
-層A-
 層Aは、ポリマーを含むことができる。ポリマーについては、ポリマーフィルムにおいて記載した通りであり、好ましい種類、含有率等については、ここでは記載を省略する。
 層Aは、芳香族炭化水素基を有する単量体に由来する構成単位を含む熱可塑性樹脂、硬化剤、熱可塑性樹脂及び硬化剤の硬化物、フィラー、その他の添加剤等を含んでいてもよい。これらについては、ポリマーフィルムにおいて記載した通りであり、ここでは記載を省略する。
 層Aの平均厚みは、特に制限はないが、誘電正接、耐熱性、及び段差追従性の観点から、5μm~90μmであることが好ましく、10μm~70μmであることがより好ましく、15μm~50μmであることが特に好ましい。
 段差追従性の観点から、層Aの160℃における弾性率は、50MPa~2000MPaであることが好ましく、70MPa~1500MPaであることがより好ましく、150MPa~950MPaであることが更に好ましい。
 耐熱性及び段差追従性の観点から、層Bの160℃における弾性率に対する、層Aの160℃における弾性率の比(層Aの160℃における弾性率/層Bの160℃における弾性率)は、50以上であることが好ましく、100以上であることがより好ましく、200以上であることが更に好ましく、1000以上であることが特に好ましい。上記比の上限は、2000としてもよい。
 本開示において、層Aの160℃における弾性率は、以下の方法により測定する。
 ポリマーフィルム、または、積層体を、層Aの断面が50μmになるようにミクロトームで斜め切削して断面サンプル(長さ2mm×幅2mm)を作製し、ナノインデンテーション法を用いて、ビッカース圧子を備えた微小硬度計(製品名「DUH-W201」、(株)島津製作所製)を用い、160℃における押し込み弾性率を測定する。
 層Aが薄く、ナノインデンテーション法の適用が困難な場合は、不要な層をカミソリで削り取ったり、金属層を塩化第二鉄の水溶液等を用いて、公知のウェットエッチング手法で除去し、純水で洗浄後、乾燥して得られたサンプルを用いて測定される。
-層B-
 層Bは、ポリマーを含むことができる。ポリマーについては、ポリマーフィルムにおいて記載した通りであり、好ましい種類、含有率等については、ここでは記載を省略する。
 層Bは、芳香族炭化水素基を有する単量体に由来する構成単位を含む熱可塑性樹脂、硬化剤、熱可塑性樹脂及び硬化剤の硬化物、フィラー、その他の添加剤等を含んでいてもよい。これらについては、ポリマーフィルムにおいて記載した通りであり、ここでは記載を省略する。
 層Bの160℃における弾性率、260℃における弾性率、85℃、相対湿度85%における平衡吸湿率、誘電正接、平均厚み等は、ポリマーフィルムと同様であるため、ここでは記載を省略する。
 また、層Bは、上記した相分離構造を有することが好ましい。
-層C-
 本開示に係る積層体は、層Cを有し、層B、層A、層Cをこの順に有していてもよい。
 層Cは、接着層であることが好ましい。また、層Cは、表面層(最外層)であることが好ましい。
 層Cは、ポリマーを含むことができる。ポリマーについては、ポリマーフィルムにおいて記載した通りであり、好ましい種類については、ここでは記載を省略する。
 接着性の観点から、層Cの全質量に対するポリマーの含有率は、50質量%~100質量%であることが好ましく、60質量%~99.8質量%であることがより好ましく、70量%~99.7質量%であることが更に好ましい。
 層Cは、芳香族炭化水素基を有する単量体に由来する構成単位を含む熱可塑性樹脂、硬化剤、熱可塑性樹脂及び硬化剤の硬化物、フィラー、その他の添加剤等を含んでいてもよい。これらについては、ポリマーフィルムにおいて記載した通りであり、ここでは記載を省略する。
 層Cの平均厚みは、特に制限はないが、誘電正接、耐熱性、及び段差追従性の観点から、0.1μm~10μmであることが好ましく、0.5μm~8μmであることがより好ましく、1μm~5μmであることが特に好ましい。
[積層体の製造方法]
 本開示に係る積層体の製造方法は、特に制限はなく、公知の製膜方法を参照することができる。
 製膜方法としては、例えば、共流延法、重層塗布法、共押出法等が好適に挙げられる。中でも、製膜方法は、共流延法であることが好ましい。
 積層体における多層構造を共流延法又は重層塗布法により製造する場合、液晶ポリマー等の各層の成分をそれぞれ溶媒に溶解又は分散した層A形成用組成物、層B形成用組成物、層C形成用組成物等を用いて、共流延法又は重層塗布法を行うことが好ましい。
 溶媒としては、例えば、ジクロロメタン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、1-クロロブタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン化炭化水素;p-クロロフェノール、ペンタクロロフェノール、ペンタフルオロフェノール等のハロゲン化フェノール;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル;アセトン、シクロヘキサノン等のケトン;酢酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;トリエチルアミン等のアミン;ピリジン等の含窒素複素環芳香族化合物;アセトニトリル、スクシノニトリル等のニトリル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド、テトラメチル尿素等の尿素化合物;ニトロメタン、ニトロベンゼン等のニトロ化合物;ジメチルスルホキシド、スルホラン等の硫黄化合物;ヘキサメチルリン酸アミド、トリn-ブチルリン酸等のリン化合物等が挙げられ、それらを2種以上用いてもよい。
