WO2024048729A1 - フィルム及びその製造方法、並びに、積層体 - Google Patents

フィルム及びその製造方法、並びに、積層体 Download PDF

Info

Publication number
WO2024048729A1
WO2024048729A1 PCT/JP2023/031835 JP2023031835W WO2024048729A1 WO 2024048729 A1 WO2024048729 A1 WO 2024048729A1 JP 2023031835 W JP2023031835 W JP 2023031835W WO 2024048729 A1 WO2024048729 A1 WO 2024048729A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
film
less
film according
group
Prior art date
Application number
PCT/JP2023/031835
Other languages
English (en)
French (fr)
Inventor
泰行 佐々田
美代子 原
諭司 國安
Original Assignee
富士フイルム株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 富士フイルム株式会社 filed Critical 富士フイルム株式会社
Publication of WO2024048729A1 publication Critical patent/WO2024048729A1/ja

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B3/00Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form
    • B32B3/26Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer
    • B32B3/30Layered products comprising a layer with external or internal discontinuities or unevennesses, or a layer of non-planar form; Layered products having particular features of form characterised by a particular shape of the outline of the cross-section of a continuous layer; characterised by a layer with cavities or internal voids ; characterised by an apertured layer characterised by a layer formed with recesses or projections, e.g. hollows, grooves, protuberances, ribs
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate

Definitions

  • the present disclosure relates to a film, a method for manufacturing the same, and a laminate.
  • Patent Document 1 describes a film forming step in which a thermoplastic liquid crystal polymer film is formed by extrusion molding a thermoplastic liquid crystal polymer that forms an optically anisotropic melt phase. By physically polishing or irradiating with ultraviolet rays on at least one surface of the thermoplastic liquid crystal polymer film, the surface of the film has a hardness of 0.01 to 0.1 GPa as measured by the nanoindentation method.
  • a conductor circuit is formed on at least one surface of the thermoplastic liquid crystal polymer film, which forms an optically anisotropic molten phase.
  • a method for manufacturing a multilayer circuit board is described, which includes a thermocompression bonding step of bonding the entire substrate by thermocompression bonding while facing the circuit forming surface of the substrate.
  • Patent Document 1 Japanese Patent Application Publication No. 2010-103269
  • the problem to be solved by the embodiments of the present invention is to provide a film that is excellent in suppressing air bubbles during bonding and a method for manufacturing the same. Further, another problem to be solved by the other embodiments of the present invention is to provide a laminate using the above film.
  • Means for solving the above problems include the following aspects. ⁇ 1> It has a layer A and a layer B on at least one surface of the layer A, the dielectric loss tangent is 0.01 or less, and the depth of the layer B on the surface opposite to the layer A side is A film in which the density of recesses with a diameter of 0.5 ⁇ m or more is 5 pieces/cm 2 or less. ⁇ 2> The film according to ⁇ 1>, wherein the recesses have an average diameter of 100 ⁇ m to 1,000 ⁇ m. ⁇ 3> The film according to ⁇ 1> or ⁇ 2>, wherein the ratio of the elastic modulus of the layer A at 160° C. to the elastic modulus of the layer B at 160° C. is 1.2 or more.
  • ⁇ 4> The film according to any one of ⁇ 1> to ⁇ 3>, wherein the layer B has an elastic modulus at 160° C. of 10 MPa or less.
  • ⁇ 5> The film according to any one of ⁇ 1> to ⁇ 4>, wherein the layer B has a dielectric loss tangent of 0.01 or less.
  • ⁇ 6> The film according to any one of ⁇ 1> to ⁇ 5>, wherein the layer B contains a liquid crystal polymer.
  • ⁇ 7> The film according to any one of ⁇ 1> to ⁇ 6>, wherein the layer B contains an aromatic polyesteramide.
  • ⁇ 8> The film according to any one of ⁇ 1> to ⁇ 7>, wherein the layer B contains a thermoplastic resin having a structural unit having an aromatic hydrocarbon group.
  • the layer A has a dielectric loss tangent of 0.01 or less.
  • the layer A contains an aromatic polyesteramide.
  • ⁇ 12> The film according to any one of ⁇ 1> to ⁇ 11>, wherein the surface free energy of the layer B on the opposite side to the layer A side is 30 mJ/m 2 or less.
  • the ion intensity derived from fluorine atoms or silicone structures measured by time-of-flight secondary ion mass spectrometry on the surface of layer B opposite to layer A is The film according to any one of ⁇ 1> to ⁇ 12>, which has a higher ionic strength.
  • a laminate comprising the film according to any one of ⁇ 1> to ⁇ 13> and a metal layer or metal wiring disposed on at least one surface of the film.
  • ⁇ 15> The film according to any one of ⁇ 1> to ⁇ 13>, wherein the surface free energy of the layer B on the opposite side to the layer A side is higher than 30 mJ/m 2 ; A laminate including at least a metal layer or metal wiring disposed on a surface opposite to the layer A side.
  • the method for producing a film according to any one of ⁇ 1> to ⁇ 13> including the step of:
  • alkyl group includes not only an alkyl group having no substituent (unsubstituted alkyl group) but also an alkyl group having a substituent (substituted alkyl group).
  • (meth)acrylic is a term used as a concept that includes both acrylic and methacrylic
  • (meth)acryloyl is a term used as a concept that includes both acryloyl and methacryloyl. It is.
  • process in this specification refers not only to an independent process, but also to the term “process” when the intended purpose of the process is achieved, even if the process cannot be clearly distinguished from other processes. included.
  • mass % and “weight %” have the same meaning
  • mass parts and “weight parts” have the same meaning.
  • a combination of two or more preferred embodiments is a more preferred embodiment.
  • the weight average molecular weight (Mw) and number average molecular weight (Mn) in this disclosure are determined by gel permeation chromatography using a column of TSKgel SuperHM-H (trade name, manufactured by Tosoh Corporation).
  • PFP pentafluorophenol
  • chloroform 1/2 (mass ratio)
  • GPC GPC
  • the film according to the present disclosure has a layer A and a layer B on at least one surface of the layer A, and has a dielectric loss tangent of 0.01 or less, and a side of the layer B opposite to the layer A side.
  • the density of recesses with a depth of 0.5 ⁇ m or more on the surface is 5 pieces/cm 2 or less.
  • the present inventors have discovered that in a conventional film having a dielectric loss tangent of 0.01 or less and having a plurality of layers, air bubbles may be mixed in at the time of bonding.
  • the film according to the present disclosure has a dielectric loss tangent of 0.01 or less, and a density of recesses with a depth of 0.5 ⁇ m or more on the surface of the layer B opposite to the layer A side of 5 pieces/cm. When it is 2 or less, it is possible to suppress concave portions that cause air bubbles and provide a film that is excellent in suppressing air bubbles during bonding.
  • the film according to the present disclosure has a density of 5 or less recesses/cm 2 with a depth of 0.5 ⁇ m or more on the surface of the layer B opposite to the layer A, and has air bubble suppression properties; From the viewpoint of adhesion, the number is preferably 2 pieces/cm 2 or less, more preferably 1 piece/cm 2 or less, and particularly preferably 0.4 pieces/cm 2 or less.
  • the density of the recesses with a depth of 0.5 ⁇ m or more on the surface is adjusted by the heat treatment described later, the heat treatment by pasting the sheet, the type and amount of the resin and particles used, the solvent used, etc.
  • the average diameter of the recesses with a depth of 0.5 ⁇ m or more on the surface of the layer B opposite to the layer A side is 10 ⁇ m from the viewpoint of bubble inclusion prevention and adhesion. It is preferably from 1,000 ⁇ m to 1,000 ⁇ m, more preferably from 200 ⁇ m to 500 ⁇ m.
  • the average depth of the recesses on the surface of the layer B on the side opposite to the layer A side is preferably 1 ⁇ m or less from the viewpoints of bubble inclusion prevention and adhesion, More preferably, it is 0.5 ⁇ m or less.
  • the average diameter and average depth of the recesses on the surface are adjusted by the types and amounts of the resin and particles used, the solvent used, and the like.
  • methods for measuring the density of recesses with a surface depth of 0.5 ⁇ m or more, the average diameter of recesses with a depth of 0.5 ⁇ m or more, and the average depth of the recesses are as follows. Cut out a 50 mm square sample including the measurement surface, and use a laser microscope (manufactured by Keyence Corporation, VK-X3000) to count the parts (concave parts) that are recessed from the surrounding area, and among them, the depth is 0. The density is calculated from the number of recesses of .5 ⁇ m or more.
  • the size (maximum diameter) of the opening of each recess with a depth of 0.5 ⁇ m or more is measured, and the average value thereof is taken as the average diameter of the recess.
  • the depth of each recess is measured using the above method, and the average value thereof is defined as the average depth. Further, the depth represents the difference in distance between the opening and the deepest part of the recess in the thickness direction of the layer B.
  • the dielectric loss tangent of the film according to the present disclosure is 0.01 or less, preferably 0.008 or less, and 0.005 or less from the viewpoints of dielectric constant, laser processing suitability, and step followability. is more preferable, more preferably 0.004 or less, and particularly preferably more than 0 and 0.003 or less.
  • the dielectric loss tangent in the present disclosure shall be measured by the following method.
  • the measurement of the dielectric loss tangent is carried out by the resonance perturbation method at a frequency of 10 GHz.
  • a 10 GHz cavity resonator (CP531, manufactured by Kanto Electronics Applied Development Co., Ltd.) was connected to a network analyzer (“E8363B” manufactured by Agilent Technology), a test piece was inserted into the cavity resonator, and the temperature was 25°C and the humidity was 60% RH.
  • the dielectric loss tangent of the film is measured from the change in resonance frequency before and after insertion for 96 hours in the environment.
  • an evaluation sample of only the desired layer may be prepared by scraping off unnecessary layers with a razor or the like.
  • the layer to be measured may be scraped off with a razor or the like, and the resulting powdered sample may be used.
  • the measurement of the dielectric loss tangent of a polymer in the present disclosure is performed by identifying or isolating the chemical structure of the polymer constituting each layer, and using a powdered sample of the polymer to be measured, according to the method for measuring the dielectric loss tangent described above. do.
  • the surface free energy on the surface of the layer B on the opposite side to the layer A side in the film according to the present disclosure is not particularly limited, but from the viewpoint of bubble inclusion prevention and adhesion, it is 30 mJ/m 2 or less. It is preferably from 15 mJ/m 2 to 30 mJ/m 2 , even more preferably from 18 mJ/m 2 to 30 mJ/m 2 , and even more preferably from 25 mJ/m 2 to 30 mJ/m 2 Particularly preferred.
  • surface free energy is calculated by the following method.
  • the contact angles of the two types of samples are measured at a room temperature of 23° C. and a relative humidity of 50% to 60% using a contact angle meter model CA-A (manufactured by Kyowa Interface Science Co., Ltd.). Specifically, the contact angle of pure water with respect to the target surface and the contact angle of methylene iodide with respect to the target surface are measured. In each contact angle measurement, the average value of three measurements is taken as the contact angle.
  • the surface free energy ⁇ ( ⁇ d + ⁇ p ), which is the sum of the dispersion force ⁇ d and the polar force ⁇ p , is calculated by the geometric mean method based on Owens- Wendt . The specific calculation method and meanings of symbols are shown below.
  • ⁇ SL Surface free energy of the target surface and known solution
  • ⁇ S Surface free energy of the target surface
  • ⁇ L Known surface free energy of the solution
  • ⁇ S d Dispersion force component of the surface free energy of the target surface
  • ⁇ S p Polar force component of the surface free energy of the target surface
  • ⁇ L d Dispersion force component of the surface free energy of the known solution
  • ⁇ L p Polar force component of the surface free energy of the known solution ⁇
  • the ionic strength derived from the fluorine atoms or the silicone structure measured by time-of-flight secondary ion mass spectrometry on the surface of the layer B opposite to the layer A suppresses the inclusion of air bubbles. From the viewpoints of properties and adhesion, it is preferable that the ionic strength is higher than the ionic strength inside the layer B.
  • the ionic strength Iout derived from a fluorine atom or silicone structure measured by time-of-flight secondary ion mass spectrometry on the surface of the layer B opposite to the layer A side in the film according to the present disclosure;
  • the ratio (Iout/Iin) to the ionic strength Iin inside the layer B is preferably 1 or more, more preferably 10 or more, from the viewpoints of bubble suppression and adhesion.
  • the ion intensity derived from a fluorine atom or a silicone structure measured by time-of-flight secondary ion mass spectrometry was a value calculated by the following method. Measurement was performed using TOF-SIMS (Time-of-Flight Secondary Ion Mass Spectrometry, TRIFT V nano TOF). Bi 3 + (25 kV) was used as the primary ion source. The number of irradiated ions was set to 5 ⁇ 10 10 ions/cm 2 or less. Fluorine atoms and silicone structures were detected for F ⁇ and SiC 3 H 9 O ⁇ , respectively, and the detected value of the corresponding ion when the detected total ion was normalized to 1 was taken as the ion intensity. The ionic strength Iin inside the layer B was determined by cutting the surface opposite to the layer side by 0.5 ⁇ m and setting it as the ionic strength of the exposed surface.
  • the elastic modulus of layer A at 160° C. in the film according to the present disclosure is preferably 100 MPa to 2,500 MPa, and 200 MPa to 2,000 MPa, from the viewpoint of bubble suppression properties, laser processing suitability, and level difference followability. It is more preferably 300 MPa to 1,500 MPa, and particularly preferably 500 MPa to 1,000 MPa.
  • the elastic modulus at 160° C. of layer B in the film according to the present disclosure is preferably 100 MPa or less, more preferably 10 MPa or less, and 0.001 MPa to It is more preferably 10 MPa, and particularly preferably 0.5 MPa to 5 MPa.
  • the ratio of the elastic modulus MD A of layer A at 160° C. to the elastic modulus MD B of layer B at 160° C. (MD A / MD B ) in the film according to the present disclosure is determined from the viewpoint of laser processing suitability and step followability. Therefore, it is preferably 1.2 or more, more preferably 5 to 1,000, even more preferably 10 to 800, and particularly preferably 100 to 600.
  • the elastic modulus in the present disclosure shall be measured by the following method. First, a cross section of a film or a laminate is cut with a microtome or the like, and layer A or layer B is identified from an image observed with an optical microscope. Next, the elastic modulus of the identified layer A or layer B was measured as an indentation elastic modulus using a nanoindentation method. The indentation modulus was measured using a microhardness tester (product name "DUH-W201", manufactured by Shimadzu Corporation) at 160°C with a Vickers indenter at a loading rate of 0.28 mN/sec, with a maximum load of 10 mN. After holding for 10 seconds, the measurement is performed by unloading at a loading rate of 0.28 mN/sec.
  • a microhardness tester product name "DUH-W201", manufactured by Shimadzu Corporation
  • Layers other than layer A and layer B are also measured in the same manner. Moreover, when measuring each layer, an unnecessary layer may be scraped off with a razor or the like to prepare a sample for evaluation of only the desired layer. Furthermore, if it is difficult to take out a single film because the layer is thin, etc., the layer to be measured may be scraped off with a razor or the like, and the resulting powdered sample may be used.
  • the film according to the present disclosure has layer A. Furthermore, methods for detecting or determining the layer structure in the film, the thickness of each layer, etc. include the following methods. First, a cross-sectional sample of the film is cut out using a microtome, and the layer structure and the thickness of each layer are determined using an optical microscope. If it is difficult to determine with an optical microscope, the determination may be made by morphological observation using a scanning electron microscope (SEM) or component analysis using time-of-flight secondary ion mass spectrometry (TOF-SIMS).
  • SEM scanning electron microscope
  • TOF-SIMS time-of-flight secondary ion mass spectrometry
  • the dielectric loss tangent of layer A is preferably 0.01 or less, more preferably 0.005 or less, and even more preferably 0.004 or less, from the viewpoints of the film's dielectric loss tangent, laser processing suitability, and step tracking ability. , 0.003 or less is particularly preferable.
  • the lower limit value is not particularly set, but may be, for example, greater than 0.
  • Layer A preferably contains a polymer having a dielectric loss tangent of 0.01 or less from the viewpoint of the dielectric loss tangent of the film and suitability for laser processing. Further, from the viewpoint of the dielectric loss tangent of the film and suitability for laser processing, layer A preferably contains a polymer having an aromatic ring, and contains a polymer having an aromatic ring and a dielectric loss tangent of 0.01 or less. It is more preferable.
  • layer A preferably contains a polymer and polymer particles, and preferably contains a polymer having a dielectric loss tangent of 0.01 or less, and a polymer having a dielectric loss tangent of 0.01 or less. It is more preferable to include particles of a polymer having a particle size of 0.01 or less.
  • the dielectric loss tangent of the polymer contained in layer A of the film according to the present disclosure is preferably 0.01 or less, more preferably 0.005 or less, from the viewpoints of the film's dielectric loss tangent, laser processing suitability, and step followability, It is more preferably 0.004 or less, particularly preferably 0.003 or less.
  • the lower limit value is not particularly set, but may be, for example, greater than 0.
  • the melting point Tm or 5% weight loss temperature Td of a polymer with a dielectric loss tangent of 0.01 or less is determined from the viewpoints of the dielectric loss tangent of the film, adhesion to metals (e.g., metal layer, metal wiring, etc.), and heat resistance.
  • the temperature is preferably 200°C or higher, more preferably 250°C or higher, even more preferably 280°C or higher, and particularly preferably 300°C or higher. Although there is no particular restriction on the upper limit, for example, it is preferably 500°C or lower, more preferably 420°C or lower.
  • the melting point Tm in the present disclosure shall be measured using a differential scanning calorimetry (DSC) device.
  • the 5% mass reduction temperature Td in the present disclosure is measured using a thermal mass spectrometry (TGA) device. That is, the mass of the sample placed in the measurement pan is taken as an initial value, and the temperature at which the mass decreases by 5% by mass with respect to the initial value due to temperature increase is taken as the 5% mass loss temperature Td.
  • TGA thermal mass spectrometry
  • the glass transition temperature Tg of the polymer having a dielectric loss tangent of 0.01 or less is preferably 150° C. or higher, and preferably 200° C. or higher from the viewpoints of the film's dielectric loss tangent, adhesion with metal, and heat resistance. It is more preferable that the temperature is 200°C or higher, and it is particularly preferable that the temperature is 200°C or higher.
  • the upper limit is not particularly limited, but is preferably less than 350°C, more preferably less than 280°C, more preferably 280°C or less.
  • the glass transition temperature Tg in the present disclosure shall be measured using a differential scanning calorimetry (DSC) device.
  • the weight average molecular weight Mw of the polymer having a dielectric loss tangent of 0.01 or less is preferably 1,000 or more, more preferably 2,000 or more, and particularly preferably 5,000 or more. Further, the weight average molecular weight Mw of the polymer having a dielectric loss tangent of 0.01 or less is preferably 50,000 or less, more preferably 20,000 or less, and particularly preferably less than 13,000. .
  • the type of polymer having a dielectric loss tangent of 0.01 or less is not particularly limited, and known polymers can be used.
  • polymers having a dielectric loss tangent of 0.01 or less include liquid crystal polymers, fluorine-based polymers, polymers of compounds having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond, polyether ether ketone, polyolefin, Thermoplastic resins such as polyamide, polyester, polyphenylene sulfide, aromatic polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether and its modified products, polyetherimide; Elastomers such as copolymers of glycidyl methacrylate and polyethylene; Phenol resins , thermosetting resins such as epoxy resins, polyimide resins, and cyanate resins.
  • liquid crystal polymers, fluorine-based polymers, and compounds having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond are preferred from the viewpoints of the film's dielectric loss tangent, adhesion to metals, and heat resistance. It is preferably at least one polymer selected from the group consisting of polymers, polyphenylene ethers, and aromatic polyether ketones, and more preferably at least one polymer selected from the group consisting of liquid crystal polymers and fluorine-based polymers. preferable. From the viewpoint of film adhesion and mechanical strength, a liquid crystal polymer is preferable, and from the viewpoint of heat resistance and dielectric loss tangent, a fluorine-based polymer is preferable.
  • the -Liquid crystal polymer- Layer A in the film according to the present disclosure preferably contains a liquid crystal polymer from the viewpoints of the dielectric loss tangent, laser processing suitability, and step followability of the film.
  • the type of liquid crystal polymer is not particularly limited, and any known liquid crystal polymer can be used.
  • the liquid crystal polymer may be a thermotropic liquid crystal polymer that exhibits liquid crystallinity in a molten state, or may be a lyotropic liquid crystal polymer that exhibits liquid crystallinity in a solution state.
  • the liquid crystal polymer is a thermotropic liquid crystal polymer, it is preferably a liquid crystal polymer that melts at a temperature of 450° C. or lower.
  • liquid crystal polymers examples include liquid crystal polyester, liquid crystal polyester amide in which an amide bond is introduced into a liquid crystal polyester, liquid crystal polyester ether in which an ether bond is introduced into a liquid crystal polyester, and liquid crystal polyester carbonate in which a carbonate bond is introduced into a liquid crystal polyester.
  • the liquid crystal polymer is preferably a polymer having an aromatic ring, more preferably an aromatic polyester or an aromatic polyester amide, and an aromatic polyester or an aromatic polyester amide. Particular preference is given to group polyester amides.
  • the liquid crystal polymer may be a polymer in which isocyanate-derived bonds such as imide bonds, carbodiimide bonds, and isocyanurate bonds are further introduced into aromatic polyester or aromatic polyester amide. Further, the liquid crystal polymer is preferably a wholly aromatic liquid crystal polymer using only an aromatic compound as a raw material monomer.
  • liquid crystal polymers include the following liquid crystal polymers. 1) (i) aromatic hydroxycarboxylic acid, (ii) aromatic dicarboxylic acid, and (iii) at least one compound selected from the group consisting of aromatic diol, aromatic hydroxyamine, and aromatic diamine; Something made by polycondensation. 2) A product obtained by polycondensing multiple types of aromatic hydroxycarboxylic acids. 3) A product obtained by polycondensing (i) an aromatic dicarboxylic acid and (ii) at least one compound selected from the group consisting of an aromatic diol, an aromatic hydroxyamine, and an aromatic diamine.
  • a product obtained by polycondensing (i) a polyester such as polyethylene terephthalate and (ii) an aromatic hydroxycarboxylic acid.
  • a polyester such as polyethylene terephthalate
  • an aromatic hydroxycarboxylic acid the aromatic hydroxycarboxylic acid, aromatic dicarboxylic acid, aromatic diol, aromatic hydroxyamine, and aromatic diamine may each be independently replaced with a polycondensable derivative.
  • aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids can be replaced with aromatic hydroxycarboxylic acid esters and aromatic dicarboxylic acid esters.
  • aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids can be replaced with aromatic hydroxycarboxylic acid halides and aromatic dicarboxylic acid halides.
  • aromatic hydroxycarboxylic acids and aromatic dicarboxylic acids can be replaced with aromatic hydroxycarboxylic acid anhydrides and aromatic dicarboxylic acid anhydrides.
  • polymerizable derivatives of compounds having hydroxy groups such as aromatic hydroxycarboxylic acids, aromatic diols, and aromatic hydroxyamines include those obtained by acylating a hydroxy group to convert it into an acyloxy group (acylated products) can be mentioned.
  • aromatic hydroxycarboxylic acids, aromatic diols, and aromatic hydroxyamines can each be replaced with acylated products.
  • polymerizable derivatives of compounds having an amino group such as aromatic hydroxyamines and aromatic diamines include those obtained by acylating an amino group to convert it into an acylamino group (acylated product). For example, by acylating an amino group to convert it into an acylamino group, aromatic hydroxyamine and aromatic diamine can each be replaced with an acylated product.
  • Liquid crystal polymers are composed of structural units represented by any of the following formulas (1) to (3) (hereinafter referred to as formula (1)) from the viewpoints of liquid crystallinity, dielectric loss tangent of the film, and adhesion to metals. It is preferable to have a structural unit represented by the following formula (1), and it is more preferable to have a structural unit represented by the following formula (1). It is particularly preferable to have a structural unit represented by the following formula (2), and a structural unit represented by the following formula (3).
  • Ar 1 represents a phenylene group, a naphthylene group, or a biphenylylene group
  • Ar 2 and Ar 3 each independently represent a phenylene group, a naphthylene group, a biphenylylene group
  • the following formula (4) represents a group represented by, X and Y each independently represent an oxygen atom or an imino group, and the hydrogen atoms in Ar 1 to Ar 3 are each independently substituted with a halogen atom, an alkyl group, or an aryl group. It's okay.
  • Ar 4 and Ar 5 each independently represent a phenylene group or a naphthylene group, and Z represents an oxygen atom, a sulfur atom, a carbonyl group, a sulfonyl group, or an alkylene group.
  • halogen atom examples include a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom.
  • alkyl groups include methyl group, ethyl group, n-propyl group, isopropyl group, n-butyl group, isobutyl group, s-butyl group, t-butyl group, n-hexyl group, 2-ethylhexyl group, Examples include n-octyl group and n-decyl group.
  • the number of carbon atoms in the alkyl group is preferably 1 to 10.
  • aryl group examples include phenyl group, o-tolyl group, m-tolyl group, p-tolyl group, 1-naphthyl group and 2-naphthyl group.
  • the number of carbon atoms in the aryl group is preferably 6 to 20.
  • the number of substitutions in Ar 1 , Ar 2 or Ar 3 is preferably 2 or less, more preferably 1, each independently.
  • alkylene group examples include a methylene group, a 1,1-ethanediyl group, a 1-methyl-1,1-ethanediyl group, a 1,1-butanediyl group, and a 2-ethyl-1,1-hexanediyl group.
  • the alkylene group preferably has 1 to 10 carbon atoms.
  • Structural unit (1) is a structural unit derived from aromatic hydroxycarboxylic acid.
  • the structural unit (1) includes an embodiment in which Ar 1 is a p-phenylene group (a structural unit derived from p-hydroxybenzoic acid), and an embodiment in which Ar 1 is a 2,6-naphthylene group (6-hydroxy-2 - a structural unit derived from naphthoic acid) or a 4,4'-biphenylylene group (a structural unit derived from 4'-hydroxy-4-biphenylcarboxylic acid).
  • the structural unit (2) is a structural unit derived from an aromatic dicarboxylic acid.
  • the structural unit (2) includes an embodiment in which Ar 2 is a p-phenylene group (a structural unit derived from terephthalic acid), an embodiment in which Ar 2 is a m-phenylene group (a structural unit derived from isophthalic acid), and an embodiment in which Ar 2 is a m-phenylene group (a structural unit derived from isophthalic acid).
  • Ar 2 is a diphenyl ether-4,4'-diyl group (diphenyl ether-4,4'- structural units derived from dicarboxylic acids) are preferred.
  • the structural unit (3) is a structural unit derived from aromatic diol, aromatic hydroxylamine, or aromatic diamine.
  • the structural unit (3) includes an embodiment in which Ar 3 is a p-phenylene group (a structural unit derived from hydroquinone, p-aminophenol, or p-phenylenediamine), and an embodiment in which Ar 3 is a m-phenylene group (isophthalic acid). ), or an embodiment in which Ar 3 is a 4,4'-biphenylylene group (derived from 4,4'-dihydroxybiphenyl, 4-amino-4'-hydroxybiphenyl or 4,4'-diaminobiphenyl) structural units) are preferred.
  • the content of the structural unit (1) is determined by dividing the total amount of all structural units (the mass of each structural unit (also referred to as "monomer unit") constituting the liquid crystal polymer by the formula weight of each structural unit). Calculate the amount equivalent to the substance amount (mol) of the structural unit, and calculate the sum of them), preferably 30 mol% or more, more preferably 30 mol% to 80 mol%, even more preferably 30 mol% to 60 mol %, particularly preferably from 30 mol% to 40 mol%.
  • the content of the structural unit (2) is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, even more preferably 20 mol% to 35 mol%, especially Preferably it is 30 mol% to 35 mol%.
  • the content of the structural unit (3) is preferably 35 mol% or less, more preferably 10 mol% to 35 mol%, even more preferably 20 mol% to 35 mol%, especially Preferably it is 30 mol% to 35 mol%.
  • the ratio between the content of structural unit (2) and the content of structural unit (3) is expressed as [content of structural unit (2)]/[content of structural unit (3)] (mol/mol).
  • the ratio is preferably 0.9/1 to 1/0.9, more preferably 0.95/1 to 1/0.95, and still more preferably 0.98/1 to 1/0.98.
  • the liquid crystal polymer may each independently have two or more types of structural units (1) to (3). Further, the liquid crystal polymer may have structural units other than structural units (1) to (3), but the content thereof is preferably 10 mol% or less, more preferably 10 mol% or less based on the total amount of all structural units. Preferably it is 5 mol% or less.
  • the liquid crystal polymer has a structural unit (3) in which at least one of X and Y is an imino group, that is, the structural unit (3) has an aromatic It is preferable to have at least one of a structural unit derived from hydroxylamine and a structural unit derived from an aromatic diamine, and more preferably only a structural unit (3) in which at least one of X and Y is an imino group.
  • the liquid crystal polymer is preferably produced by melt polymerizing raw material monomers corresponding to the structural units constituting the liquid crystal polymer. Melt polymerization may be carried out in the presence of a catalyst.
  • catalysts include metal compounds such as magnesium acetate, stannous acetate, tetrabutyl titanate, lead acetate, sodium acetate, potassium acetate, and antimony trioxide, and metal compounds such as 4-(dimethylamino)pyridine and 1-methylimidazole.
  • metal compounds such as 4-(dimethylamino)pyridine and 1-methylimidazole.
  • nitrogen-containing heterocyclic compounds and nitrogen-containing heterocyclic compounds are preferred. Note that the melt polymerization may be further carried out by solid phase polymerization, if necessary.
  • the lower limit of the flow start temperature of the liquid crystal polymer is preferably 180°C or higher, more preferably 200°C or higher, even more preferably 250°C or higher, and the upper limit of the flow start temperature is preferably 350°C, 330°C. is more preferable, and 310°C is even more preferable.
  • the solubility, heat resistance, strength and rigidity are excellent, and the viscosity of the solution is appropriate.
  • the flow start temperature is also called the flow temperature.
  • the flow temperature is also called the flow temperature.
  • a capillary rheometer under a load of 9.8 MPa (100 kg/cm 2 ), the liquid crystal polymer is melted while increasing the temperature at a rate of 4°C/min. This is the temperature at which a viscosity of 4,800 Pa ⁇ s (48,000 poise) is exhibited when extruded from a nozzle with a diameter of 1 mm and a length of 10 mm. Polymers - Synthesis, Molding, Applications'', CMC Co., Ltd., June 5, 1987, p. 95).
  • the weight average molecular weight of the liquid crystal polymer is preferably 1,000,000 or less, more preferably 3,000 to 300,000, even more preferably 5,000 to 100,000, A range of 5,000 to 30,000 is particularly preferred.
  • the film after heat treatment has excellent thermal conductivity, heat resistance, strength and rigidity in the thickness direction.
  • the polymer having a dielectric loss tangent of 0.01 or less is preferably a fluorine-based polymer from the viewpoint of heat resistance and mechanical strength.
  • the type of fluoropolymer used as a polymer having a dielectric loss tangent of 0.01 or less is not particularly limited as long as the dielectric loss tangent is 0.01 or less, and a known fluoropolymer may be used. be able to.
  • fluorine-based polymers include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, tetrafluoroethylene/hexafluoropropylene copolymer, ethylene/tetrafluoride
  • fluorine-based polymers include polytetrafluoroethylene, polychlorotrifluoroethylene, polyvinylidene fluoride, polyvinyl fluoride, perfluoroalkoxy fluororesin, tetrafluoroethylene/hexafluoropropylene copolymer, ethylene/tetrafluoride
  • examples include ethylene copolymer, ethylene/chlorotrifluoroethylene copolymer, and the like. Among them, polytetrafluoroethylene is preferred.
  • the fluoropolymer also includes a fluorinated ⁇ -olefin monomer, that is, an ⁇ -olefin monomer containing at least one fluorine atom, and optionally a non-fluorinated ethylene reactive with the fluorinated ⁇ -olefin monomer.
  • a fluorinated ⁇ -olefin monomer that is, an ⁇ -olefin monomer containing at least one fluorine atom, and optionally a non-fluorinated ethylene reactive with the fluorinated ⁇ -olefin monomer.
  • Homopolymers and copolymers containing structural units derived from sexually unsaturated monomers are included.
  • vinyl ether eg, perfluoromethyl vinyl ether, perfluoropropyl vinyl ether, perfluorooctyl vinyl ether.
  • Non-fluorinated monoethylenically unsaturated monomers include ethylene, propylene, butene, ethylenically unsaturated aromatic monomers (eg, styrene and ⁇ -methylstyrene), and the like.
  • the fluorinated ⁇ -olefin monomers may be used alone or in combination of two or more. Further, the non-fluorinated ethylenically unsaturated monomers may be used alone or in combination of two or more.
  • fluorine-based polymers include polychlorotrifluoroethylene (PCTFE), poly(chlorotrifluoroethylene-propylene), poly(ethylene-tetrafluoroethylene) (ETFE), poly(ethylene-chlorotrifluoroethylene) (ECTFE), Poly(hexafluoropropylene), poly(tetrafluoroethylene) (PTFE), poly(tetrafluoroethylene-ethylene-propylene), poly(tetrafluoroethylene-hexafluoropropylene) (FEP), poly(tetrafluoroethylene-propylene) (FEPM), poly(tetrafluoroethylene-perfluoropropylene vinyl ether), poly(tetrafluoroethylene-perfluoroalkyl vinyl ether) (PFA) (e.g., poly(tetrafluoroethylene-perfluoropropyl vinyl ether)), polyvinyl fluoride ( PVF), polyvinylidene fluoride (PVDF),
  • the fluorine-based polymer is preferably at least one of FEP, PFA, ETFE, or PTFE.
  • FEP is available from DuPont under the trade name TEFLON FEP (TEFLON FEP) or from Daikin Industries, Ltd. under the trade name NEOFLON FEP;
  • PFA is the product name of NEOFLON PFA (NEOFLON PFA) from Daikin Industries, Ltd., the product name of Teflon (registered trademark) PFA (TEFLON (registered trademark) PFA) from DuPont, or Solvay Solexis. It is available from Solexis under the trade name HYFLON PFA.
  • the fluorine-based polymer contains PTFE.
  • the PTFE can include a PTFE homopolymer, a partially modified PTFE homopolymer, or a combination including one or both of these.
  • the partially modified PTFE homopolymer contains less than 1% by weight of constitutional units derived from comonomers other than tetrafluoroethylene, based on the total weight of the polymer.
  • the fluoropolymer may be a crosslinkable fluoropolymer having a crosslinkable group.
  • the crosslinkable fluoropolymer can be crosslinked by conventionally known crosslinking methods.
  • One representative crosslinkable fluoropolymer is a fluoropolymer having (meth)acryloxy groups.
  • R is a fluorine-based oligomer chain having two or more structural units derived from a fluorinated ⁇ -olefin monomer or a non-fluorinated monoethylenically unsaturated monomer
  • R' is H or - CH 3 and n is 1-4.
  • R may be a fluorine-based oligomer chain containing a structural unit derived from tetrafluoroethylene.
  • Forming a crosslinked fluoropolymer network by exposing a fluoropolymer having (meth)acryloxy groups to a free radical source to initiate a radical crosslinking reaction via the (meth)acryloxy groups on the fluoropolymer.
  • the free radical source is not particularly limited, but suitable examples include photoradical polymerization initiators and organic peroxides. Suitable radical photoinitiators and organic peroxides are well known in the art.
  • Crosslinkable fluoropolymers are commercially available, such as Viton B manufactured by DuPont.
  • Polymer of a compound having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be a polymer of a compound having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • Examples of polymers of compounds having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond include a structural unit formed from a monomer consisting of a cyclic olefin such as norbornene or a polycyclic norbornene monomer; Examples include thermoplastic resins having the following, and are also called thermoplastic cyclic olefin resins.
  • Polymers of compounds having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond can be obtained by hydrogenation of a ring-opening polymer of the above-mentioned cyclic olefin or a ring-opening copolymer using two or more types of cyclic olefins. It may be an addition polymer of a cyclic olefin and an aromatic compound having an ethylenically unsaturated bond such as a chain olefin or a vinyl group.
  • a polar group may be introduced into the polymer of a compound having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond.
  • the polymer of a compound having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be used alone or in combination of two or more.
  • the ring structure of the cyclic aliphatic hydrocarbon group may be a single ring, a condensed ring of two or more rings, or a bridged ring.
  • Examples of the ring structure of the cycloaliphatic hydrocarbon group include a cyclopentane ring, a cyclohexane ring, a cyclooctane ring, an isophorone ring, a norbornane ring, and a dicyclopentane ring.
  • the compound having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be a monofunctional ethylenically unsaturated compound or a polyfunctional ethylenically unsaturated compound.
  • the number of cyclic aliphatic hydrocarbon groups in the compound having a cyclic aliphatic hydrocarbon group and a group having an ethylenically unsaturated bond may be one or more, and may have two or more.
  • the polymer of a compound having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is obtained by polymerizing a compound having at least one kind of cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond. It may be a polymer of compounds having two or more types of cycloaliphatic hydrocarbon groups and a group having an ethylenically unsaturated bond, or it may be a polymer having no cycloaliphatic hydrocarbon groups. It may also be a copolymer with other ethylenically unsaturated compounds. Further, the polymer of a compound having a cycloaliphatic hydrocarbon group and a group having an ethylenically unsaturated bond is preferably a cycloolefin polymer.
  • layer A contains polyphenylene ether.
  • the weight average molecular weight (Mw) of the polyphenylene ether is preferably from 500 to 5,000, from the viewpoint of heat resistance and film forming properties, and preferably from 500 to 3,000 when it is thermally cured after film formation. It is more preferable that there be.
  • Mw weight average molecular weight
  • it is not particularly limited, but it is preferably 3,000 to 100,000, more preferably 5,000 to 50,000.
  • the average number of phenolic hydroxyl groups per molecule at the end of the molecule is preferably 1 to 5 from the viewpoint of dielectric loss tangent and heat resistance, and 1.5 More preferably, the number is from 1 to 3.
  • the number of hydroxyl groups or the number of phenolic hydroxyl groups of polyphenylene ether can be found, for example, from the standard values of polyphenylene ether products.
  • the number of terminal hydroxyl groups or the number of terminal phenolic hydroxyl groups includes, for example, a numerical value representing the average value of hydroxyl groups or phenolic hydroxyl groups per molecule of all polyphenylene ethers present in 1 mole of polyphenylene ether.
  • One type of polyphenylene ether may be used alone, or two or more types may be used in combination.
  • polyphenylene ether examples include polyphenylene ether consisting of 2,6-dimethylphenol and at least one of bifunctional phenol and trifunctional phenol, or poly(2,6-dimethyl-1,4-phenylene oxide).
  • examples include those containing polyphenylene ether as a main component. More specifically, for example, a compound having a structure represented by the formula (PPE) is preferable.
  • X represents an alkylene group having 1 to 3 carbon atoms or a single bond
  • m represents an integer of 0 to 20
  • n represents an integer of 0 to 20
  • the combination of m and n The sum represents an integer from 1 to 30.
  • Examples of the alkylene group in the above X include a dimethylmethylene group.
  • the polymer having a dielectric loss tangent of 0.01 or less may be an aromatic polyetherketone.
  • the aromatic polyetherketone is not particularly limited, and any known aromatic polyetherketone can be used.
  • the aromatic polyetherketone is a polyetheretherketone.
  • Polyetheretherketone is a type of aromatic polyetherketone, and is a polymer in which bonds are arranged in the order of ether bond, ether bond, and carbonyl bond (ketone). It is preferable that each bond is connected by a divalent aromatic group.
  • One type of aromatic polyetherketone may be used alone, or two or more types may be used in combination.
  • aromatic polyetherketones examples include polyetheretherketone (PEEK) having a chemical structure represented by the following formula (P1), and polyetherketone (PEK) having a chemical structure represented by the following formula (P2). , polyetherketoneketone (PEKK) having a chemical structure represented by the following formula (P3), polyetheretherketoneketone (PEEKK) having a chemical structure represented by the following formula (P4), and the following formula (P5) Examples include polyetherketoneetherketoneketone (PEKEKK) having the chemical structure shown below.
  • n in each of formulas (P1) to (P5) is preferably 10 or more, and more preferably 20 or more.
  • n is preferably 5,000 or less, more preferably 1,000 or less. That is, n is preferably 10 to 5,000, more preferably 20 to 1,000.
  • the polymer having a dielectric loss tangent of 0.01 or less is preferably a polymer soluble in a specific organic solvent (hereinafter also referred to as "soluble polymer").
  • the soluble polymers in the present disclosure include N-methylpyrrolidone, N-ethylpyrrolidone, dichloromethane, dichloroethane, chloroform, N,N-dimethylacetamide, ⁇ -butyrolactone, dimethylformamide, ethylene glycol monobutyl ether at 25°C. and ethylene glycol monoethyl ether in an amount of 0.1 g or more dissolved in 100 g of at least one solvent selected from the group consisting of ethylene glycol monoethyl ether.
  • Layer A may contain only one kind of polymer having a dielectric loss tangent of 0.01 or less, or may contain two or more kinds of polymers.
  • the content of the polymer having a dielectric loss tangent of 0.01 or less, preferably a liquid crystal polymer, in layer A is 10% by mass based on the total mass of layer A, from the viewpoint of the dielectric loss tangent of the film and the adhesion with metal. It is preferably 100% by mass, more preferably 20% by mass to 100% by mass, even more preferably 30% by mass to 100% by mass, particularly 40% to 100% by mass. preferable.
  • the content of the polymer having a dielectric loss tangent of 0.01 or less, preferably a liquid crystal polymer, in the film is 20% by mass to 100% by mass based on the total mass of the film, from the viewpoint of the dielectric loss tangent of the film and adhesion with metal. It is preferably 30% by mass to 100% by mass, even more preferably 40% to 100% by mass, and particularly preferably 50% to 100% by mass. Note that the content of the polymer having a dielectric loss tangent of 0.01 or less includes a particulate polymer having a dielectric loss tangent of 0.01 or less, which will be described later.
  • the -Filler- Layer A may contain a filler from the viewpoint of thermal expansion coefficient and adhesion to metal.
  • the filler may be in the form of particles or fibers, and may be inorganic or organic filler. It is preferable that In the film according to the present disclosure, the number density of the filler is preferably larger inside the film than on the surface from the viewpoints of thermal expansion coefficient and adhesion to metal.
  • the surface of the film refers to the outer surface of the film (the surface in contact with air or the substrate), and the range of 3 ⁇ m from the most surface in the depth direction, or 10% of the total thickness of the film from the most surface. The smaller of the following ranges is defined as the "surface".
  • the inside of the film refers to parts other than the surface of the film, that is, the inner surface of the film (the surface that does not contact the air or the substrate), and includes, but is not limited to, the area within ⁇ 1.5 ⁇ m from the center of the film in the thickness direction.
  • the smaller value of the range or the range of ⁇ 5% of the total thickness from the center in the thickness direction of the film is defined as "inside".
  • organic filler known organic fillers can be used.
  • the organic filler material include polyethylene, polystyrene, urea-formalin filler, polyester, cellulose, acrylic resin, fluorine resin, hardened epoxy resin, crosslinked benzoguanamine resin, crosslinked acrylic resin, liquid crystal polymer, and two or more of these.
  • materials include:
  • the organic filler may be in the form of fibers such as nanofibers, or may be hollow resin particles.
  • fluororesin particles, polyester resin particles, polyethylene particles, liquid crystal polymer particles, or cellulose resin nanofibers are used as the organic filler.
  • the liquid crystal polymer particles refer to, but are not limited to, those obtained by polymerizing a liquid crystal polymer and pulverizing it with a pulverizer or the like to obtain a powdered liquid crystal.
  • the liquid crystal polymer particles are preferably smaller than the thickness of each layer.
  • the average particle diameter of the organic filler is preferably from 5 nm to 20 ⁇ m, more preferably from 100 nm to 10 ⁇ m, from the viewpoints of the dielectric loss tangent of the film, suitability for laser processing, and step tracking ability.
  • the inorganic filler a known inorganic filler can be used.
  • the material of the inorganic filler include BN, Al 2 O 3 , AlN, TiO 2 , SiO 2 , barium titanate, strontium titanate, aluminum hydroxide, calcium carbonate, and materials containing two or more of these. It will be done.
  • the inorganic filler is preferably metal oxide particles or fibers, more preferably silica particles, titania particles, or glass fibers, from the viewpoint of thermal expansion coefficient and adhesion to metals, and silica particles, Alternatively, glass fibers are particularly preferred.