 溶媒としては、腐食性が低く、取り扱い易いことから、非プロトン性化合物、特にハロゲン原子を有しない非プロトン性化合物を主成分とする溶媒が好ましく、溶媒全体に占める非プロトン性化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。また、上記非プロトン性化合物としては、液晶ポリマーを溶解し易いことから、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドン等のアミド又はγ-ブチロラクトン等のエステルを用いることが好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、及びN-メチルピロリドンがより好ましい。
 また、溶媒としては、液晶ポリマーを溶解し易いことから、双極子モーメントが3~5である化合物を主成分とする溶媒が好ましく、溶媒全体に占める双極子モーメントが
3~5である化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。
 上記非プロトン性化合物として、双極子モーメントが3~5である化合物を用いることが好ましい。
 また、溶媒としては、除去し易いことから、1気圧における沸点が220℃以下である化合物を主成分とする溶媒が好ましく、溶媒全体に占める1気圧における沸点が220℃以下である化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。
 上記非プロトン性化合物として、1気圧における沸点が220℃以下である化合物を用いることが好ましい。
 また、本開示に係るポリマーフィルムの製造方法は、上記共流延法、重層塗布法及び共押出法等により製造する場合、支持体を使用してもよい。
 支持体としては、例えば、金属ドラム、金属バンド、ガラス板、樹脂フィルム又は金属箔が挙げられる。中でも、支持体は、金属ドラム、金属バンド、又は樹脂フィルムが好ましい。
 樹脂フィルムとしては、例えば、ポリイミド(PI)フィルムが挙げられ、市販品の例としては、宇部興産(株)製U-ピレックスS及びU-ピレックスR、東レデュポン(株)製カプトン、並びに、SKCコーロンPI社製IF30、IF70及びLV300等が挙げられる。
 また、支持体は、容易に剥離できるように、表面に表面処理層が形成されていてもよい。表面処理層は、ハードクロムメッキ、フッ素樹脂等を用いることができる。
 樹脂フィルム支持体の平均厚みは、特に制限はないが、好ましくは25μm~75μmであり、より好ましくは50μm~75μmである。
 また、流延、又は、塗布された膜状の組成物(塗膜)から溶媒の少なくとも一部を除去する方法としては、特に制限はなく、公知の乾燥方法を用いることができる。
(延伸)
 本開示に係る積層体は、分子配向を制御し、熱膨張係数や力学物性を調整する観点で、適宜、延伸を組み合わせることができる。延伸の方法は、特に制限はなく、公知の方法を参照することができ、溶媒を含んだ状態で実施してもよく、乾膜の状態で実施してもよい。溶媒を含んだ状態での延伸は、フィルムを把持して伸長してもよく、伸長せずに乾燥による自己収縮を利用して実施してもよい。延伸は、無機フィラー等の添加によってフィルム脆性が低下した場合に、破断伸度や破断強度を改善する目的で特に有効である。
[用途]
 本開示に係るポリマーフィルム及び積層体は、種々の用途に用いることができる、中でも、プリント配線板などの電子部品用フィルムに好適に用いることができ、フレキシブルプリント回路基板により好適に用いることができる。
 また、本開示に係るポリマーフィルム及び積層体は、金属接着用の液晶ポリマーフィルム及び積層体として好適に用いることができる。
[金属付き積層体]
 本開示に係る金属付き積層体は、本開示に係るポリマーフィルム又は本開示に係る積層体と、上記ポリマーフィルム又は上記積層体の少なくとも一方の面に配置された金属層又は金属配線と、を含む。
 金属層又は金属配線は、従来公知の材料により構成してもよく、好ましくは、銀又は銅により構成されることが好ましく、銅により構成されることがより好ましい。
 金属層又は金属配線は、上記ポリマーフィルム又は上記積層体の両面に配置されてもよい。この場合、2つの金属層又は金属配線は、同じ材質、厚さ及び形状の金属層又は金属配線であっても、互いに異なる材質、厚さ及び形状の金属層又は金属配線であってもよい。特性インピーダンス調整の観点からは、2つの金属層又は金属配線は、互いに異なる材質及び厚みの金属層又は金属配線であってもよい。
 一実施形態において、金属層は、圧延法により形成された圧延金属箔、又は、電解法により形成された電解金属箔である。
 上記ポリマーフィルム又は上記積層体と、上記金属層又は上記金属配線との260℃におけるピール強度は、0.02kN/m以上であることが好ましく、0.05kN/m以上であることがより好ましく、0.08kN/m以上であることが更に好ましい。ピール強度の上限は、3kN/mとしてもよい。
 本開示において、ポリマーフィルム又は積層体と、金属層又は金属配線との260℃におけるピール強度は、以下の方法により測定するものとする。
 ポリマーフィルム又は積層体と、金属層又は金属配線との積層体(金属付き積層体)から1.0cm幅の剥離用試験片を作製し、剥離用試験片を両面接着テープで平板に固定し、JIS C 5016(1994)に準じて180°法により、50mm/分の速度で剥離したときの強度(kN/m)を測定する。
 金属層の平均厚みは、特に限定されないが、2μm~20μmであることが好ましく、3μm~18μmであることがより好ましく、5μm~12μmであることが更に好ましい。
 金属層が銅箔である場合、銅箔は、支持体(キャリア)上に剥離可能に形成されているキャリア付き銅箔であってもよい。
 キャリアとしては、公知のものを用いることができる。キャリアの平均厚みは、特に限定されないが、10μm~100μmであることが好ましく、18μm~50μmであることがより好ましい。
 層Bの平均厚みは、金属配線と接着した際に、金属配線の歪みを抑制する観点から、金属の平均厚みより大きいことが好ましい。
 金属層は、回路パターンを有する金属層であってもよい。金属層を、例えば、エッチングにより所望の回路パターンに加工し、フレキシブルプリント回路基板することも好ましい。エッチング方法としては、特に制限はなく、公知のエッチング方法を用いることができる。
[金属付き積層体の製造方法]
 本開示に係る金属付き積層体は、本開示に係る積層体の製造方法において、支持体として、金属層又は金属配線を使用することにより製造することができる。
 支持体が設けられた側とは反対の積層体の面に、金属層又は金属配線を熱圧着等により設けてもよい。
 以下に実施例を挙げて本開示を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の範囲は以下に示す具体例に限定されるものではない。
 積層体が有する各層の形成に用いたポリマー及び添加剤(ポリマー以外の成分)、並びに、銅箔の詳細は以下のとおりである。
<ポリマー又はエラストマー>
・下記合成方法に従って合成した芳香族ポリエステルアミドP1(なお、表1においては、「P1」と記す。)
-芳香族ポリエステルアミドP1の合成-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計、及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸940.9g(5.0モル)、イソフタル酸415.3g(2.5モル)、アセトアミノフェン377.9g(2.5モル)、及び無水酢酸867.8g(8.4モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温(23℃、以下同じ)から140℃まで60分かけて昇温し、140℃で3時間還流させた。
 次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分間保持した。その後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の芳香族ポリエステルアミドA1aを得た。芳香族ポリエステルアミドA1aの流動開始温度は、193℃であった。また、芳香族ポリエステルアミドA1aは、全芳香族ポリエステルアミドであった。
 芳香族ポリエステルアミドA1aを、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより固相重合させた後、冷却した。次いで、粉砕機で粉砕して、粉末状の芳香族ポリエステルアミドA1bを得た。芳香族ポリエステルアミドA1bの流動開始温度は、220℃であった。
 芳香族ポリエステルアミドA1bを、窒素雰囲気下、室温から180℃まで1時間25分かけて昇温し、次いで180℃から255℃まで6時間40分かけて昇温し、255℃で5時間保持することにより固相重合させた後、冷却して、粉末状の芳香族ポリエステルアミドP1を得た。
 芳香族ポリエステルアミドP1の流動開始温度は、302℃であった。また、芳香族ポリエステルアミドP1の融点を、示差走査熱量分析装置を用いて測定した結果、311℃であった。芳香族ポリエステルアミドP1は、140℃のN-メチルピロリドンに対する溶解度は、1質量%以上であった。
・下記合成方法に従って合成したポリイミド前駆体PI(なお、表1においては、「PI」と記す。)
-ポリイミド前駆体PIの合成-
 N,N-ジメチルホルムアミド(DMF)850kgに、3,3’,4,4’-ビフェニルテトラカルボン酸二無水物(BPDA)を68.74kg添加し、パラフェニレンジアミン(PDA)を23.6kg添加し、次いで窒素雰囲気下で30分間攪拌して溶解させ、重合物を得た。これまでに添加した成分が非熱可塑性ブロック成分となり、これ以降に添加する成分が熱可塑性ブロック成分となる。上記非熱可塑性ブロック成分を含む重合溶液に、4,4’-オキシジフタル酸無水物(ODPA)を14.5kg投入し、ピロメリット酸二無水物(PMDA)を6.8kg添加し、更に2,2-ビス[4-(4-アミノフェノキシ)フェニル]プロパン(BAPP)を19.2kg投入し、4,4’-ビス(4-アミノフェノキシ)ビフェニル(BAPB)を17.2kg投入し、1時間攪拌して、23℃での粘度が2500ポイズのポリアミド酸PA-Aを得た。