  • the average particle size of the inorganic filler is preferably about 20% to about 40% of the thickness of layer A, and may be selected to be, for example, 25%, 30% or 35% of the thickness of layer A. . When the particles or fibers are flat, the length in the short side direction is shown. Further, the average particle size of the inorganic filler is preferably 5 nm to 20 ⁇ m, more preferably 10 nm to 10 ⁇ m, and 20 nm to 1 ⁇ m from the viewpoint of thermal expansion coefficient and adhesion to metal. is more preferable, and particularly preferably 25 nm to 500 nm.
  • Layer A may contain only one type of filler, or may contain two or more types of filler.
  • the filler content in layer A is preferably lower than the filler content in layer B from the viewpoint of adhesion to metal.
  • the content of the filler in layer A is preferably 10% by mass to 90% by mass, and 30% to 80% by mass, based on the total mass of layer A, from the viewpoint of suitability for laser processing and adhesion with metal. Mass% is more preferred.
  • the content of fillers such as polyethylene and olefin elastomers is preferably 50% to 90% by volume, more preferably 75% to 85% by volume.
  • the filler content in layer A is preferably 55% to 90% by mass, more preferably 80% to 85% by mass, based on the total mass of layer A.
  • -Other additives- Layer A may contain other additives other than the above-mentioned components.
  • additives known additives can be used. Specifically, examples thereof include curing agents, leveling agents, antifoaming agents, antioxidants, ultraviolet absorbers, flame retardants, colorants, and the like.
  • layer A may contain other resins than the above-mentioned polymers and polymer particles as other additives.
  • other resins include thermoplastic resins such as polypropylene, polyamide, polyester, polyphenylene sulfide, polyether ketone, polycarbonate, polyether sulfone, polyphenylene ether and its modified products, and polyetherimide; combinations of glycidyl methacrylate and polyethylene.
  • Elastomers such as polymers; thermosetting resins such as phenol resins, epoxy resins, polyimide resins, and cyanate resins.
  • the total content of other additives in layer A is preferably 25 parts by mass or less, more preferably 10 parts by mass or less, based on 100 parts by mass of the polymer having a dielectric loss tangent of 0.01 or less.
  • the amount is more preferably 5 parts by mass or less.
  • the average thickness of layer A is preferably thicker than the average thickness of layer B from the viewpoint of the dielectric loss tangent of the film and the adhesion with metal.
  • the value of T A /T B which is the ratio of the average thickness T A of layer A to the average thickness T B of layer B, is 0.8 to 10 from the viewpoint of the dielectric loss tangent of the film and the adhesion with metal. It is preferably from 1 to 5, even more preferably from more than 1 to 3 or less, and particularly preferably from more than 1 to 2 or less.
  • the average thickness of layer A is not particularly limited, but from the viewpoint of the dielectric loss tangent of the film and the adhesion with metal, it is preferably 5 ⁇ m to 90 ⁇ m, more preferably 10 ⁇ m to 70 ⁇ m, Particularly preferred is 15 ⁇ m to 60 ⁇ m.
  • the method for measuring the average thickness of each layer in the film according to the present disclosure is as follows. Cut the film with a microtome, observe the cross section with an optical microscope, and evaluate the thickness of each layer. Cut out the cross-sectional sample at three or more locations, measure the thickness at three or more points on each section, and use the average value as the average thickness.
  • the film according to the present disclosure has layer B on at least one surface of layer A. It is preferable that the layer B contains a polymer having a dielectric loss tangent of 0.01 or less from the viewpoint of the dielectric loss tangent of the film and the adhesion with metal.
  • the dielectric loss tangent of layer B is preferably 0.01 or less, more preferably 0.005 or less, and even more preferably 0.004 or less, from the viewpoints of the film's dielectric loss tangent, laser processing suitability, and step followability. , 0.003 or less is particularly preferable. Any lower limit value is not particularly set, but may be, for example, greater than 0.
  • Layer B preferably contains a fluorine-based surfactant or a silicone-based surfactant from the viewpoints of bubble suppression, wiring void suppression, and adhesion.
  • the fluorine-based surfactant is not particularly limited as long as it has a fluorine-containing group as a hydrophobic group, and examples thereof include perfluorooctane sulfonic acid and perfluorocarboxylic acid.
  • Specific examples of fluorine-based surfactants include Megafac series manufactured by DIC Corporation such as Megafac F-444, Surflon series manufactured by AGC Seimi Chemical Co., Ltd. such as Surflon S-221, and Ftergent 100.
  • One example is the Futergent series manufactured by Neos Co., Ltd.
  • silicone surfactants include linear polymers consisting of siloxane bonds and modified siloxane polymers in which organic groups are introduced into side chains or terminals.
  • Specific examples of silicone surfactants include DOWSIL (trade name) 8032 ADDITIVE, Tore Silicone DC3PA, Tore Silicone SH7PA, Tore Silicone DC11PA, Tore Silicone SH21PA, Tore Silicone SH28PA, Tore Silicone SH29PA, Tore Silicone SH30PA, Tore Silicone SH8400 (all manufactured by Dow Corning Toray Co., Ltd.), and X-22-4952, X-22-4272, KF-642, KF-643, X-22-6191, X-22-4515, KF-6004, KP-341, KF-6001, KF-6002 (all manufactured by Shin-Etsu Chemical Co., Ltd.), F-4440 , TSF-4300, TSF-4445, TSF-4460, TSF-4452 (manufactured by Momentive Performance Materials), BY
  • Layer B may contain only one type of fluorosurfactant, or may contain two or more types of fluorosurfactant.
  • Layer B may contain only one type of silicone surfactant, or may contain two or more types of silicone surfactant.
  • the total content of the fluorine-based surfactant and silicone-based surfactant in layer B is determined based on the total mass of layer B from the viewpoints of bubble inclusion suppression, wiring void suppression, and adhesion. It is preferably 0.001% by mass to 10% by mass, more preferably 0.002% by mass to 2% by mass. Particularly preferred is 0.005% by weight to 0.5% by weight.
  • Preferred embodiments of the polymer having a dielectric loss tangent of 0.01 or less used in layer B are the same as preferred embodiments of the polymer having a dielectric loss tangent of 0.01 or less used in layer A, except as described below.
  • the polymer having a dielectric loss tangent of 0.01 or less contained in layer B may be the same as or different from the polymer having a dielectric loss tangent of 0.01 or less contained in layer A. From the viewpoint of adhesion between layer A and layer B and suitability for laser processing, it is preferable that layer A contains the same polymer having a dielectric loss tangent of 0.01 or less.
  • Layer B may contain only one kind of polymer having a dielectric loss tangent of 0.01 or less, or may contain two or more kinds of polymers.
  • the content ratio of the polymer having a dielectric loss tangent of 0.01 or less in layer B is preferably equal to or higher than the content ratio of the polymer having a dielectric loss tangent of 0.01 or less in layer A.
  • the content of the polymer having a dielectric loss tangent of 0.01 or less in layer B is from 20% by mass to the total mass of layer B, from the viewpoint of the dielectric loss tangent of the film, suitability for laser processing, and adhesion to metal. It is preferably 100% by weight, more preferably 30% to 100% by weight, and particularly preferably 40% to 100% by weight.
  • layer B may contain a polymer other than the polymer having a dielectric loss tangent of 0.01 or less as a binder polymer.
  • Preferred examples of other polymers include thermoplastic resins including thermoplastic elastomers from the viewpoints of dielectric loss tangent of the film, suitability for laser processing, and ability to follow steps.
  • the elastomer refers to a polymer compound that exhibits elastic deformation. That is, a polymer compound that has the property of deforming in response to an external force when applied to it, and recovering its original shape in a short period of time when the external force is removed.
  • Thermoplastic resins include polyurethane resin, polyester resin, (meth)acrylic resin, polystyrene resin, fluororesin, polyimide resin, fluorinated polyimide resin, polyamide resin, polyamideimide resin, polyetherimide resin, cellulose acylate resin, and polyurethane.
  • Resin polyetheretherketone resin, polycarbonate resin, polyolefin resin (for example, polyethylene resin, polypropylene resin, resin consisting of cyclic olefin copolymer, alicyclic polyolefin resin), polyarylate resin, polyethersulfone resin, polysulfone resin, fluorene ring
  • polyetheretherketone resin for example, polyethylene resin, polypropylene resin, resin consisting of cyclic olefin copolymer, alicyclic polyolefin resin
  • polyarylate resin polyethersulfone resin, polysulfone resin, fluorene ring
  • modified polycarbonate resin alicyclic modified polycarbonate resin, and fluorene ring modified polyester resin.
  • Thermoplastic elastomers are not particularly limited, and include, for example, elastomers containing repeating units derived from styrene (polystyrene elastomers), polyester elastomers, polyolefin elastomers, polyurethane elastomers, polyamide elastomers, polyacrylic elastomers, and silicones. elastomers, polyimide elastomers, and the like. Note that the thermoplastic elastomer may be a hydrogenated product.
  • polystyrene-based elastomers examples include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), polystyrene-poly(ethylene-propylene) diblock copolymer (SEP), and polystyrene.
  • SBS styrene-butadiene-styrene block copolymer
  • SIS styrene-isoprene-styrene block copolymer
  • SEP polystyrene-poly(ethylene-propylene) diblock copolymer
  • polystyrene-based elastomers examples include styrene-butadiene-styrene block copolymer (SBS), styrene-isoprene-styrene block copolymer (SIS), polystyren
  • SEPS Poly(ethylene-propylene)-polystyrene triblock copolymer
  • SEBS styrene-ethylene-butylene-styrene block copolymer
  • SEEPS polystyrene-poly(ethylene/ethylene-propylene)-polystyrene triblock copolymer
  • SEEPS polystyrene-poly(ethylene/ethylene-propylene)-polystyrene triblock copolymer
  • layer B preferably contains a thermoplastic resin having a structural unit having an aromatic hydrocarbon group as the other polymer, from the viewpoint of the film's dielectric loss tangent, laser processing suitability, and level difference followability.
  • the elastomer contains a hydrogenated styrene-ethylene-butylene-styrene block copolymer.
  • a hydrogenated polystyrene elastomer is preferable from the viewpoint of the dielectric loss tangent of the film, suitability for laser processing, and ability to follow steps.
  • the content of other polymers other than the polymer with a dielectric loss tangent of 0.01 or less is not particularly limited, but from the viewpoint of the dielectric loss tangent of the film, laser processing suitability, and adhesion with metal, the total mass of layer B It is preferably 10% by mass to 100% by mass, more preferably 10% by mass to 70% by mass, particularly preferably 10% by mass to 60% by mass.
  • layer B contains a filler from the viewpoints of the dielectric loss tangent of the film, suitability for laser processing, adhesion to metal, and step followability.
  • Preferred embodiments of the filler used in layer B are the same as those of the filler used in layer A, except as described below.
  • the filler used in layer B the above-mentioned thermoplastic resin particles are also preferably mentioned.
  • at least one of the binder polymer and filler contained in layer B should be a polymer having a dielectric loss tangent of 0.01 or less.
  • a liquid crystal polymer is more preferable.
  • the layer B contains crosslinked resin particles as a filler.
  • the crosslinked resin in the crosslinked resin particles is not particularly limited, and any known crosslinked resin can be used.
  • it may be a crosslinked resin using a crosslinking agent during polymerization, or it may be a crosslinked resin in which a crosslinking agent is reacted with the resin.
  • thermoplastic elastomer particles from the viewpoint of dielectric loss tangent of the film, laser processing suitability, and level difference followability, the above-mentioned thermoplastic elastomer particles are preferable, polystyrene-based elastomer particles are more preferable, and hydrogenated polystyrene-based elastomers are particularly preferable. .
  • Layer B may contain only one type of filler, or may contain two or more types of filler.
  • the content of filler in layer B is preferably 10% by mass to 90% by mass, and 20% by mass to 80% by mass, based on the total mass of layer B, from the viewpoint of suitability for laser processing and adhesion with metal. Mass% is more preferred.
  • Layer B may contain other additives other than those mentioned above. Preferred embodiments of other additives used in layer B are the same as those of other additives used in layer A, except as described below.
  • the average thickness of layer B is not particularly limited, but from the viewpoint of the dielectric loss tangent of the film, suitability for laser processing, and level difference followability, it is preferably 1 ⁇ m to 90 ⁇ m, more preferably 5 ⁇ m to 60 ⁇ m.
  • the thickness is preferably 10 ⁇ m to 40 ⁇ m, particularly preferably.
  • the film according to the present disclosure has layer B, a film having excellent adhesion to metal can be obtained.
  • layer A has a filler
  • layer B is preferably a surface layer (outermost layer).
  • the film is used as a laminate (a laminate with a metal layer) having a layer configuration of metal layer/layer A/layer B, another metal layer or a laminate with a metal layer is further placed on the layer B side. There are things to do.
  • the polymer contained in layer B contains a polymer having higher breaking strength (toughness) than the polymer contained in layer A.
  • the breaking strength shall be measured by the following method. A sample made of the polymer to be measured was prepared, and the stress against elongation was measured using a universal tensile testing machine "STM T50BP" manufactured by Toyo Baldwin Co., Ltd. at a tensile rate of 10%/min at 25°C and 60% RH, and Find the breaking strength.
  • the film according to the present disclosure preferably further has a layer C, and from the viewpoint of adhesion to metal, it is more preferable to have the layer B, the layer A, and the layer C in this order.
  • Layer C is preferably an adhesive layer. Further, when a metal layer is present apart from the above-mentioned layers, layer C is preferably a surface layer (outermost layer).
  • Layer C preferably contains a polymer having a dielectric loss tangent of 0.01 or less from the viewpoint of the dielectric loss tangent of the film and suitability for laser processing.
  • Preferred embodiments of the polymer having a dielectric loss tangent of 0.01 or less used in layer C are the same as preferred embodiments of the polymer having a dielectric loss tangent of 0.01 or less used in layer A, except as described below.
  • the liquid crystal polymer contained in layer C may be the same as or different from the polymer having a dielectric loss tangent of 0.01 or less contained in layer A or layer B. From the viewpoint of adhesion, it is preferable that the layer A contains the same polymer having a dielectric loss tangent of 0.01 or less.
  • the content of the polymer having a dielectric loss tangent of 0.01 or less in layer C is preferably equal to or less than the content of the polymer having a dielectric loss tangent of 0.01 or less in layer A, from the viewpoint of adhesion to metal.
  • the content of the polymer having a dielectric loss tangent of 0.01 or less in layer B is 10% by mass to 99% by mass based on the total mass of the film, from the viewpoint of the dielectric loss tangent of the film and the adhesion with metal. It is preferably 20% by mass to 95% by mass, even more preferably 30% to 90% by mass, and particularly preferably 40% to 80% by mass.
  • layer C preferably contains a polymer having an aromatic ring, and is a resin having an aromatic ring and an ester bond and an amide bond. In addition, it is more preferable to include a polymer having a dielectric loss tangent of 0.01 or less.
  • layer C preferably contains an epoxy resin in order to bond the metal layer and the resin layer (for example, layer A).
  • the epoxy resin is preferably a crosslinked product of a polyfunctional epoxy compound.
  • a polyfunctional epoxy compound refers to a compound having two or more epoxy groups. The number of epoxy groups in the polyfunctional epoxy compound is preferably 2 to 4.
  • layer C contains a leveling agent.
  • hydrocarbon-based, silicone-based, or fluorine-based compounds may be mentioned, and hydrocarbon-based, silicone-based, or fluorine-based surfactants are preferably mentioned.
  • fluorine-based surfactants include the Megafac series manufactured by DIC Corporation such as Megafac F-444, the Surflon series manufactured by AGC Seimi Chemical Co., Ltd. such as Surflon S-221, and the Surflon series manufactured by AGC Seimi Chemical Co., Ltd. such as Ftergent 100.
  • Neos Futergent series is an example.
  • the surfactant may be a polymer, such as an acrylic polymer containing a monomer containing a fluorinated alkyl group as an essential component, or a siloxane polymer whose chain skeleton is composed of Si--O bonds.
  • polyfunctional epoxy compound examples include a polyfunctional epoxy compound having a glycidyl ether group, a polyfunctional epoxy compound having a glycidyl ester group, and a polyfunctional epoxy compound having a glycidylamino group.
  • polyfunctional epoxy compounds having a glycidyl ether group examples include ethylene glycol diglycidyl ether, resorcinol diglycidyl ether, neopentyl glycol diglycidyl ether, 1,6-hexanediol diglycidyl ether, bisphenol A diglycidyl ether, and trimethylol.
  • Examples of the polyfunctional epoxy compound having a glycidyl ester group include phthalic acid diglycidyl ester, terephthalic acid diglycidyl ester, hexahydrophthalic acid diglycidyl ester, and dimer acid diglycidyl ester.
  • Examples of compounds having a glycidylamino group include N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane and 4,4'-methylenebis(N,N-diglycidylaniline). .
  • Examples of the polyfunctional epoxy compound having a glycidyl ether group and a glycidylamino group include N,N-diglycidyl-4-glycidyloxyaniline.
  • the epoxy resin is preferably a crosslinked product of a polyfunctional epoxy compound having a glycidylamino group, and N,N-diglycidyl-4-glycidyloxyaniline. and N,N,N',N'-tetraglycidyl-4,4'-diaminodiphenylmethane.
  • layer C preferably contains an aromatic polyesteramide and an epoxy resin from the viewpoints of the dielectric loss tangent of the film, suitability for laser processing, and adhesion to the metal layer.
  • Layer C may contain filler. Preferred embodiments of the filler used in layer C are the same as those of the filler used in layer B, except as described below.
  • the content of filler in layer C is not particularly limited and can be set arbitrarily, but when providing metal layers on both sides of the film, from the viewpoint of adhesion with metal, the content of filler in layer A It is also preferable that the amount is also small.
  • the filler content in layer C is either no filler or 0% by volume based on the total volume of layer C, from the viewpoint of adhesion with metal.
  • the filler content in layer C is preferably 0% to 15% by mass, more preferably 0% to 5% by mass, based on the total mass of layer C.
  • the content of fillers such as polyethylene and olefin elastomers is preferably 50% to 90% by volume, more preferably 75% to 85% by volume. In this case, the filler content in layer C is preferably 55% to 90% by mass, more preferably 80% to 85% by mass, based on the total mass of layer C.
  • Layer C may contain other additives other than those mentioned above. Preferred embodiments of other additives used in layer C are the same as preferred embodiments of other additives used in layer A, except as described below.
  • the average thickness of layer C is preferably thinner than the average thickness of layer A from the viewpoint of dielectric loss tangent of the film and adhesion to metal.
  • the value of T A / TC which is the ratio of the average thickness T A of layer A to the average thickness T C of layer C, is preferably larger than 1 from the viewpoint of the dielectric loss tangent of the film and the adhesion with metal. It is preferably from 2 to 100, even more preferably from 2.5 to 20, and particularly preferably from 3 to 10.
  • the value of T B / TC which is the ratio between the average thickness T B of layer B and the average thickness T C of layer C, is preferably larger than 1 from the viewpoint of the dielectric loss tangent of the film and the adhesion with metal.
  • the average thickness of layer C is preferably 0.1 nm to 20 ⁇ m, more preferably 0.1 nm to 5 ⁇ m, and 1 nm to 1 nm, from the viewpoint of the dielectric loss tangent of the film and the adhesion with metal. More preferably, the thickness is 1 ⁇ m.
  • the average thickness of the film according to the present disclosure is preferably 6 ⁇ m to 200 ⁇ m, and preferably 12 ⁇ m to 100 ⁇ m, from the viewpoint of strength and electrical properties (characteristic impedance) when formed into a laminate with a metal layer.
  • the thickness is more preferably 20 ⁇ m to 80 ⁇ m.
  • the average thickness of the film is measured at five arbitrary locations using an adhesive film thickness meter, for example, an electronic micrometer (product name "KG3001A” manufactured by Anritsu Corporation), and is taken as the average value.
  • an adhesive film thickness meter for example, an electronic micrometer (product name "KG3001A” manufactured by Anritsu Corporation), and is taken as the average value.
  • the dielectric loss tangent of the film according to the present disclosure is preferably 0.008 or less, more preferably 0.005 or less, even more preferably 0.004 or less, and 0. It is particularly preferable that it exceeds 0.003 or less.
  • the method for producing the film according to the present disclosure is not particularly limited, and known methods can be referred to.
  • the method for producing a film according to the present disclosure preferably includes a step of forming the layer A and the layer B on at least one surface of the layer A, and a step of heat-treating the film. It is preferable to include a step of attaching a sheet to the layer B, and a step of heat-treating (annealing) the film to which the sheet is attached.
  • the sheet to be attached to layer B is preferably an easily peelable sheet.
  • the easily peelable sheet known ones can be used, such as fluoropolymer sheets such as polytetrafluoroethylene sheets, metal foils whose surface is coated with a fluoropolymer, and sheets whose surface is coated with a fluoropolymer. Preferred examples include polymer films.
  • the surface roughness Ra of the sheet is preferably less than 0.5 ⁇ m, more preferably less than 0.1 ⁇ m.
  • the sheet is preferably a sheet that does not soften or flow at the heat treatment temperature during heat treatment.
  • the thickness of the sheet is not particularly limited and may be selected as appropriate. Furthermore, there is no particular restriction on the method of attaching the sheet to the layer B, and any known lamination method may be used.
  • a film that is difficult to peel can also be used.
  • known resin films, metal foils, etc. can be used, and low dielectric resin films and conductive metal foils can be preferably used.
  • adhesive fluorine-based polymers can be used. Suitable examples include films, cycloolefin polymer films, copper foils, aluminum foils, and the like.
  • the surface roughness Ra of the film is not particularly limited, but if the film is a resin film, it may be 0.5 ⁇ m or more, and if the film is a conductive metal foil, it may be less than 0.5 ⁇ m. Preferably, it is more preferably less than 0.1 ⁇ m.
  • the thickness of the above film can be appropriately selected in the case of a resin film according to the required characteristics as a dielectric, and in the case of metal foil can be appropriately selected according to the required characteristics as a conductor. can do.
  • the method for attaching the film to the layer B is not particularly limited, and any known lamination method may be used.
  • the volatile components from the layer B side be less than 5% by mass under heat treatment (annealing) conditions, and the amount of volatile components is More preferably less than 3% by weight, even more preferably less than 1% by weight, and most preferably less than 0.5% by weight.
  • the heat treatment temperature in the step of heat treating the above film or the film to which the above sheet is attached should be 260°C to 370°C from the viewpoint of dielectric loss tangent, peel strength, air bubble suppression, and adhesion.
  • the temperature is preferably 280°C to 360°C, and even more preferably 300°C to 350°C.
  • the heat treatment time is preferably 15 minutes to 10 hours, more preferably 30 minutes to 5 hours.
  • the temperature increase rate and temperature decrease rate during heat treatment are preferably 0.1°C/min to 100°C/min, and 0.5°C/min, from the viewpoints of bubble suppression and adhesion, respectively.
  • the temperature is more preferably from 1°C/min to 10°C/min, particularly preferably from 1°C/min to 5°C/min.
  • the film forming method described below can be suitably used. Further, as the method for manufacturing the film according to the present disclosure, the method described below can be suitably used.
  • Suitable methods for producing the film according to the present disclosure include, for example, a co-casting method, a multilayer coating method, a co-extrusion method, and the like.
  • the co-casting method is particularly preferable for forming a relatively thin film
  • the co-extrusion method is particularly preferable for forming a thick film.
  • layer A is formed by dissolving or dispersing components of each layer, such as a polymer or liquid crystal polymer with a dielectric loss tangent of 0.01 or less and a compound having a functional group, in a solvent. It is preferable to perform a co-casting method or a multilayer coating method as a composition for forming a layer B, a composition for forming a layer B, a composition for forming a layer C, etc.
  • solvents include halogenated hydrocarbons such as dichloromethane, chloroform, 1,1-dichloroethane, 1,2-dichloroethane, 1,1,2,2-tetrachloroethane, 1-chlorobutane, chlorobenzene, and o-dichlorobenzene; Halogenated phenols such as p-chlorophenol, pentachlorophenol and pentafluorophenol; Ethers such as diethyl ether, tetrahydrofuran and 1,4-dioxane; Ketones such as acetone and cyclohexanone; Esters such as ethyl acetate and ⁇ -butyrolactone; ethylene Carbonates such as carbonate and propylene carbonate; Amines such as triethylamine; Nitrogen-containing heterocyclic aromatic compounds such as pyridine; Nitriles such as acetonitrile and succinonitrile; N,N-dimethylformamide,
  • the solvent preferably contains an aprotic compound (particularly preferably an aprotic compound without a halogen atom) because it has low corrosivity and is easy to handle.
  • the proportion of the aprotic compound in the entire solvent is preferably 50% to 100% by weight, more preferably 70% to 100% by weight, particularly preferably 90% to 100% by weight.
  • amides such as N,N-dimethylformamide, N,N-dimethylacetamide, tetramethylurea, N-methylpyrrolidone, etc. or ⁇ -butyrolactone etc. It preferably contains an ester, and more preferably N,N-dimethylformamide, N,N-dimethylacetamide, or N-methylpyrrolidone.
  • the solvent preferably contains a compound having a dipole moment of 3 to 5 because it easily dissolves the above-mentioned polymers such as liquid crystal polymers.
  • the proportion of the compound having a dipole moment of 3 to 5 in the entire solvent is preferably 50% to 100% by mass, more preferably 70% to 100% by mass, particularly preferably 90% to 100% by mass. be.
  • a compound having a dipole moment of 3 to 5 is preferably used as the aprotic compound.
  • the solvent preferably contains a compound having a boiling point of 220° C. or less at 1 atm, since it is easy to remove.
  • the proportion of the compound having a boiling point of 220° C. or less at 1 atm in the entire solvent is preferably 50% by mass to 100% by mass, more preferably 70% by mass to 100% by mass, particularly preferably 90% by mass to 100% by mass. It is.
  • the aprotic compound it is preferable to use a compound whose boiling point at 1 atmosphere is 220° C. or lower.
  • the film according to the present disclosure may have a support when manufactured by a manufacturing method such as the above co-casting method, multilayer coating method, or coextrusion method.
  • a metal layer (metal foil) or the like used in a laminate described later is used as a support, it may be used as it is without being peeled off.
  • the support include a metal drum, metal band, glass plate, resin film, or metal foil. Among these, metal drums, metal bands, and resin films are preferred.
  • Examples of the resin film include polyimide (PI) films, and examples of commercially available products include U-Pyrex S and U-Pyrex R manufactured by Ube Industries, Ltd., Kapton manufactured by DuPont Toray Co., Ltd., and Examples include IF30, IF70, and LV300 manufactured by SKC Kolon PI.
  • a surface treatment layer may be formed on the surface of the support so that it can be easily peeled off.
  • hard chrome plating, fluororesin, etc. can be used.
  • the average thickness of the support is not particularly limited, but is preferably 25 ⁇ m or more and 75 ⁇ m or less, more preferably 50 ⁇ m or more and 75 ⁇ m or less.
  • the film according to the present disclosure can be stretched as appropriate from the viewpoint of controlling molecular orientation and adjusting linear expansion coefficient and mechanical properties.
  • the stretching method is not particularly limited, and known methods can be referred to, and stretching may be carried out in a state containing a solvent or in a dry film state. Stretching in a state containing a solvent may be carried out by gripping and stretching the film, or may be carried out without stretching by utilizing self-shrinkage due to drying. Stretching is particularly effective for improving elongation at break and strength at break when film brittleness is reduced due to addition of inorganic fillers or the like.
  • the method for producing a film according to the present disclosure may include a step of polymerizing with light or heat, as necessary.
  • the light irradiation means and heat application means are not particularly limited, and known light irradiation means such as a metal halide lamp, and known heat application means such as a heater can be used.
  • the light irradiation conditions and the heat application conditions are not particularly limited, and can be performed at a desired temperature and time and in a known atmosphere.
  • the film according to the present disclosure can be used for various purposes, and among them, can be suitably used as a film for electronic components such as printed wiring boards, and can be suitably used for flexible printed circuit boards. Further, the film according to the present disclosure can be suitably used as a metal adhesive film.
  • the laminate according to the present disclosure may be one in which the films according to the present disclosure are laminated, and includes the film according to the present disclosure and a metal layer or metal wiring arranged on at least one surface of the film.
  • a laminate is preferred.
  • the laminate according to the present disclosure includes the film according to the present disclosure and a metal layer (for example, a layer of gold, silver, copper, iron, etc.) disposed on the layer B side surface of the film. is preferable, and it is more preferable that the metal layer is a copper layer.
  • the metal layer disposed on the layer B side surface is preferably a metal layer disposed on the surface of the layer B.
  • the laminate according to the present disclosure includes a film according to the present disclosure having a layer B, a layer A, and a layer C in this order, a metal layer disposed on the layer B side surface of the film, It is preferable to have a metal layer disposed on the surface of the film on the side of the layer C, and it is more preferable that all the metal layers are copper layers.
  • the metal layer disposed on the layer C side surface is preferably a metal layer disposed on the surface of the layer C, and the metal layer disposed on the layer B side surface is preferably a metal layer disposed on the layer B side surface. It is more preferable that the metal layer disposed on the surface of the layer C is the metal layer disposed on the surface of the layer C.
  • the metal layer disposed on the layer B side surface and the metal layer disposed on the layer C side surface may be made of different materials and have different thicknesses. and shaped metal layers.
  • the metal layer arranged on the surface on the layer B side and the metal layer arranged on the surface on the layer C side may be metal layers of different materials and thicknesses, A metal layer may be laminated only on one side of layer B or layer C.
  • an embodiment in which a metal layer is laminated on one side of layer B or layer C and another film is laminated on the other side is also preferably mentioned.
  • the peel strength between the film and the copper layer is preferably 0.5 kN/m or more, more preferably 0.7 kN/m or more, It is more preferably .7 kN/m to 2.0 kN/m, and particularly preferably 0.9 kN/m to 1.5 kN/m.
  • the peel strength between a film and a metal layer shall be measured by the following method.
  • a peel test piece with a width of 1.0 cm was prepared from the laminate of the film and the metal layer, the film was fixed to a flat plate with double-sided adhesive tape, and the peel test piece was peeled at 50 mm/min by the 180° method according to JIS C 5016 (1994).
  • the strength (kN/m) is measured when the film is peeled from the metal layer at a speed of .
  • the surface roughness Rz of the metal layer on the side in contact with the film is preferably less than 1 ⁇ m, more preferably 0.5 ⁇ m or less, particularly preferably 0.3 ⁇ m or less, from the viewpoint of reducing transmission loss of high frequency signals. Note that the lower the surface roughness Rz of the metal layer is, the better, so the lower limit is not particularly set, but for example, it is 0 or more.
  • surface roughness Rz refers to a value expressed in micrometers of the sum of the maximum height of the peak and the maximum value of the depth of the valley observed in the roughness curve at the reference length. means.
  • the surface roughness Rz of a metal layer shall be measured by the following method. Using VertScan (manufactured by Ryoka System Co., Ltd.), a non-contact surface/layer cross-sectional shape measurement system, a square area of 465.48 ⁇ m in length and 620.64 ⁇ m in width was measured to determine the roughness curve on the surface of the object to be measured (metal layer) and the above. Create an average line for the roughness curve.
  • the metal layer is preferably a copper layer.
  • the copper layer is a rolled copper foil formed by a rolling method, an electrolytic copper foil formed by an electrolytic method, a copper foil formed by a sputtering method, or a copper foil formed by a vapor deposition method. It is preferable.
  • the average thickness of the metal layer, preferably the copper layer, is not particularly limited, but is preferably 0.1 nm to 30 ⁇ m, more preferably 0.1 ⁇ m to 20 ⁇ m, and even more preferably 1 ⁇ m to 18 ⁇ m.
  • the copper foil may be a carrier-attached copper foil that is removably formed on a support (carrier).
  • carrier known carriers can be used.
  • the average thickness of the carrier is not particularly limited, but is preferably from 5 ⁇ m to 100 ⁇ m, more preferably from 10 ⁇ m to 50 ⁇ m.
  • the metal layer is provided with a known surface treatment layer (for example, a chemical treatment layer) on the surface in contact with the film to ensure adhesive strength with the resin. It is preferable to have.
  • the above-mentioned interacting group is preferably a group corresponding to a functional group of a compound having a functional group contained in the above-mentioned film, such as an amino group and an epoxy group, or a hydroxy group and an epoxy group. Examples of groups capable of interacting include the groups listed as functional groups in the above-mentioned compounds having functional groups. Among these, from the viewpoints of adhesion and ease of processing, a group capable of covalent bonding is preferred, an amino group or a hydroxy group is more preferred, and an amino group is particularly preferred.
  • the metal layer in the laminate according to the present disclosure may be a metal layer having a circuit pattern. It is also preferable that the metal layer in the laminate according to the present disclosure is processed into a desired circuit pattern by etching, for example, to form a flexible printed circuit board.
  • the etching method is not particularly limited, and any known etching method can be used.
  • a cross section of the film was cut using a microtome or the like, and layer A or layer B was identified using an optical microscope.
  • the elastic modulus of the identified layer A or layer B was measured as an indentation elastic modulus using a nanoindentation method.
  • the indentation modulus was measured using a microhardness tester (product name "DUH-W201", manufactured by Shimadzu Corporation) at 160°C with a Vickers indenter at a loading rate of 0.28 mN/sec, with a maximum load of 10 mN. After holding for 10 seconds, the measurement was performed by unloading at a loading rate of 0.28 mN/sec.
  • Aromatic polyesteramide A1a is heated under a nitrogen atmosphere from room temperature to 160°C over 2 hours and 20 minutes, then from 160°C to 180°C over 3 hours and 20 minutes, and held at 180°C for 5 hours.
  • aromatic polyesteramide A1b After solid phase polymerization, the mixture was cooled. Next, it was ground with a grinder to obtain powdered aromatic polyesteramide A1b.
  • the flow initiation temperature of aromatic polyesteramide A1b was 220°C.
  • Aromatic polyesteramide A1b is heated under a nitrogen atmosphere from room temperature to 180°C over 1 hour and 25 minutes, then from 180°C to 255°C over 6 hours and 40 minutes, and held at 255°C for 5 hours.
  • the mixture After solid phase polymerization, the mixture was cooled to obtain a powdery aromatic polyesteramide P-1.
  • the flow initiation temperature of aromatic polyesteramide P-1 was 302°C. Further, the melting point of the aromatic polyesteramide P-1 was measured using a differential scanning calorimeter and was found to be 311°C.
  • the solubility of aromatic polyesteramide P-1 in N-methylpyrrolidone at 140° C. was 1% by mass or more.
  • the liquid crystal polyester (P2) obtained above was subjected to solid phase polymerization by holding it at 250°C for 3 hours in a nitrogen atmosphere, cooled, and then crushed with a crusher to obtain a powdered liquid crystal polyester (P2). P-2) was obtained.
  • F-1 Hydrogenated styrene-ethylene-butylene-styrene block copolymer particles, freeze-pulverized product of Tuftec M1913 manufactured by Asahi Kasei Chemicals Co., Ltd. (average particle size 5.0 ⁇ m (D50))
  • F-2 Hydrogenated styrene-ethylene/butylene-styrene block copolymer particles, freeze-pulverized product of KRATON GRP6935 manufactured by Kraton Polymer Japan Co., Ltd. (average particle size 5.0 ⁇ m (D50))
  • F-3 Liquid crystal polymer particles produced according to the following manufacturing method
  • acetic anhydride (1.08 molar equivalent to the hydroxyl group) was further added. While stirring under a nitrogen gas stream, the temperature was raised from room temperature to 150°C over 15 minutes, and the mixture was refluxed at 150°C for 2 hours. Next, the temperature was raised from 150° C. to 310° C. over 5 hours while by-product acetic acid and unreacted acetic anhydride were distilled off, and the polymer was taken out and cooled to room temperature. The temperature of the obtained polymer was raised from room temperature to 295°C over 14 hours, and solid phase polymerization was performed at 295°C for 1 hour. After solid phase polymerization, the mixture was cooled to room temperature over 5 hours.
  • liquid crystal polyester was pulverized using a jet mill (KJ-200 manufactured by Kurimoto Iron Works Co., Ltd.) to obtain liquid crystal polymer particles (F-3).
  • Liquid crystal polymer particles F-3 had a median diameter (D50) of 7.0 ⁇ m, a dielectric loss tangent of 0.0007, and a melting point of 334°C.
  • Copper foil A CF-T9DA-SV-18, manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd., average thickness 18 ⁇ m
  • Copper foil B MT18FL, manufactured by Mitsui Mining & Mining Co., Ltd., average thickness 2 ⁇ m, with carrier foil
  • undercoat layer coating liquid, coating liquid for layer A, and coating liquid for layer B are sent to a slot die coater equipped with a slide coater, and coated on the treated surface of the copper foil shown in Table 1.
  • the flow rate was adjusted to obtain the film thickness described in , and the coating was performed in a three-layer structure (undercoat layer/layer A/layer B).
  • the solvent was removed from the coating film by drying at 50°C, 100°C, and 190°C for 1 hour at each temperature.
  • a sheet listed in Table 2 is attached to layer B, and the temperature is raised from room temperature in a nitrogen atmosphere under the annealing treatment conditions (temperature increase rate, annealing temperature, and temperature decrease rate) listed in Table 2. Then, annealing treatment was performed by holding the temperature at the temperature listed in Table 2 for 2 hours and lowering the temperature. If necessary, the sheet used during the annealing treatment was peeled off to obtain a polymer film having a copper layer (single-sided copper-clad laminate). . In Example 4, the temperature was rapidly raised and cooled by induction heating.
  • the measurement of the dielectric loss tangent was carried out using a resonance perturbation method at a frequency of 10 GHz.
  • a 10 GHz cavity resonator (CP531, manufactured by Kanto Electronics Applied Development Co., Ltd.) was connected to a network analyzer (“E8363B” manufactured by Agilent Technology), a test piece was inserted into the cavity resonator, and the temperature was 25°C and the humidity was 60% RH.
  • the dielectric loss tangent of the film was measured from the change in resonance frequency before and after insertion for 96 hours in the environment.
  • a laminator product name: Vacuum Laminator V-130, manufactured by Nikko Materials
  • lamination was performed for 1 minute at 140°C and a lamination pressure of 0.4 MPa to form a precursor to double-sided copper-clad laminates. I got a body.
  • a thermocompression bonding machine product name "MP-SNL", manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the obtained double-sided copper-clad laminate precursor was bonded for 10 minutes at 300°C and 4.5MPa.
  • a double-sided copper-clad laminate was produced by thermocompression bonding for a minute.
  • the surfaces of the copper foils on both sides of the double-sided copper-clad laminate were roughened, and a dry film resist was laminated thereon.
  • a dry film resist was laminated thereon.
  • a wiring pattern with a line/space of 100 ⁇ m/100 ⁇ m including a ground line and 3 pairs of signal lines on both sides of the base material A base material was prepared.
  • the length of the signal line was 50 mm, and the width was set so that the characteristic impedance was 50 ⁇ .
  • a laminator product name "Vacuum Laminator V-130", manufactured by Nikko Materials Co., Ltd.
  • lamination was performed for 1 minute at 140°C and a lamination pressure of 0.4 MPa to form a single-sided copper-clad laminate.
  • the precursor of was obtained.
  • thermocompression bonding machine product name "MP-SNL”, manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • the obtained precursor of the single-sided copper-clad laminate was heated at 300° C. and 4.5 MPa for 10 minutes.
  • a single-sided copper-clad laminate was produced by thermocompression bonding for minutes.
  • the base material of the single-sided copper-clad laminate and the carrier copper foil on the opposite side were peeled off, the surface of the exposed copper foil of 1.5 ⁇ m was roughened, and a dry film resist was bonded.
  • the wiring pattern was exposed and developed, and the areas where the resist pattern was not placed were plated. Furthermore, the dry film resist was peeled off, and the copper exposed by the peeling process was removed by flash etching, thereby producing a base material with a wiring pattern having a line/space of 20 ⁇ m/20 ⁇ m.
  • the base material with the wiring pattern produced above was superimposed on the layer B side of the produced single-sided copper-clad laminate, and heat pressing was performed for 1 hour at 200° C. and 2 MPa to obtain a wiring board.
  • the wiring pattern (ground line and signal line) is embedded in the obtained wiring board, and the thickness of the wiring pattern is 18 ⁇ m when the base material 1 with a wiring pattern is used, and the thickness of the wiring pattern is 18 ⁇ m when the base material 2 with a wiring pattern is used.
  • the thickness of the wiring pattern was 12 ⁇ m.
  • the wiring board was cut along the thickness direction with a microtome, and the cross section of 100 wiring patterns was observed with a scanning electron microscope (SEM). The number of voids was counted and evaluated as follows. A: The number of generated voids is less than 2. B: The number of generated voids is 2 or more and less than 10. C: The number of generated voids is 10 or more.
  • Copper foil (product name "CF-T9DA-SV-18", average thickness 18 ⁇ m, manufactured by Fukuda Metal Foil and Powder Industries Co., Ltd.) was prepared. The copper foil and the single-sided copper-clad laminate were stacked in this order so that the untreated side of the copper foil was in contact with the layer B side of the produced single-sided copper-clad laminate. Using a laminator (product name: Vacuum Laminator V-130, manufactured by Nikko Materials), lamination was performed for 1 minute at 140°C and a lamination pressure of 0.4 MPa to form a precursor to double-sided copper-clad laminates. I got a body.
  • a laminator product name: Vacuum Laminator V-130, manufactured by Nikko Materials
  • thermocompression bonding machine product name "MP-SNL", manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • MP-SNL manufactured by Toyo Seiki Seisakusho Co., Ltd.
  • a peel test piece with a width of 1.0 cm was prepared from the obtained double-sided copper-clad laminate, and the thermocompressed copper foil side was fixed to a flat plate with double-sided adhesive tape, and the 90° method was applied according to JIS C 5016 (1994).
  • the strength (kN/m) when the single-sided copper-clad laminate was peeled from the metal layer at a speed of 50 mm/min was measured and evaluated based on the following evaluation criteria.
  • Fluororesin sheet PFA (copolymer of tetrafluoroethylene and perfluoroalkoxyethylene) sheet, AF-0100 manufactured by Daikin Industries, Ltd., thickness 100 ⁇ m
  • Fluorine-coated stainless steel foil A 15 ⁇ m stainless steel foil coated with a heat-resistant fluorine coating (GD coating, manufactured by GDLAB LLC) on one side was used.
  • Fluorine coated film PTFE (polytetrafluoroethylene) impregnated glass cloth (VALFLON 7920, manufactured by VALQUA Co., Ltd., thickness 100 ⁇ m) was used.
  • the films of Examples 1 to 14 according to the present disclosure are superior to the film of Comparative Example 1 in suppressing air bubbles during bonding. Furthermore, from the results shown in Tables 1 and 2, the films of Examples 1 to 14 according to the present disclosure have low dielectric loss tangents and have excellent adhesion to metals.