 ポリアミド酸PA-Aに、無水酢酸(ポリアミド酸PA-Aのアミド酸ユニット1モルに対して1.6モル)、イソキノリン(ポリアミド酸PA-Aのアミド酸ユニット1モルに対して0.5モル)、DMF(無水酢酸、イソキノリン、DMFの合計質量がポリアミド酸PA-Aの45%となる質量)を添加し、ポリイミド前駆体(PI-A)溶液を得た。表1に記載の添加剤を添加した場合には、添加後に更に25℃30分間攪拌して、ポリイミド前駆体PIを得た。
・水添スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS):製品名「タフテックM1913」、旭化成ケミカルズ(株)製、エラストマー
<添加剤>
・下記合成方法に従って合成した液晶ポリマー粒子PP-1(なお、表1においては、「PP-1」と記す。)
-液晶ポリマー粒子PP-1の作製-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸89.18g(0.41モル)、テレフタル酸236.06g(1.42モル)、4,4-ジヒドロキシビフェニル341.39g(1.83モル)及び触媒として酢酸カリウムと酢酸マグネシウムを入れた。反応器内のガスを窒素ガスで置換した後、無水酢酸(水酸基に対して1.08モル当量)を更に添加した。窒素ガス気流下、撹拌しながら、室温から150℃まで15分かけて昇温し、150℃で2時間還流させた。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から310℃まで5時間かけて昇温し、重合物を取り出して室温まで冷却した。得られた重合物を室温から295℃まで14時間かけて昇温し、295℃で1時間固相重合した。固相重合後、5時間かけて室温冷却し、液晶ポリマー粒子PP-1を得た。液晶ポリマー粒子PP-1は、メジアン径(D50)7μm、誘電正接0.0007、融点334℃であった。
・エラストマー粒子PP-2(なお、表1においては、「PP-2」と記す。):水添スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS、製品名「タフテックM1913」、旭化成ケミカルズ(株)製)の凍結粉砕品(平均粒径5.0μm(D50))、熱可塑性樹脂
・エラストマー粒子PP-3(なお、表1においては、「PP-3」と記す。):水添スチレン-イソブチレン-スチレンブロック共重合体粒子、(株)カネカ製SIBSTAR 103T-ULの凍結粉砕品(平均粒径5.0μm(D50)、熱可塑性樹脂
・硬化剤C1(なお、表1においては、「C1」と記す。):jER YX8800、三菱化学(株)製、縮合多縮型エポキシ樹脂
・硬化剤C2(なお、表1においては、「C2」と記す。):マレイミド硬化剤、
・硬化剤C3(なお、表1においては、「C3」と記す。):jER630、三菱化学(株)製、アミノフェノール型エポキシ樹脂
・シリカ粒子A1(なお、表1においては、「A1」と記す。):SC2050-MB、(株)アドマテックス製
・水酸化アルミニウム粒子A2(なお、表1においては、「A2」と記す。):AO-502、(株)アドマテックス製
・窒化ホウ素粒子A3(なお、表1においては、「A3」と記す。):HP40MF100、水島合金鉄(株)製
<銅箔>
・銅箔M1(なお、表1においては、「M1」と記す。):CF-T9DA-SV-18、福田金属箔粉工業(株)製、平均厚み18μm
・銅箔M2(なお、表1においては、「M2」と記す。):MT18FL、三井金属鉱業(株)製、平均厚み1.5μm
・銅箔M3(なお、表1においては、「M3」と記す。):CF-T4X-SV-18、福田金属箔粉工業(株)製、平均厚み18μm
[実施例1~実施例9、及び比較例2~比較例3]
 層A~層Cの形成に使用した溶液は、以下の方法に従って調製した。
-層A用溶液の調製-
 表1に記載のポリマー又はエラストマーの溶液及び添加剤を、表1に記載の質量比率となるように混合し、N-メチルピロリドンを加え固形分濃度が25質量%となるように調製し、層A用溶液を得た。
-層B用溶液の調製-
 表1に記載のポリマー又はエラストマーの溶液及び添加剤を、表1に記載の質量比率となるように混合し、N-メチルピロリドンを加え固形分濃度が20質量%となるように調製し、層B用溶液を得た。
-層C用溶液の調製-
 芳香族ポリエステルアミドP1 8質量部を、N-メチルピロリドン92質量部に加え、窒素雰囲気下、140℃4時間撹拌し、芳香族ポリエステルアミド溶液P1(固形分濃度8質量%)を得た。次いで、表1に記載の添加剤を表1に記載の質量比率となるように混合し、層C用溶液を得た。
-片面銅張積層板の作製-
 得られた層C用溶液、層B用溶液、及び、層A用溶液を、スライドコーターを装備したスロットダイコーターに送液し、表1に記載の銅箔(第1の金属層)の処理面上に、乾燥後の厚みが表1に記載する平均厚みになるように流量を調整して3層構成(層C/層A/層B)で塗布した。40℃にて4時間乾燥することにより、塗膜から溶媒を除去した。更に窒素雰囲気下で室温から300℃まで1℃/分で昇温し、その温度で2時間保持する熱処理を行い、第1の金属層(銅層)を有する積層体(片面銅張積層板)を得た。