Abstract

層Aと、上記層Aの少なくとも一方の面に層Bとを有し、誘電正接が、0.01以下であり、上記層Bの上記層A側とは反対側の表面における深さが0.5μm以上の凹部の密度が、5個/cm以下であるフィルム及びその製造方法、並びに、上記フィルムを用いた積層体。

Description

フィルム及びその製造方法、並びに、積層体
 本開示は、フィルム及びその製造方法、並びに、積層体に関する。
 近年、通信機器に使用される周波数は非常に高くなる傾向にある。高周波帯域における伝送損失を抑えるため、回路基板に用いられる絶縁材料の比誘電率と誘電正接とを低くすることが要求されている。
 従来、回路基板に用いられる絶縁材料として、ポリイミドが多く用いられてきたが、高耐熱性及び低吸水性であり、かつ、高周波帯域での損失が小さい液晶ポリマーが注目されている。また、近年通信機器の高性能化により、多層化や、紫外線(UV)レーザーによりブラインドビア、スルーホールビア加工の径を小さくすることが行われている。よって、回路基板に追随、および接着するための層には、優れた低誘電特性、及び優れたUVレーザー加工性が一層求められている。
 従来の多層回路基板の製造方法としては、例えば、特許文献1には、光学的異方性の溶融相を形成する熱可塑性液晶ポリマーを押出成形して熱可塑性液晶ポリマーフィルムを形成するフィルム形成工程と、上記熱可塑性液晶ポリマーフィルムの少なくとも一方の表面に対して、物理的な研磨又は紫外線照射を行うことにより、このフィルム表面が、ナノインデンテーション法によって測定された硬度0.01~0.1GPaを有するように軟化させて、接着面を形成する軟化工程と、上記接着面を、光学的異方性の溶融相を形成する熱可塑性液晶ポリマーフィルムの少なくとも一方の面に導体回路が形成された基板の回路形成面に対向させ、全体を熱圧着により接着させる熱圧着工程と、を含む多層回路基板の製造方法が記載されている。
  特許文献1:特開2010-103269号公報
 本発明の実施形態が解決しようとする課題は、貼り合わせ時の気泡混入抑制性に優れるフィルム及びその製造方法を提供することである。
 また、本発明の他の実施形態が解決しようとする課題は、上記フィルムを用いた積層体を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 層Aと、上記層Aの少なくとも一方の面に層Bとを有し、誘電正接が、0.01以下であり、上記層Bの上記層A側とは反対側の表面における深さが0.5μm以上の凹部の密度が、5個/cm以下であるフィルム。
<2> 上記凹部の平均径が、100μm~1,000μmである<1>に記載のフィルム。
<3> 上記層Bの160℃における弾性率に対する上記層Aの160℃における弾性率との比が、1.2以上である<1>又は<2>に記載のフィルム。
<4> 上記層Bの160℃における弾性率が、10MPa以下である<1>~<3>のいずれか1つに記載のフィルム。
<5> 上記層Bの誘電正接が、0.01以下である<1>~<4>のいずれか1つに記載のフィルム。
<6> 上記層Bが、液晶ポリマーを含む<1>~<5>のいずれか1つに記載のフィルム。
<7> 上記層Bが、芳香族ポリエステルアミドを含む<1>~<6>のいずれか1つに記載のフィルム。
<8> 上記層Bが、芳香族炭化水素基を有する構成単位を有する熱可塑性樹脂を含む<1>~<7>のいずれか1つに記載のフィルム。
<9> 上記層Aの誘電正接が、0.01以下である<1>~<8>のいずれか1つに記載のフィルム。
<10> 上記層Aが、液晶ポリマーを含む<1>~<9>のいずれか1つに記載のフィルム。
<11> 上記層Aが、芳香族ポリエステルアミドを含む<1>~<10>のいずれか1つに記載のフィルム。
<12> 上記層Bの上記層A側とは反対側の表面における表面自由エネルギーが、30mJ/m以下である<1>~<11>のいずれか1つに記載のフィルム。
<13> 上記層Bの上記層A側とは反対側の表面における飛行時間型二次イオン質量分析法により測定されたフッ素原子又はシリコーン構造に由来するイオン強度が、上記層Bの内部の上記イオン強度より大きい<1>~<12>のいずれか1つに記載のフィルム。
<14> <1>~<13>のいずれか1つに記載のフィルムと、上記フィルムの少なくとも一方の面に配置された金属層又は金属配線と、を有する積層体。
<15> 上記層Bの上記層A側とは反対側の表面における表面自由エネルギーが、30mJ/mより高い<1>~<13>のいずれか1つに記載のフィルムと、上記フィルムの少なくとも層A側とは反対側の面に配置された金属層又は金属配線と、を有する積層体。
<16> 上記層Aと、上記層Aの少なくとも一方の面に上記層Bとを形成する工程、上記フィルムの上記層Bにシートを貼り付ける工程、及び、上記シートを貼り付けたフィルムを熱処理する工程を含む<1>~<13>のいずれか1つに記載のフィルムの製造方法。
 本発明の実施形態によれば、貼り合わせ時の気泡混入抑制性に優れるフィルム及びその製造方法を提供することができる。
 また、本発明の他の実施形態によれば、上記フィルムを用いた積層体を提供することができる。
 以下において、本開示の内容について詳細に説明する。以下に記載する構成要件の説明は、本開示の代表的な実施態様に基づいてなされることがあるが、本開示はそのような実施態様に限定されるものではない。
 なお、本明細書において、数値範囲を示す「~」とはその前後に記載される数値を下限値及び上限値として含む意味で使用される。
 本開示中に段階的に記載されている数値範囲において、一つの数値範囲で記載された上限値又は下限値は、他の段階的な記載の数値範囲の上限値又は下限値に置き換えてもよい。また、本開示中に記載されている数値範囲において、その数値範囲の上限値又は下限値は、実施例に示されている値に置き換えてもよい。
 また、本明細書における基(原子団)の表記において、置換及び無置換を記していない表記は、置換基を有さないものと共に置換基を有するものをも包含するものである。例えば「アルキル基」とは、置換基を有さないアルキル基(無置換アルキル基)のみならず、置換基を有するアルキル基(置換アルキル基)をも包含するものである。
 本明細書において、「(メタ)アクリル」は、アクリル及びメタクリルの両方を包含する概念で用いられる語であり、「(メタ)アクリロイル」は、アクリロイル及びメタクリロイルの両方を包含する概念として用いられる語である。
 また、本明細書中の「工程」の用語は、独立した工程だけではなく、他の工程と明確に区別できない場合であっても、その工程の所期の目的が達成されれば本用語に含まれる。 また、本開示において、「質量%」と「重量%」とは同義であり、「質量部」と「重量部」とは同義である。
 更に、本開示において、2以上の好ましい態様の組み合わせは、より好ましい態様である。
 また、本開示における重量平均分子量(Mw)及び数平均分子量(Mn)は、特に断りのない限り、TSKgel SuperHM-H(東ソー(株)製の商品名)のカラムを使用したゲルパーミエーションクロマトグラフィ(GPC)分析装置により、溶剤PFP(ペンタフルオロフェノール)/クロロホルム=1/2(質量比)、示差屈折計により検出し、標準物質としてポリスチレンを用いて換算した分子量である。
 以下、本開示を詳細に説明する。
(フィルム)
 本開示に係るフィルムは、層Aと、上記層Aの少なくとも一方の面に層Bとを有し、誘電正接が、0.01以下であり、上記層Bの上記層A側とは反対側の表面における深さが0.5μm以上の凹部の密度が、5個/cm以下である。
 従来の誘電正接が、0.01以下であり、かつ複数の層を有するフィルムでは、貼り合わせ時に気泡の混入が生じる場合があることを本発明者らは見出した。
 本開示に係るフィルムは、誘電正接が、0.01以下であり、上記層Bの上記層A側とは反対側の表面における深さが0.5μm以上の凹部の密度が、5個/cm以下であることにより、気泡混入の原因となる凹部を抑制し、貼り合わせ時の気泡混入抑制性に優れるフィルムを提供することができる。
<深さが0.5μm以上の凹部の密度、平均径、及び、平均深さ>
 本開示に係るフィルムは、上記層Bの上記層A側とは反対側の表面における深さが0.5μm以上の凹部の密度が、5個/cm以下であり、気泡混入抑制性、及び、密着性の観点から、2個/cm以下であることが好ましく、1個/cm以下であることがより好ましく、0.4個/cm以下であることが特に好ましい。
 上記表面における深さが0.5μm以上の凹部の密度は、後述する熱処理、シートを貼り付けての熱処理、使用する樹脂及び粒子の種類及び量、使用する溶媒等により調整される。
 本開示に係るフィルムにおいて、上記層Bの上記層A側とは反対側の表面における深さが0.5μm以上の凹部の平均径は、気泡混入抑制性、及び、密着性の観点から、10μm~1,000μmであることが好ましく、200μm~500μmであることがより好ましい。
 本開示に係るフィルムにおいて、上記層Bの上記層A側とは反対側の表面における凹部の平均深さは、気泡混入抑制性、及び、密着性の観点から、1μm以下であることが好ましく、0.5μm以下であることがより好ましい。
 上記表面における凹部の平均径及び平均深さは、使用する樹脂及び粒子の種類及び量、使用する溶媒等により調整される。
 本開示における表面の深さが0.5μm以上の凹部の密度、深さが0.5μm以上の凹部の平均径、及び、凹部の平均深さの測定方法は、以下の通りである。
 測定面を含む50mm角のサンプルを切り出し、レーザー顕微鏡((株)キーエンス製、VK-X3000)により、周囲よりも凹んでいる部分(凹部)をその深さとともにカウントし、そのうち、深さが0.5μm以上の凹部の数より、その密度を算出する。
 また、上記方法により、深さが0.5μm以上の各凹部の開口部の大きさ(最大径)を測定し、その平均値を凹部の平均径とする。
 更に、上記方法により、各凹部の深さを測定し、その平均値を平均深さとする。また、上記深さは、上記開口部と凹部の最深部との上記層Bの厚み方向における距離の差を表す。
<フィルムの誘電正接>
 本開示に係るフィルムの誘電正接は、0.01以下であり、誘電率、レーザー加工適性、及び、段差追随性の観点から、0.008以下であることが好ましく、0.005以下であることがより好ましく、0.004以下であることが更に好ましく、0を超え0.003以下であることが特に好ましい。
 本開示における誘電正接は、以下の方法により測定するものとする。
 誘電正接の測定は、周波数10GHzで共振摂動法により実施する。ネットワークアナライザ(Agilent Technology社製「E8363B」)に10GHzの空洞共振器((株)関東電子応用開発製 CP531)を接続し、空洞共振器に試験片を挿入し、温度25℃、湿度60%RH環境下、96時間の挿入前後の共振周波数の変化からフィルムの誘電正接を測定する。
 各層を測定する場合は、カミソリ等で不要な層を削り出し、目的の層だけの評価用サンプルを作製してもよい。また、層の厚みが薄い等の理由で、単膜の取り出しが困難な場合には、カミソリ等で測定する層を削り取り、得られた粉末状の試料を用いてもよい。本開示におけるポリマーの誘電正接の測定は、各層を構成するポリマーの化学構造を特定するか又は単離し、測定するポリマーを粉末としたサンプルを用いて、上記の誘電正接の測定方法に従って行うものとする。
<表面自由エネルギー>
 本開示に係るフィルムにおける上記層Bの上記層A側とは反対側の表面における表面自由エネルギーは、特に限定されないが、気泡混入抑制性、及び、密着性の観点から、30mJ/m以下であることが好ましく、15mJ/m~30mJ/mであることがより好ましく、18mJ/m~30mJ/mであることが更に好ましく、25mJ/m~30mJ/mであることが特に好ましい。
 本開示において、表面自由エネルギーは、以下の方法によって算出される。
 室温23℃及び相対湿度50%~60%の雰囲気下で、接触角計CA-A型(協和界面科学株式会社製)を用いて、2種類の試料の接触角を測定する。具体的に、対象面に対する純水の接触角及び対象面に対するヨウ化メチレンの接触角を測定する。各接触角の測定においては、3回の測定値の平均値を接触角とする。2種類の試料の接触角を用いて、Owens-Wendtに基づく幾何平均法により、分散力γと極性力γとの和である表面自由エネルギーγ(=γ+γ)を算出する。具体的な算出方法及び記号の意味を以下に示す。
  γSL:対象面と既知の溶液の表面自由エネルギー
  γ:対象面の表面自由エネルギー
  γ:既知の溶液の表面自由エネルギー
  γ :対象面の表面自由エネルギーの分散力成分
  γ :対象面の表面自由エネルギーの極性力成分
  γ :既知の溶液の表面自由エネルギーの分散力成分
  γ :既知の溶液の表面自由エネルギーの極性力成分
 γSLについては、対象面と液体との界面での張力である場合、下記数式(1)が成立する。
  式(1):γSL=γ+γ-2(γ ・γ 1/2-2(γ ・γ 1/2
 平滑な対象面と液滴が接触角(θ)で接しているときの状態は次式で表現される(Youngの式)。
  式(2):γ=γSL+γcosθ
 数式(1)及び数式(2)を組み合わせると、次式が得られる。
  式(3):(γ ・γ 1/2+(γ ・γ 1/2(=γ(1+cosθ)/2
 実際には、純水及びヨウ化メチレンの2種類の試料の接触角(θ)と、既知の溶液の表面自由エネルギーγ及び、各成分(γ 、γ )を数式(3)に代入し、連立方程式を解く。その結果、対象面の表面自由エネルギー(γ)を算出する。
<飛行時間型二次イオン質量分析法により測定されたフッ素原子又はシリコーン構造に由来するイオン強度>
 本開示に係るフィルムは、上記層Bの上記層A側とは反対側の表面における飛行時間型二次イオン質量分析法により測定されたフッ素原子又シリコーン構造に由来するイオン強度が、気泡混入抑制性、及び、密着性の観点から、上記層Bの内部の上記イオン強度より大きいことが好ましい。
 また、本開示に係るフィルムにおける上記層Bの上記層A側とは反対側の表面における飛行時間型二次イオン質量分析法により測定されたフッ素原子又はシリコーン構造に由来するイオン強度Ioutと、上記層Bの内部におけるイオン強度Iinとの比(Iout/Iin)は、気泡混入抑制性、及び、密着性の観点から、1以上であることが好ましく、10以上であることがより好ましい。
 本開示において、飛行時間型二次イオン質量分析法により測定されたフッ素原子又はシリコーン構造に由来するイオン強度は、以下の方法によって算出される値とした。
 TOF-SIMS(Time-of-Flight Secondary Ion Mass Spectrometry、TRIFT V nano TOF)を用いて測定を行った。一次イオン源として、Bi (25kV)を用いた。照射イオン数を5×1010ions/cm以下とした。
 フッ素原子、シリコーン構造の検出はそれぞれF、SiCに対して行い、検出されたTotalイオンを1と規格化した際の該当イオンの検出値をイオン強度とした。層Bの内部のイオン強度Iinは、上記層側とは反対側の表面を0.5μm切削し、露出した面のイオン強度とした。
<層A及び層Bの160℃における弾性率>
 本開示に係るフィルムにおける層Aの160℃における弾性率は、気泡混入抑制性、レーザー加工適性、及び、段差追随性の観点から、100MPa~2,500MPaであることが好ましく、200MPa~2,000MPaであることがより好ましく、300MPa~1,500MPaであることが更に好ましく、500MPa~1,000MPaであることが特に好ましい。
 本開示に係るフィルムにおける層Bの160℃における弾性率は、レーザー加工適性、及び、段差追随性の観点から、100MPa以下であることが好ましく、10MPa以下であることがより好ましく、0.001MPa~10MPaであることが更に好ましく、0.5MPa~5MPaであることが特に好ましい。
 本開示に係るフィルムにおける層Aの160℃における弾性率MDと層Bの160℃における弾性率MDとの比(MD/MD)は、レーザー加工適性、及び、段差追随性の観点から、1.2以上であることが好ましく、5~1,000であることがより好ましく、10~800であることが更に好ましく、100~600であることが特に好ましい。
 本開示における弾性率は、以下の方法により測定するものとする。
 まず、フィルム又は積層体をミクロトーム等で断面切削し、光学顕微鏡で観察した画像から、層A又は層Bを特定する。次に、特定した層A又は層Bにおける弾性率を、ナノインデンテーション法を用いて、押し込み弾性率として測定した。押し込み弾性率は、微小硬度計(製品名「DUH-W201」、(株)島津製作所製)を用い、160℃において、ビッカース圧子により0.28mN/秒の荷重速度で負荷をかけ、最大荷重10mNを10秒間保持した後に、0.28mN/秒の荷重速度で除荷を行うことにより、測定する。
 上記層A及び層B以外の層についても、同様に測定する。また、各層を測定する場合は、カミソリ等で不要な層を削り出し、目的の層だけの評価用サンプルを作製してもよい。また、層の厚みが薄い等の理由で、単膜の取り出しが困難な場合には、カミソリ等で測定する層を削り取り、得られた粉末状の試料を用いてもよい。
<層A>
 本開示に係るフィルムは、層Aを有する。
 更に、フィルムにおける層構成、及び、各層の厚み等の検出又は判定方法としては、以下の方法が挙げられる。
 まず、ミクロトームによりフィルムの断面サンプルを切り出し、光学顕微鏡により層構成、及び、各層の厚みを判定する。光学顕微鏡での判定が困難な場合、走査型電子顕微鏡(SEM)による形態観察、又は、飛行時間型二次イオン質量分析法(TOF-SIMS)等による成分分析を行って判定してもよい。
 層Aの誘電正接は、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、0.01以下が好ましく、0.005以下がより好ましく、0.004以下であることが更に好ましく、0.003以下であることが特に好ましい。下限値は特に設定されないが、例えば、0超が挙げられる。
 層Aは、フィルムの誘電正接、及び、レーザー加工適性の観点から、誘電正接が0.01以下であるポリマーを含むことが好ましい。
 また、層Aは、フィルムの誘電正接、及び、レーザー加工適性の観点から、芳香環を有するポリマーを含むことが好ましく、芳香環を有し、かつ誘電正接が0.01以下であるポリマーを含むことがより好ましい。
 更に、層Aは、フィルムの誘電正接、及び、レーザー加工適性の観点から、ポリマー、及び、ポリマー粒子を含むことが好ましく、誘電正接が0.01以下であるポリマー、及び、誘電正接が0.01以下であるポリマーの粒子を含むことがより好ましい。
〔誘電正接が0.01以下であるポリマー〕
 本開示に係るフィルムの層Aに含まれるポリマーの誘電正接は、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、0.01以下が好ましく、0.005以下がより好ましく、0.004以下であることが更に好ましく、0.003以下であることが特に好ましい。下限値は特に設定されないが、例えば、0超が挙げられる。
 誘電正接が0.01以下であるポリマーの融点Tm又は5質量%減量温度Tdは、フィルムの誘電正接、金属(例えば、金属層、金属配線等)との密着性、及び、耐熱性の観点から、200℃以上であることが好ましく、250℃以上であることがより好ましく、280℃以上であることが更に好ましく、300℃以上であることが特に好ましい。なお、上限値について、特に制限はないが、例えば、500℃以下が好ましく、420℃以下がより好ましい。
 本開示における融点Tmは、示差走査熱量分析(DSC)装置を用いて測定するものとする。DSCの測定パンにサンプルを5mg入れ、これを窒素気流中で10℃/分で30℃から昇温した際に現れた吸熱ピークのピーク温度をフィルムのTmとする。
 また、本開示における5質量%減量温度Tdは、熱質量分析(TGA)装置を用いて測定するものとする。すなわち、測定パンに入れたサンプルの質量を初期値とし、昇温によって上記初期値に対して質量が5質量%低下したときの温度を5質量%減量温度Tdとする。
 誘電正接が0.01以下であるポリマーのガラス転移温度Tgは、フィルムの誘電正接、金属との密着性、及び、耐熱性の観点から、150℃以上であることが好ましく、200℃以上であることがより好ましく、200℃以上であることが特に好ましい。なお、上限値について、特に制限はないが、例えば、350℃未満が好ましく、280℃未満、より好ましくは280℃以下である。
 本開示におけるガラス転移温度Tgは、示差走査熱量分析(DSC)装置を用いて測定するものとする。
 誘電正接が0.01以下であるポリマーの重量平均分子量Mwは、1,000以上であることが好ましく、2,000以上であることがより好ましく、5,000以上であることが特に好ましい。また、誘電正接が0.01以下であるポリマーの重量平均分子量Mwは、50,000以下であることが好ましく、20,000以下であることがより好ましく、13,000未満であることが特に好ましい。
 本開示において、誘電正接が0.01以下であるポリマーの種類は特に限定されず、公知のポリマーを用いることができる。
 誘電正接が0.01以下であるポリマーとしては、液晶ポリマー、フッ素系ポリマー、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物、ポリエーテルエーテルケトン、ポリオレフィン、ポリアミド、ポリエステル、ポリフェニレンスルフィド、芳香族ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の熱可塑性樹脂;グリシジルメタクリレートとポリエチレンとの共重合体等のエラストマー;フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。
 これらの中でも、フィルムの誘電正接、金属との密着性、及び、耐熱性の観点から、液晶ポリマー、フッ素系ポリマー、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物、ポリフェニレンエーテル及び芳香族ポリエーテルケトンよりなる群から選ばれる少なくとも1種のポリマーであることが好ましく、液晶ポリマー及びフッ素系ポリマーよりなる群から選ばれる少なくとも1種のポリマーであることがより好ましい。
 フィルムの密着性、及び、力学強度の観点からは、液晶ポリマーであることが好ましく、耐熱性、及び、誘電正接の観点からは、フッ素系ポリマーが好ましい。
-液晶ポリマー-
 本開示に係るフィルムにおける層Aは、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、液晶ポリマーを含むことが好ましい。
 本開示において、液晶ポリマーは、その種類は特に限定されず、公知の液晶ポリマーを用いることができる。
 また、液晶ポリマーは、溶融状態で液晶性を示すサーモトロピック液晶ポリマーであってもよく、溶液状態で液晶性を示すリオトロピック液晶ポリマーであってもよい。また、液晶ポリマーがサーモトロピック液晶ポリマーである場合には、450℃以下の温度で溶融する液晶ポリマーであることが好ましい。
 液晶ポリマーとしては、例えば、液晶ポリエステル、液晶ポリエステルにアミド結合が導入された液晶ポリエステルアミド、液晶ポリエステルにエーテル結合が導入された液晶ポリエステルエーテル、液晶ポリエステルにカーボネート結合が導入された液晶ポリエステルカーボネートなどを挙げることができる。
 また、液晶ポリマーは、フィルムの誘電正接、液晶性、及び、熱膨張係数の観点から、芳香環を有するポリマーであることが好ましく、芳香族ポリエステル又は芳香族ポリエステルアミドであることがより好ましく、芳香族ポリエステルアミドであることが特に好ましい。
 更に、液晶ポリマーは、芳香族ポリエステル又は芳香族ポリエステルアミドに、更にイミド結合、カルボジイミド結合やイソシアヌレート結合などのイソシアネート由来の結合等が導入されたポリマーであってもよい。
 また、液晶ポリマーは、原料モノマーとして芳香族化合物のみを用いてなる全芳香族液晶ポリマーであることが好ましい。
 液晶ポリマーの例としては、例えば、以下の液晶ポリマーが挙げられる。
 1)(i)芳香族ヒドロキシカルボン酸と、(ii)芳香族ジカルボン酸と、(iii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンよりなる群から選ばれる少なくとも1種の化合物と、を重縮合させてなるもの。
 2)複数種の芳香族ヒドロキシカルボン酸を重縮合させてなるもの。
 3)(i)芳香族ジカルボン酸と、(ii)芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンよりなる群から選ばれる少なくとも1種の化合物と、を重縮合させてなるもの。
 4)(i)ポリエチレンテレフタレート等のポリエステルと、(ii)芳香族ヒドロキシカルボン酸と、を重縮合させてなるもの。
 ここで、芳香族ヒドロキシカルボン酸、芳香族ジカルボン酸、芳香族ジオール、芳香族ヒドロキシアミン及び芳香族ジアミンはそれぞれ独立に、重縮合可能な誘導体に置き換えてもよい。
 例えば、カルボキシ基をアルコキシカルボニル基又はアリールオキシカルボニル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸エステル及び芳香族ジカルボン酸エステルに置き換えることができる。
 カルボキシ基をハロホルミル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸ハロゲン化物及び芳香族ジカルボン酸ハロゲン化物に置き換えることができる。
 カルボキシ基をアシルオキシカルボニル基に変換することにより、芳香族ヒドロキシカルボン酸及び芳香族ジカルボン酸を、芳香族ヒドロキシカルボン酸無水物及び芳香族ジカルボン酸無水物に置き換えることができる。
 芳香族ヒドロキシカルボン酸、芳香族ジオール及び芳香族ヒドロキシアミンのようなヒドロキシ基を有する化合物の重合可能な誘導体の例としては、ヒドロキシ基をアシル化してアシルオキシ基に変換してなるもの(アシル化物)が挙げられる。
 例えば、ヒドロキシ基をアシル化してアシルオキシ基に変換することにより、芳香族ヒドロキシカルボン酸、芳香族ジオール、及び芳香族ヒドロキシアミンをそれぞれ、アシル化物に置き換えることができる。
 芳香族ヒドロキシアミン及び芳香族ジアミンのようなアミノ基を有する化合物の重合可能な誘導体の例としては、アミノ基をアシル化してアシルアミノ基に変換してなるもの(アシル化物)が挙げられる。
 例えば、アミノ基をアシル化してアシルアミノ基に変換することにより、芳香族ヒドロキシアミン及び芳香族ジアミンをそれぞれ、アシル化物に置き換えることができる。
 液晶ポリマーは、液晶性、フィルムの誘電正接、及び、金属との密着性の観点から、下記式(1)~式(3)のいずれかで表される構成単位(以下、式(1)で表される構成単位等を、構成単位(1)等ということがある。)を有することが好ましく、下記式(1)で表される構成単位を有することがより好ましく、下記式(1)で表される構成単位と、下記式(2)で表される構成単位と、下記式(3)で表される構成単位とを有することが特に好ましい。
 式(1) -O-Ar-CO-
 式(2) -CO-Ar-CO-
 式(3) -X-Ar-Y-
 式(1)~式(3)中、Arは、フェニレン基、ナフチレン基又はビフェニリレン基を表し、Ar及びArはそれぞれ独立に、フェニレン基、ナフチレン基、ビフェニリレン基又は下記式(4)で表される基を表し、X及びYはそれぞれ独立に、酸素原子又はイミノ基を表し、Ar~Arにおける水素原子は、それぞれ独立に、ハロゲン原子、アルキル基又はアリール基で置換されていてもよい。
 式(4) -Ar-Z-Ar
 式(4)中、Ar及びArはそれぞれ独立に、フェニレン基又はナフチレン基を表し、Zは、酸素原子、硫黄原子、カルボニル基、スルホニル基又はアルキレン基を表す。
 上記ハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。
 上記アルキル基の例としては、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、s-ブチル基、t-ブチル基、n-ヘキシル基、2-エチルヘキシル基、n-オクチル基及びn-デシル基が挙げられる。上記アルキル基の炭素数は、好ましくは1~10である。
 上記アリール基としては、フェニル基、o-トリル基、m-トリル基、p-トリル基、1-ナフチル基及び2-ナフチル基が挙げられる。上記アリール基の炭素数は、好ましくは6~20である。
 上記水素原子がこれらの基で置換されている場合、その置換数は、Ar、Ar又はArにおいて、それぞれ独立に、好ましくは2個以下であり、より好ましくは1個である。
 上記アルキレン基としては、メチレン基、1,1-エタンジイル基、1-メチル-1,1-エタンジイル基、1,1-ブタンジイル基及び2-エチル-1,1-ヘキサンジイル基が挙げられる。上記アルキレン基の炭素数は、好ましくは1~10である。
 構成単位(1)は、芳香族ヒドロキシカルボン酸に由来する構成単位である。
 構成単位(1)としては、Arがp-フェニレン基である態様(p-ヒドロキシ安息香酸に由来する構成単位)、及びArが2,6-ナフチレン基である態様(6-ヒドロキシ-2-ナフトエ酸に由来する構成単位)、又は、4,4’-ビフェニリレン基である態様(4’-ヒドロキシ-4-ビフェニルカルボン酸に由来する構成単位)が好ましい。
 構成単位(2)は、芳香族ジカルボン酸に由来する構成単位である。
 構成単位(2)としては、Arがp-フェニレン基である態様(テレフタル酸に由来する構成単位)、Arがm-フェニレン基である態様(イソフタル酸に由来する構成単位)、Arが2,6-ナフチレン基である態様(2,6-ナフタレンジカルボン酸に由来する構成単位)、又は、Arがジフェニルエーテル-4,4’-ジイル基である態様(ジフェニルエーテル-4,4’-ジカルボン酸に由来する構成単位)が好ましい。
 構成単位(3)は、芳香族ジオール、芳香族ヒドロキシルアミン又は芳香族ジアミンに由来する構成単位である。
 構成単位(3)としては、Arがp-フェニレン基である態様(ヒドロキノン、p-アミノフェノール又はp-フェニレンジアミンに由来する構成単位)、Arがm-フェニレン基である態様(イソフタル酸に由来する構成単位)、又は、Arが4,4’-ビフェニリレン基である態様(4,4’-ジヒドロキシビフェニル、4-アミノ-4’-ヒドロキシビフェニル又は4,4’-ジアミノビフェニルに由来する構成単位)が好ましい。
 構成単位(1)の含有量は、全構成単位の合計量(液晶ポリマーを構成する各構成単位(「モノマー単位」ともいう。)の質量をその各構成単位の式量で割ることにより、各構成単位の物質量相当量(モル)を求め、それらを合計した値)に対して、好ましくは30モル%以上、より好ましくは30モル%~80モル%、更に好ましくは30モル%~60モル%、特に好ましくは30モル%~40モル%である。
 構成単位(2)の含有量は、全構成単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%~35モル%、更に好ましくは20モル%~35モル%、特に好ましくは30モル%~35モル%である。
 構成単位(3)の含有量は、全構成単位の合計量に対して、好ましくは35モル%以下、より好ましくは10モル%~35モル%、更に好ましくは20モル%~35モル%、特に好ましくは30モル%~35モル%である。
 構成単位(1)の含有量が多いほど、耐熱性、強度及び剛性が向上し易いが、あまり多いと、溶媒に対する溶解性が低くなり易い。
 構成単位(2)の含有量と構成単位(3)の含有量との割合は、[構成単位(2)の含有量]/[構成単位(3)の含有量](モル/モル)で表して、好ましくは0.9/1~1/0.9、より好ましくは0.95/1~1/0.95、更に好ましくは0.98/1~1/0.98である。
 なお、液晶ポリマーは、構成単位(1)~(3)をそれぞれ独立に、2種以上有してもよい。また、液晶ポリマーは、構成単位(1)~(3)以外の構成単位を有してもよいが、その含有量は、全構成単位の合計量に対して、好ましくは10モル%以下、より好ましくは5モル%以下である。
 液晶ポリマーは、溶媒に対する溶解性の観点から、構成単位(3)として、X及びYの少なくとも一方がイミノ基である構成単位(3)を有すること、すなわち、構成単位(3)として、芳香族ヒドロキシルアミンに由来する構成単位及び芳香族ジアミンに由来する構成単位の少なくとも一方を有することが好ましく、X及びYの少なくとも一方がイミノ基である構成単位(3)のみを有することがより好ましい。
 液晶ポリマーは、液晶ポリマーを構成する構成単位に対応する原料モノマーを溶融重合させることにより製造することが好ましい。溶融重合は、触媒の存在下に行ってもよい。触媒の例としては、酢酸マグネシウム、酢酸第一錫、テトラブチルチタネート、酢酸鉛、酢酸ナトリウム、酢酸カリウム、三酸化アンチモン等の金属化合物、4-(ジメチルアミノ)ピリジン、1-メチルイミダゾール等の含窒素複素環式化合物などが挙げられ、含窒素複素環式化合物が好ましく挙げられる。なお、溶融重合は、必要に応じて、更に固相重合させてもよい。
 液晶ポリマーの流動開始温度の下限値としては、好ましくは180℃以上、より好ましくは200℃以上、更に好ましくは250℃以上であり、流動開始温度の上限値としては、350℃が好ましく、330℃がより好ましく、310℃が更に好ましい。液晶ポリマーの流動開始温度が上記範囲であると、溶解性、耐熱性、強度及び剛性に優れ、また、溶液の粘度が適度である。
 流動開始温度は、フロー温度とも呼ばれ、毛細管レオメーターを用いて、9.8MPa(100kg/cm)の荷重下、4℃/分の速度で昇温しながら、液晶ポリマーを溶融させ、内径1mm及び長さ10mmのノズルから押し出すときに、4,800Pa・s(48,000ポイズ)の粘度を示す温度であり、液晶ポリマーの分子量の目安となるものである(小出直之編、「液晶ポリマー-合成・成形・応用-」、株式会社シーエムシー、1987年6月5日、p.95参照)。
 また、液晶ポリマーの重量平均分子量は、1,000,000以下であることが好ましく、3,000~300,000であることがより好ましく、5,000~100,000であることが更に好ましく、5,000~30,000であることが特に好ましい。この液晶ポリマーの重量平均分子量が上記範囲であると、熱処理後のフィルムにおいて、厚さ方向の熱伝導性、耐熱性、強度及び剛性に優れる。
-フッ素系ポリマー-
 誘電正接が0.01以下であるポリマーは、耐熱性、及び、力学的強度の観点から、フッ素系ポリマーであることが好ましい。
 本開示において、誘電正接が0.01以下であるポリマーとして用いるフッ素系ポリマーは、誘電正接が0.01以下であれば、フッ素系ポリマーの種類は特に限定されず、公知のフッ素系ポリマーを用いることができる。