-両面銅張積層板の作製-
 表1に記載の第2の金属層(銅箔)の処理面が片面銅張積層板の層Bと接するように、銅箔と片面銅張積層板をこの順に重ねた。ラミネータ(製品名「真空ラミネータV-130」、ニッコー・マテリアルズ社製)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、両面銅張積層板の前駆体を得た。続いて、熱圧着機(製品名「MP-SNL」、(株)東洋精機製作所製)を用いて、得られた両面銅張積層板の前駆体を、200℃及び4MPaの条件で60分間熱圧着することにより、両面銅張積層板を作製した。
[比較例1]
-積層体の作製-
 ポリイミド前駆体PI-A溶液を公称孔径10μmの焼結繊維金属フィルターに通過させ、更に、公称孔径10μmの焼結繊維フィルターを通過させ、比較用の層B用溶液とした。そして、共流延用に調整したフィードブロックを装備した流延ダイに、上記層B用溶液、層A用溶液、及び、層C用溶液をそれぞれ送液し、ステンレス製ベルト(支持体)上に流延した。流延後、70℃~130℃の範囲で段階的に加熱し、自己支持性のゲルフィルムの状態で支持体から剥離した。続けてピンテンターで把持しながら窒素雰囲気下で段階的に加熱し、積層体を得た。このときの加熱温度は、250℃~350℃とした。
-片面銅張積層板の作製-
 得られた積層体の片面に、表1に記載の銅箔の処理面が、層Cと接するように配置し、ラミネータ(ニッコー・マテリアルズ社製「真空ラミネータV-130」)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、片面銅張積層板の前駆体を得た。続いて、熱圧着機((株)東洋精機製作所製「MP-SNL」)を用いて、得られた銅張積層板前駆体を300℃4.5MPaの条件で10分間熱圧着することにより、片面銅張積層板を作製した。
-両面銅張積層板の作製-
 表1に記載の銅箔の処理面が片面銅張積層板の層Bと接するように、銅箔と片面銅張積層板をこの順に重ねた。ラミネータ(製品名「真空ラミネータV-130」、ニッコー・マテリアルズ社製)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、両面銅張積層板の前駆体を得た。続いて、熱圧着機(製品名「MP-SNL」、(株)東洋精機製作所製)を用いて、得られた両面銅張積層板の前駆体を、300℃及び4MPaの条件で60分間熱圧着することにより、両面銅張積層板を作製した。
[実施例12~実施例17]
-片面銅張積層板の作製-
 得られた層B用溶液を、スライドコーターを装備したスロットダイコーターに送液し、表1に記載の銅箔(第1の金属層)の処理面上に、乾燥後の厚みが表1に記載する平均厚みになるように流量を調整して1層構成(層B)で塗布した。40℃にて4時間乾燥することにより、塗膜から溶媒を除去した。更に窒素雰囲気下で室温から300℃まで1℃/分で昇温し、その温度で2時間保持する熱処理を行い、第1の金属層(銅層)を有する積層体(片面銅張積層板)を得た。
-両面銅張積層板の作製-
 表1に記載の第2の金属層(銅箔)の処理面が片面銅張積層板の層Bと接するように、銅箔と片面銅張積層板をこの順に重ねた。ラミネータ(製品名「真空ラミネータV-130」、ニッコー・マテリアルズ社製)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、両面銅張積層板の前駆体を得た。続いて、熱圧着機(製品名「MP-SNL」、(株)東洋精機製作所製)を用いて、得られた両面銅張積層板の前駆体を、200℃及び4MPaの条件で60分間熱圧着することにより、両面銅張積層板を作製した。
-ポリマーフィルムの作製-
 両面銅張積層板の第1の金属層及び第2の金属層を、塩化第二鉄の水溶液で除去し、純水で洗浄後、乾燥し、ポリマーフィルムを得た。
<<層Bの160℃及び260℃における弾性率の測定>>
 両面銅張積層板の層B側の銅箔を、塩化第二鉄の水溶液で除去し、純水で洗浄後、乾燥した。層Bの断面が50μmになるようにミクロトームで斜め切削して断面サンプル(長さ2mm×幅2mm)を作製した。
 次に、フィルム断面サンプルの160℃弾性率及び260℃弾性率を、ナノインデンテーション法を用いて、押し込み弾性率として測定した。押し込み弾性率は、微小硬度計(製品名「DUH-W201」、(株)島津製作所製)を用い、ビッカース圧子により0.5mN/秒の荷重速度で負荷をかけ、最大荷重10mNを10秒間保持した後に、0.5mN/秒の荷重速度で除荷を行うことにより、測定した。結果を表2に示す。
<<誘電正接の測定>>
 両面銅張積層板から第1の金属層及び第2の金属層をエッチングした。
 下記方法により、取り出した積層体の誘電正接の測定を行った。結果を表1に示す。
 誘電率測定は周波数10GHzで共振摂動法により実施した。
 ネットワークアナライザ(Agilent Technology社製「E8363B」)に10GHzの空洞共振器((株)関東電子応用開発製 CP531)を接続し、空洞共振器に積層体を挿入し、温度25℃、湿度60%RH環境下、96時間の挿入前後の共振周波数の変化から、積層体誘電正接を測定した。結果を表2に示す。