 フッ素系ポリマーとしては、例えば、ポリテトラフルオロエチレン、ポリクロロトリフルオロエチレン、ポリフッ化ビニリデン、ポリフッ化ビニル、ペルフルオロアルコキシフッ素樹脂、四フッ化エチレン/六フッ化プロピレン共重合体、エチレン/四フッ化エチレン共重合体、エチレン/クロロトリフルオロエチレン共重合体等が挙げられる。
 中でも、ポリテトラフルオロエチレンが好ましく挙げられる。
 また、フッ素系ポリマーは、フッ素化α-オレフィンモノマー、すなわち、少なくとも1つのフッ素原子を含むα-オレフィンモノマー、及び、必要に応じ、フッ素化α-オレフィンモノマーに対して反応性の非フッ素化エチレン性不飽和モノマーから誘導される構成単位を含むホモポリマー及びコポリマーが挙げられる。
 フッ素化α-オレフィンモノマーとしては、CF=CF、CHF=CF、CH=CF、CHCl=CHF、CClF=CF、CCl=CF、CClF=CClF、CHF=CCl、CH=CClF、CCl=CClF、CFCF=CF、CFCF=CHF、CFCH=CF、CFCH=CH、CHFCH=CHF、CFCF=CF、パーフルオロ(炭素数2~8のアルキル)ビニルエーテル(例えば、パーフルオロメチルビニルエーテル、パーフルオロプロピルビニルエーテル、パーフルオロオクチルビニルエーテル)等が挙げられる。中でも、テトラフルオロエチレン(CF=CF)、クロロトリフルオロエチレン(CClF=CF)、(パーフルオロブチル)エチレン、フッ化ビニリデン(CH=CF)、及び、ヘキサフルオロプロピレン(CF=CFCF)よりなる群から選ばれた少なくとも1種のモノマーが好ましい。
 非フッ素化モノエチレン性不飽和モノマーとしては、エチレン、プロピレン、ブテン、エチレン性不飽和芳香族モノマー(例えば、スチレン及びα-メチルスチレン)等が挙げられる。
 フッ素化α-オレフィンモノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 また、非フッ素化エチレン性不飽和モノマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 フッ素系ポリマーとしては、ポリクロロトリフルオロエチレン(PCTFE)、ポリ(クロロトリフルオロエチレン-プロピレン)、ポリ(エチレン-テトラフルオロエチレン)(ETFE)、ポリ(エチレン-クロロトリフルオロエチレン)(ECTFE)、ポリ(ヘキサフルオロプロピレン)、ポリ(テトラフルオロエチレン)(PTFE)、ポリ(テトラフルオロエチレン-エチレン-プロピレン)、ポリ(テトラフルオロエチレン-ヘキサフルオロプロピレン)(FEP)、ポリ(テトラフルオロエチレン-プロピレン)(FEPM)、ポリ(テトラフルオロエチレン-パーフルオロプロピレンビニルエーテル)、ポリ(テトラフルオロエチレン-パーフルオロアルキルビニルエーテル)(PFA)(例えば、ポリ(テトラフルオロエチレン-パーフルオロプロピルビニルエーテル))、ポリビニルフルオリド(PVF)、ポリフッ化ビニリデン(PVDF)、ポリ(フッ化ビニリデン-クロロトリフルオロエチレン)、パーフルオロポリエーテル、パーフルオロスルホン酸、パーフルオロポリオキセタン等が挙げられる。
 フッ素系ポリマーは、1種単独で使用してもよいし、2種以上を併用してもよい。
 フッ素系ポリマーは、FEP、PFA、ETFE、又は、PTFEの少なくとも1つであることが好ましい。FEPは、デュポン(DuPont)社よりテフロン(登録商標)FEP(TEFLON(登録商標)FEP)の商品名、又は、ダイキン工業(株)よりネオフロンFEP(NEOFLON FEP)の商品名で入手可能であり;PFAは、ダイキン工業(株)よりネオフロンPFA(NEOFLON PFA)の商品名、デュポン(DuPont)社よりテフロン(登録商標)PFA(TEFLON(登録商標)PFA)の商品名、又は、ソルベイ・ソレクシス(Solvay Solexis)社よりハイフロンPFA(HYFLON PFA)の商品名で入手可能である。
 フッ素系ポリマーは、PTFEを含むことが好ましい。PTFEは、PTFEホモポリマー、一部が変性されたPTFEホモポリマー、又は、これらの一方若しくは両方を含む組合せを含むことができる。一部が変性されたPTFEホモポリマーは、ポリマーの全質量を基準として、テトラフルオロエチレン以外のコモノマーに由来する構成単位を1質量%未満含むことが好ましい。
 フッ素系ポリマーは、架橋性基を有する架橋性フルオロポリマーであってもよい。架橋性フルオロポリマーは、従来公知の架橋方法によって架橋させることができる。代表的な架橋性フルオロポリマーの1つは、(メタ)アクリロキシ基を有するフルオロポリマーである。例えば、架橋性フルオロポリマーは式:
  HC=CR’COO-(CH-R-(CH-OOCR’=CH
で表すことができ、式中、Rは、フッ素化α-オレフィンモノマー又は非フッ素化モノエチレン性不飽和モノマーに由来する構成単位を2以上有するフッ素系オリゴマー鎖であり、R’はH又は-CHであり、nは1~4である。Rは、テトラフルオロエチレンに由来する構成単位を含むフッ素系オリゴマー鎖であってよい。
 フッ素系ポリマー上の(メタ)アクリロキシ基を介してラジカル架橋反応を開始するために、(メタ)アクリロキシ基を有するフルオロポリマーをフリーラジカル源に曝露することによって、架橋フルオロポリマー網目構造を形成することができる。フリーラジカル源は、特に制限はないが、光ラジカル重合開始剤、又は、有機過酸化物が好適に挙げられる。適切な光ラジカル重合開始剤及び有機過酸化物は当技術分野においてよく知られている。架橋性フルオロポリマーは市販されており、例えば、デュポン社製バイトンBが挙げられる。
-環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物-
 誘電正接が0.01以下であるポリマーは、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物であってもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物の例としては、例えば、ノルボルネン又は多環ノルボルネン系モノマーのような環状オレフィンからなるモノマーから形成される構成単位を有する熱可塑性の樹脂が挙げられ、熱可塑性環状オレフィン系樹脂とも呼ばれる。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、上記環状オレフィンの開環重合体や2種以上の環状オレフィンを用いた開環共重合体の水素添加物であってもよく、環状オレフィンと、鎖状オレフィン又はビニル基の如きエチレン性不飽和結合を有する芳香族化合物などとの付加重合体であってもよい。また、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物には、極性基が導入されていてもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、1種単独で使用してもよいし、2種以上を併用してもよい。
 環状脂肪族炭化水素基の環構造としては、単環であっても、2以上の環が縮合した縮合環であっても、橋掛け環であってもよい。
 環状脂肪族炭化水素基の環構造としては、シクロペンタン環、シクロヘキサン環、シクロオクタン環、イソホロン環、ノルボルナン環、ジシクロペンタン環等が挙げられる。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物は、単官能エチレン性不飽和化合物であっても、多官能エチレン性不飽和化合物であってもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物における環状脂肪族炭化水素基の数は、1以上であればよく、2以上有していてもよい。
 環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、少なくとも1種の環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物を重合してなる重合体であればよく、2種以上環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物であってもよいし、環状脂肪族炭化水素基を有しない他のエチレン性不飽和化合物との共重合体であってもよい。
 また、環状脂肪族炭化水素基とエチレン性不飽和結合を有する基とを有する化合物の重合物は、シクロオレフィンポリマーであることが好ましい。
-ポリフェニレンエーテル-
 層Aは、ポリフェニレンエーテルを含むことが好ましい。
 ポリフェニレンエーテルの重量平均分子量(Mw)は、製膜後に熱硬化する場合には、耐熱性、及び、膜形成性の観点から、500~5,000であることが好ましく、500~3,000であることがより好ましい。また、熱硬化しない場合には、特に限定されないが、3,000~100,000であることが好ましく、5,000~50,000であることがより好ましい。
 ポリフェニレンエーテルとしては、分子末端のフェノール性水酸基の1分子当たりの平均個数(末端水酸基数)が、誘電正接、及び、耐熱性の観点から、1個~5個であることが好ましく、1.5個~3個であることがより好ましい。
 ポリフェニレンエーテルの水酸基数又はフェノール性水酸基数は、例えば、ポリフェニレンエーテルの製品の規格値からわかる。また、末端水酸基数又は末端フェノール性水酸基数としては、例えば、ポリフェニレンエーテル1モル中に存在する全てのポリフェニレンエーテルの1分子あたりの水酸基又はフェノール性水酸基の平均値を表した数値等が挙げられる。
 ポリフェニレンエーテルは、1種単独で使用してもよいし、2種以上を併用してもよい。
 ポリフェニレンエーテルとしては、例えば、2,6-ジメチルフェノールと2官能フェノール及び3官能フェノールの少なくともいずれか一方とからなるポリフェニレンエーテル、又は、ポリ(2,6-ジメチル-1,4-フェニレンオキサイド)等のポリフェニレンエーテルとを主成分とするもの等が挙げられる。より具体的には、例えば、式(PPE)で表される構造を有する化合物であることが好ましい。
 式(PPE)中、Xは、炭素数1~3のアルキレン基又は単結合を表し、mは、0~20の整数を表し、nは、0~20の整数を表し、mとnとの合計は、1~30の整数を表す。
 上記Xにおける上記アルキレン基としては、例えば、ジメチルメチレン基等が挙げられる。
-芳香族ポリエーテルケトン-
 誘電正接が0.01以下であるポリマーは、芳香族ポリエーテルケトンであってもよい。
 芳香族ポリエーテルケトンとしては、特に限定されず、公知の芳香族ポリエーテルケトンを用いることができる。
 芳香族ポリエーテルケトンは、ポリエーテルエーテルケトンであることが好ましい。
 ポリエーテルエーテルケトンは、芳香族ポリエーテルケトンの1種であり、エーテル結合、エーテル結合、カルボニル結合(ケトン)の順に結合が配置されたポリマーである。各結合間は、2価の芳香族基により連結されていることが好ましい。
 芳香族ポリエーテルケトンは、1種単独で使用してもよいし、2種以上を併用してもよい。
 芳香族ポリエーテルケトンとしては、例えば、下記式(P1)で表される化学構造を有するポリエーテルエーテルケトン(PEEK)、下記式(P2)で表される化学構造を有するポリエーテルケトン(PEK)、下記式(P3)で表される化学構造を有するポリエーテルケトンケトン(PEKK)、下記式(P4)で表される化学構造を有するポリエーテルエーテルケトンケトン(PEEKK)、下記式(P5)で表される化学構造を有するポリエーテルケトンエーテルケトンケトン(PEKEKK)が挙げられる。
 式(P1)~(P5)の各々のnは、機械的特性の観点から、10以上が好ましく、20以上がより好ましい。一方、芳香族ポリエーテルケトンを容易に製造できる点では、nは、5,000以下が好ましく、1,000以下がより好ましい。すなわち、nは、10~5,000が好ましく、20~1,000がより好ましい。
 誘電正接が0.01以下であるポリマーは、特定の有機溶媒に可溶性のポリマー(以下、「可溶性ポリマー」ともいう。)であることが好ましい。
 具体的には、本開示における可溶性ポリマーは、25℃において、N-メチルピロリドン、N-エチルピロリドン、ジクロロメタン、ジクロロエタン、クロロホルム、N,N-ジメチルアセトアミド、γ-ブチロラクトン、ジメチルホルムアミド、エチレングリコールモノブチルエーテル及びエチレングリコールモノエチルエーテルよりなる群から選ばれる少なくとも1種の溶媒100gに、0.1g以上溶解する液晶ポリマーである。
 層Aは、誘電正接が0.01以下であるポリマーを1種のみ含んでいても、2種以上含んでいてもよい。
 層Aにおける誘電正接が0.01以下であるポリマー、好ましくは液晶ポリマーの含有量は、フィルムの誘電正接、及び、金属との密着性の観点から、層Aの全質量に対し、10質量%~100質量%であることが好ましく、20質量%~100質量%であることがより好ましく、30質量%~100質量%であることが更に好ましく、40質量%~100質量%であることが特に好ましい。
 フィルムにおける誘電正接が0.01以下であるポリマー、好ましくは液晶ポリマーの含有量は、フィルムの誘電正接、及び、金属との密着性の観点から、フィルムの全質量に対し、20質量%~100質量%であることが好ましく、30質量%~100質量%であることがより好ましく、40質量%~100質量%であることが更に好ましく、50質量%~100質量%であることが特に好ましい。
 なお、上記誘電正接が0.01以下であるポリマーの含有量には、後述する粒子状の誘電正接が0.01以下であるポリマーも含めるものとする。
-フィラー-
 層Aは、熱膨張係数、及び、金属との密着性の観点から、フィラーを含んでいてもよい。
 フィラーとしては、粒子状でも繊維状のものでもよく、無機フィラーであっても、有機フィラーであってもよいが、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、有機フィラーであることが好ましい。
 本開示に係るフィルムにおいて、上記フィラーの数密度は、熱膨張係数、及び、金属との密着性の観点から、上記フィルムの表面より内部の方が大きいことが好ましい。
 ここで、フィルムにおける表面とは、フィルムの外側の面(空気又は基板に接する面)を指し、最も表面から深さ方向に3μmの範囲、または、最も表面からフィルム全体の厚みに対して10%以下の範囲のうち、小さい方を「表面」とする。フィルムの内部とは、フィルムの表面以外の部分、即ち、フィルムの内側の面(空気又は基板に接しない面)を指し、限定的ではないが、フィルムの厚み方向の中心から±1.5μmの範囲、または、フィルムの厚み方向の中心から総厚みの±5%の範囲、のうち、数値の小さい方を「内部」とする。
 有機フィラーとしては、公知の有機フィラーを用いることができる。
 有機フィラーの材質としては、例えば、ポリエチレン、ポリスチレン、尿素-ホルマリンフィラー、ポリエステル、セルロース、アクリル樹脂、フッ素樹脂、硬化エポキシ樹脂、架橋ベンゾグアナミン樹脂、架橋アクリル樹脂、液晶ポリマー、及び、これらを2種以上含む材質が挙げられる。
 また、有機フィラーは、ナノファイバーのような繊維状であってもよく、中空樹脂粒子であってもよい。
 中でも、有機フィラーとしては、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、フッ素樹脂粒子、ポリエステル系樹脂粒子、ポリエチレン粒子、液晶ポリマー粒子、又は、セルロース系樹脂のナノファイバーであることが好ましく、ポリテトラフルオロエチレン粒子、ポリエチレン粒子、又は、液晶ポリマー粒子であることがより好ましく、液晶ポリマー粒子であることが特に好ましい。ここで、液晶ポリマー粒子とは、限定的ではないが、液晶ポリマーを重合させ、粉砕機等で粉砕して、粉末状の液晶としたものをいう。液晶ポリマー粒子は、各層の厚みよりも小さいことが好ましい。
 有機フィラーの平均粒径は、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、5nm~20μmであることが好ましく、100nm~10μmであることがより好ましい。
 無機フィラーとしては、公知の無機フィラーを用いることができる。
 無機フィラーの材質としては、例えば、BN、Al、AlN、TiO、SiO、チタン酸バリウム、チタン酸ストロンチウム、水酸化アルミニウム、炭酸カルシウム、及び、これらを2種以上含む材質が挙げられる。
 中でも、無機フィラーとしては、熱膨張係数、及び、金属との密着性の観点から、金属酸化物粒子、又は、繊維が好ましく、シリカ粒子、チタニア粒子、又は、ガラス繊維がより好ましく、シリカ粒子、又は、ガラス繊維が特に好ましい。
 無機フィラーの平均粒径は、層Aの厚みの約20%~約40%であることが好ましく、例えば、層Aの厚みの25%、30%又は35%にあるものを選択してもよい。粒子、又は、繊維が扁平状の場合には、短辺方向の長さを示す。
 また、無機フィラーの平均粒径は、熱膨張係数、及び、金属との密着性の観点から、5nm~20μmであることが好ましく、10nm~10μmであることがより好ましく、20nm~1μmであることが更に好ましく、25nm~500nmであることが特に好ましい。
 層Aは、フィラーを1種のみ含んでいても、2種以上含んでいてもよい。
 層Aにおけるフィラーの含有量は、金属との密着性の観点から、層Bにおけるフィラーの含有量よりも少ないことが好ましい。
 また、層Aにおけるフィラーの含有量は、レーザー加工適性、及び、金属との密着性の観点から、層Aの全質量に対して、10質量%~90質量%が好ましく、30質量%~80質量%がより好ましい。
 ポリエチレン、オレフィン系エラストマーなどのフィラーは、例えば、50体積%~90体積%が好ましく、75体積%~85体積%が更に好ましい。この場合、層Aにおけるフィラーの含有量は、層Aの全質量に対して、55質量%~90質量%が好ましく、80質量%~85質量%がより好ましい。
-その他の添加剤-
 層Aは、上述した成分以外のその他の添加剤を含んでいてもよい。
 その他の添加剤としては、公知の添加剤を用いることができる。具体的には、例えば、硬化剤、レベリング剤、消泡剤、酸化防止剤、紫外線吸収剤、難燃剤、着色剤等が挙げられる。
 また、層Aは、その他の添加剤として、上述したポリマー及びポリマー粒子以外のその他の樹脂を含んでいてもよい。
 その他の樹脂の例としては、ポリプロピレン、ポリアミド、ポリエステル、ポリフェニレンスルフィド、ポリエーテルケトン、ポリカーボネート、ポリエーテルスルホン、ポリフェニレンエーテル及びその変性物、ポリエーテルイミド等の熱可塑性樹脂;グリシジルメタクリレートとポリエチレンとの共重合体等のエラストマー;フェノール樹脂、エポキシ樹脂、ポリイミド樹脂、シアネート樹脂等の熱硬化性樹脂が挙げられる。
 層Aにおけるその他の添加剤の総含有量は、誘電正接が0.01以下であるポリマーの含有量100質量部に対して、好ましくは25質量部以下であり、より好ましくは10質量部以下であり、更に好ましくは5質量部以下である。
 層Aの平均厚みは、フィルムの誘電正接、及び、金属との密着性の観点から、層Bの平均厚みよりも厚いことが好ましい。
 層Aの平均厚みTと層Bの平均厚みTとの比であるT/Tの値は、フィルムの誘電正接、及び、金属との密着性の観点から、0.8~10であることが好ましく、1~5であることがより好ましく、1を超え3以下であることが更に好ましく、1を超え2以下であることが特に好ましい。
 また、層Aの平均厚みは、特に制限はないが、フィルムの誘電正接、及び、金属との密着性の観点から、5μm~90μmであることが好ましく、10μm~70μmであることがより好ましく、15μm~60μmであることが特に好ましい。
 本開示に係るフィルムにおける各層の平均厚みの測定方法は、以下の通りである。
 フィルムをミクロトームで切削し、断面を光学顕微鏡で観察して、各層の厚みを評価する。断面サンプルは3ヶ所以上切り出し、各断面において、3点以上厚みを測定し、それらの平均値を平均厚みとする。
<層B>
 本開示に係るフィルムは、上記層Aの少なくとも一方の面に層Bを有する。
 上記層Bは、フィルムの誘電正接、及び、金属との密着性の観点から、誘電正接が0.01以下であるポリマーを含むことが好ましい。
 層Bの誘電正接は、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、0.01以下が好ましく、0.005以下がより好ましく、0.004以下であることが更に好ましく、0.003以下であることが特に好ましい。いずれの下限値は特に設定されないが、例えば、0超が挙げられる。
 層Bは、気泡混入抑制性、配線のボイド抑制性、及び、密着性の観点から、フッ素系界面活性剤、又は、シリコーン系界面活性剤を含むことが好ましい。
 フッ素系界面活性剤としては、疎水基としてフッ素含有基を有する界面活性剤であれば特に制限されず、例えば、パーフルオロオクタンスルホン酸、及び、パーフルオロカルボン酸が挙げられる。
 フッ素系界面活性剤の具体例としては、メガファックF-444等のDIC(株)製メガファックシリーズ、サーフロンS-221等のAGCセイミケミカル(株)製サーフロンシリーズ、及び、フタージェント100等の(株)ネオス製フタージェントシリーズが挙げられる。
 シリコーン系界面活性剤としては、シロキサン結合からなる直鎖状ポリマー、及び、側鎖や末端に有機基を導入した変性シロキサンポリマーが挙げられる。
 シリコーン系界面活性剤の具体例としては、DOWSIL(商品名)8032 ADDITIVE、トーレシリコーンDC3PA、トーレシリコーンSH7PA、トーレシリコーンDC11PA、トーレシリコーンSH21PA、トーレシリコーンSH28PA、トーレシリコーンSH29PA、トーレシリコーンSH30PA、トーレシリコーンSH8400(以上、東レ・ダウコーニング(株)製)並びに、X-22-4952、X-22-4272、X-22-6266、KF-351A、K354L、KF-355A、KF-945、KF-640、KF-642、KF-643、X-22-6191、X-22-4515、KF-6004、KP-341、KF-6001、KF-6002(以上、信越化学工業(株)製)、F-4440、TSF-4300、TSF-4445、TSF-4460、TSF-4452(以上、モメンティブ・パフォーマンス・マテリアルズ社製)、BYK307、BYK323、BYK330(以上、ビックケミー社製)等が挙げられる。
 層Bは、フッ素系界面活性剤を1種のみ含んでいても、2種以上含んでいてもよい。
 層Bは、シリコーン系界面活性剤を1種のみ含んでいても、2種以上含んでいてもよい。
 また、層Bにおけるフッ素系界面活性剤及びシリコーン系界面活性剤の総含有量は、気泡混入抑制性、配線のボイド抑制性、及び、密着性の観点から、層Bの全質量に対して、0.001質量%~10質量%が好ましく、0.002質量%~2質量%がより好ましい。0.005質量%~0.5質量%が特に好ましい。
 層Bに用いられる誘電正接が0.01以下であるポリマーの好ましい態様は、後述する以外、層Aに用いられる誘電正接が0.01以下であるポリマーの好ましい態様と同様である。
 層Bに含まれる誘電正接が0.01以下であるポリマーは、層Aに含まれる誘電正接が0.01以下であるポリマーと同じものであっても、異なるものであってもよいが、層Aと層Bとの密着性、及び、レーザー加工適性の観点から、層Aに含まれる誘電正接が0.01以下であるポリマーと同じものを含むことが好ましい。
 層Bは、誘電正接が0.01以下であるポリマーを1種のみ含んでいても、2種以上含んでいてもよい。
 層Bにおける誘電正接が0.01以下であるポリマーの含有割合は、層Aにおける誘電正接が0.01以下であるポリマーの含有割合以上であることが好ましい。
 層Bにおける誘電正接が0.01以下であるポリマーの含有量は、フィルムの誘電正接、レーザー加工適性、及び、金属との密着性の観点から、層Bの全質量に対し、20質量%~100質量%であることが好ましく、30質量%~100質量%であることがより好ましく、40質量%~100質量%であることが特に好ましい。
 また、層Bは、バインダーポリマーとして、誘電正接が0.01以下であるポリマー以外の他のポリマーを含んでいてもよい。
 他のポリマーとしては、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、熱可塑性エラストマーを含む熱可塑性樹脂等が好ましく挙げられる。なお、エラストマーとは、弾性変形を示す高分子化合物を表す。すなわち外力を加えたときに、その外力に応じて変形し、かつ外力を除いたときには、短時間に元の形状を回復する性質を有する高分子化合物が該当する。
 熱可塑性樹脂としては、ポリウレタン樹脂、ポリエステル樹脂、(メタ)アクリル樹脂、ポリスチレン樹脂、フッ素樹脂、ポリイミド樹脂、フッ素化ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、ポリエーテルイミド樹脂、セルロースアシレート樹脂、ポリウレタン樹脂、ポリエーテルエーテルケトン樹脂、ポリカーボネート樹脂、ポリオレフィン樹脂(例えば、ポリエチレン樹脂、ポリプロピレン樹脂、環状オレフィンコポリマーからなる樹脂、脂環式ポリオレフィン樹脂)、ポリアリレート樹脂、ポリエーテルスルホン樹脂、ポリスルホン樹脂、フルオレン環変性ポリカーボネート樹脂、脂環変性ポリカーボネート樹脂、フルオレン環変性ポリエステル樹脂等が挙げられる。
 熱可塑性エラストマーとしては、特に限定されず、例えば、スチレン由来の構成繰り返し単位を含むエラストマー(ポリスチレン系エラストマー)、ポリエステル系エラストマー、ポリオレフィン系エラストマー、ポリウレタン系エラストマー、ポリアミド系エラストマー、ポリアクリル系エラストマー、シリコーン系エラストマー、ポリイミド系エラストマー等が挙げられる。なお、熱可塑性エラストマーは、水添物であってもよい。
 ポリスチレン系エラストマーとしては、スチレン-ブタジエン-スチレンブロック共重合体(SBS)、スチレン-イソプレン-スチレンブロック共重合体(SIS)、ポリスチレン-ポリ(エチレン-プロピレン)ジブロック共重合体(SEP)、ポリスチレン-ポリ(エチレン-プロピレン)-ポリスチレントリブロック共重合体(SEPS)、スチレン-エチレン-ブチレン-スチレンブロック共重合体(SEBS)、及びポリスチレン-ポリ(エチレン/エチレン-プロピレン)-ポリスチレントリブロック共重合体(SEEPS)、並びに、これらの水添物が挙げられる。
 中でも、層Bは、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、他のポリマーとして、芳香族炭化水素基を有する構成単位を有する熱可塑性樹脂を含むことが好ましく、ポリスチレン系エラストマーを含むことがより好ましく、水添スチレン-エチレン-ブチレン-スチレンブロック共重合体を含むことが特に好ましい。
 また、他のポリマーとしては、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、水添ポリスチレン系エラストマーが好ましい。
 誘電正接が0.01以下であるポリマー以外の他のポリマーの含有量は、特に限定されないが、フィルムの誘電正接、レーザー加工適性、及び、金属との密着性の観点から、層Bの全質量に対し、10質量%~100質量%であることが好ましく、10質量%~70質量%であることがより好ましく、10質量%~60質量%であることが特に好ましい。
 層Bが、フィルムの誘電正接、レーザー加工適性、金属との接着性、及び、段差追随性の観点から、フィラーを含むことがより好ましい。
 層Bに用いられるフィラーの好ましい態様は、後述する以外、層Aに用いられるフィラーの好ましい態様と同様である。
 また、層Bに用いられるフィラーとしては、上述した熱可塑性樹脂の粒子も好ましく挙げられる。
 更にまた、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、層Bに含まれるバインダーポリマー及びフィラーのうち少なくとも一方は、誘電正接が0.01以下であるポリマーであることが好ましく、液晶ポリマーであることがより好ましい。
 また、層Bは、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、フィラーとして、架橋樹脂粒子を含むことが好ましい。
 架橋樹脂粒子における架橋樹脂としては、特に制限はなく、公知の架橋樹脂を用いることができる。例えば、重合時に架橋剤を用いた架橋樹脂であってもよいし、樹脂に対し架橋剤を反応させた架橋樹脂であってもよい。
 中でも、架橋樹脂粒子としては、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、上記熱可塑性エラストマー粒子が好ましく、ポリスチレン系エラストマー粒子がより好ましく、水添ポリスチレン系エラストマーが特に好ましい。
 層Bは、フィラーを1種のみ含んでいても、2種以上含んでいてもよい。
 また、層Bにおけるフィラーの含有量は、レーザー加工適性、及び、金属との密着性の観点から、層Bの全質量に対して、10質量%~90質量%が好ましく、20質量%~80質量%がより好ましい。
 層Bは、上記以外のその他の添加剤を含んでいてもよい。
 層Bに用いられるその他の添加剤の好ましい態様は、後述する以外、層Aに用いられるその他の添加剤の好ましい態様と同様である。
 また、層Bの平均厚みは、特に制限はないが、フィルムの誘電正接、レーザー加工適性、及び、段差追随性の観点から、1μm~90μmであることが好ましく、5μm~60μmであることがより好ましく、10μm~40μmであることが特に好ましい。
 本開示に係るフィルムは、層Bを有することにより、金属との密着性に優れるフィルムが得られる。例えば、層Aがフィラーを有する場合、フィラー添加で脆化した層Aを、層Bを有することにより、フィルムの表面が改善し、密着性向上等の効果が得られると推定している。
 また、層Bは、表面層(最外層)であることが好ましい。フィルムを、例えば、金属層/層A/層Bの層構成である積層体(金属層付積層板)として用いる場合、層B側に、更に、別の金属層又は金属層付積層板を配置することがある。この場合、積層体における層Bと別の金属層間での界面破壊が抑制され、金属との密着性が向上することになる。
 また、層Bに含まれるポリマーは、層Aに含まれるポリマーよりも破断強度(靭性)が高いポリマーを含むことが好ましい。
 破断強度の測定は、以下の方法により行うものとする。
 測定するポリマーからなるサンプルを作製し、東洋ボールドウィン(株)製万能引っ張り試験機“STM T50BP”を用い、25℃、60%RH雰囲気中、引張速度10%/分で伸びに対する応力を測定し、破断強度を求める。
<層C>
 本開示に係るフィルムは、層Cを更に有することが好ましく、金属との密着性の観点から、上記層Bと、上記層Aと、上記層Cとをこの順で有することがより好ましい。
 層Cは、接着層であることが好ましい。
 また、層Cは、上記各層とは別に金属層が存在する場合は、表面層(最外層)であることが好ましい。
 層Cは、フィルムの誘電正接、及び、レーザー加工適性の観点から、誘電正接が0.01以下であるポリマーを含むことが好ましい。
 層Cに用いられる誘電正接が0.01以下であるポリマーの好ましい態様は、後述する以外、層Aに用いられる誘電正接が0.01以下であるポリマーの好ましい態様と同様である。
 層Cに含まれる液晶ポリマーは、層A又は層Bに含まれる誘電正接が0.01以下であるポリマーと同じものであっても、異なるものであってもよいが、層Aと層Cとの密着性の観点から、層Aに含まれる誘電正接が0.01以下であるポリマーと同じものを含むことが好ましい。
 層Cにおける誘電正接が0.01以下であるポリマーの含有量は、金属との密着性の観点から、層Aにおける誘電正接が0.01以下であるポリマーの含有量以下であることが好ましい。
 層Bにおける誘電正接が0.01以下であるポリマーの含有量は、フィルムの誘電正接、及び、金属との密着性の観点から、フィルムの全質量に対し、10質量%~99質量%であることが好ましく、20質量%~95質量%であることがより好ましく、30質量%~90質量%であることが更に好ましく、40質量%~80質量%であることが特に好ましい。
 また、層Cは、フィルムの誘電正接、及び、レーザー加工適性の観点から、芳香環を有するポリマーを含むことが好ましく、芳香環を有し、かつ、エステル結合及びアミド結合を有する樹脂であり、かつ、誘電正接が0.01以下であるポリマーを含むことがより好ましい。
 また、層Cは、金属層と樹脂層(例えば、層A)とを接着させるため、エポキシ樹脂を含むことが好ましい。
 エポキシ樹脂は、多官能エポキシ化合物の架橋体であることが好ましい。多官能エポキシ化合物とは、エポキシ基を2つ以上有する化合物のことをいう。多官能エポキシ化合物におけるエポキシ基の数は、2~4であることが好ましい。
 層Cは、レベリング剤を含むことが好ましい。例えば、炭化水素系、シリコーン系又はフッ素系の化合物が挙げられ、炭化水素系、シリコーン系又はフッ素系界面活性剤が好ましく挙げられる。フッ素系界面活性剤としては、メガファックF-444等のDIC(株)製メガファックシリーズ、サーフロンS-221等のAGCセイミケミカル(株)製サーフロンシリーズ、及び、フタージェント100等の(株)ネオス製フタージェントシリーズが挙げられる。更に、界面活性剤は,ポリマーでもよく、フッ素化アルキル基含有した単量体を必須成分としたアクリル重合体、鎖骨格がSi-O結合からなるシロキサン系の重合体が挙げられる。
 多官能エポキシ化合物としては、例えば、グリシジルエーテル基を有する多官能エポキシ化合物、グリシジルエステル基を有する多官能エポキシ化合物、及び、グリシジルアミノ基を有する多官能エポキシ化合物が挙げられる。
 グリシジルエーテル基を有する多官能エポキシ化合物としては、例えば、エチレングリコールジグリシジルエーテル、レゾルシノールジグリシジルエーテル、ネオペンチルグリコールジグリシジルエーテル、1,6-ヘキサンジオールジグリシジルエーテル、ビスフェノールAジグリシジルエーテル、トリメチロールプロパンポリグリシジルエーテル、ポリグリセリンポリグリシジルエーテル、グリセリンポリグリシジルエーテル、ペンタエリスリトールポリグリシジルエーテル、ジグリセリンポリグリシジルエーテル、ソルビトールポリグリシジルエーテル、ポリブタジエンジグリシジルエーテル、ジエチレングリコールジグリシジルエーテル、ポリエチレングリコールジグリシジルエーテル、ジプロピレングリコールジグリシジルエーテル、及び、1,4-ブタンジオールジグリシジルエーテルが挙げられる。