<<平衡吸湿率の測定>>
 両面銅張積層板から第1の金属層及び第2の金属層をエッチングした。
 下記方法により、積層体の85℃、相対湿度85%における平衡吸湿率を測定した。結果を表2に示す。
 積層体を、温度85℃、相対湿度85%の恒温恒湿度下で24時間放置し、平衡状態にした後、その試料0.1gをカールフィッシャー水分測定装置及びそれに付属した水分気化装置(いずれも三菱化学製)を用いて150℃の温度でカールフィッシャー水分量を測定した。
 吸湿率は、測定水分量÷積層体質量×100(%)から算出した。
<<段差追従性評価>>
-配線パターン付き基材Aの作製-
 銅箔(製品名「CF-T9DA-SV-18」、平均厚み18μm、福田金属箔粉工業(株)製)と、基材として液晶ポリマーフィルム(製品名「CTQ-50」、平均厚み50μm、クラレ社製)とを準備した。
 銅箔の処理面が基材と接するように、銅箔と基材と銅箔とをこの順に重ねた。ラミネータ(製品名「真空ラミネータV-130」、ニッコー・マテリアルズ社製)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、両面銅箔積層板の前駆体を得た。
 続いて、熱圧着機(製品名「MP-SNL」、(株)東洋精機製作所製)を用いて、得られた両面銅張積層板の前駆体を、300℃及び4.5MPaの条件で10分間熱圧着することにより、両面銅張積層板を作製した。
 上記両面銅張積層板の両面の銅箔に対して表面粗化し、ドライフィルムレジストを貼合した。配線パターンが残るように露光、現像をし、エッチングし、更にドライフィルムを除去することで、基材の両側にグランド線及び3対の信号線を含むライン/スペースが100μm/100μmとなる配線パターン付き基材Aを作製した。信号線の長さは50mm、幅は特性インピーダンスが50Ωになるように設定した。
-配線パターン付き基材Bの作製-
 銅箔(製品名「MT18FL」、平均厚み1.5μm、キャリア銅箔(厚み18μm)付き、三井金属鉱業(株)製)と、基材として液晶ポリマーフィルム(製品名「CTQ-50」、平均厚み50μm、(株)クラレ製)とを準備した。
 銅箔の処理面が基材と接するように、銅箔と基材と銅箔とをこの順に重ねた。ラミネータ(製品名「真空ラミネータV-130」、ニッコー・マテリアルズ(株)製)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、片面銅箔積層板の前駆体を得た。
 続いて、熱圧着機(製品名「MP-SNL」、(株)東洋精機製作所製)を用いて、得られた片面銅張積層板の前駆体を、300℃及び4.5MPaの条件で10分間熱圧着することにより、片面銅張積層板を作製した。
 片面銅張積層板の基材と反対面にあるキャリア銅箔とを剥離し、露出した1.5μmの銅箔を表面粗化し、ドライフィルムレジストを貼合した。配線パターン露光、現像し、レジストパターンが配置されていない領域にめっき処理をした。更に、ドライフィルムレジストを剥離し、剥離工程によって露出した銅をフラッシュエッチングにより除去することで、ライン/スペースが20μm/20μmとなる配線パターン付き基材Bを作製した。
 実施例及び比較例において作製した片面銅張積層板の層A側に、配線パターン付き基材A又は配線パターン付き基材Bを重ね合わせ、160℃及び4MPaの条件で、1時間の熱プレスを行うことにより、配線基板を得た。
 得られた配線基板は、配線パターン(グランド線及び信号線)が埋設されており、配線パターン付き基材Aを用いた場合は配線パターンの厚みは18μm、配線パターン付き基材Bを用いた場合は配線パターンの厚みは12μmであった。
 配線基板をミクロトームで厚み方向に沿って切削し、断面を光学顕微鏡で観察した。樹脂層と配線パターン間において面内方向に生じる隙間の長さLを測定した。10箇所における平均値を算出し、下記評価基準に基づいて、段差追従性を評価した。結果を表2に示す。
(評価基準)
  A:隙間は確認されなかった。
  B:Lが1μm未満であった。
  C:Lが1μm以上であった。
<<耐熱性評価>>
 実施例及び比較例において作製した両面銅張積層板を30mm×30mmサイズに切り出し、サンプルとした。85℃相対湿度85%の恒温恒湿槽にて、サンプルを168時間処理した。
 260℃に設定したオーブンに処理済みサンプルを入れ、15分加熱した。加熱後のサンプルを剃刀で切削し、断面を光学顕微鏡で観察し、下記評価基準に基づいて、耐熱性を評価した。結果を表2に示す。
(評価基準)
  A:層Bと第2の金属層との間において、剥離が認められなかった。
  B:層Bと第2の金属層との間において、1mm以下の幅で剥離が認められた。
  C:層Bと第2の金属層との間において、1mmより大きい幅で剥離が認められた。
<<層Aの160℃における弾性率/層Bの160℃における弾性率の算出>>
 両面銅張積層板から第1の金属層及び第2の金属層を塩化第二鉄の水溶液を用いてエッチングした。
 層Aの断面が50μmになるようにミクロトームで斜め切削して断面サンプル(長さ2mm×幅2mm)を用意し、上記した層Bと同様の方法にして、層Aの160℃弾性率を測定した。結果を表2に示す。