 グリシジルエステル基を有する多官能エポキシ化合物としては、例えば、フタル酸ジグリシジルエステル、テレフタル酸ジグリシジルエステル、ヘキサヒドロフタル酸ジグリシジルエステル、及び、ダイマー酸ジグリシジルエステルが挙げられる。
 グリシジルアミノ基を有する化合物としては、例えば、N,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタン及び4,4’-メチレンビス(N,N-ジグリシジルアニリン)が挙げられる。
 グリシジルエーテル基及びグリシジルアミノ基を有する多官能エポキシ化合物としては、例えば、N,N-ジグリシジル-4-グリシジルオキシアニリンが挙げられる。
 中でも、硬化性、及び、金属表面との相互作用の観点から、エポキシ樹脂は、グリシジルアミノ基を有する多官能エポキシ化合物の架橋体であることが好ましく、N,N-ジグリシジル-4-グリシジルオキシアニリン及びN,N,N’,N’-テトラグリシジル-4,4’-ジアミノジフェニルメタンよりなる群から選択される少なくとも1種の架橋体であることがより好ましい。
 特に、層Cは、フィルムの誘電正接、レーザー加工適性、及び、金属層との接着性の観点から、芳香族ポリエステルアミド及びエポキシ樹脂を含むことが好ましい。
 層Cは、フィラーを含んでいてもよい。
 層Cに用いられるフィラーの好ましい態様は、後述する以外、層Bに用いられるフィラーの好ましい態様と同様である。
 層Cにおけるフィラーの含有量は、特に制限はなく、任意に設定することができるが、フィルムの両面に金属層を設ける場合、金属との密着性の観点から、層Aにおけるフィラーの含有量よりも少ないことが好ましい。
 また、フィルムの両面に金属層を設ける場合、層Cにおけるフィラーの含有量は、金属との密着性の観点から、フィラーを含まないか、又は、層Cの全体積に対し、0体積%を超え20体積%以下であることが好ましく、フィラーを含まないか、又は、層Cの全体積に対し、0体積%を超え10体積%以下であることがより好ましく、フィラーを含まないか、又は、層Cの全体積に対し、0体積%を超え5体積%以下であることが更に好ましく、フィラーを含まないことが特に好ましい。
 層Cにおけるフィラーの含有量は、層Cの全質量に対して、0質量%~15質量%が好ましく、0質量%~5質量%がより好ましい。
 ポリエチレン、オレフィン系エラストマーなどのフィラーは、例えば、50体積%~90体積%が好ましく、75体積%~85体積%が更に好ましい。この場合、層Cにおけるフィラーの含有量は、層Cの全質量に対して、55質量%~90質量%が好ましく、80質量%~85質量%がより好ましい。
 層Cは、上記以外のその他の添加剤を含んでいてもよい。
 層Cに用いられるその他の添加剤の好ましい態様は、後述する以外、層Aに用いられるその他の添加剤の好ましい態様と同様である。
 層Cの平均厚みは、フィルムの誘電正接、及び、金属との密着性の観点から、層Aの平均厚みよりも薄いことが好ましい。
 層Aの平均厚みTと層Cの平均厚みTとの比であるT/Tの値は、フィルムの誘電正接、及び、金属との密着性の観点から、1より大きいことが好ましく、2~100であることがより好ましく、2.5~20であることが更に好ましく、3~10であることが特に好ましい。
 層Bの平均厚みTと層Cの平均厚みTとの比であるT/Tの値は、フィルムの誘電正接、及び、金属との密着性の観点から、1より大きいことが好ましく、2~100であることがより好ましく、2.5~20であることが更に好ましく、3~10であることが特に好ましい。
 更に、層Cの平均厚みは、フィルムの誘電正接、及び、金属との密着性の観点から、0.1nm~20μmであることが好ましく、0.1nm~5μmであることがより好ましく、1nm~1μmであることが更に好ましい。
 本開示に係るフィルムの平均厚みは、強度、及び、金属層との積層体にした際の電気特性(特性インピーダンス)の観点から、6μm~200μmであることが好ましく、12μm~100μmであることがより好ましく、20μm~80μmであることが特に好ましい。
 フィルムの平均厚みは、任意の5箇所について、接着式の膜厚計、例えば、電子マイクロメータ(製品名「KG3001A」アンリツ社製)を用いて測定し、それらの平均値とする。
 本開示に係るフィルムの誘電正接は、誘電率の観点から、0.008以下であることが好ましく、0.005以下であることがより好ましく、0.004以下であることが更に好ましく、0を超え0.003以下であることが特に好ましい。
<フィルムの製造方法>
 本開示に係るフィルムの製造方法は、特に制限はなく、公知の方法を参照することができる。
 中でも、本開示に係るフィルムの製造方法は、上記層Aと、上記層Aの少なくとも一方の面に上記層Bとを形成する工程、上記フィルムを熱処理する工程を含むことが好ましく、上記フィルムの上記層Bにシートを貼り付ける工程、及び、上記シートを貼り付けたフィルムを熱処理(アニール処理)する工程を含むことが好ましい。
 上記層Bに貼り付けるシートとしては、易剥離性のシートが好ましく挙げられる。
 易剥離性のシートとしては、公知のものを用いることができ、例えば、ポリテトラフルオロエチレンシート等のフッ素系ポリマーシート、フッ素系ポリマーにより表面コートされた金属箔、フッ素系ポリマーにより表面コートされたポリマーフィルム等が好適に挙げられる。
 上記シートの表面粗さRaは、0.5μm未満であることが好ましく、0.1μm未満であることがより好ましい。
 また、上記シートは、熱処理時の熱処理温度において、軟化流動しないシートであることが好ましい。
 上記シートの厚さについては、特に制限はなく、適宜選択すればよい。
 また、上記シートを上記層Bに貼り付ける方法としては、特に制限はなく、公知のラミネート方法を用いることができる。
 上記層Bに貼り付けるシートの別の態様として、難剥離性のフィルムを用いることもできる。
 難剥離性のフィルムとしては、公知の樹脂フィルムや金属箔等を用いることができ、低誘電性の樹脂フィルムや、導電性の金属箔を好ましく用いることができ、例えば、接着性のフッ素系ポリマーフィルムや、シクロオレフィン系のポリマーフィルムや、銅箔、アルミ箔等が好適に挙げられる。
 上記フィルムの表面粗さRaは特に限定されないが、フィルムが樹脂フィルムの場合は、0.5μm以上であっても良く、フィルムが導電性の金属箔の場合は、0.5μm未満であることが好ましく、0.1μm未満であることがより好ましい。
 また、上記フィルムの厚さについては、樹脂フィルムの場合には、誘電体としての要求特性に応じて適宜選択することができ、金属箔の場合には、導体としての要求特性に応じて適宜選択することができる。
 また、上記フィルムを上記層Bに貼り付ける方法としては、特に制限はなく、公知のラミネート方法を用いることができる。また、上記フィルムを上記層Bに貼り付ける前に、熱処理(アニール処理)条件における、上記層B側からの揮発成分が5質量%未満になるようにしておくことが好ましく、揮発成分の量は3質量%未満がより好ましく、1質量%未満がさらに好ましく、0.5質量%未満が最も好ましい。
 上記フィルム又は上記シートを貼り付けたフィルムを熱処理する工程における熱処理温度として具体的には、誘電正接、剥離強度、気泡混入抑制性、及び、密着性の観点から、260℃~370℃であることが好ましく、280℃~360℃であることがより好ましく、300℃~350℃であることが更に好ましい。熱処理時間は、15分~10時間であることが好ましく、30分~5時間であることが更に好ましい。
 また、熱処理時の昇温速度及び降温速度はそれぞれ独立に、気泡混入抑制性、及び、密着性の観点から、0.1℃/分~100℃/分であることが好ましく、0.5℃/分~10℃/分であることがより好ましく、1℃/分~5℃/分であることが特に好ましい。
 層Aと、上記層Aの少なくとも一方の面に層Bとを形成する工程については、後述する製膜方法を好適に用いることができる。
 また、本開示に係るフィルムの製造方法は、後述する方法を好適に用いることができる。
〔製膜〕
 本開示に係るフィルムの製造方法としては、例えば、共流延法、重層塗布法、共押出法等が好適に挙げられる。中でも、比較的薄手の製膜には共流延法が特に好ましく、厚手の製膜には共押出法が特に好ましい。
 共流延法及び重層塗布法により製造する場合、誘電正接が0.01以下であるポリマー又は液晶ポリマー、及び、官能基を有する化合物等の各層の成分をそれぞれ溶媒に溶解又は分散した層A形成用組成物、層B形成用組成物、層C形成用組成物等として、共流延法又は重層塗布法を行うことが好ましい。
 溶媒としては、例えば、ジクロロメタン、クロロホルム、1,1-ジクロロエタン、1,2-ジクロロエタン、1,1,2,2-テトラクロロエタン、1-クロロブタン、クロロベンゼン、o-ジクロロベンゼン等のハロゲン化炭化水素;p-クロロフェノール、ペンタクロロフェノール、ペンタフルオロフェノール等のハロゲン化フェノール;ジエチルエーテル、テトラヒドロフラン、1,4-ジオキサン等のエーテル;アセトン、シクロヘキサノン等のケトン;酢酸エチル、γ-ブチロラクトン等のエステル;エチレンカーボネート、プロピレンカーボネート等のカーボネート;トリエチルアミン等のアミン;ピリジン等の含窒素複素環芳香族化合物;アセトニトリル、スクシノニトリル等のニトリル;N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、N-メチルピロリドン等のアミド、テトラメチル尿素等の尿素化合物;ニトロメタン、ニトロベンゼン等のニトロ化合物;ジメチルスルホキシド、スルホラン等の硫黄化合物;ヘキサメチルリン酸アミド、トリ-n-ブチルリン酸等のリン化合物等が挙げられ、それらを2種以上用いてもよい。
 溶媒としては、腐食性が低く、取り扱い易いことから、非プロトン性化合物(特に好ましくはハロゲン原子を有しない非プロトン性化合物)を含むことが好ましい。溶媒全体に占める非プロトン性化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。また、上記非プロトン性化合物としては、液晶ポリマーを溶解し易いことから、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、テトラメチル尿素、N-メチルピロリドン等のアミド又はγ-ブチロラクトン等のエステルを含むことが好ましく、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、又は、N-メチルピロリドンがより好ましい。
 また、溶媒としては、液晶ポリマー等の上記ポリマーを溶解し易いことから、双極子モーメントが3~5である化合物を含むことが好ましい。溶媒全体に占める双極子モーメントが3~5である化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。
 上記非プロトン性化合物として、双極子モーメントが3~5である化合物を用いることが好ましい。
 また、溶媒としては、除去し易いことから、1気圧における沸点が220℃以下である化合物を含むことが好ましい。溶媒全体に占める1気圧における沸点が220℃以下である化合物の割合は、好ましくは50質量%~100質量%、より好ましくは70質量%~100質量%、特に好ましくは90質量%~100質量%である。
 上記非プロトン性化合物として、1気圧における沸点が220℃以下である化合物を用いることが好ましい。
 また、本開示に係るフィルムは、上記共流延法、重層塗布法及び共押出法等の製造方法により製造する場合、支持体を有していてもよい。また、後述する積層体に用いる金属層(金属箔)等を支持体として使用する場合、剥離せずそのまま使用してもよい。
 支持体としては、例えば、金属ドラム、金属バンド、ガラス板、樹脂フィルム又は金属箔が挙げられる。中でも、金属ドラム、金属バンド、樹脂フィルムが好ましい。
 樹脂フィルムとしては、例えばポリイミド(PI)フィルムを挙げることができ、市販品の例としては、宇部興産(株)製U-ピレックスS及びU-ピレックスR、東レデュポン(株)製カプトン、並びに、SKCコーロンPI社製IF30、IF70及びLV300等が挙げられる。
 また、支持体は、容易に剥離できるように、表面に表面処理層が形成されていてもよい。表面処理層は、ハードクロムメッキ、フッ素樹脂等を用いることができる。
 支持体の平均厚みは、特に制限はないが、好ましくは25μm以上75μm以下であり、より好ましくは50μm以上75μm以下である。
 また、流延、又は、塗布された膜状の組成物(流延膜又は塗膜)から溶媒の少なくとも一部を除去する方法としては、特に制限はなく、公知の乾燥方法を用いることができる。
〔延伸〕
 本開示に係るフィルムは、分子配向を制御し、線膨張係数や力学物性を調整する観点で、適宜、延伸を組み合わせることができる。延伸の方法は、特に制限はなく、公知の方法を参照することができ、溶媒を含んだ状態で実施してもよく、乾膜の状態で実施してもよい。溶媒を含んだ状態での延伸は、フィルムを把持して伸長してもよく、伸長せずに乾燥による自己収縮を利用して実施してもよい。延伸は、無機フィラー等の添加によってフィルム脆性が低下した場合に、破断伸度や破断強度を改善する目的で特に有効である。
 また、本開示に係るフィルムの製造方法は、必要に応じて、光又は熱により重合する工程を含んでいてもよい。
 光の照射手段、及び、熱の付与手段としては、特に制限はなく、メタルハライドランプ等の公知の光の照射手段、及び、ヒーター等の公知の熱の付与手段を用いることができる。
 光照射条件、及び、熱付与条件としては、特に制限はなく、所望の温度及び時間、並びに、公知の雰囲気で行うことができる。
<用途>
 本開示に係るフィルムは、種々の用途に用いることができる、中でも、プリント配線板などの電子部品用フィルムに好適に用いることができ、フレキシブルプリント回路基板により好適に用いることができる。
 また、本開示に係るフィルムは、金属接着用フィルムとして好適に用いることができる。
(積層体)
 本開示に係る積層体は、本開示に係るフィルムが積層したものであればよいが、本開示に係るフィルムと、上記フィルムの少なくとも一方の面に配置された金属層又は金属配線と、を有する積層体であることが好ましい。
 また、本開示に係る積層体は、本開示に係るフィルムと、上記フィルムにおける上記層B側の面に配置された金属層(例えば、金、銀、銅、鉄等の層)とを有することが好ましく、上記金属層が、銅層であることがより好ましい。
 上記層B側の面に配置された金属層は、上記層Bの表面に配置された金属層であることが好ましい。
 また、本開示に係る積層体は、層Bと、層Aと、層Cとをこの順で有する本開示に係るフィルムと、上記フィルムの上記層B側の面に配置された金属層と、上記フィルムの上記層C側の面に配置された金属層とを有することが好ましく、上記金属層がいずれも、銅層であることがより好ましい。
 上記層C側の面に配置された金属層は、上記層Cの表面に配置された金属層であることが好ましく、上記層B側の面に配置された金属層は、上記層Bの表面に配置された金属層であり、かつ上記層C側の面に配置された金属層は、上記層Cの表面に配置された金属層であることがより好ましい。
 また、上記層B側の面に配置された金属層と上記層C側の面に配置された金属層とは、同じ材質、厚さ及び形状の金属層であっても、異なる材質、厚さ及び形状の金属層であってもよい。特性インピーダンス調整の観点からは、上記記層B側の面に配置された金属層と上記層C側の面に配置された金属層とは、異なる材質や厚みの金属層であってもよく、層B又は層Cのうち、片側だけに金属層が積層されていてもよい。
 更に、特性インピーダンス調整の観点から、層B又は層Cのうち、一方の側に金属層が積層され、他方の側に他のフィルムが積層される態様も好ましく挙げられる。
 本開示に係るフィルムと金属層とを貼り付ける方法としては、特に制限はなく、公知のラミネート方法を用いることができる。
 上記金属層が、上記銅層である場合、上記フィルムと上記銅層との剥離強度は、0.5kN/m以上であることが好ましく、0.7kN/m以上であることがより好ましく、0.7kN/m~2.0kN/mであることが更に好ましく、0.9kN/m~1.5kN/mであることが特に好ましい。
 本開示において、フィルムと金属層(例えば、銅層)との剥離強度は、以下の方法により測定するものとする。
 フィルムと金属層との積層体から1.0cm幅の剥離用試験片を作製し、フィルムを両面接着テープで平板に固定し、JIS C 5016(1994)に準じて180°法により、50mm/分の速度で金属層からフィルムを剥離したときの強度(kN/m)を測定する。
 上記フィルムに接する側の上記金属層の表面粗さRzは、高周波信号の伝送損失低減の観点から、1μm未満が好ましく、0.5μm以下がより好ましく、0.3μm以下が特に好ましい。
 なお、上記金属層の表面粗さRzは、少ないほど好ましいため、下限値は特に設定されないが、例えば、0以上が挙げられる。
 本開示において「表面粗さRz」とは、基準長さにおける粗さ曲線で観察される山の高さの最大値と谷の深さの最大値との合計値をマイクロメートルで表した値を意味する。
 本開示において、金属層(例えば、銅層)の表面粗さRzは、以下の方法により測定するものとする。
 非接触表面・層断面形状計測システムVertScan(菱化システム社製)を用い、縦465.48μm、横620.64μm四方を測定して、測定対象物(金属層)の表面における粗さ曲線及び上記粗さ曲線の平均線を作成する。粗さ曲線から基準長さに相当する部分を抜き取る。抜き出した粗さ曲線で観察される山の高さ(すなわち、平均線から山頂までの高さ)の最大値と谷の深さ(すなわち、平均線から谷底までの高さ)の最大値との合計値を求めることで、測定対象物の表面粗さRzを測定する。
 金属層は、銅層であることが好ましい。銅層としては、圧延法により形成された圧延銅箔、電解法により形成された電解銅箔、スパッタリング法を用いて形成された銅箔、又は、蒸着法を用いて形成された銅箔であることが好ましい。
 金属層、好ましくは銅層の平均厚みは、特に限定されないが、0.1nm~30μmであることが好ましく、0.1μm~20μmであることがより好ましく、1μm~18μmであることが更に好ましい。銅箔は、支持体(キャリア)上に剥離可能に形成されているキャリア付き銅箔であってもよい。キャリアとしては、公知のものを用いることができる。キャリアの平均厚みは、特に限定されないが、5μm~100μmであることが好ましく、10μm~50μmであることがより好ましい。
 また、上記金属層は、本開示における効果をより発揮する観点から、上記フィルムに接する側の面に、樹脂との接着力を確保するための公知の表面処理層(例えば、化学処理層)を有することが好ましい。また、上記相互作用可能な基は、例えば、アミノ基とエポキシ基、ヒドロキシ基とエポキシ基のように、上記フィルムが含有する官能基を有する化合物の官能基に対応する基であることが好ましい。
 相互作用可能な基としては、上記官能基を有する化合物において官能基として挙げた基が挙げられる。
 中でも、密着性、及び、処理容易性の観点から、共有結合可能な基であることが好ましく、アミノ基、又は、ヒドロキシ基であることがより好ましく、アミノ基であることが特に好ましい。
 本開示に係る積層体における金属層は、回路パターンを有する金属層であってもよい。 本開示に係る積層体における金属層を、例えば、エッチングにより所望の回路パターンに加工し、フレキシブルプリント回路基板とすることも好ましい。エッチング方法としては、特に制限はなく、公知のエッチング方法を用いることができる。
 以下に実施例を挙げて本開示を更に具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本開示の趣旨を逸脱しない限り、適宜、変更することができる。したがって、本開示の範囲は以下に示す具体例に限定されるものではない。
 また、本実施例において、「%」、「部」とは、特に断りのない限り、それぞれ「質量%」、「質量部」を意味する。
<<測定法>>
〔160℃における弾性率〕
 まず、フィルムをミクロトーム等で断面切削し、光学顕微鏡で層A又は層Bを特定した。次に、特定した層A又は層Bにおける弾性率を、ナノインデンテーション法を用いて、押し込み弾性率として測定した。押し込み弾性率は、微小硬度計(製品名「DUH-W201」、(株)島津製作所製)を用い、160℃において、ビッカース圧子により0.28mN/秒の荷重速度で負荷をかけ、最大荷重10mNを10秒間保持した後に、0.28mN/秒の荷重速度で除荷を行うことにより、測定した。
<<製造例>>
<ポリマー又はポリマー粒子>
 P-1:下記製造方法に従って作製した芳香族ポリエステルアミド(液晶ポリマー)
-芳香族ポリエステルアミドP-1の合成-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計、及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸940.9g(5.0モル)、イソフタル酸415.3g(2.5モル)、アセトアミノフェン377.9g(2.5モル)、及び無水酢酸867.8g(8.4モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温(23℃、以下同じ)から140℃まで60分かけて昇温し、140℃で3時間還流させた。
 次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から300℃まで5時間かけて昇温し、300℃で30分保持した。その後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の芳香族ポリエステルアミドA1aを得た。芳香族ポリエステルアミドA1aの流動開始温度は、193℃であった。また、芳香族ポリエステルアミドA1aは、全芳香族ポリエステルアミドであった。
 芳香族ポリエステルアミドA1aを、窒素雰囲気下、室温から160℃まで2時間20分かけて昇温し、次いで160℃から180℃まで3時間20分かけて昇温し、180℃で5時間保持することにより固相重合させた後、冷却した。次いで、粉砕機で粉砕して、粉末状の芳香族ポリエステルアミドA1bを得た。芳香族ポリエステルアミドA1bの流動開始温度は、220℃であった。
 芳香族ポリエステルアミドA1bを、窒素雰囲気下、室温から180℃まで1時間25分かけて昇温し、次いで180℃から255℃まで6時間40分かけて昇温し、255℃で5時間保持することにより固相重合させた後、冷却して、粉末状の芳香族ポリエステルアミドP-1を得た。
 芳香族ポリエステルアミドP-1の流動開始温度は、302℃であった。また、芳香族ポリエステルアミドP-1の融点を、示差走査熱量分析装置を用いて測定した結果、311℃であった。芳香族ポリエステルアミドP-1は、140℃のN-メチルピロリドンに対する溶解度は、1質量%以上であった。
 P-2:下記製造方法に従って作製した芳香族ポリエステルアミド(液晶ポリマー)
-芳香族ポリエステルアミドP-2の合成-
 攪拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、6-ヒドロキシ-2-ナフトエ酸941g(5.0モル)、4-アミノフェノール273g(2.5モル)、イソフタル酸415g(2.5モル)及び無水酢酸1123g(11モル)を入れ、反応器内のガスを窒素ガスで置換した後、窒素ガス気流下、撹拌しながら、室温(23℃)から150℃まで15分かけて昇温し、150℃で3時間還流させた。
 次いで、副生酢酸及び未反応の無水酢酸を留去しながら、150℃から320℃まで3時間かけて昇温し、粘度の上昇が認められるまで保持した後、反応器から内容物を取り出し、室温まで冷却した。得られた固形物を、粉砕機で粉砕して、粉末状の液晶ポリエステル(P2)を得た。
 上記で得た液晶ポリエステル(P2)を、窒素雰囲気下、250℃で3時間保持することにより、固相重合させた後、冷却し、次いで、粉砕機で粉砕して、粉末状の液晶ポリエステル(P-2)を得た。
 F-1:水添スチレン-エチレン-ブチレン-スチレンブロック共重合体粒子、旭化成ケミカルズ(株)製タフテックM1913の凍結粉砕品(平均粒径5.0μm(D50))
 F-2:水添スチレン-エチレン・ブチレン-スチレンブロック共重合体粒子、クレイトンポリマージャパン(株)製KRATON GRP6935の凍結粉砕品(平均粒径5.0μm(D50))
 F-3:下記製造方法に従って作製した液晶ポリマー粒子
-液晶ポリマー粒子F-3の作製-
 撹拌装置、トルクメータ、窒素ガス導入管、温度計及び還流冷却器を備えた反応器に、2-ヒドロキシ-6-ナフトエ酸1034.99g(5.5モル)、2,6-ナフタレンジカルボン酸89.18g(0.41モル)、テレフタル酸236.06g(1.42モル)、4,4-ジヒドロキシビフェニル341.39g(1.83モル)及び触媒として酢酸カリウムと酢酸マグネシウムを入れた。反応器内のガスを窒素ガスで置換した後、無水酢酸(水酸基に対して1.08モル当量)を更に添加した。窒素ガス気流下、撹拌しながら、室温から150℃まで15分かけて昇温し、150℃で2時間還流させた。
 次いで、副生した酢酸及び未反応の無水酢酸を留去しながら、150℃から310℃まで5時間かけて昇温し、重合物を取り出して室温まで冷却した。得られた重合物を室温から295℃まで14時間かけて昇温し、295℃で1時間固相重合した。固相重合後、5時間かけて室温冷却した。
 ジェットミル((株)栗本鐡工所製「KJ-200」)を用いて、得られた液晶ポリエステルを粉砕し、液晶ポリマー粒子(F-3)を得た。液晶ポリマー粒子F-3は、メジアン径(D50)7.0μm、誘電正接0.0007、融点334℃であった。
 F-4:液晶ポリマーのペレット(ベクトラA950、ポリプラスチックス(株)社製)のジェットミル粉砕品(平均粒径7.0μm(D50)、誘電正接0.0021)
<銅箔>
 銅箔A:CF-T9DA-SV-18、福田金属箔粉工業(株)製、平均厚み18μm
 銅箔B:MT18FL、三井金属鉱業(株)製、平均厚み2μm、キャリア箔付き
(実施例1~14、並びに、比較例1)
-下塗り層コーティング液の調製-
 芳香族ポリエステルアミドP1 8部を、N-メチルピロリドン92部に加え、窒素雰囲気下、140℃4時間撹拌し、芳香族ポリエステルアミド溶液P1(固形分濃度8質量%)を得た。
 芳香族ポリエステルアミド溶液P1(10.0質量部)に対して、アミノフェノール型エポキシ樹脂(三菱化学(株)製「jER630」、0.04部)を混合し、下塗り層コーティング液を調製した。
-層A用コーティング液の調製-
 表1に記載のポリマー及び添加剤子を表1に記載の質量部比で混合し、N-メチルピロリドンを加え固形分濃度が25質量%となるように調整し、層A用コーティング液を得た。
-層B用コーティング液の調製-
 表1に記載のポリマー及び添加剤を表1に記載の質量部比で混合し、N-メチルピロリドンを加え固形分濃度が20質量%となるように調整し、層B用コーティング液を得た。
-片面銅張積層板の作製-
 得られた下塗り層コーティング液、層A用コーティング液、及び、層B用コーティング液を、スライドコーターを装備したスロットダイコーターに送液し、表1に記載の銅箔の処理面上に表1に記載する膜厚になるように流量を調整して3層構成(下塗り層/層A/層B)で塗布した。50℃、100℃、190℃の順で、各温度とも1時間ずつ乾燥することにより、塗膜から溶媒を除去した。更に、必要に応じ表2に記載のシートを層Bに貼り付け、表2に記載のアニール処理の条件(昇温速度、アニール温度、及び、降温速度)にて窒素雰囲気下で室温から昇温し、表2に記載の温度で2時間保持し、降温するアニール処理を行い、必要に応じアニール処理時に使用したシートを剥離し、銅層を有するポリマーフィルム(片面銅張積層板)を得た。
 なお、実施例4においては、誘導加熱により急昇温及び急冷を行った。
<<評価>>
 作製したフィルムについて、下記の方法で評価を行い、結果を表1に記載した。
〔誘電正接〕
 誘電正接の測定は、周波数10GHzで共振摂動法により実施した。ネットワークアナライザ(Agilent Technology社製「E8363B」)に10GHzの空洞共振器((株)関東電子応用開発製 CP531)を接続し、空洞共振器に試験片を挿入し、温度25℃、湿度60%RH環境下、96時間の挿入前後の共振周波数の変化からフィルムの誘電正接を測定した。
〔凹部の密度、深さ、及び、平均径の測定〕
 測定面を含む50mm角のサンプルを切り出し、レーザー顕微鏡((株)キーエンス製、VK-X3000)により、周囲よりも凹んでいる部分(凹部)をその深さとともにカウントし、そのうち、深さが0.5μm以上の凹部の数より、その密度を算出した。
 また、上記方法により、深さが0.5μm以上の各凹部の開口部の大きさ(最大径)を測定し、その平均値を凹部の平均径とした。
 更に、上記方法により、各凹部の深さを測定し、その平均値を平均深さとした。
〔空隙(気泡混入抑制性)の評価〕
(1)サンプルの作製
-配線パターン付き基材1の作製-
 銅箔(製品名「CF-T9DA-SV-18」、平均厚み18μm、福田金属箔粉工業(株)製)と、基材として液晶ポリマーフィルム(製品名「CTQ-50」、平均厚み50μm、クラレ社製)を準備した。銅箔の処理面が基材と接するように、銅箔と基材と銅箔とをこの順に重ねた。ラミネータ(製品名「真空ラミネータV-130」、ニッコー・マテリアルズ社製)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、両面銅張積層板の前駆体を得た。続いて、熱圧着機(製品名「MP-SNL」、(株)東洋精機製作所製)を用いて、得られた両面銅張積層板の前駆体を、300℃及び4.5MPaの条件で10分間熱圧着することにより、両面銅張積層板を作製した。
 上記両面銅張積層板の両面の銅箔に対して表面粗化し、ドライフィルムレジストを貼合した。配線パターンが残るように露光、現像をし、エッチングし、更にドライフィルムを除去することで、基材の両側にグランド線及び3対の信号線を含むライン/スペースが100μm/100μmとなる配線パターン付き基材を作製した。信号線の長さは50mm、幅は特性インピーダンスが50Ωになるように設定した。
-配線パターン付き基材2の作製-
 銅箔(製品名「MT18FL」、平均厚み1.5μm、キャリア銅箔(厚み18μm)付き、三井金属鉱業(株)製)と、基材として液晶ポリマーフィルム(製品名「CTQ-50」、平均厚み50μm、(株)クラレ製)を準備した。銅箔の処理面が基材と接するように、銅箔と基材と銅箔とをこの順に重ねた。ラミネータ(製品名「真空ラミネータV-130」、ニッコー・マテリアルズ(株)製)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、片面銅張積層板の前駆体を得た。続いて、熱圧着機(製品名「MP-SNL」、(株)東洋精機製作所製)を用いて、得られた片面銅張積層板の前駆体を、300℃及び4.5MPaの条件で10分間熱圧着することにより、片面銅張積層板を作製した。片面銅張積層板の基材と反対面にあるキャリア銅箔とを剥離し、露出した1.5μmの銅箔を表面粗化し、ドライフィルムレジストを貼合した。配線パターン露光、現像し、レジストパターンが配置されていない領域にめっき処理をした。さらに、ドライフィルムレジストを剥離し、剥離工程によって露出した銅をフラッシュエッチングにより除去することで、ライン/スペースが20μm/20μmとなる配線パターン付き基材を作製した。
-配線基板の作製-
 作製した片面銅張積層板の層B側に上記で作製した配線パターン付き基材を重ね合わせ、200℃及び2MPaの条件で、1時間の熱プレスを行うことにより、配線基板を得た。
 得られた配線基板は、配線パターン(グランド線及び信号線)が埋設されており、配線パターン付き基材1を用いた場合は配線パターンの厚みは18μm、配線パターン付き基材2を用いた場合は配線パターンの厚みは12μmであった。
(2)測定方法
 配線基板をミクロトームで厚み方向に沿って切削し、配線パターン100本分の断面を走査型電子顕微鏡(SEM)で観察し、樹脂層と配線パターンとの間において生じる1μm以上の空隙(ボイド)数をカウントし、以下の評価とした。
  A:発生ボイド数は2個未満である。
  B:発生ボイド数は2個以上10個未満である。
  C:発生ボイド数は10個以上である。
〔密着性の評価〕
 銅箔(製品名「CF-T9DA-SV-18」、平均厚み18μm、福田金属箔粉工業(株)製)を準備した。銅箔の非処理面が作製した片面銅張積層板の層B側と接するように、銅箔と片面銅張積層板をこの順に重ねた。ラミネータ(製品名「真空ラミネータV-130」、ニッコー・マテリアルズ社製)を使用して、140℃及びラミネート圧0.4MPaの条件で1分間のラミネート処理を行い、両面銅張積層板の前駆体を得た。続いて、熱圧着機(製品名「MP-SNL」、(株)東洋精機製作所製)を用いて、得られた両面銅張積層板の前駆体を、200℃及び4MPaの条件で60分間熱圧着することにより、両面銅張積層板を作製した。
 得られた両面銅張積層板から1.0cm幅の剥離用試験片を作製し、熱圧着した銅箔側を両面接着テープで平板に固定し、JIS C 5016(1994)に準じて90°法により、50mm/分の速度で金属層から片面銅張積層板を剥離したときの強度(kN/m)を測定し、以下の評価基準にて、評価した。
  A:剥離強度が1.0kN/m以上であった。
  B:剥離強度が0.7kN/m以上、且つ1.0kN/m未満であった。
  C:剥離強度が0.7kN/m未満であった。
 表2に記載のシートの詳細を、以下に示す。
 フッ素樹脂シート:PFA(四フッ化エチレンとパーフルオロアルコキシエチレンとの共重合体)シート、ダイキン工業(株)製AF-0100、厚さ100μm
 フッ素コートステンレス箔:耐熱性フッ素コーティング(GDコーティング、GDLAB合同会社製)を片面に施した15μmステンレス箔を用いた。
 フッ素コートフィルム:PTFE(ポリテトラフルオロエチレン)含浸ガラスクロス(バルフロン7920、(株)バルカー製、厚さ100μm)を用いた。
 表1及び表2に記載の結果から、本開示に係るフィルムである実施例1~14のフィルムは、比較例1のフィルムよりも、貼り合わせ時の気泡混入抑制性に優れる。
 また、表1及び表2に記載の結果から、本開示に係るフィルムである実施例1~14のフィルムは、低誘電正接であり、金属への密着性にも優れる。
 2022年8月31日に出願された日本国特許出願第2022-138490号の開示は、その全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び、技術規格は、個々の文献、特許出願、及び、技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (16)