 層Bの160℃における弾性率に対する、層Aの160℃における弾性率の比(層Aの160℃における弾性率/層Bの160℃における弾性率)を算出し、表2にまとめた。
<<両面銅張積層板のピール強度測定>>
 実施例及び比較例において作製した両面銅張積層板から1.0cm幅の剥離用試験片を作製し、両面銅張積層板を両面接着テープで平板に固定し、JIS C 5016(1994)に準じて180°法により、260℃の環境下において、50mm/分の速度で両面銅張積層板から第2の金属層を剥離し、層Bと第2の金属層との間のピール強度(kN/m)を測定した。結果を表2に示す。
 
 表2に記載の結果から、本開示に係る積層体である実施例1~実施例11の積層体は、比較例1~比較例3の積層体に比べ、段差追従性及び耐熱性に優れることが分かる。
 また、実施例12~実施例17のポリマーフィルムは、実施例1~実施例11の積層体と同様に、段差追従性及び耐熱性に優れることが分かる。
 なお、2022年12月9日に出願された日本国特許出願2022-197495号の開示は、その全体が参照により本明細書に取り込まれる。また、本明細書に記載された全ての文献、特許出願及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (16)

  1.  ポリマーを含み、160℃における弾性率が10MPa以下であり、
     260℃における弾性率が0.1MPa以上であり、
     85℃、相対湿度85%における平衡吸湿率が2.5質量%以下であり、
     誘電正接が0.01以下である、
     ポリマーフィルム。
  2.  前記ポリマーが、液晶ポリマーを含む、請求項1に記載のポリマーフィルム。
  3.  前記ポリマーが、芳香族ポリエステルアミドを含む、請求項1に記載のポリマーフィルム。
  4.  芳香族炭化水素基を有する単量体に基づく構成単位を含む熱可塑性樹脂を含む、請求項1に記載のポリマーフィルム。
  5.  硬化剤、及び前記硬化剤と前記熱可塑性樹脂との硬化物の少なくとも一方を含み、
     前記硬化剤が、エポキシ基及びマレイミド基の少なくとも一方を有する、請求項4に記載のポリマーフィルム。
  6.  シリカ、水酸化アルミニウム及び窒化ホウ素からなる群より選択される少なくとも1種の無機フィラーを含む、請求項1に記載のポリマーフィルム。
  7.  層Aの少なくとも一方の面に、層Bを有する積層体であって、
     前記層Bが、ポリマーを含み、160℃における弾性率が10MPa以下であり、260℃における弾性率が0.1MPa以上であり、
     前記積層体の85℃、相対湿度85%における平衡吸湿率が2.5質量%以下であり、誘電正接が0.01以下である、積層体。
  8.  前記層Bの160℃における弾性率に対する、前記層Aの160℃における弾性率の比が、50以上である、請求項7に記載の積層体。
  9.  前記ポリマーが、液晶ポリマーを含む、請求項7に記載の積層体。
  10.  前記ポリマーが、芳香族ポリエステルアミドを含む、請求項7に記載の積層体。
  11.  芳香族炭化水素基を有する単量体に基づく構成単位を含む熱可塑性樹脂を含む、請求項7に記載の積層体。
  12.  硬化剤、及び前記硬化剤と前記熱可塑性樹脂との硬化物の少なくとも一方を含み、
     前記硬化剤が、エポキシ基及びマレイミド基の少なくとも一方を有する、請求項11に記載の積層体。
  13.  シリカ、水酸化アルミニウム及び窒化ホウ素からなる群より選択される少なくとも1種の無機フィラーを含む、請求項7に記載の積層体。
  14.  層Cを有し、
     前記層B、前記層A、前記層Cをこの順に有する、請求項7に記載の積層体。
  15.  請求項1~6のいずれか1項に記載のポリマーフィルム又は請求項7~請求項14のいずれか1項に記載の積層体と、前記ポリマーフィルム又は前記積層体の少なくとも一方の面に配置された金属層又は金属配線と、を含む金属付き積層体。
  16.  前記ポリマーフィルム又は前記積層体と、前記金属層又は前記金属配線との260℃におけるピール強度が、0.02kN/m以上である、請求項15に記載の金属付き積層体。
PCT/JP2023/040817 2022-12-09 2023-11-13 ポリマーフィルム、積層体及び金属付き積層体 WO2024122276A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-197495 2022-12-09
JP2022197495 2022-12-09

Publications (1)

Publication Number Publication Date
WO2024122276A1 true WO2024122276A1 (ja) 2024-06-13

Family

ID=91379037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/040817 WO2024122276A1 (ja) 2022-12-09 2023-11-13 ポリマーフィルム、積層体及び金属付き積層体

Country Status (1)

Country Link