  1.  層Aと、前記層Aの少なくとも一方の面に層Bとを有し、
     誘電正接が、0.01以下であり、
     前記層Bの前記層A側とは反対側の表面における深さが0.5μm以上の凹部の密度が、5個/cm以下である
     フィルム。
  2.  前記凹部の平均径が、100μm~1,000μmである請求項1に記載のフィルム。
  3.  前記層Bの160℃における弾性率に対する前記層Aの160℃における弾性率との比が、1.2以上である請求項1又は請求項2に記載のフィルム。
  4.  前記層Bの160℃における弾性率が、10MPa以下である請求項1又は請求項2に記載のフィルム。
  5.  前記層Bの誘電正接が、0.01以下である請求項1又は請求項2に記載のフィルム。
  6.  前記層Bが、液晶ポリマーを含む請求項1又は請求項2に記載のフィルム。
  7.  前記層Bが、芳香族ポリエステルアミドを含む請求項1又は請求項2に記載のフィルム。
  8.  前記層Bが、芳香族炭化水素基を有する構成単位を有する熱可塑性樹脂を含む請求項1又は請求項2に記載のフィルム。
  9.  前記層Aの誘電正接が、0.01以下である請求項1又は請求項2に記載のフィルム。
  10.  前記層Aが、液晶ポリマーを含む請求項1又は請求項2に記載のフィルム。
  11.  前記層Aが、芳香族ポリエステルアミドを含む請求項1又は請求項2に記載のフィルム。
  12.  前記層Bの前記層A側とは反対側の表面における表面自由エネルギーが、30mJ/m以下である請求項1又は請求項2に記載のフィルム。
  13.  前記層Bの前記層A側とは反対側の表面における飛行時間型二次イオン質量分析法により測定されたフッ素原子又はシリコーン構造に由来するイオン強度が、前記層Bの内部の前記イオン強度より大きい請求項1又は請求項2に記載のフィルム。
  14.  請求項1又は請求項2に記載のフィルムと、前記フィルムの少なくとも一方の面に配置された金属層又は金属配線と、を有する積層体。
  15.  前記層Bの前記層A側とは反対側の表面における表面自由エネルギーが、30mJ/mより高い請求項1又は請求項2に記載のフィルムと、前記フィルムの少なくとも層A側とは反対側の面に配置された金属層又は金属配線と、を有する積層体。
  16.  前記層Aと、前記層Aの少なくとも一方の面に前記層Bとを形成する工程、
     前記フィルムの前記層Bにシートを貼り付ける工程、及び、
     前記シートを貼り付けたフィルムを熱処理する工程を含む請求項1又は請求項2に記載のフィルムの製造方法。
PCT/JP2023/031835 2022-08-31 2023-08-31 フィルム及びその製造方法、並びに、積層体 WO2024048729A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022-138490 2022-08-31
JP2022138490 2022-08-31

Publications (1)

Publication Number Publication Date
WO2024048729A1 true WO2024048729A1 (ja) 2024-03-07

Family

ID=90099846

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/031835 WO2024048729A1 (ja) 2022-08-31 2023-08-31 フィルム及びその製造方法、並びに、積層体

Country Status (1)

Country Link
WO (1) WO2024048729A1 (ja)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226796A (ja) * 1991-11-27 1993-09-03 Hoechst Celanese Corp ヒートシール可能な同時押出した液晶ポリマーのフィルム
JP2000280408A (ja) * 1999-03-29 2000-10-10 Toyobo Co Ltd 離型フィルム
WO2018163999A1 (ja) * 2017-03-06 2018-09-13 株式会社村田製作所 金属張積層板、回路基板、および多層回路基板
JP2020072198A (ja) * 2018-10-31 2020-05-07 日鉄ケミカル&マテリアル株式会社 金属張積層板、回路基板、多層回路基板及びその製造方法
JP2021095520A (ja) * 2019-12-18 2021-06-24 共同技研化学株式会社 液状組成物,液晶ポリエステルフィルム及び該液晶ポリエステルフィルムの製造方法,並びに,積層フィルム及び該積層フィルムの製造方法
WO2022138665A1 (ja) * 2020-12-21 2022-06-30 富士フイルム株式会社 ポリマーフィルム、並びに、積層体及びその製造方法
WO2022163776A1 (ja) * 2021-01-29 2022-08-04 富士フイルム株式会社 ポリマーフィルム、並びに、積層体及びその製造方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05226796A (ja) * 1991-11-27 1993-09-03 Hoechst Celanese Corp ヒートシール可能な同時押出した液晶ポリマーのフィルム
JP2000280408A (ja) * 1999-03-29 2000-10-10 Toyobo Co Ltd 離型フィルム
WO2018163999A1 (ja) * 2017-03-06 2018-09-13 株式会社村田製作所 金属張積層板、回路基板、および多層回路基板
JP2020072198A (ja) * 2018-10-31 2020-05-07 日鉄ケミカル&マテリアル株式会社 金属張積層板、回路基板、多層回路基板及びその製造方法
JP2021095520A (ja) * 2019-12-18 2021-06-24 共同技研化学株式会社 液状組成物,液晶ポリエステルフィルム及び該液晶ポリエステルフィルムの製造方法,並びに,積層フィルム及び該積層フィルムの製造方法
WO2022138665A1 (ja) * 2020-12-21 2022-06-30 富士フイルム株式会社 ポリマーフィルム、並びに、積層体及びその製造方法
WO2022163776A1 (ja) * 2021-01-29 2022-08-04 富士フイルム株式会社 ポリマーフィルム、並びに、積層体及びその製造方法

Similar Documents

Publication Publication Date Title
WO2022163776A1 (ja) ポリマーフィルム、並びに、積層体及びその製造方法
WO2022138665A1 (ja) ポリマーフィルム、並びに、積層体及びその製造方法
US20230321953A1 (en) Liquid crystal polymer film, method for manufacturing same, and laminate
US20230321958A1 (en) Liquid crystal polymer film, polymer film, and laminate
US20230286250A1 (en) Film and laminate
US20230278317A1 (en) Polymer film and laminate
US20230292434A1 (en) Liquid crystal polymer film, polymer film, and laminate
WO2024048729A1 (ja) フィルム及びその製造方法、並びに、積層体
WO2024048728A1 (ja) フィルム、及び、積層体
WO2023191010A1 (ja) フィルム、及び、積層体
WO2023191011A1 (ja) フィルム、及び、積層体
WO2023233878A1 (ja) フィルム及び積層体
WO2024048727A1 (ja) 積層体、フィルム、熱硬化性フィルム、及び、配線基板の製造方法
JP2024034319A (ja) フィルム、及び、積層体
WO2023191012A1 (ja) フィルム、並びに、積層体及びその製造方法
WO2022138666A1 (ja) 積層体、及び、ポリマーフィルム
WO2024095641A1 (ja) ポリマーフィルム及び積層体
WO2022176914A1 (ja) 液晶ポリマーフィルム、ポリマーフィルム、及び積層体
WO2024048000A1 (ja) 組成物、及び、フィルム
WO2024048348A1 (ja) フィルム、及び、積層体
WO2024095642A1 (ja) ポリマーフィルム及び積層体
WO2022113973A1 (ja) ポリマーフィルム、及び、積層体
WO2023145784A1 (ja) 配線基板及びその製造方法、フィルム、並びに、積層体
WO2023210471A1 (ja) フィルム及び積層体
CN116648355A (zh) 聚合物膜及层叠体

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23860491

Country of ref document: EP

Kind code of ref document: A1