WO (1) WO2024122276A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113973A1 (ja) * 2020-11-24 2022-06-02 富士フイルム株式会社 ポリマーフィルム、及び、積層体
WO2022113962A1 (ja) * 2020-11-24 2022-06-02 富士フイルム株式会社 液晶ポリマーフィルム、ポリマーフィルム、及び、積層体
WO2022113964A1 (ja) * 2020-11-24 2022-06-02 富士フイルム株式会社 フィルム及び積層体
WO2022114159A1 (ja) * 2020-11-27 2022-06-02 富士フイルム株式会社 液晶ポリマーフィルム及びその製造方法、並びに、積層体
WO2022113961A1 (ja) * 2020-11-24 2022-06-02 富士フイルム株式会社 液晶ポリマーフィルム、ポリマーフィルム、及び、積層体
WO2022202790A1 (ja) * 2021-03-22 2022-09-29 富士フイルム株式会社 ポリマーフィルム及び積層体
WO2022202789A1 (ja) * 2021-03-22 2022-09-29 富士フイルム株式会社 ポリマーフィルム及び積層体

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022113973A1 (ja) * 2020-11-24 2022-06-02 富士フイルム株式会社 ポリマーフィルム、及び、積層体
WO2022113962A1 (ja) * 2020-11-24 2022-06-02 富士フイルム株式会社 液晶ポリマーフィルム、ポリマーフィルム、及び、積層体
WO2022113964A1 (ja) * 2020-11-24 2022-06-02 富士フイルム株式会社 フィルム及び積層体
WO2022113961A1 (ja) * 2020-11-24 2022-06-02 富士フイルム株式会社 液晶ポリマーフィルム、ポリマーフィルム、及び、積層体
WO2022114159A1 (ja) * 2020-11-27 2022-06-02 富士フイルム株式会社 液晶ポリマーフィルム及びその製造方法、並びに、積層体
WO2022202790A1 (ja) * 2021-03-22 2022-09-29 富士フイルム株式会社 ポリマーフィルム及び積層体
WO2022202789A1 (ja) * 2021-03-22 2022-09-29 富士フイルム株式会社 ポリマーフィルム及び積層体

Similar Documents

Publication Publication Date Title
WO2022163776A1 (ja) ポリマーフィルム、並びに、積層体及びその製造方法
TW202239833A (zh) 聚合物膜以及積層體及其製造方法
WO2022113964A1 (ja) フィルム及び積層体
US20230321958A1 (en) Liquid crystal polymer film, polymer film, and laminate
WO2022113961A1 (ja) 液晶ポリマーフィルム、ポリマーフィルム、及び、積層体
WO2023191010A1 (ja) フィルム、及び、積層体
JP2022085734A (ja) 液晶ポリマーフィルム及び積層体
TW202243911A (zh) 液晶聚合物膜、聚合物膜及積層體
WO2024122276A1 (ja) ポリマーフィルム、積層体及び金属付き積層体
WO2022113963A1 (ja) ポリマーフィルム、及び、積層体
JP2022126429A (ja) ポリマーフィルム及び積層体
WO2024095641A1 (ja) ポリマーフィルム及び積層体
WO2024127887A1 (ja) ポリマー組成物、ポリマーフィルム前駆体、ポリマーフィルム、積層体前駆体、及び積層体
WO2024122277A1 (ja) ポリマーフィルム、積層体及び金属付き積層体
WO2024095642A1 (ja) ポリマーフィルム及び積層体
WO2023233878A1 (ja) フィルム及び積層体
WO2024048727A1 (ja) 積層体、フィルム、熱硬化性フィルム、及び、配線基板の製造方法
WO2023191011A1 (ja) フィルム、及び、積層体
WO2023191012A1 (ja) フィルム、並びに、積層体及びその製造方法
WO2024048729A1 (ja) フィルム及びその製造方法、並びに、積層体
WO2024122205A1 (ja) ポリマーフィルム、積層体、配線基板、シルセスキオキサンポリマー、及びポリマー組成物
JP2024034319A (ja) フィルム、及び、積層体
WO2023145784A1 (ja) 配線基板及びその製造方法、フィルム、並びに、積層体
WO2024048728A1 (ja) フィルム、及び、積層体
JP2024083145A (ja) フィルム及びフィルム前駆体、積層体及び積層体前駆体、並びに配線基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23900397

Country of ref document: EP

Kind code of ref document: A